2019-06-04 15:11:33 +07:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2005-04-17 05:20:36 +07:00
|
|
|
/*
|
|
|
|
* Overview:
|
|
|
|
* This is the generic MTD driver for NAND flash devices. It should be
|
|
|
|
* capable of working with almost all NAND chips currently available.
|
2005-11-07 18:15:49 +07:00
|
|
|
*
|
2005-04-17 05:20:36 +07:00
|
|
|
* Additional technical information is available on
|
2007-07-28 18:07:16 +07:00
|
|
|
* http://www.linux-mtd.infradead.org/doc/nand.html
|
2005-11-07 18:15:49 +07:00
|
|
|
*
|
2005-04-17 05:20:36 +07:00
|
|
|
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
|
2006-05-24 17:07:37 +07:00
|
|
|
* 2002-2006 Thomas Gleixner (tglx@linutronix.de)
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2006-05-24 17:07:37 +07:00
|
|
|
* Credits:
|
2005-11-07 18:15:49 +07:00
|
|
|
* David Woodhouse for adding multichip support
|
|
|
|
*
|
2005-04-17 05:20:36 +07:00
|
|
|
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
|
|
|
|
* rework for 2K page size chips
|
|
|
|
*
|
2006-05-24 17:07:37 +07:00
|
|
|
* TODO:
|
2005-04-17 05:20:36 +07:00
|
|
|
* Enable cached programming for 2k page size chips
|
|
|
|
* Check, if mtd->ecctype should be set to MTD_ECC_HW
|
2011-06-24 04:12:08 +07:00
|
|
|
* if we have HW ECC support.
|
2007-07-23 20:06:50 +07:00
|
|
|
* BBT table is not serialized, has to be fixed
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
|
|
|
|
2013-11-25 18:30:31 +07:00
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
|
2006-05-14 07:20:46 +07:00
|
|
|
#include <linux/module.h>
|
2005-04-17 05:20:36 +07:00
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/errno.h>
|
2006-05-23 16:54:38 +07:00
|
|
|
#include <linux/err.h>
|
2005-04-17 05:20:36 +07:00
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/slab.h>
|
2014-05-02 07:51:19 +07:00
|
|
|
#include <linux/mm.h>
|
2005-04-17 05:20:36 +07:00
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
|
|
#include <linux/mtd/nand_ecc.h>
|
2011-03-11 17:05:33 +07:00
|
|
|
#include <linux/mtd/nand_bch.h>
|
2005-04-17 05:20:36 +07:00
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/bitops.h>
|
2010-09-07 18:23:45 +07:00
|
|
|
#include <linux/io.h>
|
2005-04-17 05:20:36 +07:00
|
|
|
#include <linux/mtd/partitions.h>
|
2016-04-01 19:54:32 +07:00
|
|
|
#include <linux/of.h>
|
2018-10-16 02:41:28 +07:00
|
|
|
#include <linux/gpio/consumer.h>
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2018-09-07 05:38:48 +07:00
|
|
|
#include "internals.h"
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Define default oob placement schemes for large and small page devices */
|
2016-02-04 01:06:15 +07:00
|
|
|
static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
|
|
|
|
struct mtd_oob_region *oobregion)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2016-02-04 01:06:15 +07:00
|
|
|
if (section > 1)
|
|
|
|
return -ERANGE;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2016-02-04 01:06:15 +07:00
|
|
|
if (!section) {
|
|
|
|
oobregion->offset = 0;
|
nand: fix wrong default oob layout for small pages using soft ecc
When using soft ecc, if no ooblayout is given, the core automatically
uses one of the nand_ooblayout_{sp,lp}*() functions to determine the
layout inside the out of band data.
Until kernel version 4.6, struct nand_ecclayout was used for that
purpose. During the migration from 4.6 to 4.7, an error shown up in the
small page layout, in the case oob section is only 8 bytes long.
The layout was using three bytes (0, 1, 2) for ecc, two bytes (3, 4)
as free bytes, one byte (5) for bad block marker and finally
two bytes (6, 7) as free bytes, as shown there:
[linux-4.6] drivers/mtd/nand/nand_base.c:52
static struct nand_ecclayout nand_oob_8 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{.offset = 3,
.length = 2},
{.offset = 6,
.length = 2} }
};
This fixes the current implementation which is incoherent. It
references bit 3 at the same time as an ecc byte and a free byte.
Furthermore, it is clear with the previous implementation that there
is only one ecc section with 8 bytes oob sections. We shall return
-ERANGE in the nand_ooblayout_ecc_sp() function when asked for the
second section.
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Fixes: 41b207a70d3a ("mtd: nand: implement the default mtd_ooblayout_ops")
Cc: <stable@vger.kernel.org>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-07-05 13:51:09 +07:00
|
|
|
if (mtd->oobsize == 16)
|
|
|
|
oobregion->length = 4;
|
|
|
|
else
|
|
|
|
oobregion->length = 3;
|
2016-02-04 01:06:15 +07:00
|
|
|
} else {
|
nand: fix wrong default oob layout for small pages using soft ecc
When using soft ecc, if no ooblayout is given, the core automatically
uses one of the nand_ooblayout_{sp,lp}*() functions to determine the
layout inside the out of band data.
Until kernel version 4.6, struct nand_ecclayout was used for that
purpose. During the migration from 4.6 to 4.7, an error shown up in the
small page layout, in the case oob section is only 8 bytes long.
The layout was using three bytes (0, 1, 2) for ecc, two bytes (3, 4)
as free bytes, one byte (5) for bad block marker and finally
two bytes (6, 7) as free bytes, as shown there:
[linux-4.6] drivers/mtd/nand/nand_base.c:52
static struct nand_ecclayout nand_oob_8 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{.offset = 3,
.length = 2},
{.offset = 6,
.length = 2} }
};
This fixes the current implementation which is incoherent. It
references bit 3 at the same time as an ecc byte and a free byte.
Furthermore, it is clear with the previous implementation that there
is only one ecc section with 8 bytes oob sections. We shall return
-ERANGE in the nand_ooblayout_ecc_sp() function when asked for the
second section.
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Fixes: 41b207a70d3a ("mtd: nand: implement the default mtd_ooblayout_ops")
Cc: <stable@vger.kernel.org>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-07-05 13:51:09 +07:00
|
|
|
if (mtd->oobsize == 8)
|
|
|
|
return -ERANGE;
|
|
|
|
|
2016-02-04 01:06:15 +07:00
|
|
|
oobregion->offset = 6;
|
|
|
|
oobregion->length = ecc->total - 4;
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2016-02-04 01:06:15 +07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
|
|
|
|
struct mtd_oob_region *oobregion)
|
|
|
|
{
|
|
|
|
if (section > 1)
|
|
|
|
return -ERANGE;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2016-02-04 01:06:15 +07:00
|
|
|
if (mtd->oobsize == 16) {
|
|
|
|
if (section)
|
|
|
|
return -ERANGE;
|
|
|
|
|
|
|
|
oobregion->length = 8;
|
|
|
|
oobregion->offset = 8;
|
|
|
|
} else {
|
|
|
|
oobregion->length = 2;
|
|
|
|
if (!section)
|
|
|
|
oobregion->offset = 3;
|
|
|
|
else
|
|
|
|
oobregion->offset = 6;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
|
|
|
|
.ecc = nand_ooblayout_ecc_sp,
|
|
|
|
.free = nand_ooblayout_free_sp,
|
2007-12-12 23:27:03 +07:00
|
|
|
};
|
2016-02-04 01:06:15 +07:00
|
|
|
EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
|
2007-12-12 23:27:03 +07:00
|
|
|
|
2016-02-04 01:06:15 +07:00
|
|
|
static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
|
|
|
|
struct mtd_oob_region *oobregion)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2017-08-26 22:19:15 +07:00
|
|
|
if (section || !ecc->total)
|
2016-02-04 01:06:15 +07:00
|
|
|
return -ERANGE;
|
2006-05-29 08:26:58 +07:00
|
|
|
|
2016-02-04 01:06:15 +07:00
|
|
|
oobregion->length = ecc->total;
|
|
|
|
oobregion->offset = mtd->oobsize - oobregion->length;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
|
|
|
|
struct mtd_oob_region *oobregion)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
|
|
|
|
if (section)
|
|
|
|
return -ERANGE;
|
|
|
|
|
|
|
|
oobregion->length = mtd->oobsize - ecc->total - 2;
|
|
|
|
oobregion->offset = 2;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
|
|
|
|
.ecc = nand_ooblayout_ecc_lp,
|
|
|
|
.free = nand_ooblayout_free_lp,
|
|
|
|
};
|
|
|
|
EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
|
2006-05-24 04:48:57 +07:00
|
|
|
|
2017-05-02 17:19:00 +07:00
|
|
|
/*
|
|
|
|
* Support the old "large page" layout used for 1-bit Hamming ECC where ECC
|
|
|
|
* are placed at a fixed offset.
|
|
|
|
*/
|
|
|
|
static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
|
|
|
|
struct mtd_oob_region *oobregion)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
|
|
|
|
if (section)
|
|
|
|
return -ERANGE;
|
|
|
|
|
|
|
|
switch (mtd->oobsize) {
|
|
|
|
case 64:
|
|
|
|
oobregion->offset = 40;
|
|
|
|
break;
|
|
|
|
case 128:
|
|
|
|
oobregion->offset = 80;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
oobregion->length = ecc->total;
|
|
|
|
if (oobregion->offset + oobregion->length > mtd->oobsize)
|
|
|
|
return -ERANGE;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
|
|
|
|
struct mtd_oob_region *oobregion)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
int ecc_offset = 0;
|
|
|
|
|
|
|
|
if (section < 0 || section > 1)
|
|
|
|
return -ERANGE;
|
|
|
|
|
|
|
|
switch (mtd->oobsize) {
|
|
|
|
case 64:
|
|
|
|
ecc_offset = 40;
|
|
|
|
break;
|
|
|
|
case 128:
|
|
|
|
ecc_offset = 80;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (section == 0) {
|
|
|
|
oobregion->offset = 2;
|
|
|
|
oobregion->length = ecc_offset - 2;
|
|
|
|
} else {
|
|
|
|
oobregion->offset = ecc_offset + ecc->total;
|
|
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-05-04 19:11:00 +07:00
|
|
|
static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
|
2017-05-02 17:19:00 +07:00
|
|
|
.ecc = nand_ooblayout_ecc_lp_hamming,
|
|
|
|
.free = nand_ooblayout_free_lp_hamming,
|
|
|
|
};
|
|
|
|
|
2020-05-03 22:53:35 +07:00
|
|
|
static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
|
|
|
|
struct mtd_pairing_info *info)
|
|
|
|
{
|
|
|
|
int lastpage = (mtd->erasesize / mtd->writesize) - 1;
|
|
|
|
int dist = 3;
|
|
|
|
|
|
|
|
if (page == lastpage)
|
|
|
|
dist = 2;
|
|
|
|
|
|
|
|
if (!page || (page & 1)) {
|
|
|
|
info->group = 0;
|
|
|
|
info->pair = (page + 1) / 2;
|
|
|
|
} else {
|
|
|
|
info->group = 1;
|
|
|
|
info->pair = (page + 1 - dist) / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
|
|
|
|
const struct mtd_pairing_info *info)
|
|
|
|
{
|
|
|
|
int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
|
|
|
|
int page = info->pair * 2;
|
|
|
|
int dist = 3;
|
|
|
|
|
|
|
|
if (!info->group && !info->pair)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (info->pair == lastpair && info->group)
|
|
|
|
dist = 2;
|
|
|
|
|
|
|
|
if (!info->group)
|
|
|
|
page--;
|
|
|
|
else if (info->pair)
|
|
|
|
page += dist - 1;
|
|
|
|
|
|
|
|
if (page >= mtd->erasesize / mtd->writesize)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct mtd_pairing_scheme dist3_pairing_scheme = {
|
|
|
|
.ngroups = 2,
|
|
|
|
.get_info = nand_pairing_dist3_get_info,
|
|
|
|
.get_wunit = nand_pairing_dist3_get_wunit,
|
|
|
|
};
|
|
|
|
|
2018-11-11 14:55:03 +07:00
|
|
|
static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
|
2010-02-03 15:42:24 +07:00
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
/* Start address must align on block boundary */
|
2013-08-09 16:49:05 +07:00
|
|
|
if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
|
2011-07-20 00:06:09 +07:00
|
|
|
pr_debug("%s: unaligned address\n", __func__);
|
2010-02-03 15:42:24 +07:00
|
|
|
ret = -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Length must align on block boundary */
|
2013-08-09 16:49:05 +07:00
|
|
|
if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
|
2011-07-20 00:06:09 +07:00
|
|
|
pr_debug("%s: length not block aligned\n", __func__);
|
2010-02-03 15:42:24 +07:00
|
|
|
ret = -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-11-11 14:55:14 +07:00
|
|
|
/**
|
|
|
|
* nand_select_target() - Select a NAND target (A.K.A. die)
|
|
|
|
* @chip: NAND chip object
|
|
|
|
* @cs: the CS line to select. Note that this CS id is always from the chip
|
|
|
|
* PoV, not the controller one
|
|
|
|
*
|
|
|
|
* Select a NAND target so that further operations executed on @chip go to the
|
|
|
|
* selected NAND target.
|
|
|
|
*/
|
|
|
|
void nand_select_target(struct nand_chip *chip, unsigned int cs)
|
|
|
|
{
|
|
|
|
/*
|
2018-10-29 17:58:29 +07:00
|
|
|
* cs should always lie between 0 and nanddev_ntargets(), when that's
|
|
|
|
* not the case it's a bug and the caller should be fixed.
|
2018-11-11 14:55:14 +07:00
|
|
|
*/
|
2018-10-29 17:58:29 +07:00
|
|
|
if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
|
2018-11-11 14:55:14 +07:00
|
|
|
return;
|
|
|
|
|
2018-11-11 14:55:15 +07:00
|
|
|
chip->cur_cs = cs;
|
2018-11-11 14:55:16 +07:00
|
|
|
|
2018-11-11 14:55:22 +07:00
|
|
|
if (chip->legacy.select_chip)
|
|
|
|
chip->legacy.select_chip(chip, cs);
|
2018-11-11 14:55:14 +07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_select_target);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_deselect_target() - Deselect the currently selected target
|
|
|
|
* @chip: NAND chip object
|
|
|
|
*
|
|
|
|
* Deselect the currently selected NAND target. The result of operations
|
|
|
|
* executed on @chip after the target has been deselected is undefined.
|
|
|
|
*/
|
|
|
|
void nand_deselect_target(struct nand_chip *chip)
|
|
|
|
{
|
2018-11-11 14:55:22 +07:00
|
|
|
if (chip->legacy.select_chip)
|
|
|
|
chip->legacy.select_chip(chip, -1);
|
2018-11-11 14:55:16 +07:00
|
|
|
|
2018-11-11 14:55:15 +07:00
|
|
|
chip->cur_cs = -1;
|
2018-11-11 14:55:14 +07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_deselect_target);
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/**
|
|
|
|
* nand_release_device - [GENERIC] release chip
|
2018-11-11 14:55:03 +07:00
|
|
|
* @chip: NAND chip object
|
2005-11-07 18:15:49 +07:00
|
|
|
*
|
2012-11-19 13:43:29 +07:00
|
|
|
* Release chip lock and wake up anyone waiting on the device.
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2018-11-11 14:55:03 +07:00
|
|
|
static void nand_release_device(struct nand_chip *chip)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2006-05-23 16:37:03 +07:00
|
|
|
/* Release the controller and the chip */
|
2018-11-20 17:57:20 +07:00
|
|
|
mutex_unlock(&chip->controller->lock);
|
|
|
|
mutex_unlock(&chip->lock);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2019-04-17 19:36:37 +07:00
|
|
|
/**
|
|
|
|
* nand_bbm_get_next_page - Get the next page for bad block markers
|
|
|
|
* @chip: NAND chip object
|
|
|
|
* @page: First page to start checking for bad block marker usage
|
|
|
|
*
|
|
|
|
* Returns an integer that corresponds to the page offset within a block, for
|
|
|
|
* a page that is used to store bad block markers. If no more pages are
|
|
|
|
* available, -EINVAL is returned.
|
|
|
|
*/
|
|
|
|
int nand_bbm_get_next_page(struct nand_chip *chip, int page)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
int last_page = ((mtd->erasesize - mtd->writesize) >>
|
|
|
|
chip->page_shift) & chip->pagemask;
|
2019-09-24 12:54:31 +07:00
|
|
|
unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
|
|
|
|
| NAND_BBM_LASTPAGE;
|
2019-04-17 19:36:37 +07:00
|
|
|
|
2019-09-24 12:54:31 +07:00
|
|
|
if (page == 0 && !(chip->options & bbm_flags))
|
|
|
|
return 0;
|
2019-04-17 19:36:37 +07:00
|
|
|
if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
|
|
|
|
return 0;
|
2019-09-24 12:54:31 +07:00
|
|
|
if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
|
2019-04-17 19:36:37 +07:00
|
|
|
return 1;
|
2019-09-24 12:54:31 +07:00
|
|
|
if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
|
2019-04-17 19:36:37 +07:00
|
|
|
return last_page;
|
|
|
|
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/**
|
|
|
|
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
|
2018-09-06 19:05:25 +07:00
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
* @ofs: offset from device start
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2005-11-07 18:15:49 +07:00
|
|
|
* Check, if the block is bad.
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2018-09-06 19:05:25 +07:00
|
|
|
static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2019-04-17 19:36:37 +07:00
|
|
|
int first_page, page_offset;
|
|
|
|
int res;
|
2017-03-23 03:07:01 +07:00
|
|
|
u8 bad;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2019-04-17 19:36:37 +07:00
|
|
|
first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
|
|
|
|
page_offset = nand_bbm_get_next_page(chip, 0);
|
2007-05-03 13:39:37 +07:00
|
|
|
|
2019-04-17 19:36:37 +07:00
|
|
|
while (page_offset >= 0) {
|
|
|
|
res = chip->ecc.read_oob(chip, first_page + page_offset);
|
2018-06-13 16:02:36 +07:00
|
|
|
if (res < 0)
|
2017-03-23 03:07:01 +07:00
|
|
|
return res;
|
|
|
|
|
|
|
|
bad = chip->oob_poi[chip->badblockpos];
|
2012-01-14 09:11:48 +07:00
|
|
|
|
|
|
|
if (likely(chip->badblockbits == 8))
|
|
|
|
res = bad != 0xFF;
|
2010-02-23 01:39:38 +07:00
|
|
|
else
|
2012-01-14 09:11:48 +07:00
|
|
|
res = hweight8(bad) < chip->badblockbits;
|
2017-03-23 03:07:01 +07:00
|
|
|
if (res)
|
|
|
|
return res;
|
2019-04-17 19:36:37 +07:00
|
|
|
|
|
|
|
page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
|
2017-03-23 03:07:01 +07:00
|
|
|
}
|
2010-02-23 01:39:38 +07:00
|
|
|
|
2017-03-23 03:07:01 +07:00
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2018-11-11 14:55:04 +07:00
|
|
|
static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
|
|
|
|
{
|
2020-05-11 13:49:15 +07:00
|
|
|
if (chip->options & NAND_NO_BBM_QUIRK)
|
|
|
|
return 0;
|
|
|
|
|
2018-11-11 14:55:04 +07:00
|
|
|
if (chip->legacy.block_bad)
|
|
|
|
return chip->legacy.block_bad(chip, ofs);
|
|
|
|
|
|
|
|
return nand_block_bad(chip, ofs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_get_device - [GENERIC] Get chip for selected access
|
|
|
|
* @chip: NAND chip structure
|
|
|
|
*
|
2018-11-20 17:57:20 +07:00
|
|
|
* Lock the device and its controller for exclusive access
|
|
|
|
*
|
|
|
|
* Return: -EBUSY if the chip has been suspended, 0 otherwise
|
2018-11-11 14:55:04 +07:00
|
|
|
*/
|
2018-11-20 17:57:20 +07:00
|
|
|
static int nand_get_device(struct nand_chip *chip)
|
2018-11-11 14:55:04 +07:00
|
|
|
{
|
2018-11-20 17:57:20 +07:00
|
|
|
mutex_lock(&chip->lock);
|
|
|
|
if (chip->suspended) {
|
|
|
|
mutex_unlock(&chip->lock);
|
|
|
|
return -EBUSY;
|
2018-11-11 14:55:04 +07:00
|
|
|
}
|
2018-11-20 17:57:20 +07:00
|
|
|
mutex_lock(&chip->controller->lock);
|
|
|
|
|
|
|
|
return 0;
|
2018-11-11 14:55:04 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_check_wp - [GENERIC] check if the chip is write protected
|
|
|
|
* @chip: NAND chip object
|
|
|
|
*
|
|
|
|
* Check, if the device is write protected. The function expects, that the
|
|
|
|
* device is already selected.
|
|
|
|
*/
|
|
|
|
static int nand_check_wp(struct nand_chip *chip)
|
|
|
|
{
|
|
|
|
u8 status;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Broken xD cards report WP despite being writable */
|
|
|
|
if (chip->options & NAND_BROKEN_XD)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Check the WP bit */
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return status & NAND_STATUS_WP ? 0 : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_fill_oob - [INTERN] Transfer client buffer to oob
|
2019-01-28 09:21:42 +07:00
|
|
|
* @chip: NAND chip object
|
2018-11-11 14:55:04 +07:00
|
|
|
* @oob: oob data buffer
|
|
|
|
* @len: oob data write length
|
|
|
|
* @ops: oob ops structure
|
|
|
|
*/
|
|
|
|
static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
|
|
|
|
struct mtd_oob_ops *ops)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialise to all 0xFF, to avoid the possibility of left over OOB
|
|
|
|
* data from a previous OOB read.
|
|
|
|
*/
|
|
|
|
memset(chip->oob_poi, 0xff, mtd->oobsize);
|
|
|
|
|
|
|
|
switch (ops->mode) {
|
|
|
|
|
|
|
|
case MTD_OPS_PLACE_OOB:
|
|
|
|
case MTD_OPS_RAW:
|
|
|
|
memcpy(chip->oob_poi + ops->ooboffs, oob, len);
|
|
|
|
return oob + len;
|
|
|
|
|
|
|
|
case MTD_OPS_AUTO_OOB:
|
|
|
|
ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
|
|
|
|
ops->ooboffs, len);
|
|
|
|
BUG_ON(ret);
|
|
|
|
return oob + len;
|
|
|
|
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_do_write_oob - [MTD Interface] NAND write out-of-band
|
|
|
|
* @chip: NAND chip object
|
|
|
|
* @to: offset to write to
|
|
|
|
* @ops: oob operation description structure
|
|
|
|
*
|
|
|
|
* NAND write out-of-band.
|
|
|
|
*/
|
|
|
|
static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
|
|
|
|
struct mtd_oob_ops *ops)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2019-01-21 20:05:34 +07:00
|
|
|
int chipnr, page, status, len, ret;
|
2018-11-11 14:55:04 +07:00
|
|
|
|
|
|
|
pr_debug("%s: to = 0x%08x, len = %i\n",
|
|
|
|
__func__, (unsigned int)to, (int)ops->ooblen);
|
|
|
|
|
|
|
|
len = mtd_oobavail(mtd, ops);
|
|
|
|
|
|
|
|
/* Do not allow write past end of page */
|
|
|
|
if ((ops->ooboffs + ops->ooblen) > len) {
|
|
|
|
pr_debug("%s: attempt to write past end of page\n",
|
|
|
|
__func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
chipnr = (int)(to >> chip->chip_shift);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reset the chip. Some chips (like the Toshiba TC5832DC found in one
|
|
|
|
* of my DiskOnChip 2000 test units) will clear the whole data page too
|
|
|
|
* if we don't do this. I have no clue why, but I seem to have 'fixed'
|
|
|
|
* it in the doc2000 driver in August 1999. dwmw2.
|
|
|
|
*/
|
2019-01-21 20:05:34 +07:00
|
|
|
ret = nand_reset(chip, chipnr);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2018-11-11 14:55:04 +07:00
|
|
|
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2018-11-11 14:55:04 +07:00
|
|
|
|
|
|
|
/* Shift to get page */
|
|
|
|
page = (int)(to >> chip->page_shift);
|
|
|
|
|
|
|
|
/* Check, if it is write protected */
|
|
|
|
if (nand_check_wp(chip)) {
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2018-11-11 14:55:04 +07:00
|
|
|
return -EROFS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Invalidate the page cache, if we write to the cached page */
|
2018-10-28 22:12:45 +07:00
|
|
|
if (page == chip->pagecache.page)
|
|
|
|
chip->pagecache.page = -1;
|
2018-11-11 14:55:04 +07:00
|
|
|
|
|
|
|
nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
|
|
|
|
|
|
|
|
if (ops->mode == MTD_OPS_RAW)
|
|
|
|
status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
|
|
|
|
else
|
|
|
|
status = chip->ecc.write_oob(chip, page & chip->pagemask);
|
|
|
|
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2018-11-11 14:55:04 +07:00
|
|
|
|
|
|
|
if (status)
|
|
|
|
return status;
|
|
|
|
|
|
|
|
ops->oobretlen = ops->ooblen;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/**
|
2013-07-31 07:52:58 +07:00
|
|
|
* nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
|
2018-09-06 19:05:25 +07:00
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
* @ofs: offset from device start
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* This is the default implementation, which can be overridden by a hardware
|
2013-07-31 07:52:58 +07:00
|
|
|
* specific driver. It provides the details for writing a bad block marker to a
|
|
|
|
* block.
|
|
|
|
*/
|
2018-09-06 19:05:25 +07:00
|
|
|
static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
|
2013-07-31 07:52:58 +07:00
|
|
|
{
|
2018-09-06 19:05:25 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2013-07-31 07:52:58 +07:00
|
|
|
struct mtd_oob_ops ops;
|
|
|
|
uint8_t buf[2] = { 0, 0 };
|
2019-04-17 19:36:37 +07:00
|
|
|
int ret = 0, res, page_offset;
|
2013-07-31 07:52:58 +07:00
|
|
|
|
2015-02-28 17:02:30 +07:00
|
|
|
memset(&ops, 0, sizeof(ops));
|
2013-07-31 07:52:58 +07:00
|
|
|
ops.oobbuf = buf;
|
|
|
|
ops.ooboffs = chip->badblockpos;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
|
|
ops.ooboffs &= ~0x01;
|
|
|
|
ops.len = ops.ooblen = 2;
|
|
|
|
} else {
|
|
|
|
ops.len = ops.ooblen = 1;
|
|
|
|
}
|
|
|
|
ops.mode = MTD_OPS_PLACE_OOB;
|
|
|
|
|
2019-04-17 19:36:37 +07:00
|
|
|
page_offset = nand_bbm_get_next_page(chip, 0);
|
|
|
|
|
|
|
|
while (page_offset >= 0) {
|
|
|
|
res = nand_do_write_oob(chip,
|
|
|
|
ofs + (page_offset * mtd->writesize),
|
|
|
|
&ops);
|
|
|
|
|
2013-07-31 07:52:58 +07:00
|
|
|
if (!ret)
|
|
|
|
ret = res;
|
|
|
|
|
2019-04-17 19:36:37 +07:00
|
|
|
page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
|
|
|
|
}
|
2013-07-31 07:52:58 +07:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:38 +07:00
|
|
|
/**
|
|
|
|
* nand_markbad_bbm - mark a block by updating the BBM
|
|
|
|
* @chip: NAND chip object
|
|
|
|
* @ofs: offset of the block to mark bad
|
|
|
|
*/
|
|
|
|
int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
|
|
|
|
{
|
|
|
|
if (chip->legacy.block_markbad)
|
|
|
|
return chip->legacy.block_markbad(chip, ofs);
|
|
|
|
|
|
|
|
return nand_default_block_markbad(chip, ofs);
|
|
|
|
}
|
|
|
|
|
2013-07-31 07:52:58 +07:00
|
|
|
/**
|
|
|
|
* nand_block_markbad_lowlevel - mark a block bad
|
2018-11-11 14:55:03 +07:00
|
|
|
* @chip: NAND chip object
|
2013-07-31 07:52:58 +07:00
|
|
|
* @ofs: offset from device start
|
|
|
|
*
|
|
|
|
* This function performs the generic NAND bad block marking steps (i.e., bad
|
|
|
|
* block table(s) and/or marker(s)). We only allow the hardware driver to
|
2018-09-07 05:38:38 +07:00
|
|
|
* specify how to write bad block markers to OOB (chip->legacy.block_markbad).
|
2013-07-31 07:52:58 +07:00
|
|
|
*
|
2013-07-31 07:52:59 +07:00
|
|
|
* We try operations in the following order:
|
2017-05-13 17:40:36 +07:00
|
|
|
*
|
mtd: nand: write BBM to OOB even with flash-based BBT
Currently, the flash-based BBT implementation writes bad block data only
to its flash-based table and not to the OOB marker area. Then, as new bad
blocks are marked over time, the OOB markers become incomplete and the
flash-based table becomes the only source of current bad block
information. This becomes an obvious problem when, for example:
* bootloader cannot read the flash-based BBT format
* BBT is corrupted and the flash must be rescanned for bad
blocks; we want to remember bad blocks that were marked from Linux
So to keep the bad block markers in sync with the flash-based BBT, this
patch changes the default so that we write bad block markers to the proper
OOB area on each block in addition to flash-based BBT. Comments are
updated, expanded, and/or relocated as necessary.
The new flash-based BBT procedure for marking bad blocks:
(1) erase the affected block, to allow OOB marker to be written cleanly
(2) update in-memory BBT
(3) write bad block marker to OOB area of affected block
(4) update flash-based BBT
Note that we retain the first error encountered in (3) or (4), finish the
procedures, and dump the error in the end.
This should handle power cuts gracefully enough. (1) and (2) are mostly
harmless (note that (1) will not erase an already-recognized bad block).
The OOB and BBT may be "out of sync" if we experience power loss bewteen
(3) and (4), but we can reasonably expect that on next boot, subsequent
I/O operations will discover that the block should be marked bad again,
thus re-syncing the OOB and BBT.
Note that this is a change from the previous default flash-based BBT
behavior. If your system cannot support writing bad block markers to OOB,
use the new NAND_BBT_NO_OOB_BBM option (in combination with
NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-02-07 04:44:00 +07:00
|
|
|
* (1) erase the affected block, to allow OOB marker to be written cleanly
|
2013-07-31 07:52:59 +07:00
|
|
|
* (2) write bad block marker to OOB area of affected block (unless flag
|
|
|
|
* NAND_BBT_NO_OOB_BBM is present)
|
|
|
|
* (3) update the BBT
|
2017-05-13 17:40:36 +07:00
|
|
|
*
|
2013-07-31 07:52:59 +07:00
|
|
|
* Note that we retain the first error encountered in (2) or (3), finish the
|
mtd: nand: write BBM to OOB even with flash-based BBT
Currently, the flash-based BBT implementation writes bad block data only
to its flash-based table and not to the OOB marker area. Then, as new bad
blocks are marked over time, the OOB markers become incomplete and the
flash-based table becomes the only source of current bad block
information. This becomes an obvious problem when, for example:
* bootloader cannot read the flash-based BBT format
* BBT is corrupted and the flash must be rescanned for bad
blocks; we want to remember bad blocks that were marked from Linux
So to keep the bad block markers in sync with the flash-based BBT, this
patch changes the default so that we write bad block markers to the proper
OOB area on each block in addition to flash-based BBT. Comments are
updated, expanded, and/or relocated as necessary.
The new flash-based BBT procedure for marking bad blocks:
(1) erase the affected block, to allow OOB marker to be written cleanly
(2) update in-memory BBT
(3) write bad block marker to OOB area of affected block
(4) update flash-based BBT
Note that we retain the first error encountered in (3) or (4), finish the
procedures, and dump the error in the end.
This should handle power cuts gracefully enough. (1) and (2) are mostly
harmless (note that (1) will not erase an already-recognized bad block).
The OOB and BBT may be "out of sync" if we experience power loss bewteen
(3) and (4), but we can reasonably expect that on next boot, subsequent
I/O operations will discover that the block should be marked bad again,
thus re-syncing the OOB and BBT.
Note that this is a change from the previous default flash-based BBT
behavior. If your system cannot support writing bad block markers to OOB,
use the new NAND_BBT_NO_OOB_BBM option (in combination with
NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-02-07 04:44:00 +07:00
|
|
|
* procedures, and dump the error in the end.
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2018-11-11 14:55:03 +07:00
|
|
|
static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2013-07-31 07:52:59 +07:00
|
|
|
int res, ret = 0;
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2013-07-31 07:52:59 +07:00
|
|
|
if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
|
2012-01-14 09:11:47 +07:00
|
|
|
struct erase_info einfo;
|
|
|
|
|
|
|
|
/* Attempt erase before marking OOB */
|
|
|
|
memset(&einfo, 0, sizeof(einfo));
|
|
|
|
einfo.addr = ofs;
|
2013-08-09 16:49:05 +07:00
|
|
|
einfo.len = 1ULL << chip->phys_erase_shift;
|
2018-09-06 19:05:35 +07:00
|
|
|
nand_erase_nand(chip, &einfo, 0);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2013-07-31 07:52:59 +07:00
|
|
|
/* Write bad block marker to OOB */
|
2018-11-20 17:57:20 +07:00
|
|
|
ret = nand_get_device(chip);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2018-09-07 05:38:38 +07:00
|
|
|
ret = nand_markbad_bbm(chip, ofs);
|
2018-11-11 14:55:03 +07:00
|
|
|
nand_release_device(chip);
|
2006-05-30 05:37:34 +07:00
|
|
|
}
|
mtd: nand: write BBM to OOB even with flash-based BBT
Currently, the flash-based BBT implementation writes bad block data only
to its flash-based table and not to the OOB marker area. Then, as new bad
blocks are marked over time, the OOB markers become incomplete and the
flash-based table becomes the only source of current bad block
information. This becomes an obvious problem when, for example:
* bootloader cannot read the flash-based BBT format
* BBT is corrupted and the flash must be rescanned for bad
blocks; we want to remember bad blocks that were marked from Linux
So to keep the bad block markers in sync with the flash-based BBT, this
patch changes the default so that we write bad block markers to the proper
OOB area on each block in addition to flash-based BBT. Comments are
updated, expanded, and/or relocated as necessary.
The new flash-based BBT procedure for marking bad blocks:
(1) erase the affected block, to allow OOB marker to be written cleanly
(2) update in-memory BBT
(3) write bad block marker to OOB area of affected block
(4) update flash-based BBT
Note that we retain the first error encountered in (3) or (4), finish the
procedures, and dump the error in the end.
This should handle power cuts gracefully enough. (1) and (2) are mostly
harmless (note that (1) will not erase an already-recognized bad block).
The OOB and BBT may be "out of sync" if we experience power loss bewteen
(3) and (4), but we can reasonably expect that on next boot, subsequent
I/O operations will discover that the block should be marked bad again,
thus re-syncing the OOB and BBT.
Note that this is a change from the previous default flash-based BBT
behavior. If your system cannot support writing bad block markers to OOB,
use the new NAND_BBT_NO_OOB_BBM option (in combination with
NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-02-07 04:44:00 +07:00
|
|
|
|
2013-07-31 07:52:59 +07:00
|
|
|
/* Mark block bad in BBT */
|
|
|
|
if (chip->bbt) {
|
2018-09-06 19:05:34 +07:00
|
|
|
res = nand_markbad_bbt(chip, ofs);
|
mtd: nand: write BBM to OOB even with flash-based BBT
Currently, the flash-based BBT implementation writes bad block data only
to its flash-based table and not to the OOB marker area. Then, as new bad
blocks are marked over time, the OOB markers become incomplete and the
flash-based table becomes the only source of current bad block
information. This becomes an obvious problem when, for example:
* bootloader cannot read the flash-based BBT format
* BBT is corrupted and the flash must be rescanned for bad
blocks; we want to remember bad blocks that were marked from Linux
So to keep the bad block markers in sync with the flash-based BBT, this
patch changes the default so that we write bad block markers to the proper
OOB area on each block in addition to flash-based BBT. Comments are
updated, expanded, and/or relocated as necessary.
The new flash-based BBT procedure for marking bad blocks:
(1) erase the affected block, to allow OOB marker to be written cleanly
(2) update in-memory BBT
(3) write bad block marker to OOB area of affected block
(4) update flash-based BBT
Note that we retain the first error encountered in (3) or (4), finish the
procedures, and dump the error in the end.
This should handle power cuts gracefully enough. (1) and (2) are mostly
harmless (note that (1) will not erase an already-recognized bad block).
The OOB and BBT may be "out of sync" if we experience power loss bewteen
(3) and (4), but we can reasonably expect that on next boot, subsequent
I/O operations will discover that the block should be marked bad again,
thus re-syncing the OOB and BBT.
Note that this is a change from the previous default flash-based BBT
behavior. If your system cannot support writing bad block markers to OOB,
use the new NAND_BBT_NO_OOB_BBM option (in combination with
NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-02-07 04:44:00 +07:00
|
|
|
if (!ret)
|
|
|
|
ret = res;
|
|
|
|
}
|
|
|
|
|
2006-05-30 05:37:34 +07:00
|
|
|
if (!ret)
|
|
|
|
mtd->ecc_stats.badblocks++;
|
2007-07-23 20:06:50 +07:00
|
|
|
|
2006-05-30 05:37:34 +07:00
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2014-05-22 05:06:12 +07:00
|
|
|
/**
|
2014-09-03 16:49:10 +07:00
|
|
|
* nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
|
2014-05-22 05:06:12 +07:00
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @ofs: offset from device start
|
|
|
|
*
|
2014-09-03 16:49:10 +07:00
|
|
|
* Check if the block is marked as reserved.
|
2014-05-22 05:06:12 +07:00
|
|
|
*/
|
|
|
|
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
|
|
|
|
{
|
2015-12-01 18:03:03 +07:00
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
2014-05-22 05:06:12 +07:00
|
|
|
|
|
|
|
if (!chip->bbt)
|
|
|
|
return 0;
|
|
|
|
/* Return info from the table */
|
2018-09-06 19:05:34 +07:00
|
|
|
return nand_isreserved_bbt(chip, ofs);
|
2014-05-22 05:06:12 +07:00
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/**
|
|
|
|
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
|
2018-11-11 14:55:03 +07:00
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
* @ofs: offset from device start
|
|
|
|
* @allowbbt: 1, if its allowed to access the bbt area
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
|
|
|
* Check, if the block is bad. Either by reading the bad block table or
|
|
|
|
* calling of the scan function.
|
|
|
|
*/
|
2018-11-11 14:55:03 +07:00
|
|
|
static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
/* Return info from the table */
|
2018-09-07 05:38:38 +07:00
|
|
|
if (chip->bbt)
|
|
|
|
return nand_isbad_bbt(chip, ofs, allowbbt);
|
|
|
|
|
|
|
|
return nand_isbad_bbm(chip, ofs);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
/**
|
|
|
|
* nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
|
|
|
|
* @chip: NAND chip structure
|
|
|
|
* @timeout_ms: Timeout in ms
|
|
|
|
*
|
|
|
|
* Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
|
|
|
|
* If that does not happen whitin the specified timeout, -ETIMEDOUT is
|
|
|
|
* returned.
|
|
|
|
*
|
|
|
|
* This helper is intended to be used when the controller does not have access
|
|
|
|
* to the NAND R/B pin.
|
|
|
|
*
|
|
|
|
* Be aware that calling this helper from an ->exec_op() implementation means
|
|
|
|
* ->exec_op() must be re-entrant.
|
|
|
|
*
|
|
|
|
* Return 0 if the NAND chip is ready, a negative error otherwise.
|
|
|
|
*/
|
|
|
|
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
|
|
|
|
{
|
2018-05-05 02:24:31 +07:00
|
|
|
const struct nand_sdr_timings *timings;
|
2017-11-09 20:16:45 +07:00
|
|
|
u8 status = 0;
|
|
|
|
int ret;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (!nand_has_exec_op(chip))
|
2017-11-09 20:16:45 +07:00
|
|
|
return -ENOTSUPP;
|
|
|
|
|
2018-05-05 02:24:31 +07:00
|
|
|
/* Wait tWB before polling the STATUS reg. */
|
|
|
|
timings = nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
ndelay(PSEC_TO_NSEC(timings->tWB_max));
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
ret = nand_status_op(chip, NULL);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2020-01-16 20:54:31 +07:00
|
|
|
/*
|
|
|
|
* +1 below is necessary because if we are now in the last fraction
|
|
|
|
* of jiffy and msecs_to_jiffies is 1 then we will wait only that
|
|
|
|
* small jiffy fraction - possibly leading to false timeout
|
|
|
|
*/
|
|
|
|
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
|
2017-11-09 20:16:45 +07:00
|
|
|
do {
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, &status, sizeof(status), true,
|
|
|
|
false);
|
2017-11-09 20:16:45 +07:00
|
|
|
if (ret)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (status & NAND_STATUS_READY)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Typical lowest execution time for a tR on most NANDs is 10us,
|
|
|
|
* use this as polling delay before doing something smarter (ie.
|
|
|
|
* deriving a delay from the timeout value, timeout_ms/ratio).
|
|
|
|
*/
|
|
|
|
udelay(10);
|
|
|
|
} while (time_before(jiffies, timeout_ms));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We have to exit READ_STATUS mode in order to read real data on the
|
|
|
|
* bus in case the WAITRDY instruction is preceding a DATA_IN
|
|
|
|
* instruction.
|
|
|
|
*/
|
|
|
|
nand_exit_status_op(chip);
|
|
|
|
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
|
|
|
|
};
|
|
|
|
EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
|
|
|
|
|
2018-10-16 02:41:28 +07:00
|
|
|
/**
|
|
|
|
* nand_gpio_waitrdy - Poll R/B GPIO pin until ready
|
|
|
|
* @chip: NAND chip structure
|
|
|
|
* @gpiod: GPIO descriptor of R/B pin
|
|
|
|
* @timeout_ms: Timeout in ms
|
|
|
|
*
|
|
|
|
* Poll the R/B GPIO pin until it becomes ready. If that does not happen
|
|
|
|
* whitin the specified timeout, -ETIMEDOUT is returned.
|
|
|
|
*
|
|
|
|
* This helper is intended to be used when the controller has access to the
|
|
|
|
* NAND R/B pin over GPIO.
|
|
|
|
*
|
|
|
|
* Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
|
|
|
|
*/
|
|
|
|
int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
|
|
|
|
unsigned long timeout_ms)
|
|
|
|
{
|
|
|
|
/* Wait until R/B pin indicates chip is ready or timeout occurs */
|
|
|
|
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
|
|
|
|
do {
|
|
|
|
if (gpiod_get_value_cansleep(gpiod))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cond_resched();
|
|
|
|
} while (time_before(jiffies, timeout_ms));
|
|
|
|
|
|
|
|
return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
|
|
|
|
};
|
|
|
|
EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
|
|
|
|
|
2009-10-05 20:55:52 +07:00
|
|
|
/**
|
2011-05-26 04:59:01 +07:00
|
|
|
* panic_nand_wait - [GENERIC] wait until the command is done
|
|
|
|
* @chip: NAND chip structure
|
|
|
|
* @timeo: timeout
|
2009-10-05 20:55:52 +07:00
|
|
|
*
|
|
|
|
* Wait for command done. This is a helper function for nand_wait used when
|
|
|
|
* we are in interrupt context. May happen when in panic and trying to write
|
tree-wide: fix comment/printk typos
"gadget", "through", "command", "maintain", "maintain", "controller", "address",
"between", "initiali[zs]e", "instead", "function", "select", "already",
"equal", "access", "management", "hierarchy", "registration", "interest",
"relative", "memory", "offset", "already",
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-11-02 02:38:34 +07:00
|
|
|
* an oops through mtdoops.
|
2009-10-05 20:55:52 +07:00
|
|
|
*/
|
2018-09-07 05:38:49 +07:00
|
|
|
void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
|
2009-10-05 20:55:52 +07:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < timeo; i++) {
|
2018-09-07 05:38:37 +07:00
|
|
|
if (chip->legacy.dev_ready) {
|
|
|
|
if (chip->legacy.dev_ready(chip))
|
2009-10-05 20:55:52 +07:00
|
|
|
break;
|
|
|
|
} else {
|
2017-12-01 00:01:29 +07:00
|
|
|
int ret;
|
|
|
|
u8 status;
|
|
|
|
|
|
|
|
ret = nand_read_data_op(chip, &status, sizeof(status),
|
2020-05-07 17:52:36 +07:00
|
|
|
true, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (status & NAND_STATUS_READY)
|
2009-10-05 20:55:52 +07:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
mdelay(1);
|
2010-09-07 18:23:43 +07:00
|
|
|
}
|
2009-10-05 20:55:52 +07:00
|
|
|
}
|
|
|
|
|
2018-03-19 20:47:28 +07:00
|
|
|
static bool nand_supports_get_features(struct nand_chip *chip, int addr)
|
2018-03-19 20:47:20 +07:00
|
|
|
{
|
2018-03-19 20:47:28 +07:00
|
|
|
return (chip->parameters.supports_set_get_features &&
|
|
|
|
test_bit(addr, chip->parameters.get_feature_list));
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool nand_supports_set_features(struct nand_chip *chip, int addr)
|
|
|
|
{
|
|
|
|
return (chip->parameters.supports_set_get_features &&
|
|
|
|
test_bit(addr, chip->parameters.set_feature_list));
|
2018-03-19 20:47:20 +07:00
|
|
|
}
|
|
|
|
|
2016-09-15 15:32:50 +07:00
|
|
|
/**
|
|
|
|
* nand_reset_data_interface - Reset data interface and timings
|
|
|
|
* @chip: The NAND chip
|
2017-03-16 15:35:58 +07:00
|
|
|
* @chipnr: Internal die id
|
2016-09-15 15:32:50 +07:00
|
|
|
*
|
|
|
|
* Reset the Data interface and timings to ONFI mode 0.
|
|
|
|
*
|
|
|
|
* Returns 0 for success or negative error code otherwise.
|
|
|
|
*/
|
2017-03-16 15:35:58 +07:00
|
|
|
static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
|
2016-09-15 15:32:50 +07:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
2018-11-11 14:55:24 +07:00
|
|
|
if (!nand_has_setup_data_iface(chip))
|
2016-09-15 15:32:50 +07:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The ONFI specification says:
|
|
|
|
* "
|
|
|
|
* To transition from NV-DDR or NV-DDR2 to the SDR data
|
|
|
|
* interface, the host shall use the Reset (FFh) command
|
|
|
|
* using SDR timing mode 0. A device in any timing mode is
|
|
|
|
* required to recognize Reset (FFh) command issued in SDR
|
|
|
|
* timing mode 0.
|
|
|
|
* "
|
|
|
|
*
|
|
|
|
* Configure the data interface in SDR mode and set the
|
|
|
|
* timings to timing mode 0.
|
|
|
|
*/
|
|
|
|
|
2017-12-01 00:01:31 +07:00
|
|
|
onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
|
2018-11-11 14:55:24 +07:00
|
|
|
ret = chip->controller->ops->setup_data_interface(chip, chipnr,
|
|
|
|
&chip->data_interface);
|
2016-09-15 15:32:50 +07:00
|
|
|
if (ret)
|
|
|
|
pr_err("Failed to configure data interface to SDR timing mode 0\n");
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_setup_data_interface - Setup the best data interface and timings
|
|
|
|
* @chip: The NAND chip
|
2017-03-16 15:35:58 +07:00
|
|
|
* @chipnr: Internal die id
|
2016-09-15 15:32:50 +07:00
|
|
|
*
|
|
|
|
* Find and configure the best data interface and NAND timings supported by
|
|
|
|
* the chip and the driver.
|
|
|
|
* First tries to retrieve supported timing modes from ONFI information,
|
|
|
|
* and if the NAND chip does not support ONFI, relies on the
|
|
|
|
* ->onfi_timing_mode_default specified in the nand_ids table.
|
|
|
|
*
|
|
|
|
* Returns 0 for success or negative error code otherwise.
|
|
|
|
*/
|
2017-03-16 15:35:58 +07:00
|
|
|
static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
|
2016-09-15 15:32:50 +07:00
|
|
|
{
|
2018-03-19 20:47:20 +07:00
|
|
|
u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
|
|
|
|
chip->onfi_timing_mode_default,
|
|
|
|
};
|
2016-09-15 15:32:50 +07:00
|
|
|
int ret;
|
|
|
|
|
2018-11-11 14:55:24 +07:00
|
|
|
if (!nand_has_setup_data_iface(chip))
|
2016-09-15 15:32:50 +07:00
|
|
|
return 0;
|
|
|
|
|
2018-03-19 20:47:21 +07:00
|
|
|
/* Change the mode on the chip side (if supported by the NAND chip) */
|
2018-03-19 20:47:28 +07:00
|
|
|
if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2018-03-19 20:47:21 +07:00
|
|
|
ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
|
|
|
|
tmode_param);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2016-09-15 15:32:50 +07:00
|
|
|
if (ret)
|
2018-03-19 20:47:21 +07:00
|
|
|
return ret;
|
2016-09-15 15:32:50 +07:00
|
|
|
}
|
|
|
|
|
2018-03-19 20:47:20 +07:00
|
|
|
/* Change the mode on the controller side */
|
2018-11-11 14:55:24 +07:00
|
|
|
ret = chip->controller->ops->setup_data_interface(chip, chipnr,
|
|
|
|
&chip->data_interface);
|
2018-03-19 20:47:24 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* Check the mode has been accepted by the chip, if supported */
|
2018-03-19 20:47:28 +07:00
|
|
|
if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
|
2018-03-19 20:47:24 +07:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2018-03-19 20:47:24 +07:00
|
|
|
ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
|
|
|
|
tmode_param);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2018-03-19 20:47:24 +07:00
|
|
|
if (ret)
|
|
|
|
goto err_reset_chip;
|
|
|
|
|
|
|
|
if (tmode_param[0] != chip->onfi_timing_mode_default) {
|
|
|
|
pr_warn("timing mode %d not acknowledged by the NAND chip\n",
|
|
|
|
chip->onfi_timing_mode_default);
|
|
|
|
goto err_reset_chip;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_reset_chip:
|
|
|
|
/*
|
|
|
|
* Fallback to mode 0 if the chip explicitly did not ack the chosen
|
|
|
|
* timing mode.
|
|
|
|
*/
|
|
|
|
nand_reset_data_interface(chip, chipnr);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2018-03-19 20:47:24 +07:00
|
|
|
nand_reset_op(chip);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2018-03-19 20:47:24 +07:00
|
|
|
|
2016-09-15 15:32:50 +07:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_init_data_interface - find the best data interface and timings
|
|
|
|
* @chip: The NAND chip
|
|
|
|
*
|
|
|
|
* Find the best data interface and NAND timings supported by the chip
|
|
|
|
* and the driver.
|
|
|
|
* First tries to retrieve supported timing modes from ONFI information,
|
|
|
|
* and if the NAND chip does not support ONFI, relies on the
|
|
|
|
* ->onfi_timing_mode_default specified in the nand_ids table. After this
|
|
|
|
* function nand_chip->data_interface is initialized with the best timing mode
|
|
|
|
* available.
|
|
|
|
*
|
|
|
|
* Returns 0 for success or negative error code otherwise.
|
|
|
|
*/
|
|
|
|
static int nand_init_data_interface(struct nand_chip *chip)
|
|
|
|
{
|
|
|
|
int modes, mode, ret;
|
|
|
|
|
2018-11-11 14:55:24 +07:00
|
|
|
if (!nand_has_setup_data_iface(chip))
|
2016-09-15 15:32:50 +07:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* First try to identify the best timings from ONFI parameters and
|
|
|
|
* if the NAND does not support ONFI, fallback to the default ONFI
|
|
|
|
* timing mode.
|
|
|
|
*/
|
2018-09-07 05:38:47 +07:00
|
|
|
if (chip->parameters.onfi) {
|
|
|
|
modes = chip->parameters.onfi->async_timing_mode;
|
|
|
|
} else {
|
2016-09-15 15:32:50 +07:00
|
|
|
if (!chip->onfi_timing_mode_default)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
modes = GENMASK(chip->onfi_timing_mode_default, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (mode = fls(modes) - 1; mode >= 0; mode--) {
|
2017-12-01 00:01:31 +07:00
|
|
|
ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
|
2016-09-15 15:32:50 +07:00
|
|
|
if (ret)
|
|
|
|
continue;
|
|
|
|
|
2017-12-23 00:12:41 +07:00
|
|
|
/*
|
|
|
|
* Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
|
|
|
|
* controller supports the requested timings.
|
|
|
|
*/
|
2018-11-11 14:55:24 +07:00
|
|
|
ret = chip->controller->ops->setup_data_interface(chip,
|
2017-03-16 15:35:58 +07:00
|
|
|
NAND_DATA_IFACE_CHECK_ONLY,
|
2017-12-01 00:01:31 +07:00
|
|
|
&chip->data_interface);
|
2016-09-15 15:32:50 +07:00
|
|
|
if (!ret) {
|
|
|
|
chip->onfi_timing_mode_default = mode;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
/**
|
|
|
|
* nand_fill_column_cycles - fill the column cycles of an address
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @addrs: Array of address cycles to fill
|
|
|
|
* @offset_in_page: The offset in the page
|
|
|
|
*
|
|
|
|
* Fills the first or the first two bytes of the @addrs field depending
|
|
|
|
* on the NAND bus width and the page size.
|
|
|
|
*
|
|
|
|
* Returns the number of cycles needed to encode the column, or a negative
|
|
|
|
* error code in case one of the arguments is invalid.
|
|
|
|
*/
|
|
|
|
static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
|
|
|
|
unsigned int offset_in_page)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
|
|
|
|
/* Make sure the offset is less than the actual page size. */
|
|
|
|
if (offset_in_page > mtd->writesize + mtd->oobsize)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On small page NANDs, there's a dedicated command to access the OOB
|
|
|
|
* area, and the column address is relative to the start of the OOB
|
|
|
|
* area, not the start of the page. Asjust the address accordingly.
|
|
|
|
*/
|
|
|
|
if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
|
|
|
|
offset_in_page -= mtd->writesize;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The offset in page is expressed in bytes, if the NAND bus is 16-bit
|
|
|
|
* wide, then it must be divided by 2.
|
|
|
|
*/
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
|
|
if (WARN_ON(offset_in_page % 2))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
offset_in_page /= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
addrs[0] = offset_in_page;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Small page NANDs use 1 cycle for the columns, while large page NANDs
|
|
|
|
* need 2
|
|
|
|
*/
|
|
|
|
if (mtd->writesize <= 512)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
addrs[1] = offset_in_page >> 8;
|
|
|
|
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
|
|
|
|
unsigned int offset_in_page, void *buf,
|
|
|
|
unsigned int len)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
u8 addrs[4];
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
|
|
NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
|
|
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
|
|
if (!len)
|
|
|
|
op.ninstrs--;
|
|
|
|
|
|
|
|
if (offset_in_page >= mtd->writesize)
|
|
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
|
|
|
|
else if (offset_in_page >= 256 &&
|
|
|
|
!(chip->options & NAND_BUSWIDTH_16))
|
|
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
|
|
|
|
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
addrs[1] = page;
|
|
|
|
addrs[2] = page >> 8;
|
|
|
|
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
|
|
addrs[3] = page >> 16;
|
|
|
|
instrs[1].ctx.addr.naddrs++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
|
|
|
|
unsigned int offset_in_page, void *buf,
|
|
|
|
unsigned int len)
|
|
|
|
{
|
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
u8 addrs[5];
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
|
|
NAND_OP_ADDR(4, addrs, 0),
|
|
|
|
NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
|
|
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
|
|
if (!len)
|
|
|
|
op.ninstrs--;
|
|
|
|
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
addrs[2] = page;
|
|
|
|
addrs[3] = page >> 8;
|
|
|
|
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
|
|
addrs[4] = page >> 16;
|
|
|
|
instrs[1].ctx.addr.naddrs++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
/**
|
|
|
|
* nand_read_page_op - Do a READ PAGE operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @page: page to read
|
|
|
|
* @offset_in_page: offset within the page
|
|
|
|
* @buf: buffer used to store the data
|
|
|
|
* @len: length of the buffer
|
|
|
|
*
|
|
|
|
* This function issues a READ PAGE operation.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
|
|
|
|
unsigned int offset_in_page, void *buf, unsigned int len)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
|
|
|
|
if (len && !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
if (mtd->writesize > 512)
|
|
|
|
return nand_lp_exec_read_page_op(chip, page,
|
|
|
|
offset_in_page, buf,
|
|
|
|
len);
|
|
|
|
|
|
|
|
return nand_sp_exec_read_page_op(chip, page, offset_in_page,
|
|
|
|
buf, len);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (len)
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.read_buf(chip, buf, len);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_read_page_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_read_param_page_op - Do a READ PARAMETER PAGE operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @page: parameter page to read
|
|
|
|
* @buf: buffer used to store the data
|
|
|
|
* @len: length of the buffer
|
|
|
|
*
|
|
|
|
* This function issues a READ PARAMETER PAGE operation.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
2018-09-07 05:38:50 +07:00
|
|
|
int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
|
|
|
|
unsigned int len)
|
2017-12-01 00:01:29 +07:00
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
u8 *p = buf;
|
|
|
|
|
|
|
|
if (len && !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_PARAM, 0),
|
|
|
|
NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
|
|
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
|
|
NAND_OP_8BIT_DATA_IN(len, buf, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
|
|
if (!len)
|
|
|
|
op.ninstrs--;
|
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
|
2017-12-01 00:01:29 +07:00
|
|
|
for (i = 0; i < len; i++)
|
2018-09-07 05:38:35 +07:00
|
|
|
p[i] = chip->legacy.read_byte(chip);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_change_read_column_op - Do a CHANGE READ COLUMN operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @offset_in_page: offset within the page
|
|
|
|
* @buf: buffer used to store the data
|
|
|
|
* @len: length of the buffer
|
|
|
|
* @force_8bit: force 8-bit bus access
|
|
|
|
*
|
|
|
|
* This function issues a CHANGE READ COLUMN operation.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_change_read_column_op(struct nand_chip *chip,
|
|
|
|
unsigned int offset_in_page, void *buf,
|
|
|
|
unsigned int len, bool force_8bit)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
|
|
|
|
if (len && !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
/* Small page NANDs do not support column change. */
|
|
|
|
if (mtd->writesize <= 512)
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
u8 addrs[2] = {};
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
|
|
|
|
NAND_OP_ADDR(2, addrs, 0),
|
|
|
|
NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
|
|
|
|
PSEC_TO_NSEC(sdr->tCCS_min)),
|
|
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
|
|
if (!len)
|
|
|
|
op.ninstrs--;
|
|
|
|
|
|
|
|
instrs[3].ctx.data.force_8bit = force_8bit;
|
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (len)
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.read_buf(chip, buf, len);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_change_read_column_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_read_oob_op - Do a READ OOB operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @page: page to read
|
|
|
|
* @offset_in_oob: offset within the OOB area
|
|
|
|
* @buf: buffer used to store the data
|
|
|
|
* @len: length of the buffer
|
|
|
|
*
|
|
|
|
* This function issues a READ OOB operation.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
|
|
|
|
unsigned int offset_in_oob, void *buf, unsigned int len)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
|
|
|
|
if (len && !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (offset_in_oob + len > mtd->oobsize)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip))
|
2017-11-09 20:16:45 +07:00
|
|
|
return nand_read_page_op(chip, page,
|
|
|
|
mtd->writesize + offset_in_oob,
|
|
|
|
buf, len);
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (len)
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.read_buf(chip, buf, len);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_read_oob_op);
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
|
|
|
|
unsigned int offset_in_page, const void *buf,
|
|
|
|
unsigned int len, bool prog)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
u8 addrs[5] = {};
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
/*
|
|
|
|
* The first instruction will be dropped if we're dealing
|
|
|
|
* with a large page NAND and adjusted if we're dealing
|
|
|
|
* with a small page NAND and the page offset is > 255.
|
|
|
|
*/
|
|
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
|
|
NAND_OP_CMD(NAND_CMD_SEQIN, 0),
|
|
|
|
NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
|
|
|
|
NAND_OP_DATA_OUT(len, buf, 0),
|
|
|
|
NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
|
|
int ret;
|
|
|
|
u8 status;
|
|
|
|
|
|
|
|
if (naddrs < 0)
|
|
|
|
return naddrs;
|
|
|
|
|
|
|
|
addrs[naddrs++] = page;
|
|
|
|
addrs[naddrs++] = page >> 8;
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
|
|
addrs[naddrs++] = page >> 16;
|
|
|
|
|
|
|
|
instrs[2].ctx.addr.naddrs = naddrs;
|
|
|
|
|
|
|
|
/* Drop the last two instructions if we're not programming the page. */
|
|
|
|
if (!prog) {
|
|
|
|
op.ninstrs -= 2;
|
|
|
|
/* Also drop the DATA_OUT instruction if empty. */
|
|
|
|
if (!len)
|
|
|
|
op.ninstrs--;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mtd->writesize <= 512) {
|
|
|
|
/*
|
|
|
|
* Small pages need some more tweaking: we have to adjust the
|
|
|
|
* first instruction depending on the page offset we're trying
|
|
|
|
* to access.
|
|
|
|
*/
|
|
|
|
if (offset_in_page >= mtd->writesize)
|
|
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
|
|
|
|
else if (offset_in_page >= 256 &&
|
|
|
|
!(chip->options & NAND_BUSWIDTH_16))
|
|
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Drop the first command if we're dealing with a large page
|
|
|
|
* NAND.
|
|
|
|
*/
|
|
|
|
op.instrs++;
|
|
|
|
op.ninstrs--;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
|
|
if (!prog || ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
/**
|
|
|
|
* nand_prog_page_begin_op - starts a PROG PAGE operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @page: page to write
|
|
|
|
* @offset_in_page: offset within the page
|
|
|
|
* @buf: buffer containing the data to write to the page
|
|
|
|
* @len: length of the buffer
|
|
|
|
*
|
|
|
|
* This function issues the first half of a PROG PAGE operation.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
|
|
|
|
unsigned int offset_in_page, const void *buf,
|
|
|
|
unsigned int len)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
|
|
|
|
if (len && !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip))
|
2017-11-09 20:16:45 +07:00
|
|
|
return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
|
|
|
|
len, false);
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
if (buf)
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.write_buf(chip, buf, len);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_prog_page_end_op - ends a PROG PAGE operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
*
|
|
|
|
* This function issues the second half of a PROG PAGE operation.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_prog_page_end_op(struct nand_chip *chip)
|
|
|
|
{
|
2017-11-09 20:16:45 +07:00
|
|
|
int ret;
|
|
|
|
u8 status;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_PAGEPROG,
|
|
|
|
PSEC_TO_NSEC(sdr->tWB_max)),
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
ret = nand_status_op(chip, &status);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
} else {
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
|
2018-09-07 05:38:37 +07:00
|
|
|
ret = chip->legacy.waitfunc(chip);
|
2017-11-09 20:16:45 +07:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
status = ret;
|
|
|
|
}
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
|
|
return -EIO;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_prog_page_op - Do a full PROG PAGE operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @page: page to write
|
|
|
|
* @offset_in_page: offset within the page
|
|
|
|
* @buf: buffer containing the data to write to the page
|
|
|
|
* @len: length of the buffer
|
|
|
|
*
|
|
|
|
* This function issues a full PROG PAGE operation.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
|
|
|
|
unsigned int offset_in_page, const void *buf,
|
|
|
|
unsigned int len)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
int status;
|
|
|
|
|
|
|
|
if (!len || !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
|
|
|
|
len, true);
|
|
|
|
} else {
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
|
|
|
|
page);
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.write_buf(chip, buf, len);
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
|
2018-09-07 05:38:37 +07:00
|
|
|
status = chip->legacy.waitfunc(chip);
|
2017-11-09 20:16:45 +07:00
|
|
|
}
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
|
|
return -EIO;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_prog_page_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @offset_in_page: offset within the page
|
|
|
|
* @buf: buffer containing the data to send to the NAND
|
|
|
|
* @len: length of the buffer
|
|
|
|
* @force_8bit: force 8-bit bus access
|
|
|
|
*
|
|
|
|
* This function issues a CHANGE WRITE COLUMN operation.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_change_write_column_op(struct nand_chip *chip,
|
|
|
|
unsigned int offset_in_page,
|
|
|
|
const void *buf, unsigned int len,
|
|
|
|
bool force_8bit)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
|
|
|
|
if (len && !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
/* Small page NANDs do not support column change. */
|
|
|
|
if (mtd->writesize <= 512)
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
u8 addrs[2];
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_RNDIN, 0),
|
|
|
|
NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
|
|
|
|
NAND_OP_DATA_OUT(len, buf, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
instrs[2].ctx.data.force_8bit = force_8bit;
|
|
|
|
|
|
|
|
/* Drop the DATA_OUT instruction if len is set to 0. */
|
|
|
|
if (!len)
|
|
|
|
op.ninstrs--;
|
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (len)
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.write_buf(chip, buf, len);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_change_write_column_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_readid_op - Do a READID operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @addr: address cycle to pass after the READID command
|
|
|
|
* @buf: buffer used to store the ID
|
|
|
|
* @len: length of the buffer
|
|
|
|
*
|
|
|
|
* This function sends a READID command and reads back the ID returned by the
|
|
|
|
* NAND.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
|
|
|
|
unsigned int len)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
u8 *id = buf;
|
|
|
|
|
|
|
|
if (len && !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_READID, 0),
|
|
|
|
NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
|
|
|
|
NAND_OP_8BIT_DATA_IN(len, buf, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
|
|
if (!len)
|
|
|
|
op.ninstrs--;
|
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
for (i = 0; i < len; i++)
|
2018-09-07 05:38:35 +07:00
|
|
|
id[i] = chip->legacy.read_byte(chip);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_readid_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_status_op - Do a STATUS operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @status: out variable to store the NAND status
|
|
|
|
*
|
|
|
|
* This function sends a STATUS command and reads back the status returned by
|
|
|
|
* the NAND.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_status_op(struct nand_chip *chip, u8 *status)
|
|
|
|
{
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_STATUS,
|
|
|
|
PSEC_TO_NSEC(sdr->tADL_min)),
|
|
|
|
NAND_OP_8BIT_DATA_IN(1, status, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
if (!status)
|
|
|
|
op.ninstrs--;
|
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (status)
|
2018-09-07 05:38:35 +07:00
|
|
|
*status = chip->legacy.read_byte(chip);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_status_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_exit_status_op - Exit a STATUS operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
*
|
|
|
|
* This function sends a READ0 command to cancel the effect of the STATUS
|
|
|
|
* command to avoid reading only the status until a new read command is sent.
|
|
|
|
*
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_exit_status_op(struct nand_chip *chip)
|
|
|
|
{
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_erase_op - Do an erase operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @eraseblock: block to erase
|
|
|
|
*
|
|
|
|
* This function sends an ERASE command and waits for the NAND to be ready
|
|
|
|
* before returning.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
|
|
|
|
{
|
|
|
|
unsigned int page = eraseblock <<
|
|
|
|
(chip->phys_erase_shift - chip->page_shift);
|
2017-11-09 20:16:45 +07:00
|
|
|
int ret;
|
|
|
|
u8 status;
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
u8 addrs[3] = { page, page >> 8, page >> 16 };
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_ERASE1, 0),
|
|
|
|
NAND_OP_ADDR(2, addrs, 0),
|
|
|
|
NAND_OP_CMD(NAND_CMD_ERASE2,
|
|
|
|
PSEC_TO_MSEC(sdr->tWB_max)),
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
|
|
instrs[1].ctx.addr.naddrs++;
|
|
|
|
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
} else {
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
2018-09-07 05:38:37 +07:00
|
|
|
ret = chip->legacy.waitfunc(chip);
|
2017-11-09 20:16:45 +07:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
status = ret;
|
|
|
|
}
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
|
|
return -EIO;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_erase_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_set_features_op - Do a SET FEATURES operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @feature: feature id
|
|
|
|
* @data: 4 bytes of data
|
|
|
|
*
|
|
|
|
* This function sends a SET FEATURES command and waits for the NAND to be
|
|
|
|
* ready before returning.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
static int nand_set_features_op(struct nand_chip *chip, u8 feature,
|
|
|
|
const void *data)
|
|
|
|
{
|
|
|
|
const u8 *params = data;
|
2017-11-09 20:16:45 +07:00
|
|
|
int i, ret;
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
|
|
|
|
NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
|
|
|
|
NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
|
|
|
|
PSEC_TO_NSEC(sdr->tWB_max)),
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
2018-05-11 19:44:07 +07:00
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
2017-11-09 20:16:45 +07:00
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
|
2018-05-11 19:44:07 +07:00
|
|
|
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.write_byte(chip, params[i]);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
2018-09-07 05:38:37 +07:00
|
|
|
ret = chip->legacy.waitfunc(chip);
|
2018-05-11 19:44:07 +07:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2018-05-11 19:44:07 +07:00
|
|
|
if (ret & NAND_STATUS_FAIL)
|
2017-12-01 00:01:29 +07:00
|
|
|
return -EIO;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_get_features_op - Do a GET FEATURES operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @feature: feature id
|
|
|
|
* @data: 4 bytes of data
|
|
|
|
*
|
|
|
|
* This function sends a GET FEATURES command and waits for the NAND to be
|
|
|
|
* ready before returning.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
static int nand_get_features_op(struct nand_chip *chip, u8 feature,
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
u8 *params = data;
|
|
|
|
int i;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
|
|
|
|
NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
|
|
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
|
|
NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
|
|
|
|
data, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
|
2017-12-01 00:01:29 +07:00
|
|
|
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
|
2018-09-07 05:38:35 +07:00
|
|
|
params[i] = chip->legacy.read_byte(chip);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-07-27 14:44:18 +07:00
|
|
|
static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
|
|
|
|
unsigned int delay_ns)
|
|
|
|
{
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2018-07-27 14:44:18 +07:00
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
|
|
|
|
PSEC_TO_NSEC(delay_ns)),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2018-07-27 14:44:18 +07:00
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Apply delay or wait for ready/busy pin */
|
2018-09-07 05:38:37 +07:00
|
|
|
if (!chip->legacy.dev_ready)
|
2018-09-07 05:38:41 +07:00
|
|
|
udelay(chip->legacy.chip_delay);
|
2018-07-27 14:44:18 +07:00
|
|
|
else
|
2018-09-06 19:05:16 +07:00
|
|
|
nand_wait_ready(chip);
|
2018-07-27 14:44:18 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
/**
|
|
|
|
* nand_reset_op - Do a reset operation
|
|
|
|
* @chip: The NAND chip
|
|
|
|
*
|
|
|
|
* This function sends a RESET command and waits for the NAND to be ready
|
|
|
|
* before returning.
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_reset_op(struct nand_chip *chip)
|
|
|
|
{
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
const struct nand_sdr_timings *sdr =
|
|
|
|
nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:36 +07:00
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_reset_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_read_data_op - Read data from the NAND
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @buf: buffer used to store the data
|
|
|
|
* @len: length of the buffer
|
|
|
|
* @force_8bit: force 8-bit bus access
|
2020-05-07 17:52:36 +07:00
|
|
|
* @check_only: do not actually run the command, only checks if the
|
|
|
|
* controller driver supports it
|
2017-12-01 00:01:29 +07:00
|
|
|
*
|
|
|
|
* This function does a raw data read on the bus. Usually used after launching
|
|
|
|
* another NAND operation like nand_read_page_op().
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
|
2020-05-07 17:52:36 +07:00
|
|
|
bool force_8bit, bool check_only)
|
2017-12-01 00:01:29 +07:00
|
|
|
{
|
|
|
|
if (!len || !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
instrs[0].ctx.data.force_8bit = force_8bit;
|
|
|
|
|
2020-05-07 17:52:36 +07:00
|
|
|
if (check_only)
|
|
|
|
return nand_check_op(chip, &op);
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2020-05-07 17:52:36 +07:00
|
|
|
if (check_only)
|
|
|
|
return 0;
|
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
if (force_8bit) {
|
|
|
|
u8 *p = buf;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < len; i++)
|
2018-09-07 05:38:35 +07:00
|
|
|
p[i] = chip->legacy.read_byte(chip);
|
2017-12-01 00:01:29 +07:00
|
|
|
} else {
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.read_buf(chip, buf, len);
|
2017-12-01 00:01:29 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_read_data_op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_write_data_op - Write data from the NAND
|
|
|
|
* @chip: The NAND chip
|
|
|
|
* @buf: buffer containing the data to send on the bus
|
|
|
|
* @len: length of the buffer
|
|
|
|
* @force_8bit: force 8-bit bus access
|
|
|
|
*
|
|
|
|
* This function does a raw data write on the bus. Usually used after launching
|
|
|
|
* another NAND operation like nand_write_page_begin_op().
|
|
|
|
* This function does not select/unselect the CS line.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
|
|
*/
|
|
|
|
int nand_write_data_op(struct nand_chip *chip, const void *buf,
|
|
|
|
unsigned int len, bool force_8bit)
|
|
|
|
{
|
|
|
|
if (!len || !buf)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
if (nand_has_exec_op(chip)) {
|
2017-11-09 20:16:45 +07:00
|
|
|
struct nand_op_instr instrs[] = {
|
|
|
|
NAND_OP_DATA_OUT(len, buf, 0),
|
|
|
|
};
|
2018-11-11 14:55:15 +07:00
|
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
instrs[0].ctx.data.force_8bit = force_8bit;
|
|
|
|
|
|
|
|
return nand_exec_op(chip, &op);
|
|
|
|
}
|
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
if (force_8bit) {
|
|
|
|
const u8 *p = buf;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < len; i++)
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.write_byte(chip, p[i]);
|
2017-12-01 00:01:29 +07:00
|
|
|
} else {
|
2018-09-07 05:38:35 +07:00
|
|
|
chip->legacy.write_buf(chip, buf, len);
|
2017-12-01 00:01:29 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_write_data_op);
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
/**
|
|
|
|
* struct nand_op_parser_ctx - Context used by the parser
|
|
|
|
* @instrs: array of all the instructions that must be addressed
|
|
|
|
* @ninstrs: length of the @instrs array
|
|
|
|
* @subop: Sub-operation to be passed to the NAND controller
|
|
|
|
*
|
|
|
|
* This structure is used by the core to split NAND operations into
|
|
|
|
* sub-operations that can be handled by the NAND controller.
|
|
|
|
*/
|
|
|
|
struct nand_op_parser_ctx {
|
|
|
|
const struct nand_op_instr *instrs;
|
|
|
|
unsigned int ninstrs;
|
|
|
|
struct nand_subop subop;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_op_parser_must_split_instr - Checks if an instruction must be split
|
|
|
|
* @pat: the parser pattern element that matches @instr
|
|
|
|
* @instr: pointer to the instruction to check
|
|
|
|
* @start_offset: this is an in/out parameter. If @instr has already been
|
|
|
|
* split, then @start_offset is the offset from which to start
|
|
|
|
* (either an address cycle or an offset in the data buffer).
|
|
|
|
* Conversely, if the function returns true (ie. instr must be
|
|
|
|
* split), this parameter is updated to point to the first
|
|
|
|
* data/address cycle that has not been taken care of.
|
|
|
|
*
|
|
|
|
* Some NAND controllers are limited and cannot send X address cycles with a
|
|
|
|
* unique operation, or cannot read/write more than Y bytes at the same time.
|
|
|
|
* In this case, split the instruction that does not fit in a single
|
|
|
|
* controller-operation into two or more chunks.
|
|
|
|
*
|
|
|
|
* Returns true if the instruction must be split, false otherwise.
|
|
|
|
* The @start_offset parameter is also updated to the offset at which the next
|
|
|
|
* bundle of instruction must start (if an address or a data instruction).
|
|
|
|
*/
|
|
|
|
static bool
|
|
|
|
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
|
|
|
|
const struct nand_op_instr *instr,
|
|
|
|
unsigned int *start_offset)
|
|
|
|
{
|
|
|
|
switch (pat->type) {
|
|
|
|
case NAND_OP_ADDR_INSTR:
|
2018-01-20 01:11:27 +07:00
|
|
|
if (!pat->ctx.addr.maxcycles)
|
2017-11-09 20:16:45 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
if (instr->ctx.addr.naddrs - *start_offset >
|
2018-01-20 01:11:27 +07:00
|
|
|
pat->ctx.addr.maxcycles) {
|
|
|
|
*start_offset += pat->ctx.addr.maxcycles;
|
2017-11-09 20:16:45 +07:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
|
|
case NAND_OP_DATA_OUT_INSTR:
|
2018-01-20 01:11:27 +07:00
|
|
|
if (!pat->ctx.data.maxlen)
|
2017-11-09 20:16:45 +07:00
|
|
|
break;
|
|
|
|
|
2018-01-20 01:11:27 +07:00
|
|
|
if (instr->ctx.data.len - *start_offset >
|
|
|
|
pat->ctx.data.maxlen) {
|
|
|
|
*start_offset += pat->ctx.data.maxlen;
|
2017-11-09 20:16:45 +07:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_op_parser_match_pat - Checks if a pattern matches the instructions
|
|
|
|
* remaining in the parser context
|
|
|
|
* @pat: the pattern to test
|
|
|
|
* @ctx: the parser context structure to match with the pattern @pat
|
|
|
|
*
|
|
|
|
* Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
|
|
|
|
* Returns true if this is the case, false ortherwise. When true is returned,
|
|
|
|
* @ctx->subop is updated with the set of instructions to be passed to the
|
|
|
|
* controller driver.
|
|
|
|
*/
|
|
|
|
static bool
|
|
|
|
nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
|
|
|
|
struct nand_op_parser_ctx *ctx)
|
|
|
|
{
|
|
|
|
unsigned int instr_offset = ctx->subop.first_instr_start_off;
|
|
|
|
const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
|
|
|
|
const struct nand_op_instr *instr = ctx->subop.instrs;
|
|
|
|
unsigned int i, ninstrs;
|
|
|
|
|
|
|
|
for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
|
|
|
|
/*
|
|
|
|
* The pattern instruction does not match the operation
|
|
|
|
* instruction. If the instruction is marked optional in the
|
|
|
|
* pattern definition, we skip the pattern element and continue
|
|
|
|
* to the next one. If the element is mandatory, there's no
|
|
|
|
* match and we can return false directly.
|
|
|
|
*/
|
|
|
|
if (instr->type != pat->elems[i].type) {
|
|
|
|
if (!pat->elems[i].optional)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now check the pattern element constraints. If the pattern is
|
|
|
|
* not able to handle the whole instruction in a single step,
|
|
|
|
* we have to split it.
|
|
|
|
* The last_instr_end_off value comes back updated to point to
|
|
|
|
* the position where we have to split the instruction (the
|
|
|
|
* start of the next subop chunk).
|
|
|
|
*/
|
|
|
|
if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
|
|
|
|
&instr_offset)) {
|
|
|
|
ninstrs++;
|
|
|
|
i++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
instr++;
|
|
|
|
ninstrs++;
|
|
|
|
instr_offset = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This can happen if all instructions of a pattern are optional.
|
|
|
|
* Still, if there's not at least one instruction handled by this
|
|
|
|
* pattern, this is not a match, and we should try the next one (if
|
|
|
|
* any).
|
|
|
|
*/
|
|
|
|
if (!ninstrs)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We had a match on the pattern head, but the pattern may be longer
|
|
|
|
* than the instructions we're asked to execute. We need to make sure
|
|
|
|
* there's no mandatory elements in the pattern tail.
|
|
|
|
*/
|
|
|
|
for (; i < pat->nelems; i++) {
|
|
|
|
if (!pat->elems[i].optional)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We have a match: update the subop structure accordingly and return
|
|
|
|
* true.
|
|
|
|
*/
|
|
|
|
ctx->subop.ninstrs = ninstrs;
|
|
|
|
ctx->subop.last_instr_end_off = instr_offset;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
|
|
|
|
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
|
|
|
|
{
|
|
|
|
const struct nand_op_instr *instr;
|
|
|
|
char *prefix = " ";
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
pr_debug("executing subop:\n");
|
|
|
|
|
|
|
|
for (i = 0; i < ctx->ninstrs; i++) {
|
|
|
|
instr = &ctx->instrs[i];
|
|
|
|
|
|
|
|
if (instr == &ctx->subop.instrs[0])
|
|
|
|
prefix = " ->";
|
|
|
|
|
2019-05-21 14:06:30 +07:00
|
|
|
nand_op_trace(prefix, instr);
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
|
|
|
|
prefix = " ";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
|
|
|
|
{
|
|
|
|
/* NOP */
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2019-04-19 14:47:17 +07:00
|
|
|
static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
|
|
|
|
const struct nand_op_parser_ctx *b)
|
|
|
|
{
|
|
|
|
if (a->subop.ninstrs < b->subop.ninstrs)
|
|
|
|
return -1;
|
|
|
|
else if (a->subop.ninstrs > b->subop.ninstrs)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
|
|
|
|
return -1;
|
|
|
|
else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
/**
|
|
|
|
* nand_op_parser_exec_op - exec_op parser
|
|
|
|
* @chip: the NAND chip
|
|
|
|
* @parser: patterns description provided by the controller driver
|
|
|
|
* @op: the NAND operation to address
|
|
|
|
* @check_only: when true, the function only checks if @op can be handled but
|
|
|
|
* does not execute the operation
|
|
|
|
*
|
|
|
|
* Helper function designed to ease integration of NAND controller drivers that
|
|
|
|
* only support a limited set of instruction sequences. The supported sequences
|
|
|
|
* are described in @parser, and the framework takes care of splitting @op into
|
|
|
|
* multiple sub-operations (if required) and pass them back to the ->exec()
|
|
|
|
* callback of the matching pattern if @check_only is set to false.
|
|
|
|
*
|
|
|
|
* NAND controller drivers should call this function from their own ->exec_op()
|
|
|
|
* implementation.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise. A failure can be
|
|
|
|
* caused by an unsupported operation (none of the supported patterns is able
|
|
|
|
* to handle the requested operation), or an error returned by one of the
|
|
|
|
* matching pattern->exec() hook.
|
|
|
|
*/
|
|
|
|
int nand_op_parser_exec_op(struct nand_chip *chip,
|
|
|
|
const struct nand_op_parser *parser,
|
|
|
|
const struct nand_operation *op, bool check_only)
|
|
|
|
{
|
|
|
|
struct nand_op_parser_ctx ctx = {
|
|
|
|
.subop.instrs = op->instrs,
|
|
|
|
.instrs = op->instrs,
|
|
|
|
.ninstrs = op->ninstrs,
|
|
|
|
};
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
while (ctx.subop.instrs < op->instrs + op->ninstrs) {
|
2019-04-19 14:47:17 +07:00
|
|
|
const struct nand_op_parser_pattern *pattern;
|
|
|
|
struct nand_op_parser_ctx best_ctx;
|
|
|
|
int ret, best_pattern = -1;
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
for (i = 0; i < parser->npatterns; i++) {
|
2019-04-19 14:47:17 +07:00
|
|
|
struct nand_op_parser_ctx test_ctx = ctx;
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
pattern = &parser->patterns[i];
|
2019-04-19 14:47:17 +07:00
|
|
|
if (!nand_op_parser_match_pat(pattern, &test_ctx))
|
2017-11-09 20:16:45 +07:00
|
|
|
continue;
|
|
|
|
|
2019-04-19 14:47:17 +07:00
|
|
|
if (best_pattern >= 0 &&
|
|
|
|
nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
|
|
|
|
continue;
|
2017-11-09 20:16:45 +07:00
|
|
|
|
2019-04-19 14:47:17 +07:00
|
|
|
best_pattern = i;
|
|
|
|
best_ctx = test_ctx;
|
2017-11-09 20:16:45 +07:00
|
|
|
}
|
|
|
|
|
2019-04-19 14:47:17 +07:00
|
|
|
if (best_pattern < 0) {
|
2017-11-09 20:16:45 +07:00
|
|
|
pr_debug("->exec_op() parser: pattern not found!\n");
|
|
|
|
return -ENOTSUPP;
|
|
|
|
}
|
|
|
|
|
2019-04-19 14:47:17 +07:00
|
|
|
ctx = best_ctx;
|
|
|
|
nand_op_parser_trace(&ctx);
|
|
|
|
|
|
|
|
if (!check_only) {
|
|
|
|
pattern = &parser->patterns[best_pattern];
|
|
|
|
ret = pattern->exec(chip, &ctx.subop);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
/*
|
|
|
|
* Update the context structure by pointing to the start of the
|
|
|
|
* next subop.
|
|
|
|
*/
|
|
|
|
ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
|
|
|
|
if (ctx.subop.last_instr_end_off)
|
|
|
|
ctx.subop.instrs -= 1;
|
|
|
|
|
|
|
|
ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
|
|
|
|
|
|
|
|
static bool nand_instr_is_data(const struct nand_op_instr *instr)
|
|
|
|
{
|
|
|
|
return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
|
|
|
|
instr->type == NAND_OP_DATA_OUT_INSTR);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
|
|
|
|
unsigned int instr_idx)
|
|
|
|
{
|
|
|
|
return subop && instr_idx < subop->ninstrs;
|
|
|
|
}
|
|
|
|
|
2018-07-19 05:09:12 +07:00
|
|
|
static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
|
|
|
|
unsigned int instr_idx)
|
2017-11-09 20:16:45 +07:00
|
|
|
{
|
|
|
|
if (instr_idx)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return subop->first_instr_start_off;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_subop_get_addr_start_off - Get the start offset in an address array
|
|
|
|
* @subop: The entire sub-operation
|
|
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
|
|
*
|
|
|
|
* During driver development, one could be tempted to directly use the
|
|
|
|
* ->addr.addrs field of address instructions. This is wrong as address
|
|
|
|
* instructions might be split.
|
|
|
|
*
|
|
|
|
* Given an address instruction, returns the offset of the first cycle to issue.
|
|
|
|
*/
|
2018-07-19 05:09:12 +07:00
|
|
|
unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
|
|
|
|
unsigned int instr_idx)
|
2017-11-09 20:16:45 +07:00
|
|
|
{
|
2018-07-19 05:09:12 +07:00
|
|
|
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
|
|
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
|
|
|
|
return 0;
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
return nand_subop_get_start_off(subop, instr_idx);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
|
|
|
|
* @subop: The entire sub-operation
|
|
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
|
|
*
|
|
|
|
* During driver development, one could be tempted to directly use the
|
|
|
|
* ->addr->naddrs field of a data instruction. This is wrong as instructions
|
|
|
|
* might be split.
|
|
|
|
*
|
|
|
|
* Given an address instruction, returns the number of address cycle to issue.
|
|
|
|
*/
|
2018-07-19 05:09:12 +07:00
|
|
|
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
|
|
|
|
unsigned int instr_idx)
|
2017-11-09 20:16:45 +07:00
|
|
|
{
|
|
|
|
int start_off, end_off;
|
|
|
|
|
2018-07-19 05:09:12 +07:00
|
|
|
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
|
|
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
|
|
|
|
return 0;
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
start_off = nand_subop_get_addr_start_off(subop, instr_idx);
|
|
|
|
|
|
|
|
if (instr_idx == subop->ninstrs - 1 &&
|
|
|
|
subop->last_instr_end_off)
|
|
|
|
end_off = subop->last_instr_end_off;
|
|
|
|
else
|
|
|
|
end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
|
|
|
|
|
|
|
|
return end_off - start_off;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
|
2016-09-15 15:32:50 +07:00
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
/**
|
|
|
|
* nand_subop_get_data_start_off - Get the start offset in a data array
|
|
|
|
* @subop: The entire sub-operation
|
|
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
|
|
*
|
|
|
|
* During driver development, one could be tempted to directly use the
|
|
|
|
* ->data->buf.{in,out} field of data instructions. This is wrong as data
|
|
|
|
* instructions might be split.
|
|
|
|
*
|
|
|
|
* Given a data instruction, returns the offset to start from.
|
|
|
|
*/
|
2018-07-19 05:09:12 +07:00
|
|
|
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
|
|
|
|
unsigned int instr_idx)
|
2017-11-09 20:16:45 +07:00
|
|
|
{
|
2018-07-19 05:09:12 +07:00
|
|
|
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
|
|
!nand_instr_is_data(&subop->instrs[instr_idx])))
|
|
|
|
return 0;
|
2016-09-15 15:32:50 +07:00
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
return nand_subop_get_start_off(subop, instr_idx);
|
2016-09-15 15:32:50 +07:00
|
|
|
}
|
2017-11-09 20:16:45 +07:00
|
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
|
2016-09-15 15:32:50 +07:00
|
|
|
|
2017-11-09 20:16:45 +07:00
|
|
|
/**
|
|
|
|
* nand_subop_get_data_len - Get the number of bytes to retrieve
|
|
|
|
* @subop: The entire sub-operation
|
|
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
|
|
*
|
|
|
|
* During driver development, one could be tempted to directly use the
|
|
|
|
* ->data->len field of a data instruction. This is wrong as data instructions
|
|
|
|
* might be split.
|
|
|
|
*
|
|
|
|
* Returns the length of the chunk of data to send/receive.
|
|
|
|
*/
|
2018-07-19 05:09:12 +07:00
|
|
|
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
|
|
|
|
unsigned int instr_idx)
|
2016-09-15 15:32:50 +07:00
|
|
|
{
|
2017-11-09 20:16:45 +07:00
|
|
|
int start_off = 0, end_off;
|
|
|
|
|
2018-07-19 05:09:12 +07:00
|
|
|
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
|
|
!nand_instr_is_data(&subop->instrs[instr_idx])))
|
|
|
|
return 0;
|
2017-11-09 20:16:45 +07:00
|
|
|
|
|
|
|
start_off = nand_subop_get_data_start_off(subop, instr_idx);
|
|
|
|
|
|
|
|
if (instr_idx == subop->ninstrs - 1 &&
|
|
|
|
subop->last_instr_end_off)
|
|
|
|
end_off = subop->last_instr_end_off;
|
|
|
|
else
|
|
|
|
end_off = subop->instrs[instr_idx].ctx.data.len;
|
|
|
|
|
|
|
|
return end_off - start_off;
|
2016-09-15 15:32:50 +07:00
|
|
|
}
|
2017-11-09 20:16:45 +07:00
|
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
|
2016-09-15 15:32:50 +07:00
|
|
|
|
2016-09-15 15:32:45 +07:00
|
|
|
/**
|
|
|
|
* nand_reset - Reset and initialize a NAND device
|
|
|
|
* @chip: The NAND chip
|
2016-10-24 21:46:20 +07:00
|
|
|
* @chipnr: Internal die id
|
2016-09-15 15:32:45 +07:00
|
|
|
*
|
2017-12-01 00:01:31 +07:00
|
|
|
* Save the timings data structure, then apply SDR timings mode 0 (see
|
|
|
|
* nand_reset_data_interface for details), do the reset operation, and
|
|
|
|
* apply back the previous timings.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, a negative error code otherwise.
|
2016-09-15 15:32:45 +07:00
|
|
|
*/
|
2016-10-24 21:46:20 +07:00
|
|
|
int nand_reset(struct nand_chip *chip, int chipnr)
|
2016-09-15 15:32:45 +07:00
|
|
|
{
|
2017-12-01 00:01:31 +07:00
|
|
|
struct nand_data_interface saved_data_intf = chip->data_interface;
|
2016-09-15 15:32:50 +07:00
|
|
|
int ret;
|
|
|
|
|
2017-03-16 15:35:58 +07:00
|
|
|
ret = nand_reset_data_interface(chip, chipnr);
|
2016-09-15 15:32:50 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
2016-09-15 15:32:45 +07:00
|
|
|
|
2016-10-24 21:46:20 +07:00
|
|
|
/*
|
|
|
|
* The CS line has to be released before we can apply the new NAND
|
2018-11-11 14:55:14 +07:00
|
|
|
* interface settings, hence this weird nand_select_target()
|
|
|
|
* nand_deselect_target() dance.
|
2016-10-24 21:46:20 +07:00
|
|
|
*/
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_reset_op(chip);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
2016-09-15 15:32:45 +07:00
|
|
|
|
2018-03-19 20:47:25 +07:00
|
|
|
/*
|
|
|
|
* A nand_reset_data_interface() put both the NAND chip and the NAND
|
|
|
|
* controller in timings mode 0. If the default mode for this chip is
|
|
|
|
* also 0, no need to proceed to the change again. Plus, at probe time,
|
|
|
|
* nand_setup_data_interface() uses ->set/get_features() which would
|
|
|
|
* fail anyway as the parameter page is not available yet.
|
|
|
|
*/
|
|
|
|
if (!chip->onfi_timing_mode_default)
|
|
|
|
return 0;
|
|
|
|
|
2017-12-01 00:01:31 +07:00
|
|
|
chip->data_interface = saved_data_intf;
|
2017-03-16 15:35:58 +07:00
|
|
|
ret = nand_setup_data_interface(chip, chipnr);
|
2016-09-15 15:32:50 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2016-09-15 15:32:45 +07:00
|
|
|
return 0;
|
|
|
|
}
|
2017-10-05 23:53:19 +07:00
|
|
|
EXPORT_SYMBOL_GPL(nand_reset);
|
2016-09-15 15:32:45 +07:00
|
|
|
|
2018-09-07 05:38:40 +07:00
|
|
|
/**
|
|
|
|
* nand_get_features - wrapper to perform a GET_FEATURE
|
|
|
|
* @chip: NAND chip info structure
|
|
|
|
* @addr: feature address
|
|
|
|
* @subfeature_param: the subfeature parameters, a four bytes array
|
|
|
|
*
|
|
|
|
* Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
|
|
|
|
* operation cannot be handled.
|
|
|
|
*/
|
|
|
|
int nand_get_features(struct nand_chip *chip, int addr,
|
|
|
|
u8 *subfeature_param)
|
|
|
|
{
|
|
|
|
if (!nand_supports_get_features(chip, addr))
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
if (chip->legacy.get_features)
|
|
|
|
return chip->legacy.get_features(chip, addr, subfeature_param);
|
|
|
|
|
|
|
|
return nand_get_features_op(chip, addr, subfeature_param);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_set_features - wrapper to perform a SET_FEATURE
|
|
|
|
* @chip: NAND chip info structure
|
|
|
|
* @addr: feature address
|
|
|
|
* @subfeature_param: the subfeature parameters, a four bytes array
|
|
|
|
*
|
|
|
|
* Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
|
|
|
|
* operation cannot be handled.
|
|
|
|
*/
|
|
|
|
int nand_set_features(struct nand_chip *chip, int addr,
|
|
|
|
u8 *subfeature_param)
|
|
|
|
{
|
|
|
|
if (!nand_supports_set_features(chip, addr))
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
if (chip->legacy.set_features)
|
|
|
|
return chip->legacy.set_features(chip, addr, subfeature_param);
|
|
|
|
|
|
|
|
return nand_set_features_op(chip, addr, subfeature_param);
|
|
|
|
}
|
|
|
|
|
2015-09-03 23:03:38 +07:00
|
|
|
/**
|
|
|
|
* nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
|
|
|
|
* @buf: buffer to test
|
|
|
|
* @len: buffer length
|
|
|
|
* @bitflips_threshold: maximum number of bitflips
|
|
|
|
*
|
|
|
|
* Check if a buffer contains only 0xff, which means the underlying region
|
|
|
|
* has been erased and is ready to be programmed.
|
|
|
|
* The bitflips_threshold specify the maximum number of bitflips before
|
|
|
|
* considering the region is not erased.
|
|
|
|
* Note: The logic of this function has been extracted from the memweight
|
|
|
|
* implementation, except that nand_check_erased_buf function exit before
|
|
|
|
* testing the whole buffer if the number of bitflips exceed the
|
|
|
|
* bitflips_threshold value.
|
|
|
|
*
|
|
|
|
* Returns a positive number of bitflips less than or equal to
|
|
|
|
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
|
|
|
|
* threshold.
|
|
|
|
*/
|
|
|
|
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
|
|
|
|
{
|
|
|
|
const unsigned char *bitmap = buf;
|
|
|
|
int bitflips = 0;
|
|
|
|
int weight;
|
|
|
|
|
|
|
|
for (; len && ((uintptr_t)bitmap) % sizeof(long);
|
|
|
|
len--, bitmap++) {
|
|
|
|
weight = hweight8(*bitmap);
|
|
|
|
bitflips += BITS_PER_BYTE - weight;
|
|
|
|
if (unlikely(bitflips > bitflips_threshold))
|
|
|
|
return -EBADMSG;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (; len >= sizeof(long);
|
|
|
|
len -= sizeof(long), bitmap += sizeof(long)) {
|
2017-04-21 17:51:07 +07:00
|
|
|
unsigned long d = *((unsigned long *)bitmap);
|
|
|
|
if (d == ~0UL)
|
|
|
|
continue;
|
|
|
|
weight = hweight_long(d);
|
2015-09-03 23:03:38 +07:00
|
|
|
bitflips += BITS_PER_LONG - weight;
|
|
|
|
if (unlikely(bitflips > bitflips_threshold))
|
|
|
|
return -EBADMSG;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (; len > 0; len--, bitmap++) {
|
|
|
|
weight = hweight8(*bitmap);
|
|
|
|
bitflips += BITS_PER_BYTE - weight;
|
|
|
|
if (unlikely(bitflips > bitflips_threshold))
|
|
|
|
return -EBADMSG;
|
|
|
|
}
|
|
|
|
|
|
|
|
return bitflips;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
|
|
|
|
* 0xff data
|
|
|
|
* @data: data buffer to test
|
|
|
|
* @datalen: data length
|
|
|
|
* @ecc: ECC buffer
|
|
|
|
* @ecclen: ECC length
|
|
|
|
* @extraoob: extra OOB buffer
|
|
|
|
* @extraooblen: extra OOB length
|
|
|
|
* @bitflips_threshold: maximum number of bitflips
|
|
|
|
*
|
|
|
|
* Check if a data buffer and its associated ECC and OOB data contains only
|
|
|
|
* 0xff pattern, which means the underlying region has been erased and is
|
|
|
|
* ready to be programmed.
|
|
|
|
* The bitflips_threshold specify the maximum number of bitflips before
|
|
|
|
* considering the region as not erased.
|
|
|
|
*
|
|
|
|
* Note:
|
|
|
|
* 1/ ECC algorithms are working on pre-defined block sizes which are usually
|
|
|
|
* different from the NAND page size. When fixing bitflips, ECC engines will
|
|
|
|
* report the number of errors per chunk, and the NAND core infrastructure
|
|
|
|
* expect you to return the maximum number of bitflips for the whole page.
|
|
|
|
* This is why you should always use this function on a single chunk and
|
|
|
|
* not on the whole page. After checking each chunk you should update your
|
|
|
|
* max_bitflips value accordingly.
|
|
|
|
* 2/ When checking for bitflips in erased pages you should not only check
|
|
|
|
* the payload data but also their associated ECC data, because a user might
|
|
|
|
* have programmed almost all bits to 1 but a few. In this case, we
|
|
|
|
* shouldn't consider the chunk as erased, and checking ECC bytes prevent
|
|
|
|
* this case.
|
|
|
|
* 3/ The extraoob argument is optional, and should be used if some of your OOB
|
|
|
|
* data are protected by the ECC engine.
|
|
|
|
* It could also be used if you support subpages and want to attach some
|
|
|
|
* extra OOB data to an ECC chunk.
|
|
|
|
*
|
|
|
|
* Returns a positive number of bitflips less than or equal to
|
|
|
|
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
|
|
|
|
* threshold. In case of success, the passed buffers are filled with 0xff.
|
|
|
|
*/
|
|
|
|
int nand_check_erased_ecc_chunk(void *data, int datalen,
|
|
|
|
void *ecc, int ecclen,
|
|
|
|
void *extraoob, int extraooblen,
|
|
|
|
int bitflips_threshold)
|
|
|
|
{
|
|
|
|
int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
|
|
|
|
|
|
|
|
data_bitflips = nand_check_erased_buf(data, datalen,
|
|
|
|
bitflips_threshold);
|
|
|
|
if (data_bitflips < 0)
|
|
|
|
return data_bitflips;
|
|
|
|
|
|
|
|
bitflips_threshold -= data_bitflips;
|
|
|
|
|
|
|
|
ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
|
|
|
|
if (ecc_bitflips < 0)
|
|
|
|
return ecc_bitflips;
|
|
|
|
|
|
|
|
bitflips_threshold -= ecc_bitflips;
|
|
|
|
|
|
|
|
extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
|
|
|
|
bitflips_threshold);
|
|
|
|
if (extraoob_bitflips < 0)
|
|
|
|
return extraoob_bitflips;
|
|
|
|
|
|
|
|
if (data_bitflips)
|
|
|
|
memset(data, 0xff, datalen);
|
|
|
|
|
|
|
|
if (ecc_bitflips)
|
|
|
|
memset(ecc, 0xff, ecclen);
|
|
|
|
|
|
|
|
if (extraoob_bitflips)
|
|
|
|
memset(extraoob, 0xff, extraooblen);
|
|
|
|
|
|
|
|
return data_bitflips + ecc_bitflips + extraoob_bitflips;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
|
|
|
|
|
2018-07-18 15:42:17 +07:00
|
|
|
/**
|
|
|
|
* nand_read_page_raw_notsupp - dummy read raw page function
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: buffer to store read data
|
|
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
|
|
* @page: page number to read
|
|
|
|
*
|
|
|
|
* Returns -ENOTSUPP unconditionally.
|
|
|
|
*/
|
2018-09-06 19:05:20 +07:00
|
|
|
int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
|
|
|
|
int oob_required, int page)
|
2018-07-18 15:42:17 +07:00
|
|
|
{
|
|
|
|
return -ENOTSUPP;
|
|
|
|
}
|
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_read_page_raw - [INTERN] read raw page data without ecc
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: buffer to store read data
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
2011-05-26 04:59:01 +07:00
|
|
|
* @page: page number to read
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
*
|
2011-06-24 04:12:08 +07:00
|
|
|
* Not for syndrome calculating ECC controllers, which use a special oob layout.
|
2006-05-29 08:26:58 +07:00
|
|
|
*/
|
2018-09-06 19:05:20 +07:00
|
|
|
int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
|
|
|
|
int page)
|
2006-05-29 08:26:58 +07:00
|
|
|
{
|
2018-09-06 19:05:20 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2017-12-01 00:01:29 +07:00
|
|
|
int ret;
|
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (oob_required) {
|
|
|
|
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
|
2020-05-07 17:52:36 +07:00
|
|
|
false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
return 0;
|
|
|
|
}
|
2017-04-29 16:06:44 +07:00
|
|
|
EXPORT_SYMBOL(nand_read_page_raw);
|
2006-05-29 08:26:58 +07:00
|
|
|
|
2020-05-07 17:52:39 +07:00
|
|
|
/**
|
|
|
|
* nand_monolithic_read_page_raw - Monolithic page read in raw mode
|
|
|
|
* @chip: NAND chip info structure
|
|
|
|
* @buf: buffer to store read data
|
|
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
|
|
* @page: page number to read
|
|
|
|
*
|
|
|
|
* This is a raw page read, ie. without any error detection/correction.
|
|
|
|
* Monolithic means we are requesting all the relevant data (main plus
|
|
|
|
* eventually OOB) to be loaded in the NAND cache and sent over the
|
|
|
|
* bus (from the NAND chip to the NAND controller) in a single
|
|
|
|
* operation. This is an alternative to nand_read_page_raw(), which
|
|
|
|
* first reads the main data, and if the OOB data is requested too,
|
|
|
|
* then reads more data on the bus.
|
|
|
|
*/
|
|
|
|
int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
|
|
|
|
int oob_required, int page)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
unsigned int size = mtd->writesize;
|
|
|
|
u8 *read_buf = buf;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (oob_required) {
|
|
|
|
size += mtd->oobsize;
|
|
|
|
|
|
|
|
if (buf != chip->data_buf)
|
|
|
|
read_buf = nand_get_data_buf(chip);
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = nand_read_page_op(chip, page, 0, read_buf, size);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (buf != chip->data_buf)
|
|
|
|
memcpy(buf, read_buf, mtd->writesize);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(nand_monolithic_read_page_raw);
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: buffer to store read data
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
2011-05-26 04:59:01 +07:00
|
|
|
* @page: page number to read
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
*
|
|
|
|
* We need a special oob layout and handling even when OOB isn't used.
|
|
|
|
*/
|
2018-09-06 19:05:20 +07:00
|
|
|
static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
|
2012-05-03 00:14:55 +07:00
|
|
|
int oob_required, int page)
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
{
|
2018-09-06 19:05:20 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
int eccsize = chip->ecc.size;
|
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
uint8_t *oob = chip->oob_poi;
|
2017-12-01 00:01:29 +07:00
|
|
|
int steps, size, ret;
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
|
|
|
|
for (steps = chip->ecc.steps; steps > 0; steps--) {
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, buf, eccsize, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
buf += eccsize;
|
|
|
|
|
|
|
|
if (chip->ecc.prepad) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
|
2020-05-07 17:52:36 +07:00
|
|
|
false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
oob += chip->ecc.prepad;
|
|
|
|
}
|
|
|
|
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, oob, eccbytes, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
oob += eccbytes;
|
|
|
|
|
|
|
|
if (chip->ecc.postpad) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
|
2020-05-07 17:52:36 +07:00
|
|
|
false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
oob += chip->ecc.postpad;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
size = mtd->oobsize - (oob - chip->oob_poi);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (size) {
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, oob, size, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: buffer to store read data
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
2011-05-26 04:59:01 +07:00
|
|
|
* @page: page number to read
|
2005-01-24 10:07:46 +07:00
|
|
|
*/
|
2018-09-06 19:05:20 +07:00
|
|
|
static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
|
|
|
|
int oob_required, int page)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2018-09-06 19:05:20 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2016-02-04 02:11:00 +07:00
|
|
|
int i, eccsize = chip->ecc.size, ret;
|
2006-05-25 15:07:16 +07:00
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
int eccsteps = chip->ecc.steps;
|
|
|
|
uint8_t *p = buf;
|
2017-12-05 15:47:16 +07:00
|
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
|
|
uint8_t *ecc_code = chip->ecc.code_buf;
|
2012-04-26 02:06:09 +07:00
|
|
|
unsigned int max_bitflips = 0;
|
2006-05-25 15:07:16 +07:00
|
|
|
|
2018-09-06 19:05:20 +07:00
|
|
|
chip->ecc.read_page_raw(chip, buf, 1, page);
|
2006-05-25 15:07:16 +07:00
|
|
|
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
|
2018-09-06 19:05:18 +07:00
|
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
2006-05-25 15:07:16 +07:00
|
|
|
|
2016-02-04 02:11:00 +07:00
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
|
|
chip->ecc.total);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2006-05-25 15:07:16 +07:00
|
|
|
|
|
|
|
eccsteps = chip->ecc.steps;
|
|
|
|
p = buf;
|
|
|
|
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
|
|
int stat;
|
|
|
|
|
2018-09-06 19:05:19 +07:00
|
|
|
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
|
2012-04-26 02:06:09 +07:00
|
|
|
if (stat < 0) {
|
2006-05-25 15:07:16 +07:00
|
|
|
mtd->ecc_stats.failed++;
|
2012-04-26 02:06:09 +07:00
|
|
|
} else {
|
2006-05-25 15:07:16 +07:00
|
|
|
mtd->ecc_stats.corrected += stat;
|
2012-04-26 02:06:09 +07:00
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
|
|
}
|
2006-05-25 15:07:16 +07:00
|
|
|
}
|
2012-04-26 02:06:09 +07:00
|
|
|
return max_bitflips;
|
2005-04-05 01:56:32 +07:00
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2008-05-15 23:23:18 +07:00
|
|
|
/**
|
2013-03-15 19:25:53 +07:00
|
|
|
* nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @data_offs: offset of requested data within the page
|
|
|
|
* @readlen: data length
|
|
|
|
* @bufpoi: buffer to store read data
|
2014-01-03 10:01:40 +07:00
|
|
|
* @page: page number to read
|
2008-05-15 23:23:18 +07:00
|
|
|
*/
|
2018-09-06 19:05:20 +07:00
|
|
|
static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
|
|
|
|
uint32_t readlen, uint8_t *bufpoi, int page)
|
2008-05-15 23:23:18 +07:00
|
|
|
{
|
2018-09-06 19:05:20 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2016-02-04 02:11:00 +07:00
|
|
|
int start_step, end_step, num_steps, ret;
|
2008-05-15 23:23:18 +07:00
|
|
|
uint8_t *p;
|
|
|
|
int data_col_addr, i, gaps = 0;
|
|
|
|
int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
|
|
|
|
int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
|
2016-02-04 02:11:00 +07:00
|
|
|
int index, section = 0;
|
2012-04-26 02:06:09 +07:00
|
|
|
unsigned int max_bitflips = 0;
|
2016-02-04 02:11:00 +07:00
|
|
|
struct mtd_oob_region oobregion = { };
|
2008-05-15 23:23:18 +07:00
|
|
|
|
2011-06-24 04:12:08 +07:00
|
|
|
/* Column address within the page aligned to ECC size (256bytes) */
|
2008-05-15 23:23:18 +07:00
|
|
|
start_step = data_offs / chip->ecc.size;
|
|
|
|
end_step = (data_offs + readlen - 1) / chip->ecc.size;
|
|
|
|
num_steps = end_step - start_step + 1;
|
2014-03-16 00:31:07 +07:00
|
|
|
index = start_step * chip->ecc.bytes;
|
2008-05-15 23:23:18 +07:00
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Data size aligned to ECC ecc.size */
|
2008-05-15 23:23:18 +07:00
|
|
|
datafrag_len = num_steps * chip->ecc.size;
|
|
|
|
eccfrag_len = num_steps * chip->ecc.bytes;
|
|
|
|
|
|
|
|
data_col_addr = start_step * chip->ecc.size;
|
|
|
|
/* If we read not a page aligned data */
|
|
|
|
p = bufpoi + data_col_addr;
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
2008-05-15 23:23:18 +07:00
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Calculate ECC */
|
2008-05-15 23:23:18 +07:00
|
|
|
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
|
2018-09-06 19:05:18 +07:00
|
|
|
chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
|
2008-05-15 23:23:18 +07:00
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/*
|
|
|
|
* The performance is faster if we position offsets according to
|
2011-06-24 04:12:08 +07:00
|
|
|
* ecc.pos. Let's make sure that there are no gaps in ECC positions.
|
2011-05-26 04:59:01 +07:00
|
|
|
*/
|
2016-02-04 02:11:00 +07:00
|
|
|
ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (oobregion.length < eccfrag_len)
|
|
|
|
gaps = 1;
|
|
|
|
|
2008-05-15 23:23:18 +07:00
|
|
|
if (gaps) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_change_read_column_op(chip, mtd->writesize,
|
|
|
|
chip->oob_poi, mtd->oobsize,
|
|
|
|
false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2008-05-15 23:23:18 +07:00
|
|
|
} else {
|
2011-05-26 04:59:01 +07:00
|
|
|
/*
|
2011-06-24 04:12:08 +07:00
|
|
|
* Send the command to read the particular ECC bytes take care
|
2011-05-26 04:59:01 +07:00
|
|
|
* about buswidth alignment in read_buf.
|
|
|
|
*/
|
2016-02-04 02:11:00 +07:00
|
|
|
aligned_pos = oobregion.offset & ~(busw - 1);
|
2008-05-15 23:23:18 +07:00
|
|
|
aligned_len = eccfrag_len;
|
2016-02-04 02:11:00 +07:00
|
|
|
if (oobregion.offset & (busw - 1))
|
2008-05-15 23:23:18 +07:00
|
|
|
aligned_len++;
|
2016-02-04 02:11:00 +07:00
|
|
|
if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
|
|
|
|
(busw - 1))
|
2008-05-15 23:23:18 +07:00
|
|
|
aligned_len++;
|
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_change_read_column_op(chip,
|
|
|
|
mtd->writesize + aligned_pos,
|
|
|
|
&chip->oob_poi[aligned_pos],
|
|
|
|
aligned_len, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2008-05-15 23:23:18 +07:00
|
|
|
}
|
|
|
|
|
2017-12-05 15:47:16 +07:00
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
|
2016-02-04 02:11:00 +07:00
|
|
|
chip->oob_poi, index, eccfrag_len);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2008-05-15 23:23:18 +07:00
|
|
|
|
|
|
|
p = bufpoi + data_col_addr;
|
|
|
|
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
|
|
|
|
int stat;
|
|
|
|
|
2018-09-06 19:05:19 +07:00
|
|
|
stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
|
2017-12-05 15:47:16 +07:00
|
|
|
&chip->ecc.calc_buf[i]);
|
2015-12-31 02:32:04 +07:00
|
|
|
if (stat == -EBADMSG &&
|
|
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
|
|
/* check for empty pages with bitflips */
|
|
|
|
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
|
2017-12-05 15:47:16 +07:00
|
|
|
&chip->ecc.code_buf[i],
|
2015-12-31 02:32:04 +07:00
|
|
|
chip->ecc.bytes,
|
|
|
|
NULL, 0,
|
|
|
|
chip->ecc.strength);
|
|
|
|
}
|
|
|
|
|
2012-04-26 02:06:09 +07:00
|
|
|
if (stat < 0) {
|
2008-05-15 23:23:18 +07:00
|
|
|
mtd->ecc_stats.failed++;
|
2012-04-26 02:06:09 +07:00
|
|
|
} else {
|
2008-05-15 23:23:18 +07:00
|
|
|
mtd->ecc_stats.corrected += stat;
|
2012-04-26 02:06:09 +07:00
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
|
|
}
|
2008-05-15 23:23:18 +07:00
|
|
|
}
|
2012-04-26 02:06:09 +07:00
|
|
|
return max_bitflips;
|
2008-05-15 23:23:18 +07:00
|
|
|
}
|
|
|
|
|
2005-01-24 10:07:46 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: buffer to store read data
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
2011-05-26 04:59:01 +07:00
|
|
|
* @page: page number to read
|
2005-01-24 10:07:46 +07:00
|
|
|
*
|
2011-06-24 04:12:08 +07:00
|
|
|
* Not for syndrome calculating ECC controllers which need a special oob layout.
|
2005-01-24 10:07:46 +07:00
|
|
|
*/
|
2018-09-06 19:05:20 +07:00
|
|
|
static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
|
|
|
|
int oob_required, int page)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2018-09-06 19:05:20 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2016-02-04 02:11:00 +07:00
|
|
|
int i, eccsize = chip->ecc.size, ret;
|
2006-05-25 15:07:16 +07:00
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
int eccsteps = chip->ecc.steps;
|
|
|
|
uint8_t *p = buf;
|
2017-12-05 15:47:16 +07:00
|
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
|
|
uint8_t *ecc_code = chip->ecc.code_buf;
|
2012-04-26 02:06:09 +07:00
|
|
|
unsigned int max_bitflips = 0;
|
2006-05-25 15:07:16 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
2018-09-06 19:05:17 +07:00
|
|
|
chip->ecc.hwctl(chip, NAND_ECC_READ);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, p, eccsize, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2018-09-06 19:05:18 +07:00
|
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
|
|
|
|
false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2016-02-04 02:11:00 +07:00
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
|
|
chip->ecc.total);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
eccsteps = chip->ecc.steps;
|
|
|
|
p = buf;
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
|
|
int stat;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2018-09-06 19:05:19 +07:00
|
|
|
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
|
2015-12-31 02:32:04 +07:00
|
|
|
if (stat == -EBADMSG &&
|
|
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
|
|
/* check for empty pages with bitflips */
|
|
|
|
stat = nand_check_erased_ecc_chunk(p, eccsize,
|
|
|
|
&ecc_code[i], eccbytes,
|
|
|
|
NULL, 0,
|
|
|
|
chip->ecc.strength);
|
|
|
|
}
|
|
|
|
|
2012-04-26 02:06:09 +07:00
|
|
|
if (stat < 0) {
|
2006-05-25 15:07:16 +07:00
|
|
|
mtd->ecc_stats.failed++;
|
2012-04-26 02:06:09 +07:00
|
|
|
} else {
|
2006-05-25 15:07:16 +07:00
|
|
|
mtd->ecc_stats.corrected += stat;
|
2012-04-26 02:06:09 +07:00
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
|
|
}
|
2006-05-25 15:07:16 +07:00
|
|
|
}
|
2012-04-26 02:06:09 +07:00
|
|
|
return max_bitflips;
|
2006-05-25 15:07:16 +07:00
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2009-09-19 02:51:47 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: buffer to store read data
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
2011-05-26 04:59:01 +07:00
|
|
|
* @page: page number to read
|
2009-09-19 02:51:47 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* Hardware ECC for large page chips, require OOB to be read first. For this
|
|
|
|
* ECC mode, the write_page method is re-used from ECC_HW. These methods
|
|
|
|
* read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
|
|
|
|
* multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
|
|
|
|
* the data area, by overwriting the NAND manufacturer bad block markings.
|
2009-09-19 02:51:47 +07:00
|
|
|
*/
|
2018-09-06 19:05:20 +07:00
|
|
|
static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
|
|
|
|
int oob_required, int page)
|
2009-09-19 02:51:47 +07:00
|
|
|
{
|
2018-09-06 19:05:20 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2016-02-04 02:11:00 +07:00
|
|
|
int i, eccsize = chip->ecc.size, ret;
|
2009-09-19 02:51:47 +07:00
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
int eccsteps = chip->ecc.steps;
|
|
|
|
uint8_t *p = buf;
|
2017-12-05 15:47:16 +07:00
|
|
|
uint8_t *ecc_code = chip->ecc.code_buf;
|
|
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
2012-04-26 02:06:09 +07:00
|
|
|
unsigned int max_bitflips = 0;
|
2009-09-19 02:51:47 +07:00
|
|
|
|
|
|
|
/* Read the OOB area first */
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2009-09-19 02:51:47 +07:00
|
|
|
|
2016-02-04 02:11:00 +07:00
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
|
|
chip->ecc.total);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2009-09-19 02:51:47 +07:00
|
|
|
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
|
|
int stat;
|
|
|
|
|
2018-09-06 19:05:17 +07:00
|
|
|
chip->ecc.hwctl(chip, NAND_ECC_READ);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, p, eccsize, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2018-09-06 19:05:18 +07:00
|
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
2009-09-19 02:51:47 +07:00
|
|
|
|
2018-09-06 19:05:19 +07:00
|
|
|
stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
|
2015-12-31 02:32:04 +07:00
|
|
|
if (stat == -EBADMSG &&
|
|
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
|
|
/* check for empty pages with bitflips */
|
|
|
|
stat = nand_check_erased_ecc_chunk(p, eccsize,
|
|
|
|
&ecc_code[i], eccbytes,
|
|
|
|
NULL, 0,
|
|
|
|
chip->ecc.strength);
|
|
|
|
}
|
|
|
|
|
2012-04-26 02:06:09 +07:00
|
|
|
if (stat < 0) {
|
2009-09-19 02:51:47 +07:00
|
|
|
mtd->ecc_stats.failed++;
|
2012-04-26 02:06:09 +07:00
|
|
|
} else {
|
2009-09-19 02:51:47 +07:00
|
|
|
mtd->ecc_stats.corrected += stat;
|
2012-04-26 02:06:09 +07:00
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
|
|
}
|
2009-09-19 02:51:47 +07:00
|
|
|
}
|
2012-04-26 02:06:09 +07:00
|
|
|
return max_bitflips;
|
2009-09-19 02:51:47 +07:00
|
|
|
}
|
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: buffer to store read data
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
2011-05-26 04:59:01 +07:00
|
|
|
* @page: page number to read
|
2006-05-25 15:07:16 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* The hw generator calculates the error syndrome automatically. Therefore we
|
|
|
|
* need a special oob layout and handling.
|
2006-05-25 15:07:16 +07:00
|
|
|
*/
|
2018-09-06 19:05:20 +07:00
|
|
|
static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
|
|
|
|
int oob_required, int page)
|
2006-05-25 15:07:16 +07:00
|
|
|
{
|
2018-09-06 19:05:20 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2017-12-01 00:01:29 +07:00
|
|
|
int ret, i, eccsize = chip->ecc.size;
|
2006-05-25 15:07:16 +07:00
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
int eccsteps = chip->ecc.steps;
|
2015-12-31 02:32:04 +07:00
|
|
|
int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
|
2006-05-25 15:07:16 +07:00
|
|
|
uint8_t *p = buf;
|
2006-05-26 23:52:08 +07:00
|
|
|
uint8_t *oob = chip->oob_poi;
|
2012-04-26 02:06:09 +07:00
|
|
|
unsigned int max_bitflips = 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
|
|
int stat;
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2018-09-06 19:05:17 +07:00
|
|
|
chip->ecc.hwctl(chip, NAND_ECC_READ);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, p, eccsize, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
if (chip->ecc.prepad) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
|
2020-05-07 17:52:36 +07:00
|
|
|
false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
oob += chip->ecc.prepad;
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2018-09-06 19:05:17 +07:00
|
|
|
chip->ecc.hwctl(chip, NAND_ECC_READSYN);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, oob, eccbytes, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2018-09-06 19:05:19 +07:00
|
|
|
stat = chip->ecc.correct(chip, p, oob, NULL);
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
oob += eccbytes;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
if (chip->ecc.postpad) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
|
2020-05-07 17:52:36 +07:00
|
|
|
false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
oob += chip->ecc.postpad;
|
2005-11-07 18:15:49 +07:00
|
|
|
}
|
2015-12-31 02:32:04 +07:00
|
|
|
|
|
|
|
if (stat == -EBADMSG &&
|
|
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
|
|
/* check for empty pages with bitflips */
|
|
|
|
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
|
|
|
|
oob - eccpadbytes,
|
|
|
|
eccpadbytes,
|
|
|
|
NULL, 0,
|
|
|
|
chip->ecc.strength);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (stat < 0) {
|
|
|
|
mtd->ecc_stats.failed++;
|
|
|
|
} else {
|
|
|
|
mtd->ecc_stats.corrected += stat;
|
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
|
|
}
|
2006-05-25 15:07:16 +07:00
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
/* Calculate remaining oob bytes */
|
2006-06-07 12:34:37 +07:00
|
|
|
i = mtd->oobsize - (oob - chip->oob_poi);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (i) {
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, oob, i, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2012-04-26 02:06:09 +07:00
|
|
|
return max_bitflips;
|
2006-05-25 15:07:16 +07:00
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_transfer_oob - [INTERN] Transfer oob to client buffer
|
2018-11-11 14:55:03 +07:00
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
* @oob: oob destination address
|
|
|
|
* @ops: oob ops structure
|
|
|
|
* @len: size of oob to transfer
|
2006-05-29 08:26:58 +07:00
|
|
|
*/
|
2018-11-11 14:55:03 +07:00
|
|
|
static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
|
2006-11-03 22:20:38 +07:00
|
|
|
struct mtd_oob_ops *ops, size_t len)
|
2006-05-29 08:26:58 +07:00
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2016-02-04 02:11:00 +07:00
|
|
|
int ret;
|
|
|
|
|
2010-09-07 18:23:43 +07:00
|
|
|
switch (ops->mode) {
|
2006-05-29 08:26:58 +07:00
|
|
|
|
2011-08-31 08:45:40 +07:00
|
|
|
case MTD_OPS_PLACE_OOB:
|
|
|
|
case MTD_OPS_RAW:
|
2006-05-29 08:26:58 +07:00
|
|
|
memcpy(oob, chip->oob_poi + ops->ooboffs, len);
|
|
|
|
return oob + len;
|
|
|
|
|
2016-02-04 02:11:00 +07:00
|
|
|
case MTD_OPS_AUTO_OOB:
|
|
|
|
ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
|
|
|
|
ops->ooboffs, len);
|
|
|
|
BUG_ON(ret);
|
|
|
|
return oob + len;
|
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
/**
|
|
|
|
* nand_setup_read_retry - [INTERN] Set the READ RETRY mode
|
2018-09-06 19:05:32 +07:00
|
|
|
* @chip: NAND chip object
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
* @retry_mode: the retry mode to use
|
|
|
|
*
|
|
|
|
* Some vendors supply a special command to shift the Vt threshold, to be used
|
|
|
|
* when there are too many bitflips in a page (i.e., ECC error). After setting
|
|
|
|
* a new threshold, the host should retry reading the page.
|
|
|
|
*/
|
2018-09-06 19:05:32 +07:00
|
|
|
static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
{
|
|
|
|
pr_debug("setting READ RETRY mode %d\n", retry_mode);
|
|
|
|
|
|
|
|
if (retry_mode >= chip->read_retries)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (!chip->setup_read_retry)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2018-09-06 19:05:32 +07:00
|
|
|
return chip->setup_read_retry(chip, retry_mode);
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
}
|
|
|
|
|
2018-07-27 14:44:17 +07:00
|
|
|
static void nand_wait_readrdy(struct nand_chip *chip)
|
|
|
|
{
|
2018-07-27 14:44:18 +07:00
|
|
|
const struct nand_sdr_timings *sdr;
|
|
|
|
|
2018-07-27 14:44:17 +07:00
|
|
|
if (!(chip->options & NAND_NEED_READRDY))
|
|
|
|
return;
|
|
|
|
|
2018-07-27 14:44:18 +07:00
|
|
|
sdr = nand_get_sdr_timings(&chip->data_interface);
|
|
|
|
WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
|
2018-07-27 14:44:17 +07:00
|
|
|
}
|
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_do_read_ops - [INTERN] Read data with ECC
|
2018-11-11 14:55:03 +07:00
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
* @from: offset to read from
|
|
|
|
* @ops: oob ops structure
|
2006-05-25 15:07:16 +07:00
|
|
|
*
|
|
|
|
* Internal function. Called with chip held.
|
|
|
|
*/
|
2018-11-11 14:55:03 +07:00
|
|
|
static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
|
2006-05-29 08:26:58 +07:00
|
|
|
struct mtd_oob_ops *ops)
|
2006-05-25 15:07:16 +07:00
|
|
|
{
|
2012-05-03 00:14:56 +07:00
|
|
|
int chipnr, page, realpage, col, bytes, aligned, oob_required;
|
2018-11-11 14:55:03 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2006-05-25 15:07:16 +07:00
|
|
|
int ret = 0;
|
2006-05-29 08:26:58 +07:00
|
|
|
uint32_t readlen = ops->len;
|
2006-11-03 22:20:38 +07:00
|
|
|
uint32_t oobreadlen = ops->ooblen;
|
2016-03-07 16:46:52 +07:00
|
|
|
uint32_t max_oobsize = mtd_oobavail(mtd, ops);
|
2010-02-23 01:39:35 +07:00
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
uint8_t *bufpoi, *oob, *buf;
|
2020-05-07 17:52:33 +07:00
|
|
|
int use_bounce_buf;
|
2012-04-26 02:06:11 +07:00
|
|
|
unsigned int max_bitflips = 0;
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
int retry_mode = 0;
|
2013-12-04 02:04:14 +07:00
|
|
|
bool ecc_fail = false;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
chipnr = (int)(from >> chip->chip_shift);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
realpage = (int)(from >> chip->page_shift);
|
|
|
|
page = realpage & chip->pagemask;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
col = (int)(from & (mtd->writesize - 1));
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
buf = ops->datbuf;
|
|
|
|
oob = ops->oobbuf;
|
2012-05-03 00:14:56 +07:00
|
|
|
oob_required = oob ? 1 : 0;
|
2006-05-29 08:26:58 +07:00
|
|
|
|
2010-09-07 18:23:43 +07:00
|
|
|
while (1) {
|
2013-12-04 02:04:14 +07:00
|
|
|
unsigned int ecc_failures = mtd->ecc_stats.failed;
|
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
bytes = min(mtd->writesize - col, readlen);
|
|
|
|
aligned = (bytes == mtd->writesize);
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2014-05-02 07:51:19 +07:00
|
|
|
if (!aligned)
|
2020-05-07 17:52:33 +07:00
|
|
|
use_bounce_buf = 1;
|
2020-05-07 17:52:31 +07:00
|
|
|
else if (chip->options & NAND_USES_DMA)
|
2020-05-07 17:52:33 +07:00
|
|
|
use_bounce_buf = !virt_addr_valid(buf) ||
|
|
|
|
!IS_ALIGNED((unsigned long)buf,
|
|
|
|
chip->buf_align);
|
2014-05-02 07:51:19 +07:00
|
|
|
else
|
2020-05-07 17:52:33 +07:00
|
|
|
use_bounce_buf = 0;
|
2014-05-02 07:51:19 +07:00
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Is the current page in the buffer? */
|
2018-10-28 22:12:45 +07:00
|
|
|
if (realpage != chip->pagecache.page || oob) {
|
2020-05-07 17:52:33 +07:00
|
|
|
bufpoi = use_bounce_buf ? chip->data_buf : buf;
|
2014-05-02 07:51:19 +07:00
|
|
|
|
2020-05-07 17:52:33 +07:00
|
|
|
if (use_bounce_buf && aligned)
|
2014-05-02 07:51:19 +07:00
|
|
|
pr_debug("%s: using read bounce buffer for buf@%p\n",
|
|
|
|
__func__, buf);
|
2005-11-07 18:15:49 +07:00
|
|
|
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
read_retry:
|
2012-04-26 02:06:11 +07:00
|
|
|
/*
|
|
|
|
* Now read the page into the buffer. Absent an error,
|
|
|
|
* the read methods return max bitflips per ecc step.
|
|
|
|
*/
|
2011-08-31 08:45:40 +07:00
|
|
|
if (unlikely(ops->mode == MTD_OPS_RAW))
|
2018-09-06 19:05:20 +07:00
|
|
|
ret = chip->ecc.read_page_raw(chip, bufpoi,
|
2012-05-03 00:14:56 +07:00
|
|
|
oob_required,
|
|
|
|
page);
|
2012-08-14 04:35:30 +07:00
|
|
|
else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
|
|
|
|
!oob)
|
2018-09-06 19:05:20 +07:00
|
|
|
ret = chip->ecc.read_subpage(chip, col, bytes,
|
|
|
|
bufpoi, page);
|
2006-09-25 23:12:39 +07:00
|
|
|
else
|
2018-09-06 19:05:20 +07:00
|
|
|
ret = chip->ecc.read_page(chip, bufpoi,
|
2012-05-03 00:14:56 +07:00
|
|
|
oob_required, page);
|
mtd: nand: invalidate cache on unaligned reads
In rare cases, we are given an unaligned parameter `from' in
`nand_do_read_ops()'. In such cases, we use the page cache
(chip->buffers->databuf) as an intermediate buffer before dumping to the
client buffer. However, there are also cases where this buffer is not
cleanly reusable. In those cases, we need to make sure that we
explicitly invalidate the cache.
This patch prevents accidental reusage of the page cache, and for me,
this solves some problems I come across when reading a corrupted BBT
from flash (NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Note: the rare "unaligned" case is a result of the extra BBT pattern +
version located in the data area instead of OOB.
Also, this patch disables caching on raw reads, since we are reading
without error correction. This is, obviously, prone to errors and should
not be cached.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
2011-09-08 03:13:40 +07:00
|
|
|
if (ret < 0) {
|
2020-05-07 17:52:33 +07:00
|
|
|
if (use_bounce_buf)
|
mtd: nand: invalidate cache on unaligned reads
In rare cases, we are given an unaligned parameter `from' in
`nand_do_read_ops()'. In such cases, we use the page cache
(chip->buffers->databuf) as an intermediate buffer before dumping to the
client buffer. However, there are also cases where this buffer is not
cleanly reusable. In those cases, we need to make sure that we
explicitly invalidate the cache.
This patch prevents accidental reusage of the page cache, and for me,
this solves some problems I come across when reading a corrupted BBT
from flash (NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Note: the rare "unaligned" case is a result of the extra BBT pattern +
version located in the data area instead of OOB.
Also, this patch disables caching on raw reads, since we are reading
without error correction. This is, obviously, prone to errors and should
not be cached.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
2011-09-08 03:13:40 +07:00
|
|
|
/* Invalidate page cache */
|
2018-10-28 22:12:45 +07:00
|
|
|
chip->pagecache.page = -1;
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
mtd: nand: invalidate cache on unaligned reads
In rare cases, we are given an unaligned parameter `from' in
`nand_do_read_ops()'. In such cases, we use the page cache
(chip->buffers->databuf) as an intermediate buffer before dumping to the
client buffer. However, there are also cases where this buffer is not
cleanly reusable. In those cases, we need to make sure that we
explicitly invalidate the cache.
This patch prevents accidental reusage of the page cache, and for me,
this solves some problems I come across when reading a corrupted BBT
from flash (NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Note: the rare "unaligned" case is a result of the extra BBT pattern +
version located in the data area instead of OOB.
Also, this patch disables caching on raw reads, since we are reading
without error correction. This is, obviously, prone to errors and should
not be cached.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
2011-09-08 03:13:40 +07:00
|
|
|
}
|
2006-05-25 15:07:16 +07:00
|
|
|
|
2020-05-07 17:52:32 +07:00
|
|
|
/*
|
|
|
|
* Copy back the data in the initial buffer when reading
|
|
|
|
* partial pages or when a bounce buffer is required.
|
|
|
|
*/
|
2020-05-07 17:52:33 +07:00
|
|
|
if (use_bounce_buf) {
|
2012-08-14 04:35:30 +07:00
|
|
|
if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
|
2013-12-04 02:04:14 +07:00
|
|
|
!(mtd->ecc_stats.failed - ecc_failures) &&
|
2012-04-26 02:06:11 +07:00
|
|
|
(ops->mode != MTD_OPS_RAW)) {
|
2018-10-28 22:12:45 +07:00
|
|
|
chip->pagecache.page = realpage;
|
|
|
|
chip->pagecache.bitflips = ret;
|
2012-04-26 02:06:11 +07:00
|
|
|
} else {
|
mtd: nand: invalidate cache on unaligned reads
In rare cases, we are given an unaligned parameter `from' in
`nand_do_read_ops()'. In such cases, we use the page cache
(chip->buffers->databuf) as an intermediate buffer before dumping to the
client buffer. However, there are also cases where this buffer is not
cleanly reusable. In those cases, we need to make sure that we
explicitly invalidate the cache.
This patch prevents accidental reusage of the page cache, and for me,
this solves some problems I come across when reading a corrupted BBT
from flash (NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Note: the rare "unaligned" case is a result of the extra BBT pattern +
version located in the data area instead of OOB.
Also, this patch disables caching on raw reads, since we are reading
without error correction. This is, obviously, prone to errors and should
not be cached.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
2011-09-08 03:13:40 +07:00
|
|
|
/* Invalidate page cache */
|
2018-10-28 22:12:45 +07:00
|
|
|
chip->pagecache.page = -1;
|
2012-04-26 02:06:11 +07:00
|
|
|
}
|
2020-05-07 17:52:34 +07:00
|
|
|
memcpy(buf, bufpoi + col, bytes);
|
2006-05-25 15:07:16 +07:00
|
|
|
}
|
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
if (unlikely(oob)) {
|
2010-02-23 01:39:37 +07:00
|
|
|
int toread = min(oobreadlen, max_oobsize);
|
|
|
|
|
|
|
|
if (toread) {
|
2018-11-11 14:55:03 +07:00
|
|
|
oob = nand_transfer_oob(chip, oob, ops,
|
|
|
|
toread);
|
2010-02-23 01:39:37 +07:00
|
|
|
oobreadlen -= toread;
|
|
|
|
}
|
2006-05-29 08:26:58 +07:00
|
|
|
}
|
2013-03-13 23:51:31 +07:00
|
|
|
|
2018-07-27 14:44:17 +07:00
|
|
|
nand_wait_readrdy(chip);
|
2013-12-04 02:04:14 +07:00
|
|
|
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
if (mtd->ecc_stats.failed - ecc_failures) {
|
2014-02-13 07:08:28 +07:00
|
|
|
if (retry_mode + 1 < chip->read_retries) {
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
retry_mode++;
|
2018-09-06 19:05:32 +07:00
|
|
|
ret = nand_setup_read_retry(chip,
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
retry_mode);
|
|
|
|
if (ret < 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Reset failures; retry */
|
|
|
|
mtd->ecc_stats.failed = ecc_failures;
|
|
|
|
goto read_retry;
|
|
|
|
} else {
|
|
|
|
/* No more retry modes; real failure */
|
|
|
|
ecc_fail = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
buf += bytes;
|
2017-03-30 13:45:47 +07:00
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, ret);
|
2006-05-29 08:26:58 +07:00
|
|
|
} else {
|
2017-12-05 15:47:16 +07:00
|
|
|
memcpy(buf, chip->data_buf + col, bytes);
|
2006-05-29 08:26:58 +07:00
|
|
|
buf += bytes;
|
2012-04-26 02:06:11 +07:00
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips,
|
2018-10-28 22:12:45 +07:00
|
|
|
chip->pagecache.bitflips);
|
2006-05-29 08:26:58 +07:00
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
readlen -= bytes;
|
2005-11-07 18:15:49 +07:00
|
|
|
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
/* Reset to retry mode 0 */
|
|
|
|
if (retry_mode) {
|
2018-09-06 19:05:32 +07:00
|
|
|
ret = nand_setup_read_retry(chip, 0);
|
mtd: nand: add generic READ RETRY support
Modern MLC (and even SLC?) NAND can experience a large number of
bitflips (beyond the recommended correctability capacity) due to drifts
in the voltage threshold (Vt). These bitflips can cause ECC errors to
occur well within the expected lifetime of the flash. To account for
this, some manufacturers provide a mechanism for shifting the Vt
threshold after a corrupted read.
The generic pattern seems to be that a particular flash has N read retry
modes (where N = 0, traditionally), and after an ECC failure, the host
should reconfigure the flash to use the next available mode, then retry
the read operation. This process repeats until all bitfips can be
corrected or until the host has tried all available retry modes.
This patch adds the infrastructure support for a
vendor-specific/flash-specific callback, used for setting the read-retry
mode (i.e., voltage threshold).
For now, this patch always returns the flash to mode 0 (the default
mode) after a successful read-retry, according to the flowchart found in
Micron's datasheets. This may need to change in the future if it is
determined that eventually, mode 0 is insufficient for the majority of
the flash cells (and so for performance reasons, we should leave the
flash in mode 1, 2, etc.).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Huang Shijie <b32955@freescale.com>
2014-01-04 06:13:33 +07:00
|
|
|
if (ret < 0)
|
|
|
|
break;
|
|
|
|
retry_mode = 0;
|
|
|
|
}
|
|
|
|
|
2006-05-25 15:07:16 +07:00
|
|
|
if (!readlen)
|
2005-11-07 18:15:49 +07:00
|
|
|
break;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* For subsequent reads align to page boundary */
|
2005-04-17 05:20:36 +07:00
|
|
|
col = 0;
|
|
|
|
/* Increment page address */
|
|
|
|
realpage++;
|
|
|
|
|
2006-05-24 17:07:37 +07:00
|
|
|
page = realpage & chip->pagemask;
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Check, if we cross a chip boundary */
|
|
|
|
if (!page) {
|
|
|
|
chipnr++;
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
|
|
|
nand_select_target(chip, chipnr);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
ops->retlen = ops->len - (size_t) readlen;
|
2006-11-03 22:20:38 +07:00
|
|
|
if (oob)
|
|
|
|
ops->oobretlen = ops->ooblen - oobreadlen;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2012-04-26 02:06:09 +07:00
|
|
|
if (ret < 0)
|
2006-05-25 15:07:16 +07:00
|
|
|
return ret;
|
|
|
|
|
2013-12-04 02:04:14 +07:00
|
|
|
if (ecc_fail)
|
2006-05-29 19:56:39 +07:00
|
|
|
return -EBADMSG;
|
|
|
|
|
2012-04-26 02:06:11 +07:00
|
|
|
return max_bitflips;
|
2006-05-25 15:07:16 +07:00
|
|
|
}
|
|
|
|
|
2006-06-21 01:05:05 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @page: page number to read
|
2006-06-21 01:05:05 +07:00
|
|
|
*/
|
2018-09-06 19:05:20 +07:00
|
|
|
int nand_read_oob_std(struct nand_chip *chip, int page)
|
2006-06-21 01:05:05 +07:00
|
|
|
{
|
2018-09-06 19:05:20 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
|
2006-06-21 01:05:05 +07:00
|
|
|
}
|
2015-08-26 21:08:12 +07:00
|
|
|
EXPORT_SYMBOL(nand_read_oob_std);
|
2006-06-21 01:05:05 +07:00
|
|
|
|
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
|
2006-06-21 01:05:05 +07:00
|
|
|
* with syndromes
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @page: page number to read
|
2006-06-21 01:05:05 +07:00
|
|
|
*/
|
2018-09-07 05:38:48 +07:00
|
|
|
static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
|
2006-06-21 01:05:05 +07:00
|
|
|
{
|
2018-09-06 19:05:20 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2006-06-21 01:05:05 +07:00
|
|
|
int length = mtd->oobsize;
|
|
|
|
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
|
|
int eccsize = chip->ecc.size;
|
2015-01-22 20:23:05 +07:00
|
|
|
uint8_t *bufpoi = chip->oob_poi;
|
2017-12-01 00:01:29 +07:00
|
|
|
int i, toread, sndrnd = 0, pos, ret;
|
|
|
|
|
|
|
|
ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2006-06-21 01:05:05 +07:00
|
|
|
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
|
|
if (sndrnd) {
|
2017-12-01 00:01:29 +07:00
|
|
|
int ret;
|
|
|
|
|
2006-06-21 01:05:05 +07:00
|
|
|
pos = eccsize + i * (eccsize + chunk);
|
|
|
|
if (mtd->writesize > 512)
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_change_read_column_op(chip, pos,
|
|
|
|
NULL, 0,
|
|
|
|
false);
|
2006-06-21 01:05:05 +07:00
|
|
|
else
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_read_page_op(chip, page, pos, NULL,
|
|
|
|
0);
|
|
|
|
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2006-06-21 01:05:05 +07:00
|
|
|
} else
|
|
|
|
sndrnd = 1;
|
|
|
|
toread = min_t(int, length, chunk);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, bufpoi, toread, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-06-21 01:05:05 +07:00
|
|
|
bufpoi += toread;
|
|
|
|
length -= toread;
|
|
|
|
}
|
2017-12-01 00:01:29 +07:00
|
|
|
if (length > 0) {
|
2020-05-07 17:52:36 +07:00
|
|
|
ret = nand_read_data_op(chip, bufpoi, length, false, false);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2006-06-21 01:05:05 +07:00
|
|
|
|
2012-05-09 17:06:35 +07:00
|
|
|
return 0;
|
2006-06-21 01:05:05 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @page: page number to write
|
2006-06-21 01:05:05 +07:00
|
|
|
*/
|
2018-09-06 19:05:21 +07:00
|
|
|
int nand_write_oob_std(struct nand_chip *chip, int page)
|
2006-06-21 01:05:05 +07:00
|
|
|
{
|
2018-09-06 19:05:21 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
|
|
|
|
mtd->oobsize);
|
2006-06-21 01:05:05 +07:00
|
|
|
}
|
2015-08-26 21:08:12 +07:00
|
|
|
EXPORT_SYMBOL(nand_write_oob_std);
|
2006-06-21 01:05:05 +07:00
|
|
|
|
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
|
2011-05-26 04:59:01 +07:00
|
|
|
* with syndrome - only for large page flash
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @page: page number to write
|
2006-06-21 01:05:05 +07:00
|
|
|
*/
|
2018-09-07 05:38:48 +07:00
|
|
|
static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
|
2006-06-21 01:05:05 +07:00
|
|
|
{
|
2018-09-06 19:05:21 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2006-06-21 01:05:05 +07:00
|
|
|
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
|
|
int eccsize = chip->ecc.size, length = mtd->oobsize;
|
2017-12-01 00:01:29 +07:00
|
|
|
int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
|
2006-06-21 01:05:05 +07:00
|
|
|
const uint8_t *bufpoi = chip->oob_poi;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* data-ecc-data-ecc ... ecc-oob
|
|
|
|
* or
|
|
|
|
* data-pad-ecc-pad-data-pad .... ecc-pad-oob
|
|
|
|
*/
|
|
|
|
if (!chip->ecc.prepad && !chip->ecc.postpad) {
|
|
|
|
pos = steps * (eccsize + chunk);
|
|
|
|
steps = 0;
|
|
|
|
} else
|
2006-07-11 14:11:25 +07:00
|
|
|
pos = eccsize;
|
2006-06-21 01:05:05 +07:00
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-06-21 01:05:05 +07:00
|
|
|
for (i = 0; i < steps; i++) {
|
|
|
|
if (sndcmd) {
|
|
|
|
if (mtd->writesize <= 512) {
|
|
|
|
uint32_t fill = 0xFFFFFFFF;
|
|
|
|
|
|
|
|
len = eccsize;
|
|
|
|
while (len > 0) {
|
|
|
|
int num = min_t(int, len, 4);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
ret = nand_write_data_op(chip, &fill,
|
|
|
|
num, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-06-21 01:05:05 +07:00
|
|
|
len -= num;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
pos = eccsize + i * (eccsize + chunk);
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_change_write_column_op(chip, pos,
|
|
|
|
NULL, 0,
|
|
|
|
false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2006-06-21 01:05:05 +07:00
|
|
|
}
|
|
|
|
} else
|
|
|
|
sndcmd = 1;
|
|
|
|
len = min_t(int, length, chunk);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
ret = nand_write_data_op(chip, bufpoi, len, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-06-21 01:05:05 +07:00
|
|
|
bufpoi += len;
|
|
|
|
length -= len;
|
|
|
|
}
|
2017-12-01 00:01:29 +07:00
|
|
|
if (length > 0) {
|
|
|
|
ret = nand_write_data_op(chip, bufpoi, length, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2006-06-21 01:05:05 +07:00
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
return nand_prog_page_end_op(chip);
|
2006-06-21 01:05:05 +07:00
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_do_read_oob - [INTERN] NAND read out-of-band
|
2018-11-11 14:55:03 +07:00
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
* @from: offset to read from
|
|
|
|
* @ops: oob operations description structure
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* NAND read out-of-band data from the spare area.
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2018-11-11 14:55:03 +07:00
|
|
|
static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
|
2006-05-29 08:26:58 +07:00
|
|
|
struct mtd_oob_ops *ops)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2018-01-12 16:13:36 +07:00
|
|
|
unsigned int max_bitflips = 0;
|
2012-05-02 07:12:54 +07:00
|
|
|
int page, realpage, chipnr;
|
2011-06-24 06:45:24 +07:00
|
|
|
struct mtd_ecc_stats stats;
|
2006-11-03 22:20:38 +07:00
|
|
|
int readlen = ops->ooblen;
|
|
|
|
int len;
|
2006-06-21 01:05:05 +07:00
|
|
|
uint8_t *buf = ops->oobbuf;
|
2012-05-09 17:13:34 +07:00
|
|
|
int ret = 0;
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2011-07-20 00:06:09 +07:00
|
|
|
pr_debug("%s: from = 0x%08Lx, len = %i\n",
|
2009-07-07 17:19:49 +07:00
|
|
|
__func__, (unsigned long long)from, readlen);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2011-06-24 06:45:24 +07:00
|
|
|
stats = mtd->ecc_stats;
|
|
|
|
|
2016-03-07 16:46:52 +07:00
|
|
|
len = mtd_oobavail(mtd, ops);
|
2007-01-31 22:58:29 +07:00
|
|
|
|
2006-05-25 14:51:54 +07:00
|
|
|
chipnr = (int)(from >> chip->chip_shift);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-25 14:51:54 +07:00
|
|
|
/* Shift to get page */
|
|
|
|
realpage = (int)(from >> chip->page_shift);
|
|
|
|
page = realpage & chip->pagemask;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2010-09-07 18:23:43 +07:00
|
|
|
while (1) {
|
2011-08-31 08:45:40 +07:00
|
|
|
if (ops->mode == MTD_OPS_RAW)
|
2018-09-06 19:05:20 +07:00
|
|
|
ret = chip->ecc.read_oob_raw(chip, page);
|
2011-08-31 08:45:38 +07:00
|
|
|
else
|
2018-09-06 19:05:20 +07:00
|
|
|
ret = chip->ecc.read_oob(chip, page);
|
2012-05-09 17:13:34 +07:00
|
|
|
|
|
|
|
if (ret < 0)
|
|
|
|
break;
|
2006-11-03 22:20:38 +07:00
|
|
|
|
|
|
|
len = min(len, readlen);
|
2018-11-11 14:55:03 +07:00
|
|
|
buf = nand_transfer_oob(chip, buf, ops, len);
|
2006-05-29 08:26:58 +07:00
|
|
|
|
2018-07-27 14:44:17 +07:00
|
|
|
nand_wait_readrdy(chip);
|
2013-03-13 23:51:31 +07:00
|
|
|
|
2018-01-12 16:13:36 +07:00
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, ret);
|
|
|
|
|
2006-11-03 22:20:38 +07:00
|
|
|
readlen -= len;
|
2006-06-21 16:51:20 +07:00
|
|
|
if (!readlen)
|
|
|
|
break;
|
|
|
|
|
2006-05-25 14:51:54 +07:00
|
|
|
/* Increment page address */
|
|
|
|
realpage++;
|
|
|
|
|
|
|
|
page = realpage & chip->pagemask;
|
|
|
|
/* Check, if we cross a chip boundary */
|
|
|
|
if (!page) {
|
|
|
|
chipnr++;
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
|
|
|
nand_select_target(chip, chipnr);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2012-05-09 17:13:34 +07:00
|
|
|
ops->oobretlen = ops->ooblen - readlen;
|
|
|
|
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2011-06-24 06:45:24 +07:00
|
|
|
|
|
|
|
if (mtd->ecc_stats.failed - stats.failed)
|
|
|
|
return -EBADMSG;
|
|
|
|
|
2018-01-12 16:13:36 +07:00
|
|
|
return max_bitflips;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2006-05-29 08:26:58 +07:00
|
|
|
* nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
|
2011-05-26 04:59:01 +07:00
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @from: offset to read from
|
|
|
|
* @ops: oob operation description structure
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* NAND read data and/or out-of-band data.
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2006-05-29 08:26:58 +07:00
|
|
|
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
|
|
|
|
struct mtd_oob_ops *ops)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
2016-07-22 04:59:21 +07:00
|
|
|
int ret;
|
2006-05-29 08:26:58 +07:00
|
|
|
|
|
|
|
ops->retlen = 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2016-07-22 04:59:21 +07:00
|
|
|
if (ops->mode != MTD_OPS_PLACE_OOB &&
|
|
|
|
ops->mode != MTD_OPS_AUTO_OOB &&
|
|
|
|
ops->mode != MTD_OPS_RAW)
|
|
|
|
return -ENOTSUPP;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2018-11-20 17:57:20 +07:00
|
|
|
ret = nand_get_device(chip);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
if (!ops->datbuf)
|
2018-11-11 14:55:03 +07:00
|
|
|
ret = nand_do_read_oob(chip, from, ops);
|
2006-05-29 08:26:58 +07:00
|
|
|
else
|
2018-11-11 14:55:03 +07:00
|
|
|
ret = nand_do_read_ops(chip, from, ops);
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2018-11-11 14:55:03 +07:00
|
|
|
nand_release_device(chip);
|
2006-05-29 08:26:58 +07:00
|
|
|
return ret;
|
|
|
|
}
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2018-07-18 15:42:17 +07:00
|
|
|
/**
|
|
|
|
* nand_write_page_raw_notsupp - dummy raw page write function
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: data buffer
|
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
|
|
* @page: page number to write
|
|
|
|
*
|
|
|
|
* Returns -ENOTSUPP unconditionally.
|
|
|
|
*/
|
2018-09-06 19:05:21 +07:00
|
|
|
int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
|
|
|
|
int oob_required, int page)
|
2018-07-18 15:42:17 +07:00
|
|
|
{
|
|
|
|
return -ENOTSUPP;
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_write_page_raw - [INTERN] raw page write function
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: data buffer
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
2015-10-13 16:22:18 +07:00
|
|
|
* @page: page number to write
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
*
|
2011-06-24 04:12:08 +07:00
|
|
|
* Not for syndrome calculating ECC controllers, which use a special oob layout.
|
2006-05-29 08:26:58 +07:00
|
|
|
*/
|
2018-09-06 19:05:21 +07:00
|
|
|
int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
|
|
|
|
int oob_required, int page)
|
2006-05-29 08:26:58 +07:00
|
|
|
{
|
2018-09-06 19:05:21 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2017-12-01 00:01:29 +07:00
|
|
|
int ret;
|
2012-06-25 17:07:45 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (oob_required) {
|
|
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
|
|
|
|
false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2012-06-25 17:07:45 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
return nand_prog_page_end_op(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
2017-04-29 16:06:44 +07:00
|
|
|
EXPORT_SYMBOL(nand_write_page_raw);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2020-05-07 17:52:39 +07:00
|
|
|
/**
|
|
|
|
* nand_monolithic_write_page_raw - Monolithic page write in raw mode
|
|
|
|
* @chip: NAND chip info structure
|
|
|
|
* @buf: data buffer to write
|
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
|
|
* @page: page number to write
|
|
|
|
*
|
|
|
|
* This is a raw page write, ie. without any error detection/correction.
|
|
|
|
* Monolithic means we are requesting all the relevant data (main plus
|
|
|
|
* eventually OOB) to be sent over the bus and effectively programmed
|
|
|
|
* into the NAND chip arrays in a single operation. This is an
|
|
|
|
* alternative to nand_write_page_raw(), which first sends the main
|
|
|
|
* data, then eventually send the OOB data by latching more data
|
|
|
|
* cycles on the NAND bus, and finally sends the program command to
|
|
|
|
* synchronyze the NAND chip cache.
|
|
|
|
*/
|
|
|
|
int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
|
|
|
|
int oob_required, int page)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
unsigned int size = mtd->writesize;
|
|
|
|
u8 *write_buf = (u8 *)buf;
|
|
|
|
|
|
|
|
if (oob_required) {
|
|
|
|
size += mtd->oobsize;
|
|
|
|
|
|
|
|
if (buf != chip->data_buf) {
|
|
|
|
write_buf = nand_get_data_buf(chip);
|
|
|
|
memcpy(write_buf, buf, mtd->writesize);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return nand_prog_page_op(chip, page, 0, write_buf, size);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(nand_monolithic_write_page_raw);
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_write_page_raw_syndrome - [INTERN] raw page write function
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: data buffer
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
2015-10-13 16:22:18 +07:00
|
|
|
* @page: page number to write
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
*
|
|
|
|
* We need a special oob layout and handling even when ECC isn't checked.
|
|
|
|
*/
|
2018-09-06 19:05:21 +07:00
|
|
|
static int nand_write_page_raw_syndrome(struct nand_chip *chip,
|
2015-10-13 16:22:18 +07:00
|
|
|
const uint8_t *buf, int oob_required,
|
|
|
|
int page)
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
{
|
2018-09-06 19:05:21 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
int eccsize = chip->ecc.size;
|
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
uint8_t *oob = chip->oob_poi;
|
2017-12-01 00:01:29 +07:00
|
|
|
int steps, size, ret;
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
|
|
|
|
for (steps = chip->ecc.steps; steps > 0; steps--) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_write_data_op(chip, buf, eccsize, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
buf += eccsize;
|
|
|
|
|
|
|
|
if (chip->ecc.prepad) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
|
|
|
|
false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
oob += chip->ecc.prepad;
|
|
|
|
}
|
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_write_data_op(chip, oob, eccbytes, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
oob += eccbytes;
|
|
|
|
|
|
|
|
if (chip->ecc.postpad) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
|
|
|
|
false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
oob += chip->ecc.postpad;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
size = mtd->oobsize - (oob - chip->oob_poi);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (size) {
|
|
|
|
ret = nand_write_data_op(chip, oob, size, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2012-06-25 17:07:45 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
return nand_prog_page_end_op(chip);
|
[MTD] [NAND] fix "raw" reads with ECC syndrome layouts
The syndrome based page read/write routines store ECC, and possibly other
"OOB" data, right after each chunk of ECC'd data. With ECC chunk size of
512 bytes and a large page (2KiB) NAND, the layout is:
data-0 OOB-0 data-1 OOB-1 data-2 OOB-2 data-3 OOB-3 OOB-leftover
Where OOBx is (prepad, ECC, postpad). However, the current "raw" routines
use a traditional layout -- data OOB, disregarding the prepad and postpad
values -- so when they're used with that type of ECC hardware, those calls
mix up the data and OOB. Which means, in particular, that bad block
tables won't be found on startup, with data corruption and related chaos
ensuing.
The current syndrome-based drivers in mainline all seem to use one chunk
per page; presumably they haven't noticed such bugs.
Fix this, by adding read/write page_raw_syndrome() routines as siblings of
the existing non-raw routines; "raw" just means to bypass the ECC
computations, not change data and OOB layout.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-03-05 03:01:36 +07:00
|
|
|
}
|
2006-05-23 22:21:03 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: data buffer
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
2015-10-13 16:22:18 +07:00
|
|
|
* @page: page number to write
|
2006-05-23 22:21:03 +07:00
|
|
|
*/
|
2018-09-06 19:05:21 +07:00
|
|
|
static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
|
|
|
|
int oob_required, int page)
|
2006-05-23 22:21:03 +07:00
|
|
|
{
|
2018-09-06 19:05:21 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2016-02-04 02:11:00 +07:00
|
|
|
int i, eccsize = chip->ecc.size, ret;
|
2006-05-26 23:52:08 +07:00
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
int eccsteps = chip->ecc.steps;
|
2017-12-05 15:47:16 +07:00
|
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
2006-05-26 23:52:08 +07:00
|
|
|
const uint8_t *p = buf;
|
2006-05-23 22:21:03 +07:00
|
|
|
|
2011-06-24 04:12:08 +07:00
|
|
|
/* Software ECC calculation */
|
2006-05-29 08:26:58 +07:00
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
|
2018-09-06 19:05:18 +07:00
|
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
2006-05-23 22:21:03 +07:00
|
|
|
|
2016-02-04 02:11:00 +07:00
|
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
|
|
chip->ecc.total);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2006-05-23 22:21:03 +07:00
|
|
|
|
2018-09-06 19:05:21 +07:00
|
|
|
return chip->ecc.write_page_raw(chip, buf, 1, page);
|
2006-05-26 23:52:08 +07:00
|
|
|
}
|
2006-05-23 22:21:03 +07:00
|
|
|
|
2006-05-26 23:52:08 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: data buffer
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
2015-10-13 16:22:18 +07:00
|
|
|
* @page: page number to write
|
2006-05-26 23:52:08 +07:00
|
|
|
*/
|
2018-09-06 19:05:21 +07:00
|
|
|
static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
|
|
|
|
int oob_required, int page)
|
2006-05-26 23:52:08 +07:00
|
|
|
{
|
2018-09-06 19:05:21 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2016-02-04 02:11:00 +07:00
|
|
|
int i, eccsize = chip->ecc.size, ret;
|
2006-05-26 23:52:08 +07:00
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
int eccsteps = chip->ecc.steps;
|
2017-12-05 15:47:16 +07:00
|
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
2006-05-26 23:52:08 +07:00
|
|
|
const uint8_t *p = buf;
|
2006-05-23 22:21:03 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-05-26 23:52:08 +07:00
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
2018-09-06 19:05:17 +07:00
|
|
|
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
ret = nand_write_data_op(chip, p, eccsize, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2018-09-06 19:05:18 +07:00
|
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
2006-05-23 22:21:03 +07:00
|
|
|
}
|
|
|
|
|
2016-02-04 02:11:00 +07:00
|
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
|
|
chip->ecc.total);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2006-05-26 23:52:08 +07:00
|
|
|
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2012-06-25 17:07:45 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
return nand_prog_page_end_op(chip);
|
2006-05-23 22:21:03 +07:00
|
|
|
}
|
|
|
|
|
2013-03-15 19:25:53 +07:00
|
|
|
|
|
|
|
/**
|
2015-02-28 17:04:18 +07:00
|
|
|
* nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
|
2013-03-15 19:25:53 +07:00
|
|
|
* @chip: nand chip info structure
|
2013-08-09 07:16:36 +07:00
|
|
|
* @offset: column address of subpage within the page
|
2013-03-15 19:25:53 +07:00
|
|
|
* @data_len: data length
|
2013-08-09 07:16:36 +07:00
|
|
|
* @buf: data buffer
|
2013-03-15 19:25:53 +07:00
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
2015-10-13 16:22:18 +07:00
|
|
|
* @page: page number to write
|
2013-03-15 19:25:53 +07:00
|
|
|
*/
|
2018-09-06 19:05:21 +07:00
|
|
|
static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
|
|
|
|
uint32_t data_len, const uint8_t *buf,
|
|
|
|
int oob_required, int page)
|
2013-03-15 19:25:53 +07:00
|
|
|
{
|
2018-09-06 19:05:21 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2013-03-15 19:25:53 +07:00
|
|
|
uint8_t *oob_buf = chip->oob_poi;
|
2017-12-05 15:47:16 +07:00
|
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
2013-03-15 19:25:53 +07:00
|
|
|
int ecc_size = chip->ecc.size;
|
|
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
|
|
int ecc_steps = chip->ecc.steps;
|
|
|
|
uint32_t start_step = offset / ecc_size;
|
|
|
|
uint32_t end_step = (offset + data_len - 1) / ecc_size;
|
|
|
|
int oob_bytes = mtd->oobsize / ecc_steps;
|
2016-02-04 02:11:00 +07:00
|
|
|
int step, ret;
|
2013-03-15 19:25:53 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2013-03-15 19:25:53 +07:00
|
|
|
for (step = 0; step < ecc_steps; step++) {
|
|
|
|
/* configure controller for WRITE access */
|
2018-09-06 19:05:17 +07:00
|
|
|
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
|
2013-03-15 19:25:53 +07:00
|
|
|
|
|
|
|
/* write data (untouched subpages already masked by 0xFF) */
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_write_data_op(chip, buf, ecc_size, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2013-03-15 19:25:53 +07:00
|
|
|
|
|
|
|
/* mask ECC of un-touched subpages by padding 0xFF */
|
|
|
|
if ((step < start_step) || (step > end_step))
|
|
|
|
memset(ecc_calc, 0xff, ecc_bytes);
|
|
|
|
else
|
2018-09-06 19:05:18 +07:00
|
|
|
chip->ecc.calculate(chip, buf, ecc_calc);
|
2013-03-15 19:25:53 +07:00
|
|
|
|
|
|
|
/* mask OOB of un-touched subpages by padding 0xFF */
|
|
|
|
/* if oob_required, preserve OOB metadata of written subpage */
|
|
|
|
if (!oob_required || (step < start_step) || (step > end_step))
|
|
|
|
memset(oob_buf, 0xff, oob_bytes);
|
|
|
|
|
2013-08-09 07:16:36 +07:00
|
|
|
buf += ecc_size;
|
2013-03-15 19:25:53 +07:00
|
|
|
ecc_calc += ecc_bytes;
|
|
|
|
oob_buf += oob_bytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* copy calculated ECC for whole page to chip->buffer->oob */
|
|
|
|
/* this include masked-value(0xFF) for unwritten subpages */
|
2017-12-05 15:47:16 +07:00
|
|
|
ecc_calc = chip->ecc.calc_buf;
|
2016-02-04 02:11:00 +07:00
|
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
|
|
chip->ecc.total);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2013-03-15 19:25:53 +07:00
|
|
|
|
|
|
|
/* write OOB buffer to NAND device */
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2013-03-15 19:25:53 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
return nand_prog_page_end_op(chip);
|
2013-03-15 19:25:53 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-11-07 18:15:49 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: data buffer
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
2015-10-13 16:22:18 +07:00
|
|
|
* @page: page number to write
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* The hw generator calculates the error syndrome automatically. Therefore we
|
|
|
|
* need a special oob layout and handling.
|
2006-05-26 23:52:08 +07:00
|
|
|
*/
|
2018-09-06 19:05:21 +07:00
|
|
|
static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
|
|
|
|
int oob_required, int page)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2018-09-06 19:05:21 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2006-05-26 23:52:08 +07:00
|
|
|
int i, eccsize = chip->ecc.size;
|
|
|
|
int eccbytes = chip->ecc.bytes;
|
|
|
|
int eccsteps = chip->ecc.steps;
|
|
|
|
const uint8_t *p = buf;
|
|
|
|
uint8_t *oob = chip->oob_poi;
|
2017-12-01 00:01:29 +07:00
|
|
|
int ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-26 23:52:08 +07:00
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
2018-09-06 19:05:17 +07:00
|
|
|
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
ret = nand_write_data_op(chip, p, eccsize, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2006-05-26 23:52:08 +07:00
|
|
|
if (chip->ecc.prepad) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
|
|
|
|
false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-05-26 23:52:08 +07:00
|
|
|
oob += chip->ecc.prepad;
|
|
|
|
}
|
|
|
|
|
2018-09-06 19:05:18 +07:00
|
|
|
chip->ecc.calculate(chip, p, oob);
|
2017-12-01 00:01:29 +07:00
|
|
|
|
|
|
|
ret = nand_write_data_op(chip, oob, eccbytes, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-05-26 23:52:08 +07:00
|
|
|
oob += eccbytes;
|
|
|
|
|
|
|
|
if (chip->ecc.postpad) {
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
|
|
|
|
false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2006-05-26 23:52:08 +07:00
|
|
|
oob += chip->ecc.postpad;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
2006-05-26 23:52:08 +07:00
|
|
|
|
|
|
|
/* Calculate remaining oob bytes */
|
2006-06-07 12:34:37 +07:00
|
|
|
i = mtd->oobsize - (oob - chip->oob_poi);
|
2017-12-01 00:01:29 +07:00
|
|
|
if (i) {
|
|
|
|
ret = nand_write_data_op(chip, oob, i, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2012-06-25 17:07:45 +07:00
|
|
|
|
2017-12-01 00:01:30 +07:00
|
|
|
return nand_prog_page_end_op(chip);
|
2006-05-26 23:52:08 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2017-03-16 15:02:42 +07:00
|
|
|
* nand_write_page - write one page
|
2011-05-26 04:59:01 +07:00
|
|
|
* @chip: NAND chip descriptor
|
2013-03-15 19:25:53 +07:00
|
|
|
* @offset: address offset within the page
|
|
|
|
* @data_len: length of actual data to be written
|
2011-05-26 04:59:01 +07:00
|
|
|
* @buf: the data to write
|
2012-05-03 00:14:55 +07:00
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
2011-05-26 04:59:01 +07:00
|
|
|
* @page: page number to write
|
|
|
|
* @raw: use _raw version of write_page
|
2006-05-26 23:52:08 +07:00
|
|
|
*/
|
2018-11-11 14:55:03 +07:00
|
|
|
static int nand_write_page(struct nand_chip *chip, uint32_t offset,
|
|
|
|
int data_len, const uint8_t *buf, int oob_required,
|
|
|
|
int page, int raw)
|
2006-05-26 23:52:08 +07:00
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2013-03-15 19:25:53 +07:00
|
|
|
int status, subpage;
|
|
|
|
|
|
|
|
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
|
|
|
|
chip->ecc.write_subpage)
|
|
|
|
subpage = offset || (data_len < mtd->writesize);
|
|
|
|
else
|
|
|
|
subpage = 0;
|
2006-05-26 23:52:08 +07:00
|
|
|
|
2006-09-25 23:12:39 +07:00
|
|
|
if (unlikely(raw))
|
2018-09-06 19:05:21 +07:00
|
|
|
status = chip->ecc.write_page_raw(chip, buf, oob_required,
|
|
|
|
page);
|
2013-03-15 19:25:53 +07:00
|
|
|
else if (subpage)
|
2018-09-06 19:05:21 +07:00
|
|
|
status = chip->ecc.write_subpage(chip, offset, data_len, buf,
|
|
|
|
oob_required, page);
|
2006-09-25 23:12:39 +07:00
|
|
|
else
|
2018-09-06 19:05:21 +07:00
|
|
|
status = chip->ecc.write_page(chip, buf, oob_required, page);
|
2012-06-25 17:07:45 +07:00
|
|
|
|
|
|
|
if (status < 0)
|
|
|
|
return status;
|
2006-05-26 23:52:08 +07:00
|
|
|
|
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2010-09-07 18:23:43 +07:00
|
|
|
#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_do_write_ops - [INTERN] NAND write with ECC
|
2018-11-11 14:55:03 +07:00
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
* @to: offset to write to
|
|
|
|
* @ops: oob operations description structure
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* NAND write with ECC.
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2018-11-11 14:55:03 +07:00
|
|
|
static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
|
2006-05-29 08:26:58 +07:00
|
|
|
struct mtd_oob_ops *ops)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2017-09-02 15:49:38 +07:00
|
|
|
int chipnr, realpage, page, column;
|
2006-05-29 08:26:58 +07:00
|
|
|
uint32_t writelen = ops->len;
|
2010-02-23 01:39:36 +07:00
|
|
|
|
|
|
|
uint32_t oobwritelen = ops->ooblen;
|
2016-03-07 16:46:52 +07:00
|
|
|
uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
|
2010-02-23 01:39:36 +07:00
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
uint8_t *oob = ops->oobbuf;
|
|
|
|
uint8_t *buf = ops->datbuf;
|
2013-03-15 19:25:53 +07:00
|
|
|
int ret;
|
2012-05-03 00:14:56 +07:00
|
|
|
int oob_required = oob ? 1 : 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
ops->retlen = 0;
|
2006-09-28 20:38:36 +07:00
|
|
|
if (!writelen)
|
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Reject writes, which are not page aligned */
|
2006-05-29 08:26:58 +07:00
|
|
|
if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
|
2011-07-20 00:06:08 +07:00
|
|
|
pr_notice("%s: attempt to write non page aligned data\n",
|
|
|
|
__func__);
|
2005-04-17 05:20:36 +07:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2006-09-28 20:38:36 +07:00
|
|
|
column = to & (mtd->writesize - 1);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-06-28 05:11:45 +07:00
|
|
|
chipnr = (int)(to >> chip->chip_shift);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2006-06-28 05:11:45 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Check, if it is write protected */
|
2018-11-11 14:55:03 +07:00
|
|
|
if (nand_check_wp(chip)) {
|
2012-11-19 13:43:29 +07:00
|
|
|
ret = -EIO;
|
|
|
|
goto err_out;
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-26 23:52:08 +07:00
|
|
|
realpage = (int)(to >> chip->page_shift);
|
|
|
|
page = realpage & chip->pagemask;
|
|
|
|
|
|
|
|
/* Invalidate the page cache, when we write to the cached page */
|
2018-10-28 22:12:45 +07:00
|
|
|
if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
|
|
|
|
((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
|
|
|
|
chip->pagecache.page = -1;
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2010-02-23 01:39:36 +07:00
|
|
|
/* Don't allow multipage oob writes with offset */
|
2012-11-19 13:43:29 +07:00
|
|
|
if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto err_out;
|
|
|
|
}
|
2010-02-23 01:39:36 +07:00
|
|
|
|
2010-09-07 18:23:43 +07:00
|
|
|
while (1) {
|
2006-09-28 20:38:36 +07:00
|
|
|
int bytes = mtd->writesize;
|
|
|
|
uint8_t *wbuf = buf;
|
2020-05-07 17:52:33 +07:00
|
|
|
int use_bounce_buf;
|
2016-07-18 15:39:18 +07:00
|
|
|
int part_pagewr = (column || writelen < mtd->writesize);
|
2014-05-02 07:51:19 +07:00
|
|
|
|
|
|
|
if (part_pagewr)
|
2020-05-07 17:52:33 +07:00
|
|
|
use_bounce_buf = 1;
|
2020-05-07 17:52:31 +07:00
|
|
|
else if (chip->options & NAND_USES_DMA)
|
2020-05-07 17:52:33 +07:00
|
|
|
use_bounce_buf = !virt_addr_valid(buf) ||
|
|
|
|
!IS_ALIGNED((unsigned long)buf,
|
|
|
|
chip->buf_align);
|
2014-05-02 07:51:19 +07:00
|
|
|
else
|
2020-05-07 17:52:33 +07:00
|
|
|
use_bounce_buf = 0;
|
2006-09-28 20:38:36 +07:00
|
|
|
|
2020-05-07 17:52:32 +07:00
|
|
|
/*
|
|
|
|
* Copy the data from the initial buffer when doing partial page
|
|
|
|
* writes or when a bounce buffer is required.
|
|
|
|
*/
|
2020-05-07 17:52:33 +07:00
|
|
|
if (use_bounce_buf) {
|
2014-05-02 07:51:19 +07:00
|
|
|
pr_debug("%s: using write bounce buffer for buf@%p\n",
|
|
|
|
__func__, buf);
|
|
|
|
if (part_pagewr)
|
|
|
|
bytes = min_t(int, bytes - column, writelen);
|
2018-10-28 21:27:55 +07:00
|
|
|
wbuf = nand_get_data_buf(chip);
|
|
|
|
memset(wbuf, 0xff, mtd->writesize);
|
|
|
|
memcpy(&wbuf[column], buf, bytes);
|
2006-09-28 20:38:36 +07:00
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2010-02-23 01:39:36 +07:00
|
|
|
if (unlikely(oob)) {
|
|
|
|
size_t len = min(oobwritelen, oobmaxlen);
|
2018-11-11 14:55:03 +07:00
|
|
|
oob = nand_fill_oob(chip, oob, len, ops);
|
2010-02-23 01:39:36 +07:00
|
|
|
oobwritelen -= len;
|
2011-06-14 21:52:38 +07:00
|
|
|
} else {
|
|
|
|
/* We still need to erase leftover OOB data */
|
|
|
|
memset(chip->oob_poi, 0xff, mtd->oobsize);
|
2010-02-23 01:39:36 +07:00
|
|
|
}
|
2017-03-16 15:02:42 +07:00
|
|
|
|
2018-11-11 14:55:03 +07:00
|
|
|
ret = nand_write_page(chip, column, bytes, wbuf,
|
2017-05-16 05:17:41 +07:00
|
|
|
oob_required, page,
|
2017-03-16 15:02:42 +07:00
|
|
|
(ops->mode == MTD_OPS_RAW));
|
2006-05-26 23:52:08 +07:00
|
|
|
if (ret)
|
|
|
|
break;
|
|
|
|
|
|
|
|
writelen -= bytes;
|
|
|
|
if (!writelen)
|
|
|
|
break;
|
|
|
|
|
2006-09-28 20:38:36 +07:00
|
|
|
column = 0;
|
2006-05-26 23:52:08 +07:00
|
|
|
buf += bytes;
|
|
|
|
realpage++;
|
|
|
|
|
|
|
|
page = realpage & chip->pagemask;
|
|
|
|
/* Check, if we cross a chip boundary */
|
|
|
|
if (!page) {
|
|
|
|
chipnr++;
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
|
|
|
nand_select_target(chip, chipnr);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
2006-05-29 08:26:58 +07:00
|
|
|
|
|
|
|
ops->retlen = ops->len - writelen;
|
2006-11-03 22:20:38 +07:00
|
|
|
if (unlikely(oob))
|
|
|
|
ops->oobretlen = ops->ooblen;
|
2012-11-19 13:43:29 +07:00
|
|
|
|
|
|
|
err_out:
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2009-10-05 20:55:52 +07:00
|
|
|
/**
|
|
|
|
* panic_nand_write - [MTD Interface] NAND write with ECC
|
2011-05-26 04:59:01 +07:00
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @to: offset to write to
|
|
|
|
* @len: number of bytes to write
|
|
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
|
|
* @buf: the data to write
|
2009-10-05 20:55:52 +07:00
|
|
|
*
|
|
|
|
* NAND write with ECC. Used when performing writes in interrupt context, this
|
|
|
|
* may for example be called by mtdoops when writing an oops while in panic.
|
|
|
|
*/
|
|
|
|
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
|
|
size_t *retlen, const uint8_t *buf)
|
|
|
|
{
|
2015-12-01 18:03:03 +07:00
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
2017-10-31 10:32:45 +07:00
|
|
|
int chipnr = (int)(to >> chip->chip_shift);
|
2011-08-31 08:45:45 +07:00
|
|
|
struct mtd_oob_ops ops;
|
2009-10-05 20:55:52 +07:00
|
|
|
int ret;
|
|
|
|
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2017-10-31 10:32:45 +07:00
|
|
|
|
|
|
|
/* Wait for the device to get ready */
|
2018-09-06 19:05:29 +07:00
|
|
|
panic_nand_wait(chip, 400);
|
2017-10-31 10:32:45 +07:00
|
|
|
|
2015-02-28 17:02:30 +07:00
|
|
|
memset(&ops, 0, sizeof(ops));
|
2011-08-31 08:45:45 +07:00
|
|
|
ops.len = len;
|
|
|
|
ops.datbuf = (uint8_t *)buf;
|
2012-07-03 15:44:14 +07:00
|
|
|
ops.mode = MTD_OPS_PLACE_OOB;
|
2009-10-05 20:55:52 +07:00
|
|
|
|
2018-11-11 14:55:03 +07:00
|
|
|
ret = nand_do_write_ops(chip, to, &ops);
|
2009-10-05 20:55:52 +07:00
|
|
|
|
2011-08-31 08:45:45 +07:00
|
|
|
*retlen = ops.retlen;
|
2009-10-05 20:55:52 +07:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2006-05-29 08:26:58 +07:00
|
|
|
/**
|
|
|
|
* nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
|
2011-05-26 04:59:01 +07:00
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @to: offset to write to
|
|
|
|
* @ops: oob operation description structure
|
2006-05-29 08:26:58 +07:00
|
|
|
*/
|
|
|
|
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
|
|
|
|
struct mtd_oob_ops *ops)
|
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
2019-07-31 15:52:08 +07:00
|
|
|
int ret;
|
2006-05-29 08:26:58 +07:00
|
|
|
|
|
|
|
ops->retlen = 0;
|
|
|
|
|
2018-11-20 17:57:20 +07:00
|
|
|
ret = nand_get_device(chip);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2006-05-29 08:26:58 +07:00
|
|
|
|
2010-09-07 18:23:43 +07:00
|
|
|
switch (ops->mode) {
|
2011-08-31 08:45:40 +07:00
|
|
|
case MTD_OPS_PLACE_OOB:
|
|
|
|
case MTD_OPS_AUTO_OOB:
|
|
|
|
case MTD_OPS_RAW:
|
2006-05-29 08:26:58 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ops->datbuf)
|
2018-11-11 14:55:03 +07:00
|
|
|
ret = nand_do_write_oob(chip, to, ops);
|
2006-05-29 08:26:58 +07:00
|
|
|
else
|
2018-11-11 14:55:03 +07:00
|
|
|
ret = nand_do_write_ops(chip, to, ops);
|
2006-05-29 08:26:58 +07:00
|
|
|
|
2010-09-07 18:23:45 +07:00
|
|
|
out:
|
2018-11-11 14:55:03 +07:00
|
|
|
nand_release_device(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_erase - [MTD Interface] erase block(s)
|
2011-05-26 04:59:01 +07:00
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @instr: erase instruction
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* Erase one ore more blocks.
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2006-05-14 00:07:53 +07:00
|
|
|
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2018-09-06 19:05:35 +07:00
|
|
|
return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/**
|
2011-06-24 04:12:08 +07:00
|
|
|
* nand_erase_nand - [INTERN] erase block(s)
|
2018-09-06 19:05:35 +07:00
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
* @instr: erase instruction
|
|
|
|
* @allowbbt: allow erasing the bbt area
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* Erase one ore more blocks.
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2018-09-06 19:05:35 +07:00
|
|
|
int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
|
2006-05-24 17:07:37 +07:00
|
|
|
int allowbbt)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2019-01-21 13:32:07 +07:00
|
|
|
int page, pages_per_block, ret, chipnr;
|
2008-12-10 20:37:21 +07:00
|
|
|
loff_t len;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2011-07-20 00:06:09 +07:00
|
|
|
pr_debug("%s: start = 0x%012llx, len = %llu\n",
|
|
|
|
__func__, (unsigned long long)instr->addr,
|
|
|
|
(unsigned long long)instr->len);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2018-11-11 14:55:03 +07:00
|
|
|
if (check_offs_len(chip, instr->addr, instr->len))
|
2005-04-17 05:20:36 +07:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Grab the lock and see if the device is available */
|
2018-11-20 17:57:20 +07:00
|
|
|
ret = nand_get_device(chip);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/* Shift to get first page */
|
2006-05-24 17:07:37 +07:00
|
|
|
page = (int)(instr->addr >> chip->page_shift);
|
|
|
|
chipnr = (int)(instr->addr >> chip->chip_shift);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/* Calculate pages in each block */
|
2006-05-24 17:07:37 +07:00
|
|
|
pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/* Select the NAND device */
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/* Check, if it is write protected */
|
2018-11-11 14:55:03 +07:00
|
|
|
if (nand_check_wp(chip)) {
|
2011-07-20 00:06:09 +07:00
|
|
|
pr_debug("%s: device is write protected!\n",
|
|
|
|
__func__);
|
2018-02-13 04:03:11 +07:00
|
|
|
ret = -EIO;
|
2005-04-17 05:20:36 +07:00
|
|
|
goto erase_exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Loop through the pages */
|
|
|
|
len = instr->len;
|
|
|
|
|
|
|
|
while (len) {
|
2011-12-22 05:01:20 +07:00
|
|
|
/* Check if we have a bad block, we do not erase bad blocks! */
|
2018-11-11 14:55:03 +07:00
|
|
|
if (nand_block_checkbad(chip, ((loff_t) page) <<
|
2016-02-03 15:59:49 +07:00
|
|
|
chip->page_shift, allowbbt)) {
|
2011-07-20 00:06:08 +07:00
|
|
|
pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
|
|
|
|
__func__, page);
|
2018-02-13 04:03:11 +07:00
|
|
|
ret = -EIO;
|
2005-04-17 05:20:36 +07:00
|
|
|
goto erase_exit;
|
|
|
|
}
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2006-05-24 17:07:37 +07:00
|
|
|
/*
|
|
|
|
* Invalidate the page cache, if we erase the block which
|
2011-05-26 04:59:01 +07:00
|
|
|
* contains the current cached page.
|
2006-05-24 17:07:37 +07:00
|
|
|
*/
|
2018-10-28 22:12:45 +07:00
|
|
|
if (page <= chip->pagecache.page && chip->pagecache.page <
|
2006-05-24 17:07:37 +07:00
|
|
|
(page + pages_per_block))
|
2018-10-28 22:12:45 +07:00
|
|
|
chip->pagecache.page = -1;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2019-01-21 13:32:07 +07:00
|
|
|
ret = nand_erase_op(chip, (page & chip->pagemask) >>
|
|
|
|
(chip->phys_erase_shift - chip->page_shift));
|
|
|
|
if (ret) {
|
2011-07-20 00:06:09 +07:00
|
|
|
pr_debug("%s: failed erase, page 0x%08x\n",
|
|
|
|
__func__, page);
|
2008-12-10 20:37:21 +07:00
|
|
|
instr->fail_addr =
|
|
|
|
((loff_t)page << chip->page_shift);
|
2005-04-17 05:20:36 +07:00
|
|
|
goto erase_exit;
|
|
|
|
}
|
2005-01-18 01:35:25 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Increment page address and decrement length */
|
2013-08-09 16:49:05 +07:00
|
|
|
len -= (1ULL << chip->phys_erase_shift);
|
2005-04-17 05:20:36 +07:00
|
|
|
page += pages_per_block;
|
|
|
|
|
|
|
|
/* Check, if we cross a chip boundary */
|
2006-05-24 17:07:37 +07:00
|
|
|
if (len && !(page & chip->pagemask)) {
|
2005-04-17 05:20:36 +07:00
|
|
|
chipnr++;
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
|
|
|
nand_select_target(chip, chipnr);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-02-13 04:03:11 +07:00
|
|
|
ret = 0;
|
2010-09-07 18:23:45 +07:00
|
|
|
erase_exit:
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2018-11-11 14:55:03 +07:00
|
|
|
nand_release_device(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/* Return more or less happy */
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_sync - [MTD Interface] sync
|
2011-05-26 04:59:01 +07:00
|
|
|
* @mtd: MTD device structure
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* Sync is actually a wait for chip ready function.
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2006-05-14 00:07:53 +07:00
|
|
|
static void nand_sync(struct mtd_info *mtd)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
|
2011-07-20 00:06:09 +07:00
|
|
|
pr_debug("%s: called\n", __func__);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/* Grab the lock and see if the device is available */
|
2018-11-20 17:57:20 +07:00
|
|
|
WARN_ON(nand_get_device(chip));
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Release it and go back */
|
2018-11-11 14:55:03 +07:00
|
|
|
nand_release_device(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2006-05-24 17:07:37 +07:00
|
|
|
* nand_block_isbad - [MTD Interface] Check if block at offset is bad
|
2011-05-26 04:59:01 +07:00
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @offs: offset relative to mtd start
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2006-05-24 17:07:37 +07:00
|
|
|
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2016-02-03 15:59:49 +07:00
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
int chipnr = (int)(offs >> chip->chip_shift);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Select the NAND device */
|
2018-11-20 17:57:20 +07:00
|
|
|
ret = nand_get_device(chip);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, chipnr);
|
2016-02-03 15:59:49 +07:00
|
|
|
|
2018-11-11 14:55:03 +07:00
|
|
|
ret = nand_block_checkbad(chip, offs, 0);
|
2016-02-03 15:59:49 +07:00
|
|
|
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2018-11-11 14:55:03 +07:00
|
|
|
nand_release_device(chip);
|
2016-02-03 15:59:49 +07:00
|
|
|
|
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2006-05-24 17:07:37 +07:00
|
|
|
* nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
|
2011-05-26 04:59:01 +07:00
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @ofs: offset relative to mtd start
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
2006-05-14 00:07:53 +07:00
|
|
|
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
2010-09-07 18:23:43 +07:00
|
|
|
ret = nand_block_isbad(mtd, ofs);
|
|
|
|
if (ret) {
|
2011-05-26 04:59:01 +07:00
|
|
|
/* If it was bad already, return success and do nothing */
|
2005-04-17 05:20:36 +07:00
|
|
|
if (ret > 0)
|
|
|
|
return 0;
|
2006-05-14 00:07:53 +07:00
|
|
|
return ret;
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2018-11-11 14:55:03 +07:00
|
|
|
return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2005-09-15 20:58:53 +07:00
|
|
|
/**
|
|
|
|
* nand_suspend - [MTD Interface] Suspend the NAND flash
|
2011-05-26 04:59:01 +07:00
|
|
|
* @mtd: MTD device structure
|
2020-03-18 14:42:27 +07:00
|
|
|
*
|
|
|
|
* Returns 0 for success or negative error code otherwise.
|
2005-09-15 20:58:53 +07:00
|
|
|
*/
|
|
|
|
static int nand_suspend(struct mtd_info *mtd)
|
|
|
|
{
|
2018-11-20 17:57:20 +07:00
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
2020-03-18 14:42:27 +07:00
|
|
|
int ret = 0;
|
2018-11-20 17:57:20 +07:00
|
|
|
|
|
|
|
mutex_lock(&chip->lock);
|
2020-03-18 14:42:27 +07:00
|
|
|
if (chip->suspend)
|
|
|
|
ret = chip->suspend(chip);
|
|
|
|
if (!ret)
|
|
|
|
chip->suspended = 1;
|
2018-11-20 17:57:20 +07:00
|
|
|
mutex_unlock(&chip->lock);
|
|
|
|
|
2020-03-18 14:42:27 +07:00
|
|
|
return ret;
|
2005-09-15 20:58:53 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_resume - [MTD Interface] Resume the NAND flash
|
2011-05-26 04:59:01 +07:00
|
|
|
* @mtd: MTD device structure
|
2005-09-15 20:58:53 +07:00
|
|
|
*/
|
|
|
|
static void nand_resume(struct mtd_info *mtd)
|
|
|
|
{
|
2015-12-01 18:03:03 +07:00
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
2005-09-15 20:58:53 +07:00
|
|
|
|
2018-11-20 17:57:20 +07:00
|
|
|
mutex_lock(&chip->lock);
|
2020-03-18 14:42:27 +07:00
|
|
|
if (chip->suspended) {
|
|
|
|
if (chip->resume)
|
|
|
|
chip->resume(chip);
|
2018-11-20 17:57:20 +07:00
|
|
|
chip->suspended = 0;
|
2020-03-18 14:42:27 +07:00
|
|
|
} else {
|
2011-07-20 00:06:08 +07:00
|
|
|
pr_err("%s called for a chip which is not in suspended state\n",
|
|
|
|
__func__);
|
2020-03-18 14:42:27 +07:00
|
|
|
}
|
2018-11-20 17:57:20 +07:00
|
|
|
mutex_unlock(&chip->lock);
|
2005-09-15 20:58:53 +07:00
|
|
|
}
|
|
|
|
|
2014-11-21 02:18:05 +07:00
|
|
|
/**
|
|
|
|
* nand_shutdown - [MTD Interface] Finish the current NAND operation and
|
|
|
|
* prevent further operations
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
*/
|
|
|
|
static void nand_shutdown(struct mtd_info *mtd)
|
|
|
|
{
|
2018-11-20 17:57:20 +07:00
|
|
|
nand_suspend(mtd);
|
2014-11-21 02:18:05 +07:00
|
|
|
}
|
|
|
|
|
2020-03-03 14:21:21 +07:00
|
|
|
/**
|
|
|
|
* nand_lock - [MTD Interface] Lock the NAND flash
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @ofs: offset byte address
|
|
|
|
* @len: number of bytes to lock (must be a multiple of block/page size)
|
|
|
|
*/
|
|
|
|
static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
|
|
|
|
if (!chip->lock_area)
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
return chip->lock_area(chip, ofs, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_unlock - [MTD Interface] Unlock the NAND flash
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @ofs: offset byte address
|
|
|
|
* @len: number of bytes to unlock (must be a multiple of block/page size)
|
|
|
|
*/
|
|
|
|
static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
|
|
|
|
if (!chip->unlock_area)
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
return chip->unlock_area(chip, ofs, len);
|
|
|
|
}
|
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Set default functions */
|
2016-05-25 01:17:48 +07:00
|
|
|
static void nand_set_defaults(struct nand_chip *chip)
|
2006-05-23 16:54:38 +07:00
|
|
|
{
|
2018-11-20 16:02:39 +07:00
|
|
|
/* If no controller is provided, use the dummy, legacy one. */
|
2006-05-26 23:52:08 +07:00
|
|
|
if (!chip->controller) {
|
2018-11-20 16:02:39 +07:00
|
|
|
chip->controller = &chip->legacy.dummy_controller;
|
2018-07-17 14:08:02 +07:00
|
|
|
nand_controller_init(chip->controller);
|
2006-05-26 23:52:08 +07:00
|
|
|
}
|
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
nand_legacy_set_defaults(chip);
|
|
|
|
|
2017-03-30 15:15:05 +07:00
|
|
|
if (!chip->buf_align)
|
|
|
|
chip->buf_align = 1;
|
2006-05-23 16:54:38 +07:00
|
|
|
}
|
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Sanitize ONFI strings so we can safely print them */
|
2018-09-07 05:38:50 +07:00
|
|
|
void sanitize_string(uint8_t *s, size_t len)
|
2010-08-30 23:32:24 +07:00
|
|
|
{
|
|
|
|
ssize_t i;
|
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Null terminate */
|
2010-08-30 23:32:24 +07:00
|
|
|
s[len - 1] = 0;
|
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Remove non printable chars */
|
2010-08-30 23:32:24 +07:00
|
|
|
for (i = 0; i < len - 1; i++) {
|
|
|
|
if (s[i] < ' ' || s[i] > 127)
|
|
|
|
s[i] = '?';
|
|
|
|
}
|
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Remove trailing spaces */
|
2010-08-30 23:32:24 +07:00
|
|
|
strim(s);
|
|
|
|
}
|
|
|
|
|
2012-09-25 10:40:52 +07:00
|
|
|
/*
|
|
|
|
* nand_id_has_period - Check if an ID string has a given wraparound period
|
|
|
|
* @id_data: the ID string
|
|
|
|
* @arrlen: the length of the @id_data array
|
|
|
|
* @period: the period of repitition
|
|
|
|
*
|
|
|
|
* Check if an ID string is repeated within a given sequence of bytes at
|
|
|
|
* specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
|
2012-11-15 12:54:20 +07:00
|
|
|
* period of 3). This is a helper function for nand_id_len(). Returns non-zero
|
2012-09-25 10:40:52 +07:00
|
|
|
* if the repetition has a period of @period; otherwise, returns zero.
|
|
|
|
*/
|
|
|
|
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
for (i = 0; i < period; i++)
|
|
|
|
for (j = i + period; j < arrlen; j += period)
|
|
|
|
if (id_data[i] != id_data[j])
|
|
|
|
return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* nand_id_len - Get the length of an ID string returned by CMD_READID
|
|
|
|
* @id_data: the ID string
|
|
|
|
* @arrlen: the length of the @id_data array
|
|
|
|
|
|
|
|
* Returns the length of the ID string, according to known wraparound/trailing
|
|
|
|
* zero patterns. If no pattern exists, returns the length of the array.
|
|
|
|
*/
|
|
|
|
static int nand_id_len(u8 *id_data, int arrlen)
|
|
|
|
{
|
|
|
|
int last_nonzero, period;
|
|
|
|
|
|
|
|
/* Find last non-zero byte */
|
|
|
|
for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
|
|
|
|
if (id_data[last_nonzero])
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* All zeros */
|
|
|
|
if (last_nonzero < 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Calculate wraparound period */
|
|
|
|
for (period = 1; period < arrlen; period++)
|
|
|
|
if (nand_id_has_period(id_data, arrlen, period))
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* There's a repeated pattern */
|
|
|
|
if (period < arrlen)
|
|
|
|
return period;
|
|
|
|
|
|
|
|
/* There are trailing zeros */
|
|
|
|
if (last_nonzero < arrlen - 1)
|
|
|
|
return last_nonzero + 1;
|
|
|
|
|
|
|
|
/* No pattern detected */
|
|
|
|
return arrlen;
|
|
|
|
}
|
|
|
|
|
2013-09-25 13:58:11 +07:00
|
|
|
/* Extract the bits of per cell from the 3rd byte of the extended ID */
|
|
|
|
static int nand_get_bits_per_cell(u8 cellinfo)
|
|
|
|
{
|
|
|
|
int bits;
|
|
|
|
|
|
|
|
bits = cellinfo & NAND_CI_CELLTYPE_MSK;
|
|
|
|
bits >>= NAND_CI_CELLTYPE_SHIFT;
|
|
|
|
return bits + 1;
|
|
|
|
}
|
|
|
|
|
2012-09-25 10:40:50 +07:00
|
|
|
/*
|
|
|
|
* Many new NAND share similar device ID codes, which represent the size of the
|
|
|
|
* chip. The rest of the parameters must be decoded according to generic or
|
|
|
|
* manufacturer-specific "extended ID" decoding patterns.
|
|
|
|
*/
|
2016-06-08 14:32:55 +07:00
|
|
|
void nand_decode_ext_id(struct nand_chip *chip)
|
2012-09-25 10:40:50 +07:00
|
|
|
{
|
2018-10-25 22:10:37 +07:00
|
|
|
struct nand_memory_organization *memorg;
|
2016-05-24 21:56:22 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2016-06-08 15:34:57 +07:00
|
|
|
int extid;
|
2016-05-25 00:20:05 +07:00
|
|
|
u8 *id_data = chip->id.data;
|
2018-10-25 22:10:37 +07:00
|
|
|
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
|
2012-09-25 10:40:50 +07:00
|
|
|
/* The 3rd id byte holds MLC / multichip data */
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
|
2012-09-25 10:40:50 +07:00
|
|
|
/* The 4th id byte is the important one */
|
|
|
|
extid = id_data[3];
|
|
|
|
|
2016-06-08 15:30:18 +07:00
|
|
|
/* Calc pagesize */
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->pagesize = 1024 << (extid & 0x03);
|
|
|
|
mtd->writesize = memorg->pagesize;
|
2016-06-08 15:30:18 +07:00
|
|
|
extid >>= 2;
|
|
|
|
/* Calc oobsize */
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
|
|
|
|
mtd->oobsize = memorg->oobsize;
|
2016-06-08 15:30:18 +07:00
|
|
|
extid >>= 2;
|
|
|
|
/* Calc blocksize. Blocksize is multiples of 64KiB */
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
|
|
|
|
memorg->pagesize;
|
2016-06-08 15:30:18 +07:00
|
|
|
mtd->erasesize = (64 * 1024) << (extid & 0x03);
|
|
|
|
extid >>= 2;
|
|
|
|
/* Get buswidth information */
|
|
|
|
if (extid & 0x1)
|
|
|
|
chip->options |= NAND_BUSWIDTH_16;
|
2012-09-25 10:40:50 +07:00
|
|
|
}
|
2016-06-08 14:32:55 +07:00
|
|
|
EXPORT_SYMBOL_GPL(nand_decode_ext_id);
|
2012-09-25 10:40:50 +07:00
|
|
|
|
2012-09-25 10:40:51 +07:00
|
|
|
/*
|
|
|
|
* Old devices have chip data hardcoded in the device ID table. nand_decode_id
|
|
|
|
* decodes a matching ID table entry and assigns the MTD size parameters for
|
|
|
|
* the chip.
|
|
|
|
*/
|
2016-05-25 01:17:48 +07:00
|
|
|
static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
|
2012-09-25 10:40:51 +07:00
|
|
|
{
|
2016-05-24 21:56:22 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2018-10-25 22:10:37 +07:00
|
|
|
struct nand_memory_organization *memorg;
|
|
|
|
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
2012-09-25 10:40:51 +07:00
|
|
|
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
|
2012-09-25 10:40:51 +07:00
|
|
|
mtd->erasesize = type->erasesize;
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->pagesize = type->pagesize;
|
|
|
|
mtd->writesize = memorg->pagesize;
|
|
|
|
memorg->oobsize = memorg->pagesize / 32;
|
|
|
|
mtd->oobsize = memorg->oobsize;
|
2012-09-25 10:40:51 +07:00
|
|
|
|
2013-09-25 13:58:12 +07:00
|
|
|
/* All legacy ID NAND are small-page, SLC */
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->bits_per_cell = 1;
|
2012-09-25 10:40:51 +07:00
|
|
|
}
|
|
|
|
|
2012-09-25 10:40:49 +07:00
|
|
|
/*
|
|
|
|
* Set the bad block marker/indicator (BBM/BBI) patterns according to some
|
|
|
|
* heuristic patterns using various detected parameters (e.g., manufacturer,
|
|
|
|
* page size, cell-type information).
|
|
|
|
*/
|
2016-05-25 00:20:05 +07:00
|
|
|
static void nand_decode_bbm_options(struct nand_chip *chip)
|
2012-09-25 10:40:49 +07:00
|
|
|
{
|
2016-05-24 21:56:22 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2012-09-25 10:40:49 +07:00
|
|
|
|
|
|
|
/* Set the bad block position */
|
|
|
|
if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
|
2019-04-17 19:36:34 +07:00
|
|
|
chip->badblockpos = NAND_BBM_POS_LARGE;
|
2012-09-25 10:40:49 +07:00
|
|
|
else
|
2019-04-17 19:36:34 +07:00
|
|
|
chip->badblockpos = NAND_BBM_POS_SMALL;
|
2012-09-25 10:40:49 +07:00
|
|
|
}
|
|
|
|
|
2013-03-15 10:01:00 +07:00
|
|
|
static inline bool is_full_id_nand(struct nand_flash_dev *type)
|
|
|
|
{
|
|
|
|
return type->id_len;
|
|
|
|
}
|
|
|
|
|
2016-05-24 21:56:22 +07:00
|
|
|
static bool find_full_id_nand(struct nand_chip *chip,
|
2016-05-25 01:17:48 +07:00
|
|
|
struct nand_flash_dev *type)
|
2013-03-15 10:01:00 +07:00
|
|
|
{
|
2016-05-24 21:56:22 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2018-10-25 22:10:37 +07:00
|
|
|
struct nand_memory_organization *memorg;
|
2016-05-25 00:20:05 +07:00
|
|
|
u8 *id_data = chip->id.data;
|
2016-05-24 21:56:22 +07:00
|
|
|
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
|
2013-03-15 10:01:00 +07:00
|
|
|
if (!strncmp(type->id, id_data, type->id_len)) {
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->pagesize = type->pagesize;
|
|
|
|
mtd->writesize = memorg->pagesize;
|
|
|
|
memorg->pages_per_eraseblock = type->erasesize /
|
|
|
|
type->pagesize;
|
2013-03-15 10:01:00 +07:00
|
|
|
mtd->erasesize = type->erasesize;
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->oobsize = type->oobsize;
|
|
|
|
mtd->oobsize = memorg->oobsize;
|
2013-03-15 10:01:00 +07:00
|
|
|
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
|
|
|
|
memorg->eraseblocks_per_lun =
|
|
|
|
DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
|
|
|
|
memorg->pagesize *
|
|
|
|
memorg->pages_per_eraseblock);
|
2013-03-15 10:01:00 +07:00
|
|
|
chip->options |= type->options;
|
2018-11-04 22:09:42 +07:00
|
|
|
chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
|
|
|
|
chip->base.eccreq.step_size = NAND_ECC_STEP(type);
|
2014-09-23 01:11:50 +07:00
|
|
|
chip->onfi_timing_mode_default =
|
|
|
|
type->onfi_timing_mode_default;
|
2013-03-15 10:01:00 +07:00
|
|
|
|
2018-07-25 20:31:51 +07:00
|
|
|
chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
|
|
|
|
if (!chip->parameters.model)
|
|
|
|
return false;
|
2013-12-25 20:19:21 +07:00
|
|
|
|
2013-03-15 10:01:00 +07:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-06-08 14:32:55 +07:00
|
|
|
/*
|
|
|
|
* Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
|
|
|
|
* compliant and does not have a full-id or legacy-id entry in the nand_ids
|
|
|
|
* table.
|
|
|
|
*/
|
|
|
|
static void nand_manufacturer_detect(struct nand_chip *chip)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Try manufacturer detection if available and use
|
|
|
|
* nand_decode_ext_id() otherwise.
|
|
|
|
*/
|
|
|
|
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
|
2017-08-29 17:17:12 +07:00
|
|
|
chip->manufacturer.desc->ops->detect) {
|
2018-10-25 22:10:37 +07:00
|
|
|
struct nand_memory_organization *memorg;
|
|
|
|
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
|
2017-08-29 17:17:12 +07:00
|
|
|
/* The 3rd id byte holds MLC / multichip data */
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
|
2016-06-08 14:32:55 +07:00
|
|
|
chip->manufacturer.desc->ops->detect(chip);
|
2017-08-29 17:17:12 +07:00
|
|
|
} else {
|
2016-06-08 14:32:55 +07:00
|
|
|
nand_decode_ext_id(chip);
|
2017-08-29 17:17:12 +07:00
|
|
|
}
|
2016-06-08 14:32:55 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Manufacturer initialization. This function is called for all NANDs including
|
|
|
|
* ONFI and JEDEC compliant ones.
|
|
|
|
* Manufacturer drivers should put all their specific initialization code in
|
|
|
|
* their ->init() hook.
|
|
|
|
*/
|
|
|
|
static int nand_manufacturer_init(struct nand_chip *chip)
|
|
|
|
{
|
|
|
|
if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
|
|
|
|
!chip->manufacturer.desc->ops->init)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return chip->manufacturer.desc->ops->init(chip);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Manufacturer cleanup. This function is called for all NANDs including
|
|
|
|
* ONFI and JEDEC compliant ones.
|
|
|
|
* Manufacturer drivers should put all their specific cleanup code in their
|
|
|
|
* ->cleanup() hook.
|
|
|
|
*/
|
|
|
|
static void nand_manufacturer_cleanup(struct nand_chip *chip)
|
|
|
|
{
|
|
|
|
/* Release manufacturer private data */
|
|
|
|
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
|
|
|
|
chip->manufacturer.desc->ops->cleanup)
|
|
|
|
chip->manufacturer.desc->ops->cleanup(chip);
|
|
|
|
}
|
|
|
|
|
2018-09-07 05:38:48 +07:00
|
|
|
static const char *
|
|
|
|
nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
|
|
|
|
{
|
|
|
|
return manufacturer ? manufacturer->name : "Unknown";
|
|
|
|
}
|
|
|
|
|
2006-05-23 16:54:38 +07:00
|
|
|
/*
|
2011-05-26 04:59:01 +07:00
|
|
|
* Get the flash and manufacturer id and lookup if the type is supported.
|
2006-05-23 16:54:38 +07:00
|
|
|
*/
|
2016-05-25 01:55:33 +07:00
|
|
|
static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
|
2006-05-23 16:54:38 +07:00
|
|
|
{
|
2017-01-07 21:48:25 +07:00
|
|
|
const struct nand_manufacturer *manufacturer;
|
2016-05-24 21:56:22 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2018-10-25 22:10:37 +07:00
|
|
|
struct nand_memory_organization *memorg;
|
2017-12-01 00:01:29 +07:00
|
|
|
int busw, ret;
|
2016-05-25 00:20:05 +07:00
|
|
|
u8 *id_data = chip->id.data;
|
|
|
|
u8 maf_id, dev_id;
|
2018-10-29 17:22:16 +07:00
|
|
|
u64 targetsize;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2018-10-25 22:10:37 +07:00
|
|
|
/*
|
|
|
|
* Let's start by initializing memorg fields that might be left
|
|
|
|
* unassigned by the ID-based detection logic.
|
|
|
|
*/
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
memorg->planes_per_lun = 1;
|
|
|
|
memorg->luns_per_target = 1;
|
|
|
|
|
2008-09-15 19:37:29 +07:00
|
|
|
/*
|
|
|
|
* Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
|
2011-05-26 04:59:01 +07:00
|
|
|
* after power-up.
|
2008-09-15 19:37:29 +07:00
|
|
|
*/
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_reset(chip, 0);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2016-10-24 21:46:20 +07:00
|
|
|
|
|
|
|
/* Select the device */
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, 0);
|
2008-09-15 19:37:29 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Send the command for reading device ID */
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_readid_op(chip, 0, id_data, 2);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/* Read manufacturer and device IDs */
|
2017-12-01 00:01:29 +07:00
|
|
|
maf_id = id_data[0];
|
|
|
|
dev_id = id_data[1];
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/*
|
|
|
|
* Try again to make sure, as some systems the bus-hold or other
|
2008-04-14 20:58:58 +07:00
|
|
|
* interface concerns can cause random data which looks like a
|
|
|
|
* possibly credible NAND flash to appear. If the two results do
|
|
|
|
* not match, ignore the device completely.
|
|
|
|
*/
|
|
|
|
|
2012-09-25 10:40:48 +07:00
|
|
|
/* Read entire ID string */
|
2017-12-01 00:01:29 +07:00
|
|
|
ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2008-04-14 20:58:58 +07:00
|
|
|
|
2016-05-25 00:20:05 +07:00
|
|
|
if (id_data[0] != maf_id || id_data[1] != dev_id) {
|
2013-11-25 18:30:31 +07:00
|
|
|
pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
|
2016-05-25 00:20:05 +07:00
|
|
|
maf_id, dev_id, id_data[0], id_data[1]);
|
2016-11-04 15:49:08 +07:00
|
|
|
return -ENODEV;
|
2008-04-14 20:58:58 +07:00
|
|
|
}
|
|
|
|
|
2017-06-30 00:08:30 +07:00
|
|
|
chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
|
2016-05-25 00:20:05 +07:00
|
|
|
|
2016-06-08 14:32:55 +07:00
|
|
|
/* Try to identify manufacturer */
|
|
|
|
manufacturer = nand_get_manufacturer(maf_id);
|
|
|
|
chip->manufacturer.desc = manufacturer;
|
|
|
|
|
2006-05-23 16:54:38 +07:00
|
|
|
if (!type)
|
2010-02-27 01:32:56 +07:00
|
|
|
type = nand_flash_ids;
|
|
|
|
|
2016-05-25 01:17:48 +07:00
|
|
|
/*
|
|
|
|
* Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
|
|
|
|
* override it.
|
|
|
|
* This is required to make sure initial NAND bus width set by the
|
|
|
|
* NAND controller driver is coherent with the real NAND bus width
|
|
|
|
* (extracted by auto-detection code).
|
|
|
|
*/
|
|
|
|
busw = chip->options & NAND_BUSWIDTH_16;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The flag is only set (never cleared), reset it to its default value
|
|
|
|
* before starting auto-detection.
|
|
|
|
*/
|
|
|
|
chip->options &= ~NAND_BUSWIDTH_16;
|
|
|
|
|
2013-03-15 10:01:00 +07:00
|
|
|
for (; type->name != NULL; type++) {
|
|
|
|
if (is_full_id_nand(type)) {
|
2016-05-25 01:17:48 +07:00
|
|
|
if (find_full_id_nand(chip, type))
|
2013-03-15 10:01:00 +07:00
|
|
|
goto ident_done;
|
2016-05-25 00:20:05 +07:00
|
|
|
} else if (dev_id == type->dev_id) {
|
2015-05-23 00:43:12 +07:00
|
|
|
break;
|
2013-03-15 10:01:00 +07:00
|
|
|
}
|
|
|
|
}
|
2010-02-27 01:32:56 +07:00
|
|
|
|
2010-08-30 23:32:24 +07:00
|
|
|
if (!type->name || !type->pagesize) {
|
2014-04-09 14:26:26 +07:00
|
|
|
/* Check if the chip is ONFI compliant */
|
2018-09-07 05:38:50 +07:00
|
|
|
ret = nand_onfi_detect(chip);
|
2018-03-19 20:47:31 +07:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
else if (ret)
|
2010-09-02 03:28:59 +07:00
|
|
|
goto ident_done;
|
2014-02-21 12:39:40 +07:00
|
|
|
|
|
|
|
/* Check if the chip is JEDEC compliant */
|
2018-09-07 05:38:51 +07:00
|
|
|
ret = nand_jedec_detect(chip);
|
2018-03-19 20:47:30 +07:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
else if (ret)
|
2014-02-21 12:39:40 +07:00
|
|
|
goto ident_done;
|
2010-08-30 23:32:24 +07:00
|
|
|
}
|
|
|
|
|
2010-02-27 01:32:56 +07:00
|
|
|
if (!type->name)
|
2016-11-04 15:49:08 +07:00
|
|
|
return -ENODEV;
|
2006-05-23 16:54:38 +07:00
|
|
|
|
2018-07-25 20:31:51 +07:00
|
|
|
chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
|
|
|
|
if (!chip->parameters.model)
|
|
|
|
return -ENOMEM;
|
2006-05-27 06:02:13 +07:00
|
|
|
|
2016-06-08 14:32:55 +07:00
|
|
|
if (!type->pagesize)
|
|
|
|
nand_manufacturer_detect(chip);
|
|
|
|
else
|
2016-05-25 01:17:48 +07:00
|
|
|
nand_decode_id(chip, type);
|
2016-06-08 14:32:55 +07:00
|
|
|
|
2012-07-13 23:28:24 +07:00
|
|
|
/* Get chip options */
|
|
|
|
chip->options |= type->options;
|
2010-08-30 23:32:24 +07:00
|
|
|
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->eraseblocks_per_lun =
|
|
|
|
DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
|
|
|
|
memorg->pagesize *
|
|
|
|
memorg->pages_per_eraseblock);
|
|
|
|
|
2010-08-30 23:32:24 +07:00
|
|
|
ident_done:
|
2018-03-19 20:47:26 +07:00
|
|
|
if (!mtd->name)
|
|
|
|
mtd->name = chip->parameters.model;
|
2010-08-30 23:32:24 +07:00
|
|
|
|
2012-11-06 17:51:44 +07:00
|
|
|
if (chip->options & NAND_BUSWIDTH_AUTO) {
|
2016-05-25 01:17:48 +07:00
|
|
|
WARN_ON(busw & NAND_BUSWIDTH_16);
|
|
|
|
nand_set_defaults(chip);
|
2012-11-06 17:51:44 +07:00
|
|
|
} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
|
|
|
|
/*
|
|
|
|
* Check, if buswidth is correct. Hardware drivers should set
|
|
|
|
* chip correct!
|
|
|
|
*/
|
2013-11-25 18:30:31 +07:00
|
|
|
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
|
2016-05-25 00:20:05 +07:00
|
|
|
maf_id, dev_id);
|
2017-01-07 21:48:25 +07:00
|
|
|
pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
|
|
|
|
mtd->name);
|
2016-05-25 01:17:48 +07:00
|
|
|
pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
|
|
|
|
(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
|
2018-07-25 20:31:51 +07:00
|
|
|
ret = -EINVAL;
|
|
|
|
|
|
|
|
goto free_detect_allocation;
|
2006-05-23 16:54:38 +07:00
|
|
|
}
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2016-05-25 00:20:05 +07:00
|
|
|
nand_decode_bbm_options(chip);
|
2012-09-25 10:40:49 +07:00
|
|
|
|
2006-05-23 16:54:38 +07:00
|
|
|
/* Calculate the address shift from the page size */
|
2006-05-24 17:07:37 +07:00
|
|
|
chip->page_shift = ffs(mtd->writesize) - 1;
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Convert chipsize to number of pages per chip -1 */
|
2018-10-29 17:22:16 +07:00
|
|
|
targetsize = nanddev_target_size(&chip->base);
|
|
|
|
chip->pagemask = (targetsize >> chip->page_shift) - 1;
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2006-05-24 17:07:37 +07:00
|
|
|
chip->bbt_erase_shift = chip->phys_erase_shift =
|
2006-05-23 16:54:38 +07:00
|
|
|
ffs(mtd->erasesize) - 1;
|
2018-10-29 17:22:16 +07:00
|
|
|
if (targetsize & 0xffffffff)
|
|
|
|
chip->chip_shift = ffs((unsigned)targetsize) - 1;
|
2010-09-07 18:23:45 +07:00
|
|
|
else {
|
2018-10-29 17:22:16 +07:00
|
|
|
chip->chip_shift = ffs((unsigned)(targetsize >> 32));
|
2010-09-07 18:23:45 +07:00
|
|
|
chip->chip_shift += 32 - 1;
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2017-09-13 09:05:50 +07:00
|
|
|
if (chip->chip_shift - chip->page_shift > 16)
|
|
|
|
chip->options |= NAND_ROW_ADDR_3;
|
|
|
|
|
2011-04-29 00:26:59 +07:00
|
|
|
chip->badblockbits = 8;
|
2006-05-23 16:54:38 +07:00
|
|
|
|
2018-09-07 05:38:49 +07:00
|
|
|
nand_legacy_adjust_cmdfunc(chip);
|
2006-05-23 16:54:38 +07:00
|
|
|
|
2013-11-25 18:30:31 +07:00
|
|
|
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
|
2016-05-25 00:20:05 +07:00
|
|
|
maf_id, dev_id);
|
2018-03-19 20:47:26 +07:00
|
|
|
pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
|
|
|
|
chip->parameters.model);
|
2014-10-21 05:01:04 +07:00
|
|
|
pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
|
2018-10-29 17:22:16 +07:00
|
|
|
(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
|
2014-10-21 05:01:04 +07:00
|
|
|
mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
|
2016-11-04 15:49:08 +07:00
|
|
|
return 0;
|
2018-07-25 20:31:51 +07:00
|
|
|
|
|
|
|
free_detect_allocation:
|
|
|
|
kfree(chip->parameters.model);
|
|
|
|
|
|
|
|
return ret;
|
2006-05-23 16:54:38 +07:00
|
|
|
}
|
|
|
|
|
2016-04-01 19:54:32 +07:00
|
|
|
static const char * const nand_ecc_modes[] = {
|
|
|
|
[NAND_ECC_NONE] = "none",
|
|
|
|
[NAND_ECC_SOFT] = "soft",
|
|
|
|
[NAND_ECC_HW] = "hw",
|
|
|
|
[NAND_ECC_HW_SYNDROME] = "hw_syndrome",
|
|
|
|
[NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
|
2017-04-29 16:06:43 +07:00
|
|
|
[NAND_ECC_ON_DIE] = "on-die",
|
2016-04-01 19:54:32 +07:00
|
|
|
};
|
|
|
|
|
|
|
|
static int of_get_nand_ecc_mode(struct device_node *np)
|
|
|
|
{
|
|
|
|
const char *pm;
|
|
|
|
int err, i;
|
|
|
|
|
|
|
|
err = of_property_read_string(np, "nand-ecc-mode", &pm);
|
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
|
|
|
|
if (!strcasecmp(pm, nand_ecc_modes[i]))
|
|
|
|
return i;
|
|
|
|
|
2016-04-18 03:53:06 +07:00
|
|
|
/*
|
|
|
|
* For backward compatibility we support few obsoleted values that don't
|
|
|
|
* have their mappings into nand_ecc_modes_t anymore (they were merged
|
|
|
|
* with other enums).
|
|
|
|
*/
|
|
|
|
if (!strcasecmp(pm, "soft_bch"))
|
|
|
|
return NAND_ECC_SOFT;
|
|
|
|
|
2016-04-01 19:54:32 +07:00
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
2016-04-22 18:23:13 +07:00
|
|
|
static const char * const nand_ecc_algos[] = {
|
|
|
|
[NAND_ECC_HAMMING] = "hamming",
|
|
|
|
[NAND_ECC_BCH] = "bch",
|
2018-06-25 04:27:22 +07:00
|
|
|
[NAND_ECC_RS] = "rs",
|
2016-04-22 18:23:13 +07:00
|
|
|
};
|
|
|
|
|
2016-04-01 19:54:32 +07:00
|
|
|
static int of_get_nand_ecc_algo(struct device_node *np)
|
|
|
|
{
|
|
|
|
const char *pm;
|
2016-04-22 18:23:13 +07:00
|
|
|
int err, i;
|
2016-04-01 19:54:32 +07:00
|
|
|
|
2016-04-22 18:23:13 +07:00
|
|
|
err = of_property_read_string(np, "nand-ecc-algo", &pm);
|
|
|
|
if (!err) {
|
|
|
|
for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
|
|
|
|
if (!strcasecmp(pm, nand_ecc_algos[i]))
|
|
|
|
return i;
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
2016-04-01 19:54:32 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For backward compatibility we also read "nand-ecc-mode" checking
|
|
|
|
* for some obsoleted values that were specifying ECC algorithm.
|
|
|
|
*/
|
|
|
|
err = of_property_read_string(np, "nand-ecc-mode", &pm);
|
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
if (!strcasecmp(pm, "soft"))
|
|
|
|
return NAND_ECC_HAMMING;
|
|
|
|
else if (!strcasecmp(pm, "soft_bch"))
|
|
|
|
return NAND_ECC_BCH;
|
|
|
|
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int of_get_nand_ecc_step_size(struct device_node *np)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
|
|
|
|
return ret ? ret : val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int of_get_nand_ecc_strength(struct device_node *np)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
ret = of_property_read_u32(np, "nand-ecc-strength", &val);
|
|
|
|
return ret ? ret : val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int of_get_nand_bus_width(struct device_node *np)
|
|
|
|
{
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
if (of_property_read_u32(np, "nand-bus-width", &val))
|
|
|
|
return 8;
|
|
|
|
|
|
|
|
switch (val) {
|
|
|
|
case 8:
|
|
|
|
case 16:
|
|
|
|
return val;
|
|
|
|
default:
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool of_get_nand_on_flash_bbt(struct device_node *np)
|
|
|
|
{
|
|
|
|
return of_property_read_bool(np, "nand-on-flash-bbt");
|
|
|
|
}
|
|
|
|
|
2015-12-10 15:00:37 +07:00
|
|
|
static int nand_dt_init(struct nand_chip *chip)
|
2015-01-23 15:22:27 +07:00
|
|
|
{
|
2015-12-10 15:00:37 +07:00
|
|
|
struct device_node *dn = nand_get_flash_node(chip);
|
2016-03-23 17:19:02 +07:00
|
|
|
int ecc_mode, ecc_algo, ecc_strength, ecc_step;
|
2015-01-23 15:22:27 +07:00
|
|
|
|
2015-12-10 15:00:37 +07:00
|
|
|
if (!dn)
|
|
|
|
return 0;
|
|
|
|
|
2015-01-23 15:22:27 +07:00
|
|
|
if (of_get_nand_bus_width(dn) == 16)
|
|
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
|
|
|
2018-06-25 04:27:23 +07:00
|
|
|
if (of_property_read_bool(dn, "nand-is-boot-medium"))
|
|
|
|
chip->options |= NAND_IS_BOOT_MEDIUM;
|
|
|
|
|
2015-01-23 15:22:27 +07:00
|
|
|
if (of_get_nand_on_flash_bbt(dn))
|
|
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
|
|
|
|
|
|
ecc_mode = of_get_nand_ecc_mode(dn);
|
2016-03-23 17:19:02 +07:00
|
|
|
ecc_algo = of_get_nand_ecc_algo(dn);
|
2015-01-23 15:22:27 +07:00
|
|
|
ecc_strength = of_get_nand_ecc_strength(dn);
|
|
|
|
ecc_step = of_get_nand_ecc_step_size(dn);
|
|
|
|
|
|
|
|
if (ecc_mode >= 0)
|
|
|
|
chip->ecc.mode = ecc_mode;
|
|
|
|
|
2016-03-23 17:19:02 +07:00
|
|
|
if (ecc_algo >= 0)
|
|
|
|
chip->ecc.algo = ecc_algo;
|
|
|
|
|
2015-01-23 15:22:27 +07:00
|
|
|
if (ecc_strength >= 0)
|
|
|
|
chip->ecc.strength = ecc_strength;
|
|
|
|
|
|
|
|
if (ecc_step > 0)
|
|
|
|
chip->ecc.size = ecc_step;
|
|
|
|
|
2016-06-08 22:04:22 +07:00
|
|
|
if (of_property_read_bool(dn, "nand-ecc-maximize"))
|
|
|
|
chip->ecc.options |= NAND_ECC_MAXIMIZE;
|
|
|
|
|
2015-01-23 15:22:27 +07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-05-23 16:54:38 +07:00
|
|
|
/**
|
2018-07-25 20:31:50 +07:00
|
|
|
* nand_scan_ident - Scan for the NAND device
|
2018-09-06 19:05:14 +07:00
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
* @maxchips: number of chips to scan for
|
|
|
|
* @table: alternative NAND ID table
|
2006-05-23 16:54:38 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* This is the first phase of the normal nand_scan() function. It reads the
|
|
|
|
* flash ID and sets up MTD fields accordingly.
|
2006-05-23 16:54:38 +07:00
|
|
|
*
|
2018-07-25 20:31:50 +07:00
|
|
|
* This helper used to be called directly from controller drivers that needed
|
|
|
|
* to tweak some ECC-related parameters before nand_scan_tail(). This separation
|
|
|
|
* prevented dynamic allocations during this phase which was unconvenient and
|
|
|
|
* as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
|
2006-05-23 16:54:38 +07:00
|
|
|
*/
|
2018-08-05 03:59:22 +07:00
|
|
|
static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
|
2018-07-25 20:31:50 +07:00
|
|
|
struct nand_flash_dev *table)
|
2006-05-23 16:54:38 +07:00
|
|
|
{
|
2018-09-06 19:05:14 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2018-10-25 22:10:37 +07:00
|
|
|
struct nand_memory_organization *memorg;
|
2018-08-05 03:59:22 +07:00
|
|
|
int nand_maf_id, nand_dev_id;
|
|
|
|
unsigned int i;
|
2015-01-23 15:22:27 +07:00
|
|
|
int ret;
|
|
|
|
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
|
2018-11-11 14:55:15 +07:00
|
|
|
/* Assume all dies are deselected when we enter nand_scan_ident(). */
|
|
|
|
chip->cur_cs = -1;
|
|
|
|
|
2018-11-20 17:57:20 +07:00
|
|
|
mutex_init(&chip->lock);
|
|
|
|
|
2017-12-01 00:01:31 +07:00
|
|
|
/* Enforce the right timings for reset/detection */
|
|
|
|
onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
|
|
|
|
|
2015-12-10 15:00:37 +07:00
|
|
|
ret = nand_dt_init(chip);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2006-05-23 16:54:38 +07:00
|
|
|
|
2016-01-06 01:39:45 +07:00
|
|
|
if (!mtd->name && mtd->dev.parent)
|
|
|
|
mtd->name = dev_name(mtd->dev.parent);
|
|
|
|
|
2006-05-23 16:54:38 +07:00
|
|
|
/* Set the default functions */
|
2016-05-25 01:17:48 +07:00
|
|
|
nand_set_defaults(chip);
|
2006-05-23 16:54:38 +07:00
|
|
|
|
2018-11-11 14:55:23 +07:00
|
|
|
ret = nand_legacy_check_hooks(chip);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2019-05-21 15:43:35 +07:00
|
|
|
memorg->ntargets = maxchips;
|
|
|
|
|
2006-05-23 16:54:38 +07:00
|
|
|
/* Read the flash type */
|
2016-05-25 01:55:33 +07:00
|
|
|
ret = nand_detect(chip, table);
|
2016-11-04 15:49:08 +07:00
|
|
|
if (ret) {
|
2009-11-03 01:12:33 +07:00
|
|
|
if (!(chip->options & NAND_SCAN_SILENT_NODEV))
|
2011-07-20 00:06:08 +07:00
|
|
|
pr_warn("No NAND device found\n");
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2016-11-04 15:49:08 +07:00
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2016-05-25 00:20:05 +07:00
|
|
|
nand_maf_id = chip->id.data[0];
|
|
|
|
nand_dev_id = chip->id.data[1];
|
|
|
|
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2012-11-09 15:23:45 +07:00
|
|
|
|
2006-05-23 16:54:38 +07:00
|
|
|
/* Check for a chip array */
|
2006-05-14 00:07:53 +07:00
|
|
|
for (i = 1; i < maxchips; i++) {
|
2017-12-01 00:01:29 +07:00
|
|
|
u8 id[2];
|
|
|
|
|
2008-09-15 19:37:29 +07:00
|
|
|
/* See comment in nand_get_flash_type for reset */
|
2019-01-21 20:05:34 +07:00
|
|
|
ret = nand_reset(chip, i);
|
|
|
|
if (ret)
|
|
|
|
break;
|
2016-10-24 21:46:20 +07:00
|
|
|
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, i);
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Send the command for reading device ID */
|
2019-01-21 20:05:34 +07:00
|
|
|
ret = nand_readid_op(chip, 0, id, sizeof(id));
|
|
|
|
if (ret)
|
|
|
|
break;
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Read manufacturer and device IDs */
|
2017-12-01 00:01:29 +07:00
|
|
|
if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
2012-11-09 15:23:45 +07:00
|
|
|
}
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
if (i > 1)
|
2013-11-25 18:30:31 +07:00
|
|
|
pr_info("%d chips detected\n", i);
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Store the number of chips and calc total size for mtd */
|
2018-10-25 22:10:37 +07:00
|
|
|
memorg->ntargets = i;
|
2018-10-29 17:22:16 +07:00
|
|
|
mtd->size = i * nanddev_target_size(&chip->base);
|
2006-05-23 16:54:38 +07:00
|
|
|
|
2006-09-25 23:06:53 +07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-07-25 20:31:51 +07:00
|
|
|
static void nand_scan_ident_cleanup(struct nand_chip *chip)
|
|
|
|
{
|
|
|
|
kfree(chip->parameters.model);
|
2018-07-25 20:31:52 +07:00
|
|
|
kfree(chip->parameters.onfi);
|
2018-07-25 20:31:51 +07:00
|
|
|
}
|
|
|
|
|
2018-11-11 14:55:03 +07:00
|
|
|
static int nand_set_ecc_soft_ops(struct nand_chip *chip)
|
2016-04-18 03:53:05 +07:00
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2016-04-18 03:53:05 +07:00
|
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
|
2016-04-18 03:53:07 +07:00
|
|
|
if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
|
2016-04-18 03:53:05 +07:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
switch (ecc->algo) {
|
|
|
|
case NAND_ECC_HAMMING:
|
|
|
|
ecc->calculate = nand_calculate_ecc;
|
|
|
|
ecc->correct = nand_correct_data;
|
|
|
|
ecc->read_page = nand_read_page_swecc;
|
|
|
|
ecc->read_subpage = nand_read_subpage;
|
|
|
|
ecc->write_page = nand_write_page_swecc;
|
2020-05-07 17:52:40 +07:00
|
|
|
if (!ecc->read_page_raw)
|
|
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
|
|
if (!ecc->write_page_raw)
|
|
|
|
ecc->write_page_raw = nand_write_page_raw;
|
2016-04-18 03:53:05 +07:00
|
|
|
ecc->read_oob = nand_read_oob_std;
|
|
|
|
ecc->write_oob = nand_write_oob_std;
|
|
|
|
if (!ecc->size)
|
|
|
|
ecc->size = 256;
|
|
|
|
ecc->bytes = 3;
|
|
|
|
ecc->strength = 1;
|
2018-09-04 21:23:28 +07:00
|
|
|
|
2019-02-08 14:48:37 +07:00
|
|
|
if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
|
2018-09-04 21:23:28 +07:00
|
|
|
ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
|
|
|
|
|
2016-04-18 03:53:05 +07:00
|
|
|
return 0;
|
|
|
|
case NAND_ECC_BCH:
|
|
|
|
if (!mtd_nand_has_bch()) {
|
2019-02-06 21:12:27 +07:00
|
|
|
WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
|
2016-04-18 03:53:05 +07:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
ecc->calculate = nand_bch_calculate_ecc;
|
|
|
|
ecc->correct = nand_bch_correct_data;
|
|
|
|
ecc->read_page = nand_read_page_swecc;
|
|
|
|
ecc->read_subpage = nand_read_subpage;
|
|
|
|
ecc->write_page = nand_write_page_swecc;
|
2020-05-07 17:52:40 +07:00
|
|
|
if (!ecc->read_page_raw)
|
|
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
|
|
if (!ecc->write_page_raw)
|
|
|
|
ecc->write_page_raw = nand_write_page_raw;
|
2016-04-18 03:53:05 +07:00
|
|
|
ecc->read_oob = nand_read_oob_std;
|
|
|
|
ecc->write_oob = nand_write_oob_std;
|
2016-06-08 22:04:23 +07:00
|
|
|
|
2016-04-18 03:53:05 +07:00
|
|
|
/*
|
|
|
|
* Board driver should supply ecc.size and ecc.strength
|
|
|
|
* values to select how many bits are correctable.
|
|
|
|
* Otherwise, default to 4 bits for large page devices.
|
|
|
|
*/
|
|
|
|
if (!ecc->size && (mtd->oobsize >= 64)) {
|
|
|
|
ecc->size = 512;
|
|
|
|
ecc->strength = 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* if no ecc placement scheme was provided pickup the default
|
|
|
|
* large page one.
|
|
|
|
*/
|
|
|
|
if (!mtd->ooblayout) {
|
|
|
|
/* handle large page devices only */
|
|
|
|
if (mtd->oobsize < 64) {
|
|
|
|
WARN(1, "OOB layout is required when using software BCH on small pages\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
|
2016-06-08 22:04:23 +07:00
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We can only maximize ECC config when the default layout is
|
|
|
|
* used, otherwise we don't know how many bytes can really be
|
|
|
|
* used.
|
|
|
|
*/
|
|
|
|
if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
|
|
|
|
ecc->options & NAND_ECC_MAXIMIZE) {
|
|
|
|
int steps, bytes;
|
|
|
|
|
|
|
|
/* Always prefer 1k blocks over 512bytes ones */
|
|
|
|
ecc->size = 1024;
|
|
|
|
steps = mtd->writesize / ecc->size;
|
|
|
|
|
|
|
|
/* Reserve 2 bytes for the BBM */
|
|
|
|
bytes = (mtd->oobsize - 2) / steps;
|
|
|
|
ecc->strength = bytes * 8 / fls(8 * ecc->size);
|
2016-04-18 03:53:05 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/* See nand_bch_init() for details. */
|
|
|
|
ecc->bytes = 0;
|
|
|
|
ecc->priv = nand_bch_init(mtd);
|
|
|
|
if (!ecc->priv) {
|
|
|
|
WARN(1, "BCH ECC initialization failed!\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
default:
|
|
|
|
WARN(1, "Unsupported ECC algorithm!\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-06-07 18:52:10 +07:00
|
|
|
/**
|
|
|
|
* nand_check_ecc_caps - check the sanity of preset ECC settings
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @caps: ECC caps info structure
|
|
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
|
|
*
|
|
|
|
* When ECC step size and strength are already set, check if they are supported
|
|
|
|
* by the controller and the calculated ECC bytes fit within the chip's OOB.
|
|
|
|
* On success, the calculated ECC bytes is set.
|
|
|
|
*/
|
2018-06-20 14:27:42 +07:00
|
|
|
static int
|
|
|
|
nand_check_ecc_caps(struct nand_chip *chip,
|
|
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
2017-06-07 18:52:10 +07:00
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
const struct nand_ecc_step_info *stepinfo;
|
|
|
|
int preset_step = chip->ecc.size;
|
|
|
|
int preset_strength = chip->ecc.strength;
|
2018-06-20 14:27:42 +07:00
|
|
|
int ecc_bytes, nsteps = mtd->writesize / preset_step;
|
2017-06-07 18:52:10 +07:00
|
|
|
int i, j;
|
|
|
|
|
|
|
|
for (i = 0; i < caps->nstepinfos; i++) {
|
|
|
|
stepinfo = &caps->stepinfos[i];
|
|
|
|
|
|
|
|
if (stepinfo->stepsize != preset_step)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (j = 0; j < stepinfo->nstrengths; j++) {
|
|
|
|
if (stepinfo->strengths[j] != preset_strength)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ecc_bytes = caps->calc_ecc_bytes(preset_step,
|
|
|
|
preset_strength);
|
|
|
|
if (WARN_ON_ONCE(ecc_bytes < 0))
|
|
|
|
return ecc_bytes;
|
|
|
|
|
|
|
|
if (ecc_bytes * nsteps > oobavail) {
|
|
|
|
pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
|
|
|
|
preset_step, preset_strength);
|
|
|
|
return -ENOSPC;
|
|
|
|
}
|
|
|
|
|
|
|
|
chip->ecc.bytes = ecc_bytes;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
|
|
|
|
preset_step, preset_strength);
|
|
|
|
|
|
|
|
return -ENOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_match_ecc_req - meet the chip's requirement with least ECC bytes
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @caps: ECC engine caps info structure
|
|
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
|
|
*
|
|
|
|
* If a chip's ECC requirement is provided, try to meet it with the least
|
|
|
|
* number of ECC bytes (i.e. with the largest number of OOB-free bytes).
|
|
|
|
* On success, the chosen ECC settings are set.
|
|
|
|
*/
|
2018-06-20 14:27:42 +07:00
|
|
|
static int
|
|
|
|
nand_match_ecc_req(struct nand_chip *chip,
|
|
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
2017-06-07 18:52:10 +07:00
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
const struct nand_ecc_step_info *stepinfo;
|
2018-11-04 22:09:42 +07:00
|
|
|
int req_step = chip->base.eccreq.step_size;
|
|
|
|
int req_strength = chip->base.eccreq.strength;
|
2017-06-07 18:52:10 +07:00
|
|
|
int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
|
|
|
|
int best_step, best_strength, best_ecc_bytes;
|
|
|
|
int best_ecc_bytes_total = INT_MAX;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
/* No information provided by the NAND chip */
|
|
|
|
if (!req_step || !req_strength)
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
/* number of correctable bits the chip requires in a page */
|
|
|
|
req_corr = mtd->writesize / req_step * req_strength;
|
|
|
|
|
|
|
|
for (i = 0; i < caps->nstepinfos; i++) {
|
|
|
|
stepinfo = &caps->stepinfos[i];
|
|
|
|
step_size = stepinfo->stepsize;
|
|
|
|
|
|
|
|
for (j = 0; j < stepinfo->nstrengths; j++) {
|
|
|
|
strength = stepinfo->strengths[j];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If both step size and strength are smaller than the
|
|
|
|
* chip's requirement, it is not easy to compare the
|
|
|
|
* resulted reliability.
|
|
|
|
*/
|
|
|
|
if (step_size < req_step && strength < req_strength)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (mtd->writesize % step_size)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
nsteps = mtd->writesize / step_size;
|
|
|
|
|
|
|
|
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
|
|
|
|
if (WARN_ON_ONCE(ecc_bytes < 0))
|
|
|
|
continue;
|
|
|
|
ecc_bytes_total = ecc_bytes * nsteps;
|
|
|
|
|
|
|
|
if (ecc_bytes_total > oobavail ||
|
|
|
|
strength * nsteps < req_corr)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We assume the best is to meet the chip's requrement
|
|
|
|
* with the least number of ECC bytes.
|
|
|
|
*/
|
|
|
|
if (ecc_bytes_total < best_ecc_bytes_total) {
|
|
|
|
best_ecc_bytes_total = ecc_bytes_total;
|
|
|
|
best_step = step_size;
|
|
|
|
best_strength = strength;
|
|
|
|
best_ecc_bytes = ecc_bytes;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (best_ecc_bytes_total == INT_MAX)
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
chip->ecc.size = best_step;
|
|
|
|
chip->ecc.strength = best_strength;
|
|
|
|
chip->ecc.bytes = best_ecc_bytes;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_maximize_ecc - choose the max ECC strength available
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @caps: ECC engine caps info structure
|
|
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
|
|
*
|
|
|
|
* Choose the max ECC strength that is supported on the controller, and can fit
|
|
|
|
* within the chip's OOB. On success, the chosen ECC settings are set.
|
|
|
|
*/
|
2018-06-20 14:27:42 +07:00
|
|
|
static int
|
|
|
|
nand_maximize_ecc(struct nand_chip *chip,
|
|
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
2017-06-07 18:52:10 +07:00
|
|
|
{
|
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
const struct nand_ecc_step_info *stepinfo;
|
|
|
|
int step_size, strength, nsteps, ecc_bytes, corr;
|
|
|
|
int best_corr = 0;
|
|
|
|
int best_step = 0;
|
|
|
|
int best_strength, best_ecc_bytes;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
for (i = 0; i < caps->nstepinfos; i++) {
|
|
|
|
stepinfo = &caps->stepinfos[i];
|
|
|
|
step_size = stepinfo->stepsize;
|
|
|
|
|
|
|
|
/* If chip->ecc.size is already set, respect it */
|
|
|
|
if (chip->ecc.size && step_size != chip->ecc.size)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (j = 0; j < stepinfo->nstrengths; j++) {
|
|
|
|
strength = stepinfo->strengths[j];
|
|
|
|
|
|
|
|
if (mtd->writesize % step_size)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
nsteps = mtd->writesize / step_size;
|
|
|
|
|
|
|
|
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
|
|
|
|
if (WARN_ON_ONCE(ecc_bytes < 0))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (ecc_bytes * nsteps > oobavail)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
corr = strength * nsteps;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the number of correctable bits is the same,
|
|
|
|
* bigger step_size has more reliability.
|
|
|
|
*/
|
|
|
|
if (corr > best_corr ||
|
|
|
|
(corr == best_corr && step_size > best_step)) {
|
|
|
|
best_corr = corr;
|
|
|
|
best_step = step_size;
|
|
|
|
best_strength = strength;
|
|
|
|
best_ecc_bytes = ecc_bytes;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!best_corr)
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
chip->ecc.size = best_step;
|
|
|
|
chip->ecc.strength = best_strength;
|
|
|
|
chip->ecc.bytes = best_ecc_bytes;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-06-20 14:27:28 +07:00
|
|
|
/**
|
|
|
|
* nand_ecc_choose_conf - Set the ECC strength and ECC step size
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @caps: ECC engine caps info structure
|
|
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
|
|
*
|
|
|
|
* Choose the ECC configuration according to following logic
|
|
|
|
*
|
|
|
|
* 1. If both ECC step size and ECC strength are already set (usually by DT)
|
|
|
|
* then check if it is supported by this controller.
|
|
|
|
* 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
|
|
|
|
* 3. Otherwise, try to match the ECC step size and ECC strength closest
|
|
|
|
* to the chip's requirement. If available OOB size can't fit the chip
|
|
|
|
* requirement then fallback to the maximum ECC step size and ECC strength.
|
|
|
|
*
|
|
|
|
* On success, the chosen ECC settings are set.
|
|
|
|
*/
|
|
|
|
int nand_ecc_choose_conf(struct nand_chip *chip,
|
|
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
|
|
|
{
|
2018-06-20 14:27:42 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
|
|
|
|
if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-06-20 14:27:28 +07:00
|
|
|
if (chip->ecc.size && chip->ecc.strength)
|
|
|
|
return nand_check_ecc_caps(chip, caps, oobavail);
|
|
|
|
|
|
|
|
if (chip->ecc.options & NAND_ECC_MAXIMIZE)
|
|
|
|
return nand_maximize_ecc(chip, caps, oobavail);
|
|
|
|
|
|
|
|
if (!nand_match_ecc_req(chip, caps, oobavail))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return nand_maximize_ecc(chip, caps, oobavail);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
|
|
|
|
|
2014-05-15 00:58:06 +07:00
|
|
|
/*
|
|
|
|
* Check if the chip configuration meet the datasheet requirements.
|
|
|
|
|
|
|
|
* If our configuration corrects A bits per B bytes and the minimum
|
|
|
|
* required correction level is X bits per Y bytes, then we must ensure
|
|
|
|
* both of the following are true:
|
|
|
|
*
|
|
|
|
* (1) A / B >= X / Y
|
|
|
|
* (2) A >= X
|
|
|
|
*
|
|
|
|
* Requirement (1) ensures we can correct for the required bitflip density.
|
|
|
|
* Requirement (2) ensures we can correct even when all bitflips are clumped
|
|
|
|
* in the same sector.
|
|
|
|
*/
|
2018-11-11 14:55:03 +07:00
|
|
|
static bool nand_ecc_strength_good(struct nand_chip *chip)
|
2014-05-15 00:58:06 +07:00
|
|
|
{
|
2018-11-11 14:55:03 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2014-05-15 00:58:06 +07:00
|
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
int corr, ds_corr;
|
|
|
|
|
2018-11-04 22:09:42 +07:00
|
|
|
if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
|
2014-05-15 00:58:06 +07:00
|
|
|
/* Not enough information */
|
|
|
|
return true;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We get the number of corrected bits per page to compare
|
|
|
|
* the correction density.
|
|
|
|
*/
|
|
|
|
corr = (mtd->writesize * ecc->strength) / ecc->size;
|
2018-11-04 22:09:42 +07:00
|
|
|
ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
|
|
|
|
chip->base.eccreq.step_size;
|
2014-05-15 00:58:06 +07:00
|
|
|
|
2018-11-04 22:09:42 +07:00
|
|
|
return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
|
2014-05-15 00:58:06 +07:00
|
|
|
}
|
2006-09-25 23:06:53 +07:00
|
|
|
|
2018-10-26 03:10:36 +07:00
|
|
|
static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = container_of(nand, struct nand_chip,
|
|
|
|
base);
|
|
|
|
unsigned int eb = nanddev_pos_to_row(nand, pos);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
eb >>= nand->rowconv.eraseblock_addr_shift;
|
|
|
|
|
|
|
|
nand_select_target(chip, pos->target);
|
|
|
|
ret = nand_erase_op(chip, eb);
|
|
|
|
nand_deselect_target(chip);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rawnand_markbad(struct nand_device *nand,
|
|
|
|
const struct nand_pos *pos)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = container_of(nand, struct nand_chip,
|
|
|
|
base);
|
|
|
|
|
|
|
|
return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
|
|
|
|
{
|
|
|
|
struct nand_chip *chip = container_of(nand, struct nand_chip,
|
|
|
|
base);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
nand_select_target(chip, pos->target);
|
|
|
|
ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
|
|
|
|
nand_deselect_target(chip);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct nand_ops rawnand_ops = {
|
|
|
|
.erase = rawnand_erase,
|
|
|
|
.markbad = rawnand_markbad,
|
|
|
|
.isbad = rawnand_isbad,
|
|
|
|
};
|
|
|
|
|
2006-09-25 23:06:53 +07:00
|
|
|
/**
|
2018-07-25 20:31:50 +07:00
|
|
|
* nand_scan_tail - Scan for the NAND device
|
2018-09-06 19:05:14 +07:00
|
|
|
* @chip: NAND chip object
|
2006-09-25 23:06:53 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* This is the second phase of the normal nand_scan() function. It fills out
|
|
|
|
* all the uninitialized function pointers with the defaults and scans for a
|
|
|
|
* bad block table if appropriate.
|
2006-09-25 23:06:53 +07:00
|
|
|
*/
|
2018-09-06 19:05:14 +07:00
|
|
|
static int nand_scan_tail(struct nand_chip *chip)
|
2006-09-25 23:06:53 +07:00
|
|
|
{
|
2018-09-06 19:05:14 +07:00
|
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
2013-10-18 13:20:53 +07:00
|
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
2017-06-02 17:18:24 +07:00
|
|
|
int ret, i;
|
2006-09-25 23:06:53 +07:00
|
|
|
|
mtd: nand: write BBM to OOB even with flash-based BBT
Currently, the flash-based BBT implementation writes bad block data only
to its flash-based table and not to the OOB marker area. Then, as new bad
blocks are marked over time, the OOB markers become incomplete and the
flash-based table becomes the only source of current bad block
information. This becomes an obvious problem when, for example:
* bootloader cannot read the flash-based BBT format
* BBT is corrupted and the flash must be rescanned for bad
blocks; we want to remember bad blocks that were marked from Linux
So to keep the bad block markers in sync with the flash-based BBT, this
patch changes the default so that we write bad block markers to the proper
OOB area on each block in addition to flash-based BBT. Comments are
updated, expanded, and/or relocated as necessary.
The new flash-based BBT procedure for marking bad blocks:
(1) erase the affected block, to allow OOB marker to be written cleanly
(2) update in-memory BBT
(3) write bad block marker to OOB area of affected block
(4) update flash-based BBT
Note that we retain the first error encountered in (3) or (4), finish the
procedures, and dump the error in the end.
This should handle power cuts gracefully enough. (1) and (2) are mostly
harmless (note that (1) will not erase an already-recognized bad block).
The OOB and BBT may be "out of sync" if we experience power loss bewteen
(3) and (4), but we can reasonably expect that on next boot, subsequent
I/O operations will discover that the block should be marked bad again,
thus re-syncing the OOB and BBT.
Note that this is a change from the previous default flash-based BBT
behavior. If your system cannot support writing bad block markers to OOB,
use the new NAND_BBT_NO_OOB_BBM option (in combination with
NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-02-07 04:44:00 +07:00
|
|
|
/* New bad blocks should be marked in OOB, flash-based BBT, or both */
|
2016-04-02 04:29:24 +07:00
|
|
|
if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
|
2017-05-02 07:04:53 +07:00
|
|
|
!(chip->bbt_options & NAND_BBT_USE_FLASH))) {
|
2017-06-02 17:18:24 +07:00
|
|
|
return -EINVAL;
|
2017-05-02 07:04:53 +07:00
|
|
|
}
|
mtd: nand: write BBM to OOB even with flash-based BBT
Currently, the flash-based BBT implementation writes bad block data only
to its flash-based table and not to the OOB marker area. Then, as new bad
blocks are marked over time, the OOB markers become incomplete and the
flash-based table becomes the only source of current bad block
information. This becomes an obvious problem when, for example:
* bootloader cannot read the flash-based BBT format
* BBT is corrupted and the flash must be rescanned for bad
blocks; we want to remember bad blocks that were marked from Linux
So to keep the bad block markers in sync with the flash-based BBT, this
patch changes the default so that we write bad block markers to the proper
OOB area on each block in addition to flash-based BBT. Comments are
updated, expanded, and/or relocated as necessary.
The new flash-based BBT procedure for marking bad blocks:
(1) erase the affected block, to allow OOB marker to be written cleanly
(2) update in-memory BBT
(3) write bad block marker to OOB area of affected block
(4) update flash-based BBT
Note that we retain the first error encountered in (3) or (4), finish the
procedures, and dump the error in the end.
This should handle power cuts gracefully enough. (1) and (2) are mostly
harmless (note that (1) will not erase an already-recognized bad block).
The OOB and BBT may be "out of sync" if we experience power loss bewteen
(3) and (4), but we can reasonably expect that on next boot, subsequent
I/O operations will discover that the block should be marked bad again,
thus re-syncing the OOB and BBT.
Note that this is a change from the previous default flash-based BBT
behavior. If your system cannot support writing bad block markers to OOB,
use the new NAND_BBT_NO_OOB_BBM option (in combination with
NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB).
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-02-07 04:44:00 +07:00
|
|
|
|
2017-12-05 15:47:16 +07:00
|
|
|
chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
|
2017-12-05 18:09:29 +07:00
|
|
|
if (!chip->data_buf)
|
2017-06-02 17:18:24 +07:00
|
|
|
return -ENOMEM;
|
2006-09-25 23:08:04 +07:00
|
|
|
|
2017-06-02 17:18:24 +07:00
|
|
|
/*
|
|
|
|
* FIXME: some NAND manufacturer drivers expect the first die to be
|
|
|
|
* selected when manufacturer->init() is called. They should be fixed
|
|
|
|
* to explictly select the relevant die when interacting with the NAND
|
|
|
|
* chip.
|
|
|
|
*/
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_select_target(chip, 0);
|
2017-06-02 17:18:24 +07:00
|
|
|
ret = nand_manufacturer_init(chip);
|
2018-11-11 14:55:14 +07:00
|
|
|
nand_deselect_target(chip);
|
2017-06-02 17:18:24 +07:00
|
|
|
if (ret)
|
2017-12-05 15:47:16 +07:00
|
|
|
goto err_free_buf;
|
2017-06-02 17:18:24 +07:00
|
|
|
|
2006-10-21 23:09:53 +07:00
|
|
|
/* Set the internal oob buffer location, just after the page data */
|
2017-12-05 15:47:16 +07:00
|
|
|
chip->oob_poi = chip->data_buf + mtd->writesize;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-05-23 16:54:38 +07:00
|
|
|
/*
|
2011-05-26 04:59:01 +07:00
|
|
|
* If no default placement scheme is given, select an appropriate one.
|
2006-05-23 16:54:38 +07:00
|
|
|
*/
|
2016-04-18 03:53:05 +07:00
|
|
|
if (!mtd->ooblayout &&
|
2016-04-18 03:53:07 +07:00
|
|
|
!(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
|
2005-11-07 18:15:49 +07:00
|
|
|
switch (mtd->oobsize) {
|
2005-04-17 05:20:36 +07:00
|
|
|
case 8:
|
|
|
|
case 16:
|
2016-02-04 01:06:15 +07:00
|
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
case 64:
|
2007-12-12 23:27:03 +07:00
|
|
|
case 128:
|
2017-05-02 17:19:00 +07:00
|
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
|
2007-12-12 23:27:03 +07:00
|
|
|
break;
|
2005-04-17 05:20:36 +07:00
|
|
|
default:
|
2017-08-26 22:19:15 +07:00
|
|
|
/*
|
|
|
|
* Expose the whole OOB area to users if ECC_NONE
|
|
|
|
* is passed. We could do that for all kind of
|
|
|
|
* ->oobsize, but we must keep the old large/small
|
|
|
|
* page with ECC layout when ->oobsize <= 128 for
|
|
|
|
* compatibility reasons.
|
|
|
|
*/
|
|
|
|
if (ecc->mode == NAND_ECC_NONE) {
|
|
|
|
mtd_set_ooblayout(mtd,
|
|
|
|
&nand_ooblayout_lp_ops);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2016-04-02 04:29:24 +07:00
|
|
|
WARN(1, "No oob scheme defined for oobsize %d\n",
|
|
|
|
mtd->oobsize);
|
|
|
|
ret = -EINVAL;
|
2017-06-02 17:18:24 +07:00
|
|
|
goto err_nand_manuf_cleanup;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
2005-11-07 18:15:49 +07:00
|
|
|
|
|
|
|
/*
|
2011-05-26 04:59:01 +07:00
|
|
|
* Check ECC mode, default to software if 3byte/512byte hardware ECC is
|
2006-05-23 16:54:38 +07:00
|
|
|
* selected and we have 256 byte pagesize fallback to software ECC
|
2006-05-14 00:07:53 +07:00
|
|
|
*/
|
2006-09-25 23:12:39 +07:00
|
|
|
|
2013-10-18 13:20:53 +07:00
|
|
|
switch (ecc->mode) {
|
2009-09-19 02:51:47 +07:00
|
|
|
case NAND_ECC_HW_OOB_FIRST:
|
|
|
|
/* Similar to NAND_ECC_HW, but a separate read_page handle */
|
2013-10-18 13:20:53 +07:00
|
|
|
if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
|
2016-04-02 04:29:24 +07:00
|
|
|
WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
|
|
|
|
ret = -EINVAL;
|
2017-06-02 17:18:24 +07:00
|
|
|
goto err_nand_manuf_cleanup;
|
2009-09-19 02:51:47 +07:00
|
|
|
}
|
2013-10-18 13:20:53 +07:00
|
|
|
if (!ecc->read_page)
|
|
|
|
ecc->read_page = nand_read_page_hwecc_oob_first;
|
2020-03-26 04:21:15 +07:00
|
|
|
fallthrough;
|
2006-05-23 17:00:46 +07:00
|
|
|
case NAND_ECC_HW:
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Use standard hwecc read page function? */
|
2013-10-18 13:20:53 +07:00
|
|
|
if (!ecc->read_page)
|
|
|
|
ecc->read_page = nand_read_page_hwecc;
|
|
|
|
if (!ecc->write_page)
|
|
|
|
ecc->write_page = nand_write_page_hwecc;
|
|
|
|
if (!ecc->read_page_raw)
|
|
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
|
|
if (!ecc->write_page_raw)
|
|
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
|
|
if (!ecc->read_oob)
|
|
|
|
ecc->read_oob = nand_read_oob_std;
|
|
|
|
if (!ecc->write_oob)
|
|
|
|
ecc->write_oob = nand_write_oob_std;
|
|
|
|
if (!ecc->read_subpage)
|
|
|
|
ecc->read_subpage = nand_read_subpage;
|
2014-04-09 16:13:24 +07:00
|
|
|
if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
|
2013-10-18 13:20:53 +07:00
|
|
|
ecc->write_subpage = nand_write_subpage_hwecc;
|
2020-03-26 04:21:15 +07:00
|
|
|
fallthrough;
|
2006-05-23 17:00:46 +07:00
|
|
|
case NAND_ECC_HW_SYNDROME:
|
2013-10-18 13:20:53 +07:00
|
|
|
if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
|
|
|
|
(!ecc->read_page ||
|
|
|
|
ecc->read_page == nand_read_page_hwecc ||
|
|
|
|
!ecc->write_page ||
|
|
|
|
ecc->write_page == nand_write_page_hwecc)) {
|
2016-04-02 04:29:24 +07:00
|
|
|
WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
|
|
|
|
ret = -EINVAL;
|
2017-06-02 17:18:24 +07:00
|
|
|
goto err_nand_manuf_cleanup;
|
2006-05-23 17:00:46 +07:00
|
|
|
}
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Use standard syndrome read/write page function? */
|
2013-10-18 13:20:53 +07:00
|
|
|
if (!ecc->read_page)
|
|
|
|
ecc->read_page = nand_read_page_syndrome;
|
|
|
|
if (!ecc->write_page)
|
|
|
|
ecc->write_page = nand_write_page_syndrome;
|
|
|
|
if (!ecc->read_page_raw)
|
|
|
|
ecc->read_page_raw = nand_read_page_raw_syndrome;
|
|
|
|
if (!ecc->write_page_raw)
|
|
|
|
ecc->write_page_raw = nand_write_page_raw_syndrome;
|
|
|
|
if (!ecc->read_oob)
|
|
|
|
ecc->read_oob = nand_read_oob_syndrome;
|
|
|
|
if (!ecc->write_oob)
|
|
|
|
ecc->write_oob = nand_write_oob_syndrome;
|
|
|
|
|
|
|
|
if (mtd->writesize >= ecc->size) {
|
|
|
|
if (!ecc->strength) {
|
2016-04-02 04:29:24 +07:00
|
|
|
WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
|
|
|
|
ret = -EINVAL;
|
2017-06-02 17:18:24 +07:00
|
|
|
goto err_nand_manuf_cleanup;
|
2012-04-26 02:06:10 +07:00
|
|
|
}
|
2006-05-23 17:00:46 +07:00
|
|
|
break;
|
2012-04-26 02:06:10 +07:00
|
|
|
}
|
2014-08-19 18:55:34 +07:00
|
|
|
pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
|
|
|
|
ecc->size, mtd->writesize);
|
2013-10-18 13:20:53 +07:00
|
|
|
ecc->mode = NAND_ECC_SOFT;
|
2016-04-18 03:53:02 +07:00
|
|
|
ecc->algo = NAND_ECC_HAMMING;
|
2020-03-26 04:21:15 +07:00
|
|
|
fallthrough;
|
2006-05-23 17:00:46 +07:00
|
|
|
case NAND_ECC_SOFT:
|
2018-11-11 14:55:03 +07:00
|
|
|
ret = nand_set_ecc_soft_ops(chip);
|
2016-04-18 03:53:05 +07:00
|
|
|
if (ret) {
|
2016-04-02 04:29:24 +07:00
|
|
|
ret = -EINVAL;
|
2017-06-02 17:18:24 +07:00
|
|
|
goto err_nand_manuf_cleanup;
|
2011-03-11 17:05:33 +07:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
2017-04-29 16:06:43 +07:00
|
|
|
case NAND_ECC_ON_DIE:
|
|
|
|
if (!ecc->read_page || !ecc->write_page) {
|
|
|
|
WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
|
|
|
|
ret = -EINVAL;
|
2017-06-02 17:18:24 +07:00
|
|
|
goto err_nand_manuf_cleanup;
|
2017-04-29 16:06:43 +07:00
|
|
|
}
|
|
|
|
if (!ecc->read_oob)
|
|
|
|
ecc->read_oob = nand_read_oob_std;
|
|
|
|
if (!ecc->write_oob)
|
|
|
|
ecc->write_oob = nand_write_oob_std;
|
|
|
|
break;
|
|
|
|
|
2005-11-07 18:15:49 +07:00
|
|
|
case NAND_ECC_NONE:
|
2014-08-19 18:55:34 +07:00
|
|
|
pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
|
2013-10-18 13:20:53 +07:00
|
|
|
ecc->read_page = nand_read_page_raw;
|
|
|
|
ecc->write_page = nand_write_page_raw;
|
|
|
|
ecc->read_oob = nand_read_oob_std;
|
|
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
|
|
ecc->write_oob = nand_write_oob_std;
|
|
|
|
ecc->size = mtd->writesize;
|
|
|
|
ecc->bytes = 0;
|
|
|
|
ecc->strength = 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
2006-09-25 23:12:39 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
default:
|
2016-04-02 04:29:24 +07:00
|
|
|
WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
|
|
|
|
ret = -EINVAL;
|
2017-06-02 17:18:24 +07:00
|
|
|
goto err_nand_manuf_cleanup;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2017-12-05 18:09:29 +07:00
|
|
|
if (ecc->correct || ecc->calculate) {
|
|
|
|
ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
|
|
|
|
ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
|
|
|
|
if (!ecc->calc_buf || !ecc->code_buf) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto err_nand_manuf_cleanup;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-08-31 08:45:37 +07:00
|
|
|
/* For many systems, the standard OOB write also works for raw */
|
2013-10-18 13:20:53 +07:00
|
|
|
if (!ecc->read_oob_raw)
|
|
|
|
ecc->read_oob_raw = ecc->read_oob;
|
|
|
|
if (!ecc->write_oob_raw)
|
|
|
|
ecc->write_oob_raw = ecc->write_oob;
|
2011-08-31 08:45:37 +07:00
|
|
|
|
2016-02-04 02:11:00 +07:00
|
|
|
/* propagate ecc info to mtd_info */
|
|
|
|
mtd->ecc_strength = ecc->strength;
|
|
|
|
mtd->ecc_step_size = ecc->size;
|
2014-05-15 00:58:06 +07:00
|
|
|
|
2006-05-23 16:54:38 +07:00
|
|
|
/*
|
|
|
|
* Set the number of read / write steps for one page depending on ECC
|
2011-05-26 04:59:01 +07:00
|
|
|
* mode.
|
2006-05-23 16:54:38 +07:00
|
|
|
*/
|
2013-10-18 13:20:53 +07:00
|
|
|
ecc->steps = mtd->writesize / ecc->size;
|
|
|
|
if (ecc->steps * ecc->size != mtd->writesize) {
|
2016-04-02 04:29:24 +07:00
|
|
|
WARN(1, "Invalid ECC parameters\n");
|
|
|
|
ret = -EINVAL;
|
2017-06-02 17:18:24 +07:00
|
|
|
goto err_nand_manuf_cleanup;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
2013-10-18 13:20:53 +07:00
|
|
|
ecc->total = ecc->steps * ecc->bytes;
|
2017-05-25 11:50:20 +07:00
|
|
|
if (ecc->total > mtd->oobsize) {
|
|
|
|
WARN(1, "Total number of ECC bytes exceeded oobsize\n");
|
|
|
|
ret = -EINVAL;
|
2017-06-02 17:18:24 +07:00
|
|
|
goto err_nand_manuf_cleanup;
|
2017-05-25 11:50:20 +07:00
|
|
|
}
|
2005-11-07 18:15:49 +07:00
|
|
|
|
2016-02-04 02:11:00 +07:00
|
|
|
/*
|
|
|
|
* The number of bytes available for a client to place data into
|
|
|
|
* the out of band area.
|
|
|
|
*/
|
|
|
|
ret = mtd_ooblayout_count_freebytes(mtd);
|
|
|
|
if (ret < 0)
|
|
|
|
ret = 0;
|
|
|
|
|
|
|
|
mtd->oobavail = ret;
|
|
|
|
|
|
|
|
/* ECC sanity check: warn if it's too weak */
|
2018-11-11 14:55:03 +07:00
|
|
|
if (!nand_ecc_strength_good(chip))
|
2020-04-21 23:39:06 +07:00
|
|
|
pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
|
|
|
|
mtd->name, chip->ecc.strength, chip->ecc.size,
|
|
|
|
chip->base.eccreq.strength,
|
|
|
|
chip->base.eccreq.step_size);
|
2016-02-04 02:11:00 +07:00
|
|
|
|
2011-05-26 04:59:01 +07:00
|
|
|
/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
|
2013-09-25 13:58:10 +07:00
|
|
|
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
|
2013-10-18 13:20:53 +07:00
|
|
|
switch (ecc->steps) {
|
2006-09-28 20:38:36 +07:00
|
|
|
case 2:
|
|
|
|
mtd->subpage_sft = 1;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
case 8:
|
2007-12-12 23:27:03 +07:00
|
|
|
case 16:
|
2006-09-28 20:38:36 +07:00
|
|
|
mtd->subpage_sft = 2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Invalidate the pagebuffer reference */
|
2018-10-28 22:12:45 +07:00
|
|
|
chip->pagecache.page = -1;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2012-08-14 04:35:30 +07:00
|
|
|
/* Large page NAND with SOFT_ECC should support subpage reads */
|
2014-04-25 12:31:35 +07:00
|
|
|
switch (ecc->mode) {
|
|
|
|
case NAND_ECC_SOFT:
|
|
|
|
if (chip->page_shift > 9)
|
|
|
|
chip->options |= NAND_SUBPAGE_READ;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
2012-08-14 04:35:30 +07:00
|
|
|
|
2018-10-26 03:10:36 +07:00
|
|
|
ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
|
|
|
|
if (ret)
|
|
|
|
goto err_nand_manuf_cleanup;
|
|
|
|
|
|
|
|
/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
|
|
|
|
if (chip->options & NAND_ROM)
|
|
|
|
mtd->flags = MTD_CAP_ROM;
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Fill in remaining MTD driver data */
|
2012-01-30 19:58:32 +07:00
|
|
|
mtd->_erase = nand_erase;
|
|
|
|
mtd->_point = NULL;
|
|
|
|
mtd->_unpoint = NULL;
|
|
|
|
mtd->_panic_write = panic_nand_write;
|
|
|
|
mtd->_read_oob = nand_read_oob;
|
|
|
|
mtd->_write_oob = nand_write_oob;
|
|
|
|
mtd->_sync = nand_sync;
|
2020-03-03 14:21:21 +07:00
|
|
|
mtd->_lock = nand_lock;
|
|
|
|
mtd->_unlock = nand_unlock;
|
2012-01-30 19:58:32 +07:00
|
|
|
mtd->_suspend = nand_suspend;
|
|
|
|
mtd->_resume = nand_resume;
|
2014-11-21 02:18:05 +07:00
|
|
|
mtd->_reboot = nand_shutdown;
|
2014-05-22 05:06:12 +07:00
|
|
|
mtd->_block_isreserved = nand_block_isreserved;
|
2012-01-30 19:58:32 +07:00
|
|
|
mtd->_block_isbad = nand_block_isbad;
|
|
|
|
mtd->_block_markbad = nand_block_markbad;
|
2018-11-04 20:50:28 +07:00
|
|
|
mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2012-06-08 22:29:06 +07:00
|
|
|
/*
|
|
|
|
* Initialize bitflip_threshold to its default prior scan_bbt() call.
|
|
|
|
* scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
|
|
|
|
* properly set.
|
|
|
|
*/
|
|
|
|
if (!mtd->bitflip_threshold)
|
2015-01-13 03:51:29 +07:00
|
|
|
mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2017-06-02 17:18:24 +07:00
|
|
|
/* Initialize the ->data_interface field. */
|
|
|
|
ret = nand_init_data_interface(chip);
|
|
|
|
if (ret)
|
2018-10-26 03:10:36 +07:00
|
|
|
goto err_nanddev_cleanup;
|
2017-06-02 17:18:24 +07:00
|
|
|
|
|
|
|
/* Enter fastest possible mode on all dies. */
|
2018-10-29 17:58:29 +07:00
|
|
|
for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
|
2017-06-02 17:18:24 +07:00
|
|
|
ret = nand_setup_data_interface(chip, i);
|
|
|
|
if (ret)
|
2018-10-26 03:10:36 +07:00
|
|
|
goto err_nanddev_cleanup;
|
2017-06-02 17:18:24 +07:00
|
|
|
}
|
|
|
|
|
2005-02-09 19:20:00 +07:00
|
|
|
/* Check, if we should skip the bad block table scan */
|
2006-05-24 17:07:37 +07:00
|
|
|
if (chip->options & NAND_SKIP_BBTSCAN)
|
2005-02-09 19:20:00 +07:00
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/* Build bad block table */
|
2018-07-05 17:27:31 +07:00
|
|
|
ret = nand_create_bbt(chip);
|
2017-05-02 07:04:50 +07:00
|
|
|
if (ret)
|
2018-10-26 03:10:36 +07:00
|
|
|
goto err_nanddev_cleanup;
|
2017-06-02 17:18:24 +07:00
|
|
|
|
2017-05-02 07:04:50 +07:00
|
|
|
return 0;
|
|
|
|
|
2017-06-02 17:18:24 +07:00
|
|
|
|
2018-10-26 03:10:36 +07:00
|
|
|
err_nanddev_cleanup:
|
|
|
|
nanddev_cleanup(&chip->base);
|
|
|
|
|
2017-06-02 17:18:24 +07:00
|
|
|
err_nand_manuf_cleanup:
|
|
|
|
nand_manufacturer_cleanup(chip);
|
|
|
|
|
2017-12-05 15:47:16 +07:00
|
|
|
err_free_buf:
|
|
|
|
kfree(chip->data_buf);
|
|
|
|
kfree(ecc->code_buf);
|
|
|
|
kfree(ecc->calc_buf);
|
2017-05-02 07:04:53 +07:00
|
|
|
|
2016-04-02 04:29:24 +07:00
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2018-07-19 06:05:46 +07:00
|
|
|
static int nand_attach(struct nand_chip *chip)
|
|
|
|
{
|
|
|
|
if (chip->controller->ops && chip->controller->ops->attach_chip)
|
|
|
|
return chip->controller->ops->attach_chip(chip);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void nand_detach(struct nand_chip *chip)
|
|
|
|
{
|
|
|
|
if (chip->controller->ops && chip->controller->ops->detach_chip)
|
|
|
|
chip->controller->ops->detach_chip(chip);
|
|
|
|
}
|
|
|
|
|
2006-09-25 23:06:53 +07:00
|
|
|
/**
|
2018-04-22 23:02:30 +07:00
|
|
|
* nand_scan_with_ids - [NAND Interface] Scan for the NAND device
|
2018-09-06 19:05:14 +07:00
|
|
|
* @chip: NAND chip object
|
2018-08-05 03:59:23 +07:00
|
|
|
* @maxchips: number of chips to scan for.
|
2018-04-22 23:02:30 +07:00
|
|
|
* @ids: optional flash IDs table
|
2006-09-25 23:06:53 +07:00
|
|
|
*
|
2011-05-26 04:59:01 +07:00
|
|
|
* This fills out all the uninitialized function pointers with the defaults.
|
|
|
|
* The flash ID is read and the mtd/chip structures are filled with the
|
2016-04-02 04:29:23 +07:00
|
|
|
* appropriate values.
|
2006-09-25 23:06:53 +07:00
|
|
|
*/
|
2018-08-05 03:59:22 +07:00
|
|
|
int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
|
2018-04-22 23:02:30 +07:00
|
|
|
struct nand_flash_dev *ids)
|
2006-09-25 23:06:53 +07:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
2018-08-05 03:59:23 +07:00
|
|
|
if (!maxchips)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
ret = nand_scan_ident(chip, maxchips, ids);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2018-07-19 06:05:46 +07:00
|
|
|
|
|
|
|
ret = nand_attach(chip);
|
|
|
|
if (ret)
|
2018-07-25 20:31:51 +07:00
|
|
|
goto cleanup_ident;
|
2018-07-19 06:05:46 +07:00
|
|
|
|
2018-09-06 19:05:14 +07:00
|
|
|
ret = nand_scan_tail(chip);
|
2018-07-19 06:05:46 +07:00
|
|
|
if (ret)
|
2018-07-25 20:31:51 +07:00
|
|
|
goto detach_chip;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
detach_chip:
|
|
|
|
nand_detach(chip);
|
|
|
|
cleanup_ident:
|
|
|
|
nand_scan_ident_cleanup(chip);
|
2018-07-19 06:05:46 +07:00
|
|
|
|
2006-09-25 23:06:53 +07:00
|
|
|
return ret;
|
|
|
|
}
|
2018-04-22 23:02:30 +07:00
|
|
|
EXPORT_SYMBOL(nand_scan_with_ids);
|
2006-09-25 23:06:53 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/**
|
2016-09-21 16:44:41 +07:00
|
|
|
* nand_cleanup - [NAND Interface] Free resources held by the NAND device
|
|
|
|
* @chip: NAND chip object
|
2011-05-26 04:59:01 +07:00
|
|
|
*/
|
2016-09-21 16:44:41 +07:00
|
|
|
void nand_cleanup(struct nand_chip *chip)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2016-04-18 03:53:07 +07:00
|
|
|
if (chip->ecc.mode == NAND_ECC_SOFT &&
|
2016-04-18 03:53:05 +07:00
|
|
|
chip->ecc.algo == NAND_ECC_BCH)
|
2011-03-11 17:05:33 +07:00
|
|
|
nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
|
|
|
|
|
2020-01-23 15:22:48 +07:00
|
|
|
nanddev_cleanup(&chip->base);
|
|
|
|
|
2005-11-07 16:01:27 +07:00
|
|
|
/* Free bad block table memory */
|
2006-05-24 17:07:37 +07:00
|
|
|
kfree(chip->bbt);
|
2017-12-05 15:47:16 +07:00
|
|
|
kfree(chip->data_buf);
|
|
|
|
kfree(chip->ecc.code_buf);
|
|
|
|
kfree(chip->ecc.calc_buf);
|
mtd: nand: more BB Detection refactoring and dynamic scan options
This is a revision to PATCH 2/2 that I sent. Link:
http://lists.infradead.org/pipermail/linux-mtd/2010-July/030911.html
Added new flag for scanning of both bytes 1 and 6 of the OOB for
a BB marker (instead of simply one or the other).
The "check_pattern" and "check_short_pattern" functions were updated
to include support for scanning the two different locations in the OOB.
In order to handle increases in variety of necessary scanning patterns,
I implemented dynamic memory allocation of nand_bbt_descr structs
in new function 'nand_create_default_bbt_descr()'. This replaces
some increasingly-unwieldy, statically-declared descriptors. It can
replace several more (e.g. "flashbased" structs). However, I do not
test the flashbased options personally.
How this was tested:
I referenced 30+ data sheets (covering 100+ parts), and I tested a
selection of 10 different chips to varying degrees. Particularly, I
tested the creation of bad-block descriptors and basic BB scanning on
three parts:
ST NAND04GW3B2D, 2K page
ST NAND128W3A, 512B page
Samsung K9F1G08U0A, 2K page
To test these, I wrote some fake bad block markers to the flash (in OOB
bytes 1, 6, and elsewhere) to see if the scanning routine would detect
them properly. However, this method was somewhat limited because the
driver I am using has some bugs in its OOB write functionality.
Signed-off-by: Brian Norris <norris@broadcom.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2010-07-16 02:15:44 +07:00
|
|
|
|
|
|
|
/* Free bad block descriptor memory */
|
|
|
|
if (chip->badblock_pattern && chip->badblock_pattern->options
|
|
|
|
& NAND_BBT_DYNAMICSTRUCT)
|
|
|
|
kfree(chip->badblock_pattern);
|
2016-06-08 14:32:55 +07:00
|
|
|
|
|
|
|
/* Free manufacturer priv data. */
|
|
|
|
nand_manufacturer_cleanup(chip);
|
2018-07-19 06:05:46 +07:00
|
|
|
|
|
|
|
/* Free controller specific allocations after chip identification */
|
|
|
|
nand_detach(chip);
|
2018-07-25 20:31:51 +07:00
|
|
|
|
|
|
|
/* Free identification phase allocations */
|
|
|
|
nand_scan_ident_cleanup(chip);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
2018-07-19 06:05:46 +07:00
|
|
|
|
2016-09-21 16:44:41 +07:00
|
|
|
EXPORT_SYMBOL_GPL(nand_cleanup);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_release - [NAND Interface] Unregister the MTD device and free resources
|
|
|
|
* held by the NAND device
|
2018-09-06 19:05:15 +07:00
|
|
|
* @chip: NAND chip object
|
2016-09-21 16:44:41 +07:00
|
|
|
*/
|
2018-09-06 19:05:15 +07:00
|
|
|
void nand_release(struct nand_chip *chip)
|
2016-09-21 16:44:41 +07:00
|
|
|
{
|
2018-09-06 19:05:15 +07:00
|
|
|
mtd_device_unregister(nand_to_mtd(chip));
|
|
|
|
nand_cleanup(chip);
|
2016-09-21 16:44:41 +07:00
|
|
|
}
|
2006-05-14 00:07:53 +07:00
|
|
|
EXPORT_SYMBOL_GPL(nand_release);
|
2006-03-31 17:31:14 +07:00
|
|
|
|
2006-05-14 00:07:53 +07:00
|
|
|
MODULE_LICENSE("GPL");
|
2010-09-07 18:23:45 +07:00
|
|
|
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
|
|
|
|
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
|
2006-05-14 00:07:53 +07:00
|
|
|
MODULE_DESCRIPTION("Generic NAND flash driver code");
|