linux_dsm_epyc7002/arch/arm64/include/asm/barrier.h

128 lines
3.4 KiB
C
Raw Normal View History

/*
* Based on arch/arm/include/asm/barrier.h
*
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_BARRIER_H
#define __ASM_BARRIER_H
#ifndef __ASSEMBLY__
#define __nops(n) ".rept " #n "\nnop\n.endr\n"
#define nops(n) asm volatile(__nops(n))
#define sev() asm volatile("sev" : : : "memory")
#define wfe() asm volatile("wfe" : : : "memory")
#define wfi() asm volatile("wfi" : : : "memory")
#define isb() asm volatile("isb" : : : "memory")
#define dmb(opt) asm volatile("dmb " #opt : : : "memory")
#define dsb(opt) asm volatile("dsb " #opt : : : "memory")
#define psb_csync() asm volatile("hint #17" : : : "memory")
#define csdb() asm volatile("hint #20" : : : "memory")
#define mb() dsb(sy)
#define rmb() dsb(ld)
#define wmb() dsb(st)
arch: Add lightweight memory barriers dma_rmb() and dma_wmb() There are a number of situations where the mandatory barriers rmb() and wmb() are used to order memory/memory operations in the device drivers and those barriers are much heavier than they actually need to be. For example in the case of PowerPC wmb() calls the heavy-weight sync instruction when for coherent memory operations all that is really needed is an lsync or eieio instruction. This commit adds a coherent only version of the mandatory memory barriers rmb() and wmb(). In most cases this should result in the barrier being the same as the SMP barriers for the SMP case, however in some cases we use a barrier that is somewhere in between rmb() and smp_rmb(). For example on ARM the rmb barriers break down as follows: Barrier Call Explanation --------- -------- ---------------------------------- rmb() dsb() Data synchronization barrier - system dma_rmb() dmb(osh) data memory barrier - outer sharable smp_rmb() dmb(ish) data memory barrier - inner sharable These new barriers are not as safe as the standard rmb() and wmb(). Specifically they do not guarantee ordering between coherent and incoherent memories. The primary use case for these would be to enforce ordering of reads and writes when accessing coherent memory that is shared between the CPU and a device. It may also be noted that there is no dma_mb(). Most architectures don't provide a good mechanism for performing a coherent only full barrier without resorting to the same mechanism used in mb(). As such there isn't much to be gained in trying to define such a function. Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: David Miller <davem@davemloft.net> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-12 06:02:06 +07:00
#define dma_rmb() dmb(oshld)
#define dma_wmb() dmb(oshst)
#define __smp_mb() dmb(ish)
#define __smp_rmb() dmb(ishld)
#define __smp_wmb() dmb(ishst)
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
arm64: ensure extension of smp_store_release value When an inline assembly operand's type is narrower than the register it is allocated to, the least significant bits of the register (up to the operand type's width) are valid, and any other bits are permitted to contain any arbitrary value. This aligns with the AAPCS64 parameter passing rules. Our __smp_store_release() implementation does not account for this, and implicitly assumes that operands have been zero-extended to the width of the type being stored to. Thus, we may store unknown values to memory when the value type is narrower than the pointer type (e.g. when storing a char to a long). This patch fixes the issue by casting the value operand to the same width as the pointer operand in all cases, which ensures that the value is zero-extended as we expect. We use the same union trickery as __smp_load_acquire and {READ,WRITE}_ONCE() to avoid GCC complaining that pointers are potentially cast to narrower width integers in unreachable paths. A whitespace issue at the top of __smp_store_release() is also corrected. No changes are necessary for __smp_load_acquire(). Load instructions implicitly clear any upper bits of the register, and the compiler will only consider the least significant bits of the register as valid regardless. Fixes: 47933ad41a86 ("arch: Introduce smp_load_acquire(), smp_store_release()") Fixes: 878a84d5a8a1 ("arm64: add missing data types in smp_load_acquire/smp_store_release") Cc: <stable@vger.kernel.org> # 3.14.x- Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-05-03 22:09:34 +07:00
#define __smp_store_release(p, v) \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
do { \
arm64: ensure extension of smp_store_release value When an inline assembly operand's type is narrower than the register it is allocated to, the least significant bits of the register (up to the operand type's width) are valid, and any other bits are permitted to contain any arbitrary value. This aligns with the AAPCS64 parameter passing rules. Our __smp_store_release() implementation does not account for this, and implicitly assumes that operands have been zero-extended to the width of the type being stored to. Thus, we may store unknown values to memory when the value type is narrower than the pointer type (e.g. when storing a char to a long). This patch fixes the issue by casting the value operand to the same width as the pointer operand in all cases, which ensures that the value is zero-extended as we expect. We use the same union trickery as __smp_load_acquire and {READ,WRITE}_ONCE() to avoid GCC complaining that pointers are potentially cast to narrower width integers in unreachable paths. A whitespace issue at the top of __smp_store_release() is also corrected. No changes are necessary for __smp_load_acquire(). Load instructions implicitly clear any upper bits of the register, and the compiler will only consider the least significant bits of the register as valid regardless. Fixes: 47933ad41a86 ("arch: Introduce smp_load_acquire(), smp_store_release()") Fixes: 878a84d5a8a1 ("arm64: add missing data types in smp_load_acquire/smp_store_release") Cc: <stable@vger.kernel.org> # 3.14.x- Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-05-03 22:09:34 +07:00
union { typeof(*p) __val; char __c[1]; } __u = \
{ .__val = (__force typeof(*p)) (v) }; \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
compiletime_assert_atomic_type(*p); \
switch (sizeof(*p)) { \
case 1: \
asm volatile ("stlrb %w1, %0" \
arm64: ensure extension of smp_store_release value When an inline assembly operand's type is narrower than the register it is allocated to, the least significant bits of the register (up to the operand type's width) are valid, and any other bits are permitted to contain any arbitrary value. This aligns with the AAPCS64 parameter passing rules. Our __smp_store_release() implementation does not account for this, and implicitly assumes that operands have been zero-extended to the width of the type being stored to. Thus, we may store unknown values to memory when the value type is narrower than the pointer type (e.g. when storing a char to a long). This patch fixes the issue by casting the value operand to the same width as the pointer operand in all cases, which ensures that the value is zero-extended as we expect. We use the same union trickery as __smp_load_acquire and {READ,WRITE}_ONCE() to avoid GCC complaining that pointers are potentially cast to narrower width integers in unreachable paths. A whitespace issue at the top of __smp_store_release() is also corrected. No changes are necessary for __smp_load_acquire(). Load instructions implicitly clear any upper bits of the register, and the compiler will only consider the least significant bits of the register as valid regardless. Fixes: 47933ad41a86 ("arch: Introduce smp_load_acquire(), smp_store_release()") Fixes: 878a84d5a8a1 ("arm64: add missing data types in smp_load_acquire/smp_store_release") Cc: <stable@vger.kernel.org> # 3.14.x- Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-05-03 22:09:34 +07:00
: "=Q" (*p) \
: "r" (*(__u8 *)__u.__c) \
: "memory"); \
break; \
case 2: \
asm volatile ("stlrh %w1, %0" \
arm64: ensure extension of smp_store_release value When an inline assembly operand's type is narrower than the register it is allocated to, the least significant bits of the register (up to the operand type's width) are valid, and any other bits are permitted to contain any arbitrary value. This aligns with the AAPCS64 parameter passing rules. Our __smp_store_release() implementation does not account for this, and implicitly assumes that operands have been zero-extended to the width of the type being stored to. Thus, we may store unknown values to memory when the value type is narrower than the pointer type (e.g. when storing a char to a long). This patch fixes the issue by casting the value operand to the same width as the pointer operand in all cases, which ensures that the value is zero-extended as we expect. We use the same union trickery as __smp_load_acquire and {READ,WRITE}_ONCE() to avoid GCC complaining that pointers are potentially cast to narrower width integers in unreachable paths. A whitespace issue at the top of __smp_store_release() is also corrected. No changes are necessary for __smp_load_acquire(). Load instructions implicitly clear any upper bits of the register, and the compiler will only consider the least significant bits of the register as valid regardless. Fixes: 47933ad41a86 ("arch: Introduce smp_load_acquire(), smp_store_release()") Fixes: 878a84d5a8a1 ("arm64: add missing data types in smp_load_acquire/smp_store_release") Cc: <stable@vger.kernel.org> # 3.14.x- Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-05-03 22:09:34 +07:00
: "=Q" (*p) \
: "r" (*(__u16 *)__u.__c) \
: "memory"); \
break; \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
case 4: \
asm volatile ("stlr %w1, %0" \
arm64: ensure extension of smp_store_release value When an inline assembly operand's type is narrower than the register it is allocated to, the least significant bits of the register (up to the operand type's width) are valid, and any other bits are permitted to contain any arbitrary value. This aligns with the AAPCS64 parameter passing rules. Our __smp_store_release() implementation does not account for this, and implicitly assumes that operands have been zero-extended to the width of the type being stored to. Thus, we may store unknown values to memory when the value type is narrower than the pointer type (e.g. when storing a char to a long). This patch fixes the issue by casting the value operand to the same width as the pointer operand in all cases, which ensures that the value is zero-extended as we expect. We use the same union trickery as __smp_load_acquire and {READ,WRITE}_ONCE() to avoid GCC complaining that pointers are potentially cast to narrower width integers in unreachable paths. A whitespace issue at the top of __smp_store_release() is also corrected. No changes are necessary for __smp_load_acquire(). Load instructions implicitly clear any upper bits of the register, and the compiler will only consider the least significant bits of the register as valid regardless. Fixes: 47933ad41a86 ("arch: Introduce smp_load_acquire(), smp_store_release()") Fixes: 878a84d5a8a1 ("arm64: add missing data types in smp_load_acquire/smp_store_release") Cc: <stable@vger.kernel.org> # 3.14.x- Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-05-03 22:09:34 +07:00
: "=Q" (*p) \
: "r" (*(__u32 *)__u.__c) \
: "memory"); \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
break; \
case 8: \
asm volatile ("stlr %1, %0" \
arm64: ensure extension of smp_store_release value When an inline assembly operand's type is narrower than the register it is allocated to, the least significant bits of the register (up to the operand type's width) are valid, and any other bits are permitted to contain any arbitrary value. This aligns with the AAPCS64 parameter passing rules. Our __smp_store_release() implementation does not account for this, and implicitly assumes that operands have been zero-extended to the width of the type being stored to. Thus, we may store unknown values to memory when the value type is narrower than the pointer type (e.g. when storing a char to a long). This patch fixes the issue by casting the value operand to the same width as the pointer operand in all cases, which ensures that the value is zero-extended as we expect. We use the same union trickery as __smp_load_acquire and {READ,WRITE}_ONCE() to avoid GCC complaining that pointers are potentially cast to narrower width integers in unreachable paths. A whitespace issue at the top of __smp_store_release() is also corrected. No changes are necessary for __smp_load_acquire(). Load instructions implicitly clear any upper bits of the register, and the compiler will only consider the least significant bits of the register as valid regardless. Fixes: 47933ad41a86 ("arch: Introduce smp_load_acquire(), smp_store_release()") Fixes: 878a84d5a8a1 ("arm64: add missing data types in smp_load_acquire/smp_store_release") Cc: <stable@vger.kernel.org> # 3.14.x- Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-05-03 22:09:34 +07:00
: "=Q" (*p) \
: "r" (*(__u64 *)__u.__c) \
: "memory"); \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
break; \
} \
} while (0)
#define __smp_load_acquire(p) \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
({ \
union { typeof(*p) __val; char __c[1]; } __u; \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
compiletime_assert_atomic_type(*p); \
switch (sizeof(*p)) { \
case 1: \
asm volatile ("ldarb %w0, %1" \
: "=r" (*(__u8 *)__u.__c) \
: "Q" (*p) : "memory"); \
break; \
case 2: \
asm volatile ("ldarh %w0, %1" \
: "=r" (*(__u16 *)__u.__c) \
: "Q" (*p) : "memory"); \
break; \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
case 4: \
asm volatile ("ldar %w0, %1" \
: "=r" (*(__u32 *)__u.__c) \
: "Q" (*p) : "memory"); \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
break; \
case 8: \
asm volatile ("ldar %0, %1" \
: "=r" (*(__u64 *)__u.__c) \
: "Q" (*p) : "memory"); \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
break; \
} \
__u.__val; \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
})
#define smp_cond_load_acquire(ptr, cond_expr) \
({ \
typeof(ptr) __PTR = (ptr); \
typeof(*ptr) VAL; \
for (;;) { \
VAL = smp_load_acquire(__PTR); \
if (cond_expr) \
break; \
__cmpwait_relaxed(__PTR, VAL); \
} \
VAL; \
})
#include <asm-generic/barrier.h>
#endif /* __ASSEMBLY__ */
#endif /* __ASM_BARRIER_H */