linux_dsm_epyc7002/arch/powerpc/platforms/powernv/pci.c

1075 lines
28 KiB
C
Raw Normal View History

/*
* Support PCI/PCIe on PowerNV platforms
*
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
#include <linux/iommu.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/msi_bitmap.h>
#include <asm/ppc-pci.h>
#include <asm/pnv-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
#include <asm/firmware.h>
#include <asm/eeh_event.h>
#include <asm/eeh.h>
#include "powernv.h"
#include "pci.h"
int pnv_pci_get_slot_id(struct device_node *np, uint64_t *id)
{
struct device_node *parent = np;
u32 bdfn;
u64 phbid;
int ret;
ret = of_property_read_u32(np, "reg", &bdfn);
if (ret)
return -ENXIO;
bdfn = ((bdfn & 0x00ffff00) >> 8);
while ((parent = of_get_parent(parent))) {
if (!PCI_DN(parent)) {
of_node_put(parent);
break;
}
if (!of_device_is_compatible(parent, "ibm,ioda2-phb")) {
of_node_put(parent);
continue;
}
ret = of_property_read_u64(parent, "ibm,opal-phbid", &phbid);
if (ret) {
of_node_put(parent);
return -ENXIO;
}
*id = PCI_SLOT_ID(phbid, bdfn);
return 0;
}
return -ENODEV;
}
EXPORT_SYMBOL_GPL(pnv_pci_get_slot_id);
int pnv_pci_get_device_tree(uint32_t phandle, void *buf, uint64_t len)
{
int64_t rc;
if (!opal_check_token(OPAL_GET_DEVICE_TREE))
return -ENXIO;
rc = opal_get_device_tree(phandle, (uint64_t)buf, len);
if (rc < OPAL_SUCCESS)
return -EIO;
return rc;
}
EXPORT_SYMBOL_GPL(pnv_pci_get_device_tree);
int pnv_pci_get_presence_state(uint64_t id, uint8_t *state)
{
int64_t rc;
if (!opal_check_token(OPAL_PCI_GET_PRESENCE_STATE))
return -ENXIO;
rc = opal_pci_get_presence_state(id, (uint64_t)state);
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(pnv_pci_get_presence_state);
int pnv_pci_get_power_state(uint64_t id, uint8_t *state)
{
int64_t rc;
if (!opal_check_token(OPAL_PCI_GET_POWER_STATE))
return -ENXIO;
rc = opal_pci_get_power_state(id, (uint64_t)state);
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(pnv_pci_get_power_state);
int pnv_pci_set_power_state(uint64_t id, uint8_t state, struct opal_msg *msg)
{
struct opal_msg m;
int token, ret;
int64_t rc;
if (!opal_check_token(OPAL_PCI_SET_POWER_STATE))
return -ENXIO;
token = opal_async_get_token_interruptible();
if (unlikely(token < 0))
return token;
rc = opal_pci_set_power_state(token, id, (uint64_t)&state);
if (rc == OPAL_SUCCESS) {
ret = 0;
goto exit;
} else if (rc != OPAL_ASYNC_COMPLETION) {
ret = -EIO;
goto exit;
}
ret = opal_async_wait_response(token, &m);
if (ret < 0)
goto exit;
if (msg) {
ret = 1;
memcpy(msg, &m, sizeof(m));
}
exit:
opal_async_release_token(token);
return ret;
}
EXPORT_SYMBOL_GPL(pnv_pci_set_power_state);
#ifdef CONFIG_PCI_MSI
int pnv_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct msi_desc *entry;
struct msi_msg msg;
int hwirq;
unsigned int virq;
int rc;
if (WARN_ON(!phb) || !phb->msi_bmp.bitmap)
return -ENODEV;
if (pdev->no_64bit_msi && !phb->msi32_support)
return -ENODEV;
for_each_pci_msi_entry(entry, pdev) {
if (!entry->msi_attrib.is_64 && !phb->msi32_support) {
pr_warn("%s: Supports only 64-bit MSIs\n",
pci_name(pdev));
return -ENXIO;
}
hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, 1);
if (hwirq < 0) {
pr_warn("%s: Failed to find a free MSI\n",
pci_name(pdev));
return -ENOSPC;
}
virq = irq_create_mapping(NULL, phb->msi_base + hwirq);
if (!virq) {
pr_warn("%s: Failed to map MSI to linux irq\n",
pci_name(pdev));
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1);
return -ENOMEM;
}
rc = phb->msi_setup(phb, pdev, phb->msi_base + hwirq,
virq, entry->msi_attrib.is_64, &msg);
if (rc) {
pr_warn("%s: Failed to setup MSI\n", pci_name(pdev));
irq_dispose_mapping(virq);
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1);
return rc;
}
irq_set_msi_desc(virq, entry);
pci_write_msi_msg(virq, &msg);
}
return 0;
}
void pnv_teardown_msi_irqs(struct pci_dev *pdev)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct msi_desc *entry;
powerpc/MSI: Fix race condition in tearing down MSI interrupts This fixes a race which can result in the same virtual IRQ number being assigned to two different MSI interrupts. The most visible consequence of that is usually a warning and stack trace from the sysfs code about an attempt to create a duplicate entry in sysfs. The race happens when one CPU (say CPU 0) is disposing of an MSI while another CPU (say CPU 1) is setting up an MSI. CPU 0 calls (for example) pnv_teardown_msi_irqs(), which calls msi_bitmap_free_hwirqs() to indicate that the MSI (i.e. its hardware IRQ number) is no longer in use. Then, before CPU 0 gets to calling irq_dispose_mapping() to free up the virtal IRQ number, CPU 1 comes in and calls msi_bitmap_alloc_hwirqs() to allocate an MSI, and gets the same hardware IRQ number that CPU 0 just freed. CPU 1 then calls irq_create_mapping() to get a virtual IRQ number, which sees that there is currently a mapping for that hardware IRQ number and returns the corresponding virtual IRQ number (which is the same virtual IRQ number that CPU 0 was using). CPU 0 then calls irq_dispose_mapping() and frees that virtual IRQ number. Now, if another CPU comes along and calls irq_create_mapping(), it is likely to get the virtual IRQ number that was just freed, resulting in the same virtual IRQ number apparently being used for two different hardware interrupts. To fix this race, we just move the call to msi_bitmap_free_hwirqs() to after the call to irq_dispose_mapping(). Since virq_to_hw() doesn't work for the virtual IRQ number after irq_dispose_mapping() has been called, we need to call it before irq_dispose_mapping() and remember the result for the msi_bitmap_free_hwirqs() call. The pattern of calling msi_bitmap_free_hwirqs() before irq_dispose_mapping() appears in 5 places under arch/powerpc, and appears to have originated in commit 05af7bd2d75e ("[POWERPC] MPIC U3/U4 MSI backend") from 2007. Fixes: 05af7bd2d75e ("[POWERPC] MPIC U3/U4 MSI backend") Cc: stable@vger.kernel.org # v2.6.22+ Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-09-10 11:36:21 +07:00
irq_hw_number_t hwirq;
if (WARN_ON(!phb))
return;
for_each_pci_msi_entry(entry, pdev) {
if (!entry->irq)
continue;
powerpc/MSI: Fix race condition in tearing down MSI interrupts This fixes a race which can result in the same virtual IRQ number being assigned to two different MSI interrupts. The most visible consequence of that is usually a warning and stack trace from the sysfs code about an attempt to create a duplicate entry in sysfs. The race happens when one CPU (say CPU 0) is disposing of an MSI while another CPU (say CPU 1) is setting up an MSI. CPU 0 calls (for example) pnv_teardown_msi_irqs(), which calls msi_bitmap_free_hwirqs() to indicate that the MSI (i.e. its hardware IRQ number) is no longer in use. Then, before CPU 0 gets to calling irq_dispose_mapping() to free up the virtal IRQ number, CPU 1 comes in and calls msi_bitmap_alloc_hwirqs() to allocate an MSI, and gets the same hardware IRQ number that CPU 0 just freed. CPU 1 then calls irq_create_mapping() to get a virtual IRQ number, which sees that there is currently a mapping for that hardware IRQ number and returns the corresponding virtual IRQ number (which is the same virtual IRQ number that CPU 0 was using). CPU 0 then calls irq_dispose_mapping() and frees that virtual IRQ number. Now, if another CPU comes along and calls irq_create_mapping(), it is likely to get the virtual IRQ number that was just freed, resulting in the same virtual IRQ number apparently being used for two different hardware interrupts. To fix this race, we just move the call to msi_bitmap_free_hwirqs() to after the call to irq_dispose_mapping(). Since virq_to_hw() doesn't work for the virtual IRQ number after irq_dispose_mapping() has been called, we need to call it before irq_dispose_mapping() and remember the result for the msi_bitmap_free_hwirqs() call. The pattern of calling msi_bitmap_free_hwirqs() before irq_dispose_mapping() appears in 5 places under arch/powerpc, and appears to have originated in commit 05af7bd2d75e ("[POWERPC] MPIC U3/U4 MSI backend") from 2007. Fixes: 05af7bd2d75e ("[POWERPC] MPIC U3/U4 MSI backend") Cc: stable@vger.kernel.org # v2.6.22+ Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-09-10 11:36:21 +07:00
hwirq = virq_to_hw(entry->irq);
irq_set_msi_desc(entry->irq, NULL);
irq_dispose_mapping(entry->irq);
powerpc/MSI: Fix race condition in tearing down MSI interrupts This fixes a race which can result in the same virtual IRQ number being assigned to two different MSI interrupts. The most visible consequence of that is usually a warning and stack trace from the sysfs code about an attempt to create a duplicate entry in sysfs. The race happens when one CPU (say CPU 0) is disposing of an MSI while another CPU (say CPU 1) is setting up an MSI. CPU 0 calls (for example) pnv_teardown_msi_irqs(), which calls msi_bitmap_free_hwirqs() to indicate that the MSI (i.e. its hardware IRQ number) is no longer in use. Then, before CPU 0 gets to calling irq_dispose_mapping() to free up the virtal IRQ number, CPU 1 comes in and calls msi_bitmap_alloc_hwirqs() to allocate an MSI, and gets the same hardware IRQ number that CPU 0 just freed. CPU 1 then calls irq_create_mapping() to get a virtual IRQ number, which sees that there is currently a mapping for that hardware IRQ number and returns the corresponding virtual IRQ number (which is the same virtual IRQ number that CPU 0 was using). CPU 0 then calls irq_dispose_mapping() and frees that virtual IRQ number. Now, if another CPU comes along and calls irq_create_mapping(), it is likely to get the virtual IRQ number that was just freed, resulting in the same virtual IRQ number apparently being used for two different hardware interrupts. To fix this race, we just move the call to msi_bitmap_free_hwirqs() to after the call to irq_dispose_mapping(). Since virq_to_hw() doesn't work for the virtual IRQ number after irq_dispose_mapping() has been called, we need to call it before irq_dispose_mapping() and remember the result for the msi_bitmap_free_hwirqs() call. The pattern of calling msi_bitmap_free_hwirqs() before irq_dispose_mapping() appears in 5 places under arch/powerpc, and appears to have originated in commit 05af7bd2d75e ("[POWERPC] MPIC U3/U4 MSI backend") from 2007. Fixes: 05af7bd2d75e ("[POWERPC] MPIC U3/U4 MSI backend") Cc: stable@vger.kernel.org # v2.6.22+ Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-09-10 11:36:21 +07:00
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, 1);
}
}
#endif /* CONFIG_PCI_MSI */
/* Nicely print the contents of the PE State Tables (PEST). */
static void pnv_pci_dump_pest(__be64 pestA[], __be64 pestB[], int pest_size)
{
__be64 prevA = ULONG_MAX, prevB = ULONG_MAX;
bool dup = false;
int i;
for (i = 0; i < pest_size; i++) {
__be64 peA = be64_to_cpu(pestA[i]);
__be64 peB = be64_to_cpu(pestB[i]);
if (peA != prevA || peB != prevB) {
if (dup) {
pr_info("PE[..%03x] A/B: as above\n", i-1);
dup = false;
}
prevA = peA;
prevB = peB;
if (peA & PNV_IODA_STOPPED_STATE ||
peB & PNV_IODA_STOPPED_STATE)
pr_info("PE[%03x] A/B: %016llx %016llx\n",
i, peA, peB);
} else if (!dup && (peA & PNV_IODA_STOPPED_STATE ||
peB & PNV_IODA_STOPPED_STATE)) {
dup = true;
}
}
}
static void pnv_pci_dump_p7ioc_diag_data(struct pci_controller *hose,
struct OpalIoPhbErrorCommon *common)
{
struct OpalIoP7IOCPhbErrorData *data;
data = (struct OpalIoP7IOCPhbErrorData *)common;
pr_info("P7IOC PHB#%x Diag-data (Version: %d)\n",
hose->global_number, be32_to_cpu(common->version));
if (data->brdgCtl)
pr_info("brdgCtl: %08x\n",
be32_to_cpu(data->brdgCtl));
if (data->portStatusReg || data->rootCmplxStatus ||
data->busAgentStatus)
pr_info("UtlSts: %08x %08x %08x\n",
be32_to_cpu(data->portStatusReg),
be32_to_cpu(data->rootCmplxStatus),
be32_to_cpu(data->busAgentStatus));
if (data->deviceStatus || data->slotStatus ||
data->linkStatus || data->devCmdStatus ||
data->devSecStatus)
pr_info("RootSts: %08x %08x %08x %08x %08x\n",
be32_to_cpu(data->deviceStatus),
be32_to_cpu(data->slotStatus),
be32_to_cpu(data->linkStatus),
be32_to_cpu(data->devCmdStatus),
be32_to_cpu(data->devSecStatus));
if (data->rootErrorStatus || data->uncorrErrorStatus ||
data->corrErrorStatus)
pr_info("RootErrSts: %08x %08x %08x\n",
be32_to_cpu(data->rootErrorStatus),
be32_to_cpu(data->uncorrErrorStatus),
be32_to_cpu(data->corrErrorStatus));
if (data->tlpHdr1 || data->tlpHdr2 ||
data->tlpHdr3 || data->tlpHdr4)
pr_info("RootErrLog: %08x %08x %08x %08x\n",
be32_to_cpu(data->tlpHdr1),
be32_to_cpu(data->tlpHdr2),
be32_to_cpu(data->tlpHdr3),
be32_to_cpu(data->tlpHdr4));
if (data->sourceId || data->errorClass ||
data->correlator)
pr_info("RootErrLog1: %08x %016llx %016llx\n",
be32_to_cpu(data->sourceId),
be64_to_cpu(data->errorClass),
be64_to_cpu(data->correlator));
if (data->p7iocPlssr || data->p7iocCsr)
pr_info("PhbSts: %016llx %016llx\n",
be64_to_cpu(data->p7iocPlssr),
be64_to_cpu(data->p7iocCsr));
if (data->lemFir)
pr_info("Lem: %016llx %016llx %016llx\n",
be64_to_cpu(data->lemFir),
be64_to_cpu(data->lemErrorMask),
be64_to_cpu(data->lemWOF));
if (data->phbErrorStatus)
pr_info("PhbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbErrorStatus),
be64_to_cpu(data->phbFirstErrorStatus),
be64_to_cpu(data->phbErrorLog0),
be64_to_cpu(data->phbErrorLog1));
if (data->mmioErrorStatus)
pr_info("OutErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->mmioErrorStatus),
be64_to_cpu(data->mmioFirstErrorStatus),
be64_to_cpu(data->mmioErrorLog0),
be64_to_cpu(data->mmioErrorLog1));
if (data->dma0ErrorStatus)
pr_info("InAErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->dma0ErrorStatus),
be64_to_cpu(data->dma0FirstErrorStatus),
be64_to_cpu(data->dma0ErrorLog0),
be64_to_cpu(data->dma0ErrorLog1));
if (data->dma1ErrorStatus)
pr_info("InBErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->dma1ErrorStatus),
be64_to_cpu(data->dma1FirstErrorStatus),
be64_to_cpu(data->dma1ErrorLog0),
be64_to_cpu(data->dma1ErrorLog1));
pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_P7IOC_NUM_PEST_REGS);
}
static void pnv_pci_dump_phb3_diag_data(struct pci_controller *hose,
struct OpalIoPhbErrorCommon *common)
{
struct OpalIoPhb3ErrorData *data;
data = (struct OpalIoPhb3ErrorData*)common;
pr_info("PHB3 PHB#%x Diag-data (Version: %d)\n",
hose->global_number, be32_to_cpu(common->version));
if (data->brdgCtl)
pr_info("brdgCtl: %08x\n",
be32_to_cpu(data->brdgCtl));
if (data->portStatusReg || data->rootCmplxStatus ||
data->busAgentStatus)
pr_info("UtlSts: %08x %08x %08x\n",
be32_to_cpu(data->portStatusReg),
be32_to_cpu(data->rootCmplxStatus),
be32_to_cpu(data->busAgentStatus));
if (data->deviceStatus || data->slotStatus ||
data->linkStatus || data->devCmdStatus ||
data->devSecStatus)
pr_info("RootSts: %08x %08x %08x %08x %08x\n",
be32_to_cpu(data->deviceStatus),
be32_to_cpu(data->slotStatus),
be32_to_cpu(data->linkStatus),
be32_to_cpu(data->devCmdStatus),
be32_to_cpu(data->devSecStatus));
if (data->rootErrorStatus || data->uncorrErrorStatus ||
data->corrErrorStatus)
pr_info("RootErrSts: %08x %08x %08x\n",
be32_to_cpu(data->rootErrorStatus),
be32_to_cpu(data->uncorrErrorStatus),
be32_to_cpu(data->corrErrorStatus));
if (data->tlpHdr1 || data->tlpHdr2 ||
data->tlpHdr3 || data->tlpHdr4)
pr_info("RootErrLog: %08x %08x %08x %08x\n",
be32_to_cpu(data->tlpHdr1),
be32_to_cpu(data->tlpHdr2),
be32_to_cpu(data->tlpHdr3),
be32_to_cpu(data->tlpHdr4));
if (data->sourceId || data->errorClass ||
data->correlator)
pr_info("RootErrLog1: %08x %016llx %016llx\n",
be32_to_cpu(data->sourceId),
be64_to_cpu(data->errorClass),
be64_to_cpu(data->correlator));
if (data->nFir)
pr_info("nFir: %016llx %016llx %016llx\n",
be64_to_cpu(data->nFir),
be64_to_cpu(data->nFirMask),
be64_to_cpu(data->nFirWOF));
if (data->phbPlssr || data->phbCsr)
pr_info("PhbSts: %016llx %016llx\n",
be64_to_cpu(data->phbPlssr),
be64_to_cpu(data->phbCsr));
if (data->lemFir)
pr_info("Lem: %016llx %016llx %016llx\n",
be64_to_cpu(data->lemFir),
be64_to_cpu(data->lemErrorMask),
be64_to_cpu(data->lemWOF));
if (data->phbErrorStatus)
pr_info("PhbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbErrorStatus),
be64_to_cpu(data->phbFirstErrorStatus),
be64_to_cpu(data->phbErrorLog0),
be64_to_cpu(data->phbErrorLog1));
if (data->mmioErrorStatus)
pr_info("OutErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->mmioErrorStatus),
be64_to_cpu(data->mmioFirstErrorStatus),
be64_to_cpu(data->mmioErrorLog0),
be64_to_cpu(data->mmioErrorLog1));
if (data->dma0ErrorStatus)
pr_info("InAErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->dma0ErrorStatus),
be64_to_cpu(data->dma0FirstErrorStatus),
be64_to_cpu(data->dma0ErrorLog0),
be64_to_cpu(data->dma0ErrorLog1));
if (data->dma1ErrorStatus)
pr_info("InBErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->dma1ErrorStatus),
be64_to_cpu(data->dma1FirstErrorStatus),
be64_to_cpu(data->dma1ErrorLog0),
be64_to_cpu(data->dma1ErrorLog1));
pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_PHB3_NUM_PEST_REGS);
}
static void pnv_pci_dump_phb4_diag_data(struct pci_controller *hose,
struct OpalIoPhbErrorCommon *common)
{
struct OpalIoPhb4ErrorData *data;
data = (struct OpalIoPhb4ErrorData*)common;
pr_info("PHB4 PHB#%d Diag-data (Version: %d)\n",
hose->global_number, be32_to_cpu(common->version));
if (data->brdgCtl)
pr_info("brdgCtl: %08x\n",
be32_to_cpu(data->brdgCtl));
if (data->deviceStatus || data->slotStatus ||
data->linkStatus || data->devCmdStatus ||
data->devSecStatus)
pr_info("RootSts: %08x %08x %08x %08x %08x\n",
be32_to_cpu(data->deviceStatus),
be32_to_cpu(data->slotStatus),
be32_to_cpu(data->linkStatus),
be32_to_cpu(data->devCmdStatus),
be32_to_cpu(data->devSecStatus));
if (data->rootErrorStatus || data->uncorrErrorStatus ||
data->corrErrorStatus)
pr_info("RootErrSts: %08x %08x %08x\n",
be32_to_cpu(data->rootErrorStatus),
be32_to_cpu(data->uncorrErrorStatus),
be32_to_cpu(data->corrErrorStatus));
if (data->tlpHdr1 || data->tlpHdr2 ||
data->tlpHdr3 || data->tlpHdr4)
pr_info("RootErrLog: %08x %08x %08x %08x\n",
be32_to_cpu(data->tlpHdr1),
be32_to_cpu(data->tlpHdr2),
be32_to_cpu(data->tlpHdr3),
be32_to_cpu(data->tlpHdr4));
if (data->sourceId)
pr_info("sourceId: %08x\n", be32_to_cpu(data->sourceId));
if (data->nFir)
pr_info("nFir: %016llx %016llx %016llx\n",
be64_to_cpu(data->nFir),
be64_to_cpu(data->nFirMask),
be64_to_cpu(data->nFirWOF));
if (data->phbPlssr || data->phbCsr)
pr_info("PhbSts: %016llx %016llx\n",
be64_to_cpu(data->phbPlssr),
be64_to_cpu(data->phbCsr));
if (data->lemFir)
pr_info("Lem: %016llx %016llx %016llx\n",
be64_to_cpu(data->lemFir),
be64_to_cpu(data->lemErrorMask),
be64_to_cpu(data->lemWOF));
if (data->phbErrorStatus)
pr_info("PhbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbErrorStatus),
be64_to_cpu(data->phbFirstErrorStatus),
be64_to_cpu(data->phbErrorLog0),
be64_to_cpu(data->phbErrorLog1));
if (data->phbTxeErrorStatus)
pr_info("PhbTxeErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbTxeErrorStatus),
be64_to_cpu(data->phbTxeFirstErrorStatus),
be64_to_cpu(data->phbTxeErrorLog0),
be64_to_cpu(data->phbTxeErrorLog1));
if (data->phbRxeArbErrorStatus)
pr_info("RxeArbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbRxeArbErrorStatus),
be64_to_cpu(data->phbRxeArbFirstErrorStatus),
be64_to_cpu(data->phbRxeArbErrorLog0),
be64_to_cpu(data->phbRxeArbErrorLog1));
if (data->phbRxeMrgErrorStatus)
pr_info("RxeMrgErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbRxeMrgErrorStatus),
be64_to_cpu(data->phbRxeMrgFirstErrorStatus),
be64_to_cpu(data->phbRxeMrgErrorLog0),
be64_to_cpu(data->phbRxeMrgErrorLog1));
if (data->phbRxeTceErrorStatus)
pr_info("RxeTceErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbRxeTceErrorStatus),
be64_to_cpu(data->phbRxeTceFirstErrorStatus),
be64_to_cpu(data->phbRxeTceErrorLog0),
be64_to_cpu(data->phbRxeTceErrorLog1));
if (data->phbPblErrorStatus)
pr_info("PblErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbPblErrorStatus),
be64_to_cpu(data->phbPblFirstErrorStatus),
be64_to_cpu(data->phbPblErrorLog0),
be64_to_cpu(data->phbPblErrorLog1));
if (data->phbPcieDlpErrorStatus)
pr_info("PcieDlp: %016llx %016llx %016llx\n",
be64_to_cpu(data->phbPcieDlpErrorLog1),
be64_to_cpu(data->phbPcieDlpErrorLog2),
be64_to_cpu(data->phbPcieDlpErrorStatus));
if (data->phbRegbErrorStatus)
pr_info("RegbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbRegbErrorStatus),
be64_to_cpu(data->phbRegbFirstErrorStatus),
be64_to_cpu(data->phbRegbErrorLog0),
be64_to_cpu(data->phbRegbErrorLog1));
pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_PHB4_NUM_PEST_REGS);
}
void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
unsigned char *log_buff)
{
struct OpalIoPhbErrorCommon *common;
if (!hose || !log_buff)
return;
common = (struct OpalIoPhbErrorCommon *)log_buff;
switch (be32_to_cpu(common->ioType)) {
case OPAL_PHB_ERROR_DATA_TYPE_P7IOC:
pnv_pci_dump_p7ioc_diag_data(hose, common);
break;
case OPAL_PHB_ERROR_DATA_TYPE_PHB3:
pnv_pci_dump_phb3_diag_data(hose, common);
break;
case OPAL_PHB_ERROR_DATA_TYPE_PHB4:
pnv_pci_dump_phb4_diag_data(hose, common);
break;
default:
pr_warn("%s: Unrecognized ioType %d\n",
__func__, be32_to_cpu(common->ioType));
}
}
static void pnv_pci_handle_eeh_config(struct pnv_phb *phb, u32 pe_no)
{
unsigned long flags, rc;
int has_diag, ret = 0;
spin_lock_irqsave(&phb->lock, flags);
/* Fetch PHB diag-data */
rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
phb->diag_data_size);
has_diag = (rc == OPAL_SUCCESS);
/* If PHB supports compound PE, to handle it */
if (phb->unfreeze_pe) {
ret = phb->unfreeze_pe(phb,
pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
} else {
rc = opal_pci_eeh_freeze_clear(phb->opal_id,
pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
if (rc) {
pr_warn("%s: Failure %ld clearing frozen "
"PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number,
pe_no);
ret = -EIO;
}
}
/*
* For now, let's only display the diag buffer when we fail to clear
* the EEH status. We'll do more sensible things later when we have
* proper EEH support. We need to make sure we don't pollute ourselves
* with the normal errors generated when probing empty slots
*/
if (has_diag && ret)
pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
spin_unlock_irqrestore(&phb->lock, flags);
}
static void pnv_pci_config_check_eeh(struct pci_dn *pdn)
{
struct pnv_phb *phb = pdn->phb->private_data;
u8 fstate;
__be16 pcierr;
unsigned int pe_no;
s64 rc;
/*
* Get the PE#. During the PCI probe stage, we might not
* setup that yet. So all ER errors should be mapped to
* reserved PE.
*/
pe_no = pdn->pe_number;
if (pe_no == IODA_INVALID_PE) {
pe_no = phb->ioda.reserved_pe_idx;
}
/*
* Fetch frozen state. If the PHB support compound PE,
* we need handle that case.
*/
if (phb->get_pe_state) {
fstate = phb->get_pe_state(phb, pe_no);
} else {
rc = opal_pci_eeh_freeze_status(phb->opal_id,
pe_no,
&fstate,
&pcierr,
NULL);
if (rc) {
pr_warn("%s: Failure %lld getting PHB#%x-PE#%x state\n",
__func__, rc, phb->hose->global_number, pe_no);
return;
}
}
pr_devel(" -> EEH check, bdfn=%04x PE#%x fstate=%x\n",
(pdn->busno << 8) | (pdn->devfn), pe_no, fstate);
/* Clear the frozen state if applicable */
if (fstate == OPAL_EEH_STOPPED_MMIO_FREEZE ||
fstate == OPAL_EEH_STOPPED_DMA_FREEZE ||
fstate == OPAL_EEH_STOPPED_MMIO_DMA_FREEZE) {
/*
* If PHB supports compound PE, freeze it for
* consistency.
*/
if (phb->freeze_pe)
phb->freeze_pe(phb, pe_no);
pnv_pci_handle_eeh_config(phb, pe_no);
}
}
int pnv_pci_cfg_read(struct pci_dn *pdn,
int where, int size, u32 *val)
{
struct pnv_phb *phb = pdn->phb->private_data;
u32 bdfn = (pdn->busno << 8) | pdn->devfn;
s64 rc;
switch (size) {
case 1: {
u8 v8;
rc = opal_pci_config_read_byte(phb->opal_id, bdfn, where, &v8);
*val = (rc == OPAL_SUCCESS) ? v8 : 0xff;
break;
}
case 2: {
__be16 v16;
rc = opal_pci_config_read_half_word(phb->opal_id, bdfn, where,
&v16);
*val = (rc == OPAL_SUCCESS) ? be16_to_cpu(v16) : 0xffff;
break;
}
case 4: {
__be32 v32;
rc = opal_pci_config_read_word(phb->opal_id, bdfn, where, &v32);
*val = (rc == OPAL_SUCCESS) ? be32_to_cpu(v32) : 0xffffffff;
break;
}
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n",
__func__, pdn->busno, pdn->devfn, where, size, *val);
return PCIBIOS_SUCCESSFUL;
}
int pnv_pci_cfg_write(struct pci_dn *pdn,
int where, int size, u32 val)
{
struct pnv_phb *phb = pdn->phb->private_data;
u32 bdfn = (pdn->busno << 8) | pdn->devfn;
pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n",
__func__, pdn->busno, pdn->devfn, where, size, val);
switch (size) {
case 1:
opal_pci_config_write_byte(phb->opal_id, bdfn, where, val);
break;
case 2:
opal_pci_config_write_half_word(phb->opal_id, bdfn, where, val);
break;
case 4:
opal_pci_config_write_word(phb->opal_id, bdfn, where, val);
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
return PCIBIOS_SUCCESSFUL;
}
#if CONFIG_EEH
static bool pnv_pci_cfg_check(struct pci_dn *pdn)
{
struct eeh_dev *edev = NULL;
struct pnv_phb *phb = pdn->phb->private_data;
/* EEH not enabled ? */
if (!(phb->flags & PNV_PHB_FLAG_EEH))
return true;
2014-04-24 15:00:19 +07:00
/* PE reset or device removed ? */
edev = pdn->edev;
2014-04-24 15:00:19 +07:00
if (edev) {
if (edev->pe &&
(edev->pe->state & EEH_PE_CFG_BLOCKED))
2014-04-24 15:00:19 +07:00
return false;
if (edev->mode & EEH_DEV_REMOVED)
return false;
}
return true;
}
#else
static inline pnv_pci_cfg_check(struct pci_dn *pdn)
{
return true;
}
#endif /* CONFIG_EEH */
static int pnv_pci_read_config(struct pci_bus *bus,
unsigned int devfn,
int where, int size, u32 *val)
{
struct pci_dn *pdn;
struct pnv_phb *phb;
int ret;
*val = 0xFFFFFFFF;
pdn = pci_get_pdn_by_devfn(bus, devfn);
if (!pdn)
return PCIBIOS_DEVICE_NOT_FOUND;
if (!pnv_pci_cfg_check(pdn))
return PCIBIOS_DEVICE_NOT_FOUND;
ret = pnv_pci_cfg_read(pdn, where, size, val);
phb = pdn->phb->private_data;
if (phb->flags & PNV_PHB_FLAG_EEH && pdn->edev) {
if (*val == EEH_IO_ERROR_VALUE(size) &&
eeh_dev_check_failure(pdn->edev))
return PCIBIOS_DEVICE_NOT_FOUND;
} else {
pnv_pci_config_check_eeh(pdn);
}
return ret;
}
static int pnv_pci_write_config(struct pci_bus *bus,
unsigned int devfn,
int where, int size, u32 val)
{
struct pci_dn *pdn;
struct pnv_phb *phb;
int ret;
pdn = pci_get_pdn_by_devfn(bus, devfn);
if (!pdn)
return PCIBIOS_DEVICE_NOT_FOUND;
if (!pnv_pci_cfg_check(pdn))
return PCIBIOS_DEVICE_NOT_FOUND;
ret = pnv_pci_cfg_write(pdn, where, size, val);
phb = pdn->phb->private_data;
if (!(phb->flags & PNV_PHB_FLAG_EEH))
pnv_pci_config_check_eeh(pdn);
return ret;
}
struct pci_ops pnv_pci_ops = {
.read = pnv_pci_read_config,
.write = pnv_pci_write_config,
};
static __be64 *pnv_tce(struct iommu_table *tbl, long idx)
{
__be64 *tmp = ((__be64 *)tbl->it_base);
int level = tbl->it_indirect_levels;
const long shift = ilog2(tbl->it_level_size);
unsigned long mask = (tbl->it_level_size - 1) << (level * shift);
while (level) {
int n = (idx & mask) >> (level * shift);
unsigned long tce = be64_to_cpu(tmp[n]);
tmp = __va(tce & ~(TCE_PCI_READ | TCE_PCI_WRITE));
idx &= ~mask;
mask >>= shift;
--level;
}
return tmp + idx;
}
powerpc/iommu: Move tce_xxx callbacks from ppc_md to iommu_table This adds a iommu_table_ops struct and puts pointer to it into the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush callbacks from ppc_md to the new struct where they really belong to. This adds the requirement for @it_ops to be initialized before calling iommu_init_table() to make sure that we do not leave any IOMMU table with iommu_table_ops uninitialized. This is not a parameter of iommu_init_table() though as there will be cases when iommu_init_table() will not be called on TCE tables, for example - VFIO. This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_" redundant prefixes. This removes tce_xxx_rm handlers from ppc_md but does not add them to iommu_table_ops as this will be done later if we decide to support TCE hypercalls in real mode. This removes _vm callbacks as only virtual mode is supported by now so this also removes @rm parameter. For pSeries, this always uses tce_buildmulti_pSeriesLP/ tce_buildmulti_pSeriesLP. This changes multi callback to fall back to tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not present. The reason for this is we still have to support "multitce=off" boot parameter in disable_multitce() and we do not want to walk through all IOMMU tables in the system and replace "multi" callbacks with single ones. For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2. This makes the callbacks for them public. Later patches will extend callbacks for IODA1/2. No change in behaviour is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:06 +07:00
int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
unsigned long uaddr, enum dma_data_direction direction,
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 03:46:00 +07:00
unsigned long attrs)
{
u64 proto_tce = iommu_direction_to_tce_perm(direction);
u64 rpn = __pa(uaddr) >> tbl->it_page_shift;
long i;
if (proto_tce & TCE_PCI_WRITE)
proto_tce |= TCE_PCI_READ;
for (i = 0; i < npages; i++) {
unsigned long newtce = proto_tce |
((rpn + i) << tbl->it_page_shift);
unsigned long idx = index - tbl->it_offset + i;
*(pnv_tce(tbl, idx)) = cpu_to_be64(newtce);
}
return 0;
}
powerpc/iommu/powernv: Release replaced TCE At the moment writing new TCE value to the IOMMU table fails with EBUSY if there is a valid entry already. However PAPR specification allows the guest to write new TCE value without clearing it first. Another problem this patch is addressing is the use of pool locks for external IOMMU users such as VFIO. The pool locks are to protect DMA page allocator rather than entries and since the host kernel does not control what pages are in use, there is no point in pool locks and exchange()+put_page(oldtce) is sufficient to avoid possible races. This adds an exchange() callback to iommu_table_ops which does the same thing as set() plus it returns replaced TCE and DMA direction so the caller can release the pages afterwards. The exchange() receives a physical address unlike set() which receives linear mapping address; and returns a physical address as the clear() does. This implements exchange() for P5IOC2/IODA/IODA2. This adds a requirement for a platform to have exchange() implemented in order to support VFIO. This replaces iommu_tce_build() and iommu_clear_tce() with a single iommu_tce_xchg(). This makes sure that TCE permission bits are not set in TCE passed to IOMMU API as those are to be calculated by platform code from DMA direction. This moves SetPageDirty() to the IOMMU code to make it work for both VFIO ioctl interface in in-kernel TCE acceleration (when it becomes available later). Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:15 +07:00
#ifdef CONFIG_IOMMU_API
int pnv_tce_xchg(struct iommu_table *tbl, long index,
unsigned long *hpa, enum dma_data_direction *direction)
{
u64 proto_tce = iommu_direction_to_tce_perm(*direction);
unsigned long newtce = *hpa | proto_tce, oldtce;
unsigned long idx = index - tbl->it_offset;
BUG_ON(*hpa & ~IOMMU_PAGE_MASK(tbl));
if (newtce & TCE_PCI_WRITE)
newtce |= TCE_PCI_READ;
oldtce = be64_to_cpu(xchg(pnv_tce(tbl, idx), cpu_to_be64(newtce)));
*hpa = oldtce & ~(TCE_PCI_READ | TCE_PCI_WRITE);
powerpc/iommu/powernv: Release replaced TCE At the moment writing new TCE value to the IOMMU table fails with EBUSY if there is a valid entry already. However PAPR specification allows the guest to write new TCE value without clearing it first. Another problem this patch is addressing is the use of pool locks for external IOMMU users such as VFIO. The pool locks are to protect DMA page allocator rather than entries and since the host kernel does not control what pages are in use, there is no point in pool locks and exchange()+put_page(oldtce) is sufficient to avoid possible races. This adds an exchange() callback to iommu_table_ops which does the same thing as set() plus it returns replaced TCE and DMA direction so the caller can release the pages afterwards. The exchange() receives a physical address unlike set() which receives linear mapping address; and returns a physical address as the clear() does. This implements exchange() for P5IOC2/IODA/IODA2. This adds a requirement for a platform to have exchange() implemented in order to support VFIO. This replaces iommu_tce_build() and iommu_clear_tce() with a single iommu_tce_xchg(). This makes sure that TCE permission bits are not set in TCE passed to IOMMU API as those are to be calculated by platform code from DMA direction. This moves SetPageDirty() to the IOMMU code to make it work for both VFIO ioctl interface in in-kernel TCE acceleration (when it becomes available later). Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:15 +07:00
*direction = iommu_tce_direction(oldtce);
return 0;
}
#endif
powerpc/iommu: Move tce_xxx callbacks from ppc_md to iommu_table This adds a iommu_table_ops struct and puts pointer to it into the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush callbacks from ppc_md to the new struct where they really belong to. This adds the requirement for @it_ops to be initialized before calling iommu_init_table() to make sure that we do not leave any IOMMU table with iommu_table_ops uninitialized. This is not a parameter of iommu_init_table() though as there will be cases when iommu_init_table() will not be called on TCE tables, for example - VFIO. This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_" redundant prefixes. This removes tce_xxx_rm handlers from ppc_md but does not add them to iommu_table_ops as this will be done later if we decide to support TCE hypercalls in real mode. This removes _vm callbacks as only virtual mode is supported by now so this also removes @rm parameter. For pSeries, this always uses tce_buildmulti_pSeriesLP/ tce_buildmulti_pSeriesLP. This changes multi callback to fall back to tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not present. The reason for this is we still have to support "multitce=off" boot parameter in disable_multitce() and we do not want to walk through all IOMMU tables in the system and replace "multi" callbacks with single ones. For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2. This makes the callbacks for them public. Later patches will extend callbacks for IODA1/2. No change in behaviour is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:06 +07:00
void pnv_tce_free(struct iommu_table *tbl, long index, long npages)
{
long i;
for (i = 0; i < npages; i++) {
unsigned long idx = index - tbl->it_offset + i;
*(pnv_tce(tbl, idx)) = cpu_to_be64(0);
}
}
powerpc/iommu: Move tce_xxx callbacks from ppc_md to iommu_table This adds a iommu_table_ops struct and puts pointer to it into the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush callbacks from ppc_md to the new struct where they really belong to. This adds the requirement for @it_ops to be initialized before calling iommu_init_table() to make sure that we do not leave any IOMMU table with iommu_table_ops uninitialized. This is not a parameter of iommu_init_table() though as there will be cases when iommu_init_table() will not be called on TCE tables, for example - VFIO. This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_" redundant prefixes. This removes tce_xxx_rm handlers from ppc_md but does not add them to iommu_table_ops as this will be done later if we decide to support TCE hypercalls in real mode. This removes _vm callbacks as only virtual mode is supported by now so this also removes @rm parameter. For pSeries, this always uses tce_buildmulti_pSeriesLP/ tce_buildmulti_pSeriesLP. This changes multi callback to fall back to tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not present. The reason for this is we still have to support "multitce=off" boot parameter in disable_multitce() and we do not want to walk through all IOMMU tables in the system and replace "multi" callbacks with single ones. For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2. This makes the callbacks for them public. Later patches will extend callbacks for IODA1/2. No change in behaviour is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:06 +07:00
unsigned long pnv_tce_get(struct iommu_table *tbl, long index)
{
return be64_to_cpu(*(pnv_tce(tbl, index - tbl->it_offset)));
}
struct iommu_table *pnv_pci_table_alloc(int nid)
{
struct iommu_table *tbl;
tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, nid);
if (!tbl)
return NULL;
INIT_LIST_HEAD_RCU(&tbl->it_group_list);
kref_init(&tbl->it_kref);
return tbl;
}
long pnv_pci_link_table_and_group(int node, int num,
struct iommu_table *tbl,
struct iommu_table_group *table_group)
{
struct iommu_table_group_link *tgl = NULL;
if (WARN_ON(!tbl || !table_group))
return -EINVAL;
tgl = kzalloc_node(sizeof(struct iommu_table_group_link), GFP_KERNEL,
node);
if (!tgl)
return -ENOMEM;
tgl->table_group = table_group;
list_add_rcu(&tgl->next, &tbl->it_group_list);
table_group->tables[num] = tbl;
return 0;
}
static void pnv_iommu_table_group_link_free(struct rcu_head *head)
{
struct iommu_table_group_link *tgl = container_of(head,
struct iommu_table_group_link, rcu);
kfree(tgl);
}
void pnv_pci_unlink_table_and_group(struct iommu_table *tbl,
struct iommu_table_group *table_group)
{
long i;
bool found;
struct iommu_table_group_link *tgl;
if (!tbl || !table_group)
return;
/* Remove link to a group from table's list of attached groups */
found = false;
list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
if (tgl->table_group == table_group) {
list_del_rcu(&tgl->next);
call_rcu(&tgl->rcu, pnv_iommu_table_group_link_free);
found = true;
break;
}
}
if (WARN_ON(!found))
return;
/* Clean a pointer to iommu_table in iommu_table_group::tables[] */
found = false;
for (i = 0; i < IOMMU_TABLE_GROUP_MAX_TABLES; ++i) {
if (table_group->tables[i] == tbl) {
table_group->tables[i] = NULL;
found = true;
break;
}
}
WARN_ON(!found);
}
void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
void *tce_mem, u64 tce_size,
u64 dma_offset, unsigned page_shift)
{
tbl->it_blocksize = 16;
tbl->it_base = (unsigned long)tce_mem;
tbl->it_page_shift = page_shift;
tbl->it_offset = dma_offset >> tbl->it_page_shift;
tbl->it_index = 0;
tbl->it_size = tce_size >> 3;
tbl->it_busno = 0;
tbl->it_type = TCE_PCI;
}
void pnv_pci_dma_dev_setup(struct pci_dev *pdev)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
#ifdef CONFIG_PCI_IOV
struct pnv_ioda_pe *pe;
struct pci_dn *pdn;
/* Fix the VF pdn PE number */
if (pdev->is_virtfn) {
pdn = pci_get_pdn(pdev);
WARN_ON(pdn->pe_number != IODA_INVALID_PE);
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
if (pe->rid == ((pdev->bus->number << 8) |
(pdev->devfn & 0xff))) {
pdn->pe_number = pe->pe_number;
pe->pdev = pdev;
break;
}
}
}
#endif /* CONFIG_PCI_IOV */
if (phb && phb->dma_dev_setup)
phb->dma_dev_setup(phb, pdev);
}
void pnv_pci_dma_bus_setup(struct pci_bus *bus)
{
struct pci_controller *hose = bus->sysdata;
struct pnv_phb *phb = hose->private_data;
struct pnv_ioda_pe *pe;
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
continue;
if (!pe->pbus)
continue;
if (bus->number == ((pe->rid >> 8) & 0xFF)) {
pe->pbus = bus;
break;
}
}
}
void pnv_pci_shutdown(void)
{
struct pci_controller *hose;
list_for_each_entry(hose, &hose_list, list_node)
if (hose->controller_ops.shutdown)
hose->controller_ops.shutdown(hose);
}
/* Fixup wrong class code in p7ioc and p8 root complex */
static void pnv_p7ioc_rc_quirk(struct pci_dev *dev)
{
dev->class = PCI_CLASS_BRIDGE_PCI << 8;
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_IBM, 0x3b9, pnv_p7ioc_rc_quirk);
void __init pnv_pci_init(void)
{
struct device_node *np;
pci_add_flags(PCI_CAN_SKIP_ISA_ALIGN);
/* If we don't have OPAL, eg. in sim, just skip PCI probe */
if (!firmware_has_feature(FW_FEATURE_OPAL))
return;
/* Look for IODA IO-Hubs. */
for_each_compatible_node(np, NULL, "ibm,ioda-hub") {
pnv_pci_init_ioda_hub(np);
}
/* Look for ioda2 built-in PHB3's */
for_each_compatible_node(np, NULL, "ibm,ioda2-phb")
pnv_pci_init_ioda2_phb(np);
/* Look for ioda3 built-in PHB4's, we treat them as IODA2 */
for_each_compatible_node(np, NULL, "ibm,ioda3-phb")
pnv_pci_init_ioda2_phb(np);
/* Look for NPU PHBs */
for_each_compatible_node(np, NULL, "ibm,ioda2-npu-phb")
pnv_pci_init_npu_phb(np);
/*
* Look for NPU2 PHBs which we treat mostly as NPU PHBs with
* the exception of TCE kill which requires an OPAL call.
*/
for_each_compatible_node(np, NULL, "ibm,ioda2-npu2-phb")
pnv_pci_init_npu_phb(np);
/* Configure IOMMU DMA hooks */
set_pci_dma_ops(&dma_iommu_ops);
}
machine_subsys_initcall_sync(powernv, tce_iommu_bus_notifier_init);