linux_dsm_epyc7002/drivers/net/phy/mscc.c

2050 lines
56 KiB
C
Raw Normal View History

/*
* Driver for Microsemi VSC85xx PHYs
*
* Author: Nagaraju Lakkaraju
* License: Dual MIT/GPL
* Copyright (c) 2016 Microsemi Corporation
*/
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#include <linux/firmware.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mdio.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/of.h>
#include <linux/netdevice.h>
#include <dt-bindings/net/mscc-phy-vsc8531.h>
enum rgmii_rx_clock_delay {
RGMII_RX_CLK_DELAY_0_2_NS = 0,
RGMII_RX_CLK_DELAY_0_8_NS = 1,
RGMII_RX_CLK_DELAY_1_1_NS = 2,
RGMII_RX_CLK_DELAY_1_7_NS = 3,
RGMII_RX_CLK_DELAY_2_0_NS = 4,
RGMII_RX_CLK_DELAY_2_3_NS = 5,
RGMII_RX_CLK_DELAY_2_6_NS = 6,
RGMII_RX_CLK_DELAY_3_4_NS = 7
};
/* Microsemi VSC85xx PHY registers */
/* IEEE 802. Std Registers */
#define MSCC_PHY_BYPASS_CONTROL 18
#define DISABLE_HP_AUTO_MDIX_MASK 0x0080
#define DISABLE_PAIR_SWAP_CORR_MASK 0x0020
#define DISABLE_POLARITY_CORR_MASK 0x0010
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define PARALLEL_DET_IGNORE_ADVERTISED 0x0008
#define MSCC_PHY_EXT_CNTL_STATUS 22
#define SMI_BROADCAST_WR_EN 0x0001
#define MSCC_PHY_ERR_RX_CNT 19
#define MSCC_PHY_ERR_FALSE_CARRIER_CNT 20
#define MSCC_PHY_ERR_LINK_DISCONNECT_CNT 21
#define ERR_CNT_MASK GENMASK(7, 0)
#define MSCC_PHY_EXT_PHY_CNTL_1 23
#define MAC_IF_SELECTION_MASK 0x1800
#define MAC_IF_SELECTION_GMII 0
#define MAC_IF_SELECTION_RMII 1
#define MAC_IF_SELECTION_RGMII 2
#define MAC_IF_SELECTION_POS 11
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define VSC8584_MAC_IF_SELECTION_MASK 0x1000
#define VSC8584_MAC_IF_SELECTION_SGMII 0
#define VSC8584_MAC_IF_SELECTION_1000BASEX 1
#define VSC8584_MAC_IF_SELECTION_POS 12
#define FAR_END_LOOPBACK_MODE_MASK 0x0008
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define MEDIA_OP_MODE_MASK 0x0700
#define MEDIA_OP_MODE_COPPER 0
#define MEDIA_OP_MODE_SERDES 1
#define MEDIA_OP_MODE_1000BASEX 2
#define MEDIA_OP_MODE_100BASEFX 3
#define MEDIA_OP_MODE_AMS_COPPER_SERDES 5
#define MEDIA_OP_MODE_AMS_COPPER_1000BASEX 6
#define MEDIA_OP_MODE_AMS_COPPER_100BASEFX 7
#define MEDIA_OP_MODE_POS 8
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
#define MSCC_PHY_EXT_PHY_CNTL_2 24
#define MII_VSC85XX_INT_MASK 25
#define MII_VSC85XX_INT_MASK_MASK 0xa000
#define MII_VSC85XX_INT_MASK_WOL 0x0040
#define MII_VSC85XX_INT_STATUS 26
#define MSCC_PHY_WOL_MAC_CONTROL 27
#define EDGE_RATE_CNTL_POS 5
#define EDGE_RATE_CNTL_MASK 0x00E0
#define MSCC_PHY_DEV_AUX_CNTL 28
#define HP_AUTO_MDIX_X_OVER_IND_MASK 0x2000
#define MSCC_PHY_LED_MODE_SEL 29
#define LED_MODE_SEL_POS(x) ((x) * 4)
#define LED_MODE_SEL_MASK(x) (GENMASK(3, 0) << LED_MODE_SEL_POS(x))
#define LED_MODE_SEL(x, mode) (((mode) << LED_MODE_SEL_POS(x)) & LED_MODE_SEL_MASK(x))
#define MSCC_EXT_PAGE_ACCESS 31
#define MSCC_PHY_PAGE_STANDARD 0x0000 /* Standard registers */
#define MSCC_PHY_PAGE_EXTENDED 0x0001 /* Extended registers */
#define MSCC_PHY_PAGE_EXTENDED_2 0x0002 /* Extended reg - page 2 */
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define MSCC_PHY_PAGE_EXTENDED_3 0x0003 /* Extended reg - page 3 */
#define MSCC_PHY_PAGE_EXTENDED_4 0x0004 /* Extended reg - page 4 */
/* Extended reg - GPIO; this is a bank of registers that are shared for all PHYs
* in the same package.
*/
#define MSCC_PHY_PAGE_EXTENDED_GPIO 0x0010 /* Extended reg - GPIO */
#define MSCC_PHY_PAGE_TEST 0x2a30 /* Test reg */
#define MSCC_PHY_PAGE_TR 0x52b5 /* Token ring registers */
/* Extended Page 1 Registers */
#define MSCC_PHY_CU_MEDIA_CRC_VALID_CNT 18
#define VALID_CRC_CNT_CRC_MASK GENMASK(13, 0)
#define MSCC_PHY_EXT_MODE_CNTL 19
#define FORCE_MDI_CROSSOVER_MASK 0x000C
#define FORCE_MDI_CROSSOVER_MDIX 0x000C
#define FORCE_MDI_CROSSOVER_MDI 0x0008
#define MSCC_PHY_ACTIPHY_CNTL 20
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define PHY_ADDR_REVERSED 0x0200
#define DOWNSHIFT_CNTL_MASK 0x001C
#define DOWNSHIFT_EN 0x0010
#define DOWNSHIFT_CNTL_POS 2
#define MSCC_PHY_EXT_PHY_CNTL_4 23
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define PHY_CNTL_4_ADDR_POS 11
#define MSCC_PHY_VERIPHY_CNTL_2 25
#define MSCC_PHY_VERIPHY_CNTL_3 26
/* Extended Page 2 Registers */
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define MSCC_PHY_CU_PMD_TX_CNTL 16
#define MSCC_PHY_RGMII_CNTL 20
#define RGMII_RX_CLK_DELAY_MASK 0x0070
#define RGMII_RX_CLK_DELAY_POS 4
#define MSCC_PHY_WOL_LOWER_MAC_ADDR 21
#define MSCC_PHY_WOL_MID_MAC_ADDR 22
#define MSCC_PHY_WOL_UPPER_MAC_ADDR 23
#define MSCC_PHY_WOL_LOWER_PASSWD 24
#define MSCC_PHY_WOL_MID_PASSWD 25
#define MSCC_PHY_WOL_UPPER_PASSWD 26
#define MSCC_PHY_WOL_MAC_CONTROL 27
#define SECURE_ON_ENABLE 0x8000
#define SECURE_ON_PASSWD_LEN_4 0x4000
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
/* Extended Page 3 Registers */
#define MSCC_PHY_SERDES_TX_VALID_CNT 21
#define MSCC_PHY_SERDES_TX_CRC_ERR_CNT 22
#define MSCC_PHY_SERDES_RX_VALID_CNT 28
#define MSCC_PHY_SERDES_RX_CRC_ERR_CNT 29
/* Extended page GPIO Registers */
#define MSCC_DW8051_CNTL_STATUS 0
#define MICRO_NSOFT_RESET 0x8000
#define RUN_FROM_INT_ROM 0x4000
#define AUTOINC_ADDR 0x2000
#define PATCH_RAM_CLK 0x1000
#define MICRO_PATCH_EN 0x0080
#define DW8051_CLK_EN 0x0010
#define MICRO_CLK_EN 0x0008
#define MICRO_CLK_DIVIDE(x) ((x) >> 1)
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
#define MSCC_DW8051_VLD_MASK 0xf1ff
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
/* x Address in range 1-4 */
#define MSCC_TRAP_ROM_ADDR(x) ((x) * 2 + 1)
#define MSCC_PATCH_RAM_ADDR(x) (((x) + 1) * 2)
#define MSCC_INT_MEM_ADDR 11
#define MSCC_INT_MEM_CNTL 12
#define READ_SFR 0x6000
#define READ_PRAM 0x4000
#define READ_ROM 0x2000
#define READ_RAM 0x0000
#define INT_MEM_WRITE_EN 0x1000
#define EN_PATCH_RAM_TRAP_ADDR(x) (0x0100 << ((x) - 1))
#define INT_MEM_DATA_M 0x00ff
#define INT_MEM_DATA(x) (INT_MEM_DATA_M & (x))
#define MSCC_PHY_PROC_CMD 18
#define PROC_CMD_NCOMPLETED 0x8000
#define PROC_CMD_FAILED 0x4000
#define PROC_CMD_SGMII_PORT(x) ((x) << 8)
#define PROC_CMD_FIBER_PORT(x) (0x0100 << (x) % 4)
#define PROC_CMD_QSGMII_PORT 0x0c00
#define PROC_CMD_RST_CONF_PORT 0x0080
#define PROC_CMD_RECONF_PORT 0x0000
#define PROC_CMD_READ_MOD_WRITE_PORT 0x0040
#define PROC_CMD_WRITE 0x0040
#define PROC_CMD_READ 0x0000
#define PROC_CMD_FIBER_DISABLE 0x0020
#define PROC_CMD_FIBER_100BASE_FX 0x0010
#define PROC_CMD_FIBER_1000BASE_X 0x0000
#define PROC_CMD_SGMII_MAC 0x0030
#define PROC_CMD_QSGMII_MAC 0x0020
#define PROC_CMD_NO_MAC_CONF 0x0000
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
#define PROC_CMD_1588_DEFAULT_INIT 0x0010
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define PROC_CMD_NOP 0x000f
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
#define PROC_CMD_PHY_INIT 0x000a
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define PROC_CMD_CRC16 0x0008
#define PROC_CMD_FIBER_MEDIA_CONF 0x0001
#define PROC_CMD_MCB_ACCESS_MAC_CONF 0x0000
#define PROC_CMD_NCOMPLETED_TIMEOUT_MS 500
#define MSCC_PHY_MAC_CFG_FASTLINK 19
#define MAC_CFG_MASK 0xc000
#define MAC_CFG_SGMII 0x0000
#define MAC_CFG_QSGMII 0x4000
/* Test page Registers */
#define MSCC_PHY_TEST_PAGE_5 5
#define MSCC_PHY_TEST_PAGE_8 8
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
#define MSCC_PHY_TEST_PAGE_9 9
#define MSCC_PHY_TEST_PAGE_20 20
#define MSCC_PHY_TEST_PAGE_24 24
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
/* Token ring page Registers */
#define MSCC_PHY_TR_CNTL 16
#define TR_WRITE 0x8000
#define TR_ADDR(x) (0x7fff & (x))
#define MSCC_PHY_TR_LSB 17
#define MSCC_PHY_TR_MSB 18
/* Microsemi PHY ID's */
#define PHY_ID_VSC8530 0x00070560
#define PHY_ID_VSC8531 0x00070570
#define PHY_ID_VSC8540 0x00070760
#define PHY_ID_VSC8541 0x00070770
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
#define PHY_ID_VSC8574 0x000704a0
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define PHY_ID_VSC8584 0x000707c0
#define MSCC_VDDMAC_1500 1500
#define MSCC_VDDMAC_1800 1800
#define MSCC_VDDMAC_2500 2500
#define MSCC_VDDMAC_3300 3300
#define DOWNSHIFT_COUNT_MAX 5
#define MAX_LEDS 4
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define VSC8584_SUPP_LED_MODES (BIT(VSC8531_LINK_ACTIVITY) | \
BIT(VSC8531_LINK_1000_ACTIVITY) | \
BIT(VSC8531_LINK_100_ACTIVITY) | \
BIT(VSC8531_LINK_10_ACTIVITY) | \
BIT(VSC8531_LINK_100_1000_ACTIVITY) | \
BIT(VSC8531_LINK_10_1000_ACTIVITY) | \
BIT(VSC8531_LINK_10_100_ACTIVITY) | \
BIT(VSC8584_LINK_100FX_1000X_ACTIVITY) | \
BIT(VSC8531_DUPLEX_COLLISION) | \
BIT(VSC8531_COLLISION) | \
BIT(VSC8531_ACTIVITY) | \
BIT(VSC8584_100FX_1000X_ACTIVITY) | \
BIT(VSC8531_AUTONEG_FAULT) | \
BIT(VSC8531_SERIAL_MODE) | \
BIT(VSC8531_FORCE_LED_OFF) | \
BIT(VSC8531_FORCE_LED_ON))
#define VSC85XX_SUPP_LED_MODES (BIT(VSC8531_LINK_ACTIVITY) | \
BIT(VSC8531_LINK_1000_ACTIVITY) | \
BIT(VSC8531_LINK_100_ACTIVITY) | \
BIT(VSC8531_LINK_10_ACTIVITY) | \
BIT(VSC8531_LINK_100_1000_ACTIVITY) | \
BIT(VSC8531_LINK_10_1000_ACTIVITY) | \
BIT(VSC8531_LINK_10_100_ACTIVITY) | \
BIT(VSC8531_DUPLEX_COLLISION) | \
BIT(VSC8531_COLLISION) | \
BIT(VSC8531_ACTIVITY) | \
BIT(VSC8531_AUTONEG_FAULT) | \
BIT(VSC8531_SERIAL_MODE) | \
BIT(VSC8531_FORCE_LED_OFF) | \
BIT(VSC8531_FORCE_LED_ON))
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define MSCC_VSC8584_REVB_INT8051_FW "mscc_vsc8584_revb_int8051_fb48.bin"
#define MSCC_VSC8584_REVB_INT8051_FW_START_ADDR 0xe800
#define MSCC_VSC8584_REVB_INT8051_FW_CRC 0xfb48
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
#define MSCC_VSC8574_REVB_INT8051_FW "mscc_vsc8574_revb_int8051_29e8.bin"
#define MSCC_VSC8574_REVB_INT8051_FW_START_ADDR 0x4000
#define MSCC_VSC8574_REVB_INT8051_FW_CRC 0x29e8
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
#define VSC8584_REVB 0x0001
#define MSCC_DEV_REV_MASK GENMASK(3, 0)
struct reg_val {
u16 reg;
u32 val;
};
struct vsc85xx_hw_stat {
const char *string;
u8 reg;
u16 page;
u16 mask;
};
static const struct vsc85xx_hw_stat vsc85xx_hw_stats[] = {
{
.string = "phy_receive_errors",
.reg = MSCC_PHY_ERR_RX_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_false_carrier",
.reg = MSCC_PHY_ERR_FALSE_CARRIER_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_cu_media_link_disconnect",
.reg = MSCC_PHY_ERR_LINK_DISCONNECT_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_cu_media_crc_good_count",
.reg = MSCC_PHY_CU_MEDIA_CRC_VALID_CNT,
.page = MSCC_PHY_PAGE_EXTENDED,
.mask = VALID_CRC_CNT_CRC_MASK,
}, {
.string = "phy_cu_media_crc_error_count",
.reg = MSCC_PHY_EXT_PHY_CNTL_4,
.page = MSCC_PHY_PAGE_EXTENDED,
.mask = ERR_CNT_MASK,
},
};
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
static const struct vsc85xx_hw_stat vsc8584_hw_stats[] = {
{
.string = "phy_receive_errors",
.reg = MSCC_PHY_ERR_RX_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_false_carrier",
.reg = MSCC_PHY_ERR_FALSE_CARRIER_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_cu_media_link_disconnect",
.reg = MSCC_PHY_ERR_LINK_DISCONNECT_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_cu_media_crc_good_count",
.reg = MSCC_PHY_CU_MEDIA_CRC_VALID_CNT,
.page = MSCC_PHY_PAGE_EXTENDED,
.mask = VALID_CRC_CNT_CRC_MASK,
}, {
.string = "phy_cu_media_crc_error_count",
.reg = MSCC_PHY_EXT_PHY_CNTL_4,
.page = MSCC_PHY_PAGE_EXTENDED,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_serdes_tx_good_pkt_count",
.reg = MSCC_PHY_SERDES_TX_VALID_CNT,
.page = MSCC_PHY_PAGE_EXTENDED_3,
.mask = VALID_CRC_CNT_CRC_MASK,
}, {
.string = "phy_serdes_tx_bad_crc_count",
.reg = MSCC_PHY_SERDES_TX_CRC_ERR_CNT,
.page = MSCC_PHY_PAGE_EXTENDED_3,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_serdes_rx_good_pkt_count",
.reg = MSCC_PHY_SERDES_RX_VALID_CNT,
.page = MSCC_PHY_PAGE_EXTENDED_3,
.mask = VALID_CRC_CNT_CRC_MASK,
}, {
.string = "phy_serdes_rx_bad_crc_count",
.reg = MSCC_PHY_SERDES_RX_CRC_ERR_CNT,
.page = MSCC_PHY_PAGE_EXTENDED_3,
.mask = ERR_CNT_MASK,
},
};
struct vsc8531_private {
int rate_magic;
u16 supp_led_modes;
u32 leds_mode[MAX_LEDS];
u8 nleds;
const struct vsc85xx_hw_stat *hw_stats;
u64 *stats;
int nstats;
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
bool pkg_init;
/* For multiple port PHYs; the MDIO address of the base PHY in the
* package.
*/
unsigned int base_addr;
};
#ifdef CONFIG_OF_MDIO
struct vsc8531_edge_rate_table {
u32 vddmac;
u32 slowdown[8];
};
static const struct vsc8531_edge_rate_table edge_table[] = {
{MSCC_VDDMAC_3300, { 0, 2, 4, 7, 10, 17, 29, 53} },
{MSCC_VDDMAC_2500, { 0, 3, 6, 10, 14, 23, 37, 63} },
{MSCC_VDDMAC_1800, { 0, 5, 9, 16, 23, 35, 52, 76} },
{MSCC_VDDMAC_1500, { 0, 6, 14, 21, 29, 42, 58, 77} },
};
#endif /* CONFIG_OF_MDIO */
static int vsc85xx_phy_read_page(struct phy_device *phydev)
{
return __phy_read(phydev, MSCC_EXT_PAGE_ACCESS);
}
static int vsc85xx_phy_write_page(struct phy_device *phydev, int page)
{
return __phy_write(phydev, MSCC_EXT_PAGE_ACCESS, page);
}
static int vsc85xx_get_sset_count(struct phy_device *phydev)
{
struct vsc8531_private *priv = phydev->priv;
if (!priv)
return 0;
return priv->nstats;
}
static void vsc85xx_get_strings(struct phy_device *phydev, u8 *data)
{
struct vsc8531_private *priv = phydev->priv;
int i;
if (!priv)
return;
for (i = 0; i < priv->nstats; i++)
strlcpy(data + i * ETH_GSTRING_LEN, priv->hw_stats[i].string,
ETH_GSTRING_LEN);
}
static u64 vsc85xx_get_stat(struct phy_device *phydev, int i)
{
struct vsc8531_private *priv = phydev->priv;
int val;
val = phy_read_paged(phydev, priv->hw_stats[i].page,
priv->hw_stats[i].reg);
if (val < 0)
return U64_MAX;
val = val & priv->hw_stats[i].mask;
priv->stats[i] += val;
return priv->stats[i];
}
static void vsc85xx_get_stats(struct phy_device *phydev,
struct ethtool_stats *stats, u64 *data)
{
struct vsc8531_private *priv = phydev->priv;
int i;
if (!priv)
return;
for (i = 0; i < priv->nstats; i++)
data[i] = vsc85xx_get_stat(phydev, i);
}
static int vsc85xx_led_cntl_set(struct phy_device *phydev,
u8 led_num,
u8 mode)
{
int rc;
u16 reg_val;
mutex_lock(&phydev->lock);
reg_val = phy_read(phydev, MSCC_PHY_LED_MODE_SEL);
reg_val &= ~LED_MODE_SEL_MASK(led_num);
reg_val |= LED_MODE_SEL(led_num, (u16)mode);
rc = phy_write(phydev, MSCC_PHY_LED_MODE_SEL, reg_val);
mutex_unlock(&phydev->lock);
return rc;
}
static int vsc85xx_mdix_get(struct phy_device *phydev, u8 *mdix)
{
u16 reg_val;
reg_val = phy_read(phydev, MSCC_PHY_DEV_AUX_CNTL);
if (reg_val & HP_AUTO_MDIX_X_OVER_IND_MASK)
*mdix = ETH_TP_MDI_X;
else
*mdix = ETH_TP_MDI;
return 0;
}
static int vsc85xx_mdix_set(struct phy_device *phydev, u8 mdix)
{
int rc;
u16 reg_val;
reg_val = phy_read(phydev, MSCC_PHY_BYPASS_CONTROL);
if (mdix == ETH_TP_MDI || mdix == ETH_TP_MDI_X) {
reg_val |= (DISABLE_PAIR_SWAP_CORR_MASK |
DISABLE_POLARITY_CORR_MASK |
DISABLE_HP_AUTO_MDIX_MASK);
} else {
reg_val &= ~(DISABLE_PAIR_SWAP_CORR_MASK |
DISABLE_POLARITY_CORR_MASK |
DISABLE_HP_AUTO_MDIX_MASK);
}
rc = phy_write(phydev, MSCC_PHY_BYPASS_CONTROL, reg_val);
if (rc)
return rc;
reg_val = 0;
if (mdix == ETH_TP_MDI)
reg_val = FORCE_MDI_CROSSOVER_MDI;
else if (mdix == ETH_TP_MDI_X)
reg_val = FORCE_MDI_CROSSOVER_MDIX;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_EXTENDED,
MSCC_PHY_EXT_MODE_CNTL, FORCE_MDI_CROSSOVER_MASK,
reg_val);
if (rc < 0)
return rc;
return genphy_restart_aneg(phydev);
}
static int vsc85xx_downshift_get(struct phy_device *phydev, u8 *count)
{
int reg_val;
reg_val = phy_read_paged(phydev, MSCC_PHY_PAGE_EXTENDED,
MSCC_PHY_ACTIPHY_CNTL);
if (reg_val < 0)
return reg_val;
reg_val &= DOWNSHIFT_CNTL_MASK;
if (!(reg_val & DOWNSHIFT_EN))
*count = DOWNSHIFT_DEV_DISABLE;
else
*count = ((reg_val & ~DOWNSHIFT_EN) >> DOWNSHIFT_CNTL_POS) + 2;
return 0;
}
static int vsc85xx_downshift_set(struct phy_device *phydev, u8 count)
{
if (count == DOWNSHIFT_DEV_DEFAULT_COUNT) {
/* Default downshift count 3 (i.e. Bit3:2 = 0b01) */
count = ((1 << DOWNSHIFT_CNTL_POS) | DOWNSHIFT_EN);
} else if (count > DOWNSHIFT_COUNT_MAX || count == 1) {
phydev_err(phydev, "Downshift count should be 2,3,4 or 5\n");
return -ERANGE;
} else if (count) {
/* Downshift count is either 2,3,4 or 5 */
count = (((count - 2) << DOWNSHIFT_CNTL_POS) | DOWNSHIFT_EN);
}
return phy_modify_paged(phydev, MSCC_PHY_PAGE_EXTENDED,
MSCC_PHY_ACTIPHY_CNTL, DOWNSHIFT_CNTL_MASK,
count);
}
static int vsc85xx_wol_set(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int rc;
u16 reg_val;
u8 i;
u16 pwd[3] = {0, 0, 0};
struct ethtool_wolinfo *wol_conf = wol;
u8 *mac_addr = phydev->attached_dev->dev_addr;
mutex_lock(&phydev->lock);
rc = phy_select_page(phydev, MSCC_PHY_PAGE_EXTENDED_2);
if (rc < 0) {
rc = phy_restore_page(phydev, rc, rc);
goto out_unlock;
}
if (wol->wolopts & WAKE_MAGIC) {
/* Store the device address for the magic packet */
for (i = 0; i < ARRAY_SIZE(pwd); i++)
pwd[i] = mac_addr[5 - (i * 2 + 1)] << 8 |
mac_addr[5 - i * 2];
__phy_write(phydev, MSCC_PHY_WOL_LOWER_MAC_ADDR, pwd[0]);
__phy_write(phydev, MSCC_PHY_WOL_MID_MAC_ADDR, pwd[1]);
__phy_write(phydev, MSCC_PHY_WOL_UPPER_MAC_ADDR, pwd[2]);
} else {
__phy_write(phydev, MSCC_PHY_WOL_LOWER_MAC_ADDR, 0);
__phy_write(phydev, MSCC_PHY_WOL_MID_MAC_ADDR, 0);
__phy_write(phydev, MSCC_PHY_WOL_UPPER_MAC_ADDR, 0);
}
if (wol_conf->wolopts & WAKE_MAGICSECURE) {
for (i = 0; i < ARRAY_SIZE(pwd); i++)
pwd[i] = wol_conf->sopass[5 - (i * 2 + 1)] << 8 |
wol_conf->sopass[5 - i * 2];
__phy_write(phydev, MSCC_PHY_WOL_LOWER_PASSWD, pwd[0]);
__phy_write(phydev, MSCC_PHY_WOL_MID_PASSWD, pwd[1]);
__phy_write(phydev, MSCC_PHY_WOL_UPPER_PASSWD, pwd[2]);
} else {
__phy_write(phydev, MSCC_PHY_WOL_LOWER_PASSWD, 0);
__phy_write(phydev, MSCC_PHY_WOL_MID_PASSWD, 0);
__phy_write(phydev, MSCC_PHY_WOL_UPPER_PASSWD, 0);
}
reg_val = __phy_read(phydev, MSCC_PHY_WOL_MAC_CONTROL);
if (wol_conf->wolopts & WAKE_MAGICSECURE)
reg_val |= SECURE_ON_ENABLE;
else
reg_val &= ~SECURE_ON_ENABLE;
__phy_write(phydev, MSCC_PHY_WOL_MAC_CONTROL, reg_val);
rc = phy_restore_page(phydev, rc, rc > 0 ? 0 : rc);
if (rc < 0)
goto out_unlock;
if (wol->wolopts & WAKE_MAGIC) {
/* Enable the WOL interrupt */
reg_val = phy_read(phydev, MII_VSC85XX_INT_MASK);
reg_val |= MII_VSC85XX_INT_MASK_WOL;
rc = phy_write(phydev, MII_VSC85XX_INT_MASK, reg_val);
if (rc)
goto out_unlock;
} else {
/* Disable the WOL interrupt */
reg_val = phy_read(phydev, MII_VSC85XX_INT_MASK);
reg_val &= (~MII_VSC85XX_INT_MASK_WOL);
rc = phy_write(phydev, MII_VSC85XX_INT_MASK, reg_val);
if (rc)
goto out_unlock;
}
/* Clear WOL iterrupt status */
reg_val = phy_read(phydev, MII_VSC85XX_INT_STATUS);
out_unlock:
mutex_unlock(&phydev->lock);
return rc;
}
static void vsc85xx_wol_get(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int rc;
u16 reg_val;
u8 i;
u16 pwd[3] = {0, 0, 0};
struct ethtool_wolinfo *wol_conf = wol;
mutex_lock(&phydev->lock);
rc = phy_select_page(phydev, MSCC_PHY_PAGE_EXTENDED_2);
if (rc < 0)
goto out_unlock;
reg_val = __phy_read(phydev, MSCC_PHY_WOL_MAC_CONTROL);
if (reg_val & SECURE_ON_ENABLE)
wol_conf->wolopts |= WAKE_MAGICSECURE;
if (wol_conf->wolopts & WAKE_MAGICSECURE) {
pwd[0] = __phy_read(phydev, MSCC_PHY_WOL_LOWER_PASSWD);
pwd[1] = __phy_read(phydev, MSCC_PHY_WOL_MID_PASSWD);
pwd[2] = __phy_read(phydev, MSCC_PHY_WOL_UPPER_PASSWD);
for (i = 0; i < ARRAY_SIZE(pwd); i++) {
wol_conf->sopass[5 - i * 2] = pwd[i] & 0x00ff;
wol_conf->sopass[5 - (i * 2 + 1)] = (pwd[i] & 0xff00)
>> 8;
}
}
out_unlock:
phy_restore_page(phydev, rc, rc > 0 ? 0 : rc);
mutex_unlock(&phydev->lock);
}
#ifdef CONFIG_OF_MDIO
static int vsc85xx_edge_rate_magic_get(struct phy_device *phydev)
{
u32 vdd, sd;
int i, j;
struct device *dev = &phydev->mdio.dev;
struct device_node *of_node = dev->of_node;
u8 sd_array_size = ARRAY_SIZE(edge_table[0].slowdown);
if (!of_node)
return -ENODEV;
if (of_property_read_u32(of_node, "vsc8531,vddmac", &vdd))
vdd = MSCC_VDDMAC_3300;
if (of_property_read_u32(of_node, "vsc8531,edge-slowdown", &sd))
sd = 0;
for (i = 0; i < ARRAY_SIZE(edge_table); i++)
if (edge_table[i].vddmac == vdd)
for (j = 0; j < sd_array_size; j++)
if (edge_table[i].slowdown[j] == sd)
return (sd_array_size - j - 1);
return -EINVAL;
}
static int vsc85xx_dt_led_mode_get(struct phy_device *phydev,
char *led,
u32 default_mode)
{
struct vsc8531_private *priv = phydev->priv;
struct device *dev = &phydev->mdio.dev;
struct device_node *of_node = dev->of_node;
u32 led_mode;
int err;
if (!of_node)
return -ENODEV;
led_mode = default_mode;
err = of_property_read_u32(of_node, led, &led_mode);
if (!err && !(BIT(led_mode) & priv->supp_led_modes)) {
phydev_err(phydev, "DT %s invalid\n", led);
return -EINVAL;
}
return led_mode;
}
#else
static int vsc85xx_edge_rate_magic_get(struct phy_device *phydev)
{
return 0;
}
static int vsc85xx_dt_led_mode_get(struct phy_device *phydev,
char *led,
u8 default_mode)
{
return default_mode;
}
#endif /* CONFIG_OF_MDIO */
static int vsc85xx_dt_led_modes_get(struct phy_device *phydev,
u32 *default_mode)
{
struct vsc8531_private *priv = phydev->priv;
char led_dt_prop[28];
int i, ret;
for (i = 0; i < priv->nleds; i++) {
ret = sprintf(led_dt_prop, "vsc8531,led-%d-mode", i);
if (ret < 0)
return ret;
ret = vsc85xx_dt_led_mode_get(phydev, led_dt_prop,
default_mode[i]);
if (ret < 0)
return ret;
priv->leds_mode[i] = ret;
}
return 0;
}
static int vsc85xx_edge_rate_cntl_set(struct phy_device *phydev, u8 edge_rate)
{
int rc;
mutex_lock(&phydev->lock);
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_EXTENDED_2,
MSCC_PHY_WOL_MAC_CONTROL, EDGE_RATE_CNTL_MASK,
edge_rate << EDGE_RATE_CNTL_POS);
mutex_unlock(&phydev->lock);
return rc;
}
static int vsc85xx_mac_if_set(struct phy_device *phydev,
phy_interface_t interface)
{
int rc;
u16 reg_val;
mutex_lock(&phydev->lock);
reg_val = phy_read(phydev, MSCC_PHY_EXT_PHY_CNTL_1);
reg_val &= ~(MAC_IF_SELECTION_MASK);
switch (interface) {
case PHY_INTERFACE_MODE_RGMII:
reg_val |= (MAC_IF_SELECTION_RGMII << MAC_IF_SELECTION_POS);
break;
case PHY_INTERFACE_MODE_RMII:
reg_val |= (MAC_IF_SELECTION_RMII << MAC_IF_SELECTION_POS);
break;
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_GMII:
reg_val |= (MAC_IF_SELECTION_GMII << MAC_IF_SELECTION_POS);
break;
default:
rc = -EINVAL;
goto out_unlock;
}
rc = phy_write(phydev, MSCC_PHY_EXT_PHY_CNTL_1, reg_val);
if (rc)
goto out_unlock;
rc = genphy_soft_reset(phydev);
out_unlock:
mutex_unlock(&phydev->lock);
return rc;
}
static int vsc85xx_default_config(struct phy_device *phydev)
{
int rc;
u16 reg_val;
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
mutex_lock(&phydev->lock);
reg_val = RGMII_RX_CLK_DELAY_1_1_NS << RGMII_RX_CLK_DELAY_POS;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_EXTENDED_2,
MSCC_PHY_RGMII_CNTL, RGMII_RX_CLK_DELAY_MASK,
reg_val);
mutex_unlock(&phydev->lock);
return rc;
}
static int vsc85xx_get_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return vsc85xx_downshift_get(phydev, (u8 *)data);
default:
return -EINVAL;
}
}
static int vsc85xx_set_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna,
const void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return vsc85xx_downshift_set(phydev, *(u8 *)data);
default:
return -EINVAL;
}
}
/* mdiobus lock should be locked when using this function */
static void vsc85xx_tr_write(struct phy_device *phydev, u16 addr, u32 val)
{
__phy_write(phydev, MSCC_PHY_TR_MSB, val >> 16);
__phy_write(phydev, MSCC_PHY_TR_LSB, val & GENMASK(15, 0));
__phy_write(phydev, MSCC_PHY_TR_CNTL, TR_WRITE | TR_ADDR(addr));
}
static int vsc8531_pre_init_seq_set(struct phy_device *phydev)
{
int rc;
const struct reg_val init_seq[] = {
{0x0f90, 0x00688980},
{0x0696, 0x00000003},
{0x07fa, 0x0050100f},
{0x1686, 0x00000004},
};
unsigned int i;
int oldpage;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_STANDARD,
MSCC_PHY_EXT_CNTL_STATUS, SMI_BROADCAST_WR_EN,
SMI_BROADCAST_WR_EN);
if (rc < 0)
return rc;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_TEST,
MSCC_PHY_TEST_PAGE_24, 0, 0x0400);
if (rc < 0)
return rc;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_TEST,
MSCC_PHY_TEST_PAGE_5, 0x0a00, 0x0e00);
if (rc < 0)
return rc;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_TEST,
MSCC_PHY_TEST_PAGE_8, 0x8000, 0x8000);
if (rc < 0)
return rc;
mutex_lock(&phydev->lock);
oldpage = phy_select_page(phydev, MSCC_PHY_PAGE_TR);
if (oldpage < 0)
goto out_unlock;
for (i = 0; i < ARRAY_SIZE(init_seq); i++)
vsc85xx_tr_write(phydev, init_seq[i].reg, init_seq[i].val);
out_unlock:
oldpage = phy_restore_page(phydev, oldpage, oldpage);
mutex_unlock(&phydev->lock);
return oldpage;
}
static int vsc85xx_eee_init_seq_set(struct phy_device *phydev)
{
const struct reg_val init_eee[] = {
{0x0f82, 0x0012b00a},
{0x1686, 0x00000004},
{0x168c, 0x00d2c46f},
{0x17a2, 0x00000620},
{0x16a0, 0x00eeffdd},
{0x16a6, 0x00071448},
{0x16a4, 0x0013132f},
{0x16a8, 0x00000000},
{0x0ffc, 0x00c0a028},
{0x0fe8, 0x0091b06c},
{0x0fea, 0x00041600},
{0x0f80, 0x00000af4},
{0x0fec, 0x00901809},
{0x0fee, 0x0000a6a1},
{0x0ffe, 0x00b01007},
{0x16b0, 0x00eeff00},
{0x16b2, 0x00007000},
{0x16b4, 0x00000814},
};
unsigned int i;
int oldpage;
mutex_lock(&phydev->lock);
oldpage = phy_select_page(phydev, MSCC_PHY_PAGE_TR);
if (oldpage < 0)
goto out_unlock;
for (i = 0; i < ARRAY_SIZE(init_eee); i++)
vsc85xx_tr_write(phydev, init_eee[i].reg, init_eee[i].val);
out_unlock:
oldpage = phy_restore_page(phydev, oldpage, oldpage);
mutex_unlock(&phydev->lock);
return oldpage;
}
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
/* phydev->bus->mdio_lock should be locked when using this function */
static int phy_base_write(struct phy_device *phydev, u32 regnum, u16 val)
{
struct vsc8531_private *priv = phydev->priv;
if (unlikely(!mutex_is_locked(&phydev->mdio.bus->mdio_lock))) {
dev_err(&phydev->mdio.dev, "MDIO bus lock not held!\n");
dump_stack();
}
return __mdiobus_write(phydev->mdio.bus, priv->base_addr, regnum, val);
}
/* phydev->bus->mdio_lock should be locked when using this function */
static int phy_base_read(struct phy_device *phydev, u32 regnum)
{
struct vsc8531_private *priv = phydev->priv;
if (unlikely(!mutex_is_locked(&phydev->mdio.bus->mdio_lock))) {
dev_err(&phydev->mdio.dev, "MDIO bus lock not held!\n");
dump_stack();
}
return __mdiobus_read(phydev->mdio.bus, priv->base_addr, regnum);
}
/* bus->mdio_lock should be locked when using this function */
static void vsc8584_csr_write(struct phy_device *phydev, u16 addr, u32 val)
{
phy_base_write(phydev, MSCC_PHY_TR_MSB, val >> 16);
phy_base_write(phydev, MSCC_PHY_TR_LSB, val & GENMASK(15, 0));
phy_base_write(phydev, MSCC_PHY_TR_CNTL, TR_WRITE | TR_ADDR(addr));
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_cmd(struct phy_device *phydev, u16 val)
{
unsigned long deadline;
u16 reg_val;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
phy_base_write(phydev, MSCC_PHY_PROC_CMD, PROC_CMD_NCOMPLETED | val);
deadline = jiffies + msecs_to_jiffies(PROC_CMD_NCOMPLETED_TIMEOUT_MS);
do {
reg_val = phy_base_read(phydev, MSCC_PHY_PROC_CMD);
} while (time_before(jiffies, deadline) &&
(reg_val & PROC_CMD_NCOMPLETED) &&
!(reg_val & PROC_CMD_FAILED));
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
if (reg_val & PROC_CMD_FAILED)
return -EIO;
if (reg_val & PROC_CMD_NCOMPLETED)
return -ETIMEDOUT;
return 0;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_micro_deassert_reset(struct phy_device *phydev,
bool patch_en)
{
u32 enable, release;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
enable = RUN_FROM_INT_ROM | MICRO_CLK_EN | DW8051_CLK_EN;
release = MICRO_NSOFT_RESET | RUN_FROM_INT_ROM | DW8051_CLK_EN |
MICRO_CLK_EN;
if (patch_en) {
enable |= MICRO_PATCH_EN;
release |= MICRO_PATCH_EN;
/* Clear all patches */
phy_base_write(phydev, MSCC_INT_MEM_CNTL, READ_RAM);
}
/* Enable 8051 Micro clock; CLEAR/SET patch present; disable PRAM clock
* override and addr. auto-incr; operate at 125 MHz
*/
phy_base_write(phydev, MSCC_DW8051_CNTL_STATUS, enable);
/* Release 8051 Micro SW reset */
phy_base_write(phydev, MSCC_DW8051_CNTL_STATUS, release);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return 0;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_micro_assert_reset(struct phy_device *phydev)
{
int ret;
u16 reg;
ret = vsc8584_cmd(phydev, PROC_CMD_NOP);
if (ret)
return ret;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
reg &= ~EN_PATCH_RAM_TRAP_ADDR(4);
phy_base_write(phydev, MSCC_INT_MEM_CNTL, reg);
phy_base_write(phydev, MSCC_TRAP_ROM_ADDR(4), 0x005b);
phy_base_write(phydev, MSCC_PATCH_RAM_ADDR(4), 0x005b);
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
reg |= EN_PATCH_RAM_TRAP_ADDR(4);
phy_base_write(phydev, MSCC_INT_MEM_CNTL, reg);
phy_base_write(phydev, MSCC_PHY_PROC_CMD, PROC_CMD_NOP);
reg = phy_base_read(phydev, MSCC_DW8051_CNTL_STATUS);
reg &= ~MICRO_NSOFT_RESET;
phy_base_write(phydev, MSCC_DW8051_CNTL_STATUS, reg);
phy_base_write(phydev, MSCC_PHY_PROC_CMD, PROC_CMD_MCB_ACCESS_MAC_CONF |
PROC_CMD_SGMII_PORT(0) | PROC_CMD_NO_MAC_CONF |
PROC_CMD_READ);
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
reg &= ~EN_PATCH_RAM_TRAP_ADDR(4);
phy_base_write(phydev, MSCC_INT_MEM_CNTL, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return 0;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_get_fw_crc(struct phy_device *phydev, u16 start, u16 size,
u16 *crc)
{
int ret;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED);
phy_base_write(phydev, MSCC_PHY_VERIPHY_CNTL_2, start);
phy_base_write(phydev, MSCC_PHY_VERIPHY_CNTL_3, size);
/* Start Micro command */
ret = vsc8584_cmd(phydev, PROC_CMD_CRC16);
if (ret)
goto out;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED);
*crc = phy_base_read(phydev, MSCC_PHY_VERIPHY_CNTL_2);
out:
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return ret;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_patch_fw(struct phy_device *phydev,
const struct firmware *fw)
{
int i, ret;
ret = vsc8584_micro_assert_reset(phydev);
if (ret) {
dev_err(&phydev->mdio.dev,
"%s: failed to assert reset of micro\n", __func__);
return ret;
}
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
/* Hold 8051 Micro in SW Reset, Enable auto incr address and patch clock
* Disable the 8051 Micro clock
*/
phy_base_write(phydev, MSCC_DW8051_CNTL_STATUS, RUN_FROM_INT_ROM |
AUTOINC_ADDR | PATCH_RAM_CLK | MICRO_CLK_EN |
MICRO_CLK_DIVIDE(2));
phy_base_write(phydev, MSCC_INT_MEM_CNTL, READ_PRAM | INT_MEM_WRITE_EN |
INT_MEM_DATA(2));
phy_base_write(phydev, MSCC_INT_MEM_ADDR, 0x0000);
for (i = 0; i < fw->size; i++)
phy_base_write(phydev, MSCC_INT_MEM_CNTL, READ_PRAM |
INT_MEM_WRITE_EN | fw->data[i]);
/* Clear internal memory access */
phy_base_write(phydev, MSCC_INT_MEM_CNTL, READ_RAM);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return 0;
}
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
/* bus->mdio_lock should be locked when using this function */
static bool vsc8574_is_serdes_init(struct phy_device *phydev)
{
u16 reg;
bool ret;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
reg = phy_base_read(phydev, MSCC_TRAP_ROM_ADDR(1));
if (reg != 0x3eb7) {
ret = false;
goto out;
}
reg = phy_base_read(phydev, MSCC_PATCH_RAM_ADDR(1));
if (reg != 0x4012) {
ret = false;
goto out;
}
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
if (reg != EN_PATCH_RAM_TRAP_ADDR(1)) {
ret = false;
goto out;
}
reg = phy_base_read(phydev, MSCC_DW8051_CNTL_STATUS);
if ((MICRO_NSOFT_RESET | RUN_FROM_INT_ROM | DW8051_CLK_EN |
MICRO_CLK_EN) != (reg & MSCC_DW8051_VLD_MASK)) {
ret = false;
goto out;
}
ret = true;
out:
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return ret;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8574_config_pre_init(struct phy_device *phydev)
{
const struct reg_val pre_init1[] = {
{0x0fae, 0x000401bd},
{0x0fac, 0x000f000f},
{0x17a0, 0x00a0f147},
{0x0fe4, 0x00052f54},
{0x1792, 0x0027303d},
{0x07fe, 0x00000704},
{0x0fe0, 0x00060150},
{0x0f82, 0x0012b00a},
{0x0f80, 0x00000d74},
{0x02e0, 0x00000012},
{0x03a2, 0x00050208},
{0x03b2, 0x00009186},
{0x0fb0, 0x000e3700},
{0x1688, 0x00049f81},
{0x0fd2, 0x0000ffff},
{0x168a, 0x00039fa2},
{0x1690, 0x0020640b},
{0x0258, 0x00002220},
{0x025a, 0x00002a20},
{0x025c, 0x00003060},
{0x025e, 0x00003fa0},
{0x03a6, 0x0000e0f0},
{0x0f92, 0x00001489},
{0x16a2, 0x00007000},
{0x16a6, 0x00071448},
{0x16a0, 0x00eeffdd},
{0x0fe8, 0x0091b06c},
{0x0fea, 0x00041600},
{0x16b0, 0x00eeff00},
{0x16b2, 0x00007000},
{0x16b4, 0x00000814},
{0x0f90, 0x00688980},
{0x03a4, 0x0000d8f0},
{0x0fc0, 0x00000400},
{0x07fa, 0x0050100f},
{0x0796, 0x00000003},
{0x07f8, 0x00c3ff98},
{0x0fa4, 0x0018292a},
{0x168c, 0x00d2c46f},
{0x17a2, 0x00000620},
{0x16a4, 0x0013132f},
{0x16a8, 0x00000000},
{0x0ffc, 0x00c0a028},
{0x0fec, 0x00901c09},
{0x0fee, 0x0004a6a1},
{0x0ffe, 0x00b01807},
};
const struct reg_val pre_init2[] = {
{0x0486, 0x0008a518},
{0x0488, 0x006dc696},
{0x048a, 0x00000912},
{0x048e, 0x00000db6},
{0x049c, 0x00596596},
{0x049e, 0x00000514},
{0x04a2, 0x00410280},
{0x04a4, 0x00000000},
{0x04a6, 0x00000000},
{0x04a8, 0x00000000},
{0x04aa, 0x00000000},
{0x04ae, 0x007df7dd},
{0x04b0, 0x006d95d4},
{0x04b2, 0x00492410},
};
struct device *dev = &phydev->mdio.dev;
const struct firmware *fw;
unsigned int i;
u16 crc, reg;
bool serdes_init;
int ret;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
/* all writes below are broadcasted to all PHYs in the same package */
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg |= SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
phy_base_write(phydev, MII_VSC85XX_INT_MASK, 0);
/* The below register writes are tweaking analog and electrical
* configuration that were determined through characterization by PHY
* engineers. These don't mean anything more than "these are the best
* values".
*/
phy_base_write(phydev, MSCC_PHY_EXT_PHY_CNTL_2, 0x0040);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_20, 0x4320);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_24, 0x0c00);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_9, 0x18ca);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_5, 0x1b20);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg |= 0x8000;
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TR);
for (i = 0; i < ARRAY_SIZE(pre_init1); i++)
vsc8584_csr_write(phydev, pre_init1[i].reg, pre_init1[i].val);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED_2);
phy_base_write(phydev, MSCC_PHY_CU_PMD_TX_CNTL, 0x028e);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TR);
for (i = 0; i < ARRAY_SIZE(pre_init2); i++)
vsc8584_csr_write(phydev, pre_init2[i].reg, pre_init2[i].val);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg &= ~0x8000;
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
/* end of write broadcasting */
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg &= ~SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
ret = request_firmware(&fw, MSCC_VSC8574_REVB_INT8051_FW, dev);
if (ret) {
dev_err(dev, "failed to load firmware %s, ret: %d\n",
MSCC_VSC8574_REVB_INT8051_FW, ret);
return ret;
}
/* Add one byte to size for the one added by the patch_fw function */
ret = vsc8584_get_fw_crc(phydev,
MSCC_VSC8574_REVB_INT8051_FW_START_ADDR,
fw->size + 1, &crc);
if (ret)
goto out;
if (crc == MSCC_VSC8574_REVB_INT8051_FW_CRC) {
serdes_init = vsc8574_is_serdes_init(phydev);
if (!serdes_init) {
ret = vsc8584_micro_assert_reset(phydev);
if (ret) {
dev_err(dev,
"%s: failed to assert reset of micro\n",
__func__);
goto out;
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
}
}
} else {
dev_dbg(dev, "FW CRC is not the expected one, patching FW\n");
serdes_init = false;
if (vsc8584_patch_fw(phydev, fw))
dev_warn(dev,
"failed to patch FW, expect non-optimal device\n");
}
if (!serdes_init) {
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
phy_base_write(phydev, MSCC_TRAP_ROM_ADDR(1), 0x3eb7);
phy_base_write(phydev, MSCC_PATCH_RAM_ADDR(1), 0x4012);
phy_base_write(phydev, MSCC_INT_MEM_CNTL,
EN_PATCH_RAM_TRAP_ADDR(1));
vsc8584_micro_deassert_reset(phydev, false);
/* Add one byte to size for the one added by the patch_fw
* function
*/
ret = vsc8584_get_fw_crc(phydev,
MSCC_VSC8574_REVB_INT8051_FW_START_ADDR,
fw->size + 1, &crc);
if (ret)
goto out;
if (crc != MSCC_VSC8574_REVB_INT8051_FW_CRC)
dev_warn(dev,
"FW CRC after patching is not the expected one, expect non-optimal device\n");
}
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
ret = vsc8584_cmd(phydev, PROC_CMD_1588_DEFAULT_INIT |
PROC_CMD_PHY_INIT);
out:
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
release_firmware(fw);
return ret;
}
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_config_pre_init(struct phy_device *phydev)
{
const struct reg_val pre_init1[] = {
{0x07fa, 0x0050100f},
{0x1688, 0x00049f81},
{0x0f90, 0x00688980},
{0x03a4, 0x0000d8f0},
{0x0fc0, 0x00000400},
{0x0f82, 0x0012b002},
{0x1686, 0x00000004},
{0x168c, 0x00d2c46f},
{0x17a2, 0x00000620},
{0x16a0, 0x00eeffdd},
{0x16a6, 0x00071448},
{0x16a4, 0x0013132f},
{0x16a8, 0x00000000},
{0x0ffc, 0x00c0a028},
{0x0fe8, 0x0091b06c},
{0x0fea, 0x00041600},
{0x0f80, 0x00fffaff},
{0x0fec, 0x00901809},
{0x0ffe, 0x00b01007},
{0x16b0, 0x00eeff00},
{0x16b2, 0x00007000},
{0x16b4, 0x00000814},
};
const struct reg_val pre_init2[] = {
{0x0486, 0x0008a518},
{0x0488, 0x006dc696},
{0x048a, 0x00000912},
};
const struct firmware *fw;
struct device *dev = &phydev->mdio.dev;
unsigned int i;
u16 crc, reg;
int ret;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
/* all writes below are broadcasted to all PHYs in the same package */
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg |= SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
phy_base_write(phydev, MII_VSC85XX_INT_MASK, 0);
reg = phy_base_read(phydev, MSCC_PHY_BYPASS_CONTROL);
reg |= PARALLEL_DET_IGNORE_ADVERTISED;
phy_base_write(phydev, MSCC_PHY_BYPASS_CONTROL, reg);
/* The below register writes are tweaking analog and electrical
* configuration that were determined through characterization by PHY
* engineers. These don't mean anything more than "these are the best
* values".
*/
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED_3);
phy_base_write(phydev, MSCC_PHY_SERDES_TX_CRC_ERR_CNT, 0x2000);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_5, 0x1f20);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg |= 0x8000;
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TR);
phy_base_write(phydev, MSCC_PHY_TR_CNTL, TR_WRITE | TR_ADDR(0x2fa4));
reg = phy_base_read(phydev, MSCC_PHY_TR_MSB);
reg &= ~0x007f;
reg |= 0x0019;
phy_base_write(phydev, MSCC_PHY_TR_MSB, reg);
phy_base_write(phydev, MSCC_PHY_TR_CNTL, TR_WRITE | TR_ADDR(0x0fa4));
for (i = 0; i < ARRAY_SIZE(pre_init1); i++)
vsc8584_csr_write(phydev, pre_init1[i].reg, pre_init1[i].val);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED_2);
phy_base_write(phydev, MSCC_PHY_CU_PMD_TX_CNTL, 0x028e);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TR);
for (i = 0; i < ARRAY_SIZE(pre_init2); i++)
vsc8584_csr_write(phydev, pre_init2[i].reg, pre_init2[i].val);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg &= ~0x8000;
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
/* end of write broadcasting */
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg &= ~SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
ret = request_firmware(&fw, MSCC_VSC8584_REVB_INT8051_FW, dev);
if (ret) {
dev_err(dev, "failed to load firmware %s, ret: %d\n",
MSCC_VSC8584_REVB_INT8051_FW, ret);
return ret;
}
/* Add one byte to size for the one added by the patch_fw function */
ret = vsc8584_get_fw_crc(phydev,
MSCC_VSC8584_REVB_INT8051_FW_START_ADDR,
fw->size + 1, &crc);
if (ret)
goto out;
if (crc != MSCC_VSC8584_REVB_INT8051_FW_CRC) {
dev_dbg(dev, "FW CRC is not the expected one, patching FW\n");
if (vsc8584_patch_fw(phydev, fw))
dev_warn(dev,
"failed to patch FW, expect non-optimal device\n");
}
vsc8584_micro_deassert_reset(phydev, false);
/* Add one byte to size for the one added by the patch_fw function */
ret = vsc8584_get_fw_crc(phydev,
MSCC_VSC8584_REVB_INT8051_FW_START_ADDR,
fw->size + 1, &crc);
if (ret)
goto out;
if (crc != MSCC_VSC8584_REVB_INT8051_FW_CRC)
dev_warn(dev,
"FW CRC after patching is not the expected one, expect non-optimal device\n");
ret = vsc8584_micro_assert_reset(phydev);
if (ret)
goto out;
vsc8584_micro_deassert_reset(phydev, true);
out:
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
release_firmware(fw);
return ret;
}
/* Check if one PHY has already done the init of the parts common to all PHYs
* in the Quad PHY package.
*/
static bool vsc8584_is_pkg_init(struct phy_device *phydev, bool reversed)
{
struct mdio_device **map = phydev->mdio.bus->mdio_map;
struct vsc8531_private *vsc8531;
struct phy_device *phy;
int i, addr;
/* VSC8584 is a Quad PHY */
for (i = 0; i < 4; i++) {
vsc8531 = phydev->priv;
if (reversed)
addr = vsc8531->base_addr - i;
else
addr = vsc8531->base_addr + i;
phy = container_of(map[addr], struct phy_device, mdio);
if ((phy->phy_id & phydev->drv->phy_id_mask) !=
(phydev->drv->phy_id & phydev->drv->phy_id_mask))
continue;
vsc8531 = phy->priv;
if (vsc8531 && vsc8531->pkg_init)
return true;
}
return false;
}
static int vsc8584_config_init(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531 = phydev->priv;
u16 addr, val;
int ret, i;
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
mutex_lock(&phydev->mdio.bus->mdio_lock);
__mdiobus_write(phydev->mdio.bus, phydev->mdio.addr,
MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED);
addr = __mdiobus_read(phydev->mdio.bus, phydev->mdio.addr,
MSCC_PHY_EXT_PHY_CNTL_4);
addr >>= PHY_CNTL_4_ADDR_POS;
val = __mdiobus_read(phydev->mdio.bus, phydev->mdio.addr,
MSCC_PHY_ACTIPHY_CNTL);
if (val & PHY_ADDR_REVERSED)
vsc8531->base_addr = phydev->mdio.addr + addr;
else
vsc8531->base_addr = phydev->mdio.addr - addr;
/* Some parts of the init sequence are identical for every PHY in the
* package. Some parts are modifying the GPIO register bank which is a
* set of registers that are affecting all PHYs, a few resetting the
* microprocessor common to all PHYs. The CRC check responsible of the
* checking the firmware within the 8051 microprocessor can only be
* accessed via the PHY whose internal address in the package is 0.
* All PHYs' interrupts mask register has to be zeroed before enabling
* any PHY's interrupt in this register.
* For all these reasons, we need to do the init sequence once and only
* once whatever is the first PHY in the package that is initialized and
* do the correct init sequence for all PHYs that are package-critical
* in this pre-init function.
*/
if (!vsc8584_is_pkg_init(phydev, val & PHY_ADDR_REVERSED ? 1 : 0)) {
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
if ((phydev->phy_id & phydev->drv->phy_id_mask) ==
(PHY_ID_VSC8574 & phydev->drv->phy_id_mask))
ret = vsc8574_config_pre_init(phydev);
else if ((phydev->phy_id & phydev->drv->phy_id_mask) ==
(PHY_ID_VSC8584 & phydev->drv->phy_id_mask))
ret = vsc8584_config_pre_init(phydev);
else
ret = -EINVAL;
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
if (ret)
goto err;
}
vsc8531->pkg_init = true;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
val = phy_base_read(phydev, MSCC_PHY_MAC_CFG_FASTLINK);
val &= ~MAC_CFG_MASK;
if (phydev->interface == PHY_INTERFACE_MODE_QSGMII)
val |= MAC_CFG_QSGMII;
else
val |= MAC_CFG_SGMII;
ret = phy_base_write(phydev, MSCC_PHY_MAC_CFG_FASTLINK, val);
if (ret)
goto err;
val = PROC_CMD_MCB_ACCESS_MAC_CONF | PROC_CMD_RST_CONF_PORT |
PROC_CMD_READ_MOD_WRITE_PORT;
if (phydev->interface == PHY_INTERFACE_MODE_QSGMII)
val |= PROC_CMD_QSGMII_MAC;
else
val |= PROC_CMD_SGMII_MAC;
ret = vsc8584_cmd(phydev, val);
if (ret)
goto err;
usleep_range(10000, 20000);
/* Disable SerDes for 100Base-FX */
ret = vsc8584_cmd(phydev, PROC_CMD_FIBER_MEDIA_CONF |
PROC_CMD_FIBER_PORT(addr) | PROC_CMD_FIBER_DISABLE |
PROC_CMD_READ_MOD_WRITE_PORT |
PROC_CMD_RST_CONF_PORT | PROC_CMD_FIBER_100BASE_FX);
if (ret)
goto err;
/* Disable SerDes for 1000Base-X */
ret = vsc8584_cmd(phydev, PROC_CMD_FIBER_MEDIA_CONF |
PROC_CMD_FIBER_PORT(addr) | PROC_CMD_FIBER_DISABLE |
PROC_CMD_READ_MOD_WRITE_PORT |
PROC_CMD_RST_CONF_PORT | PROC_CMD_FIBER_1000BASE_X);
if (ret)
goto err;
mutex_unlock(&phydev->mdio.bus->mdio_lock);
phy_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
val = phy_read(phydev, MSCC_PHY_EXT_PHY_CNTL_1);
val &= ~(MEDIA_OP_MODE_MASK | VSC8584_MAC_IF_SELECTION_MASK);
val |= MEDIA_OP_MODE_COPPER | (VSC8584_MAC_IF_SELECTION_SGMII <<
VSC8584_MAC_IF_SELECTION_POS);
ret = phy_write(phydev, MSCC_PHY_EXT_PHY_CNTL_1, val);
ret = genphy_soft_reset(phydev);
if (ret)
return ret;
for (i = 0; i < vsc8531->nleds; i++) {
ret = vsc85xx_led_cntl_set(phydev, i, vsc8531->leds_mode[i]);
if (ret)
return ret;
}
return genphy_config_init(phydev);
err:
mutex_unlock(&phydev->mdio.bus->mdio_lock);
return ret;
}
static int vsc85xx_config_init(struct phy_device *phydev)
{
int rc, i, phy_id;
struct vsc8531_private *vsc8531 = phydev->priv;
rc = vsc85xx_default_config(phydev);
if (rc)
return rc;
rc = vsc85xx_mac_if_set(phydev, phydev->interface);
if (rc)
return rc;
rc = vsc85xx_edge_rate_cntl_set(phydev, vsc8531->rate_magic);
if (rc)
return rc;
phy_id = phydev->drv->phy_id & phydev->drv->phy_id_mask;
if (PHY_ID_VSC8531 == phy_id || PHY_ID_VSC8541 == phy_id ||
PHY_ID_VSC8530 == phy_id || PHY_ID_VSC8540 == phy_id) {
rc = vsc8531_pre_init_seq_set(phydev);
if (rc)
return rc;
}
rc = vsc85xx_eee_init_seq_set(phydev);
if (rc)
return rc;
for (i = 0; i < vsc8531->nleds; i++) {
rc = vsc85xx_led_cntl_set(phydev, i, vsc8531->leds_mode[i]);
if (rc)
return rc;
}
return genphy_config_init(phydev);
}
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
static int vsc8584_did_interrupt(struct phy_device *phydev)
{
int rc = 0;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
rc = phy_read(phydev, MII_VSC85XX_INT_STATUS);
return (rc < 0) ? 0 : rc & MII_VSC85XX_INT_MASK_MASK;
}
static int vsc85xx_ack_interrupt(struct phy_device *phydev)
{
int rc = 0;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
rc = phy_read(phydev, MII_VSC85XX_INT_STATUS);
return (rc < 0) ? rc : 0;
}
static int vsc85xx_config_intr(struct phy_device *phydev)
{
int rc;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
rc = phy_write(phydev, MII_VSC85XX_INT_MASK,
MII_VSC85XX_INT_MASK_MASK);
} else {
rc = phy_write(phydev, MII_VSC85XX_INT_MASK, 0);
if (rc < 0)
return rc;
rc = phy_read(phydev, MII_VSC85XX_INT_STATUS);
}
return rc;
}
static int vsc85xx_config_aneg(struct phy_device *phydev)
{
int rc;
rc = vsc85xx_mdix_set(phydev, phydev->mdix_ctrl);
if (rc < 0)
return rc;
return genphy_config_aneg(phydev);
}
static int vsc85xx_read_status(struct phy_device *phydev)
{
int rc;
rc = vsc85xx_mdix_get(phydev, &phydev->mdix);
if (rc < 0)
return rc;
return genphy_read_status(phydev);
}
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
static int vsc8574_probe(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531;
u32 default_mode[4] = {VSC8531_LINK_1000_ACTIVITY,
VSC8531_LINK_100_ACTIVITY, VSC8531_LINK_ACTIVITY,
VSC8531_DUPLEX_COLLISION};
vsc8531 = devm_kzalloc(&phydev->mdio.dev, sizeof(*vsc8531), GFP_KERNEL);
if (!vsc8531)
return -ENOMEM;
phydev->priv = vsc8531;
vsc8531->nleds = 4;
vsc8531->supp_led_modes = VSC8584_SUPP_LED_MODES;
vsc8531->hw_stats = vsc8584_hw_stats;
vsc8531->nstats = ARRAY_SIZE(vsc8584_hw_stats);
vsc8531->stats = devm_kmalloc_array(&phydev->mdio.dev, vsc8531->nstats,
sizeof(u64), GFP_KERNEL);
if (!vsc8531->stats)
return -ENOMEM;
return vsc85xx_dt_led_modes_get(phydev, default_mode);
}
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
static int vsc8584_probe(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531;
u32 default_mode[4] = {VSC8531_LINK_1000_ACTIVITY,
VSC8531_LINK_100_ACTIVITY, VSC8531_LINK_ACTIVITY,
VSC8531_DUPLEX_COLLISION};
if ((phydev->phy_id & MSCC_DEV_REV_MASK) != VSC8584_REVB) {
dev_err(&phydev->mdio.dev, "Only VSC8584 revB is supported.\n");
return -ENOTSUPP;
}
vsc8531 = devm_kzalloc(&phydev->mdio.dev, sizeof(*vsc8531), GFP_KERNEL);
if (!vsc8531)
return -ENOMEM;
phydev->priv = vsc8531;
vsc8531->nleds = 4;
vsc8531->supp_led_modes = VSC8584_SUPP_LED_MODES;
vsc8531->hw_stats = vsc8584_hw_stats;
vsc8531->nstats = ARRAY_SIZE(vsc8584_hw_stats);
vsc8531->stats = devm_kmalloc_array(&phydev->mdio.dev, vsc8531->nstats,
sizeof(u64), GFP_KERNEL);
if (!vsc8531->stats)
return -ENOMEM;
return vsc85xx_dt_led_modes_get(phydev, default_mode);
}
static int vsc85xx_probe(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531;
int rate_magic;
u32 default_mode[2] = {VSC8531_LINK_1000_ACTIVITY,
VSC8531_LINK_100_ACTIVITY};
rate_magic = vsc85xx_edge_rate_magic_get(phydev);
if (rate_magic < 0)
return rate_magic;
vsc8531 = devm_kzalloc(&phydev->mdio.dev, sizeof(*vsc8531), GFP_KERNEL);
if (!vsc8531)
return -ENOMEM;
phydev->priv = vsc8531;
vsc8531->rate_magic = rate_magic;
vsc8531->nleds = 2;
vsc8531->supp_led_modes = VSC85XX_SUPP_LED_MODES;
vsc8531->hw_stats = vsc85xx_hw_stats;
vsc8531->nstats = ARRAY_SIZE(vsc85xx_hw_stats);
vsc8531->stats = devm_kmalloc_array(&phydev->mdio.dev, vsc8531->nstats,
sizeof(u64), GFP_KERNEL);
if (!vsc8531->stats)
return -ENOMEM;
return vsc85xx_dt_led_modes_get(phydev, default_mode);
}
/* Microsemi VSC85xx PHYs */
static struct phy_driver vsc85xx_driver[] = {
{
.phy_id = PHY_ID_VSC8530,
.name = "Microsemi FE VSC8530",
.phy_id_mask = 0xfffffff0,
.features = PHY_BASIC_FEATURES,
.soft_reset = &genphy_soft_reset,
.config_init = &vsc85xx_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.ack_interrupt = &vsc85xx_ack_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc85xx_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8531,
.name = "Microsemi VSC8531",
.phy_id_mask = 0xfffffff0,
.features = PHY_GBIT_FEATURES,
.soft_reset = &genphy_soft_reset,
.config_init = &vsc85xx_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.ack_interrupt = &vsc85xx_ack_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc85xx_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8540,
.name = "Microsemi FE VSC8540 SyncE",
.phy_id_mask = 0xfffffff0,
.features = PHY_BASIC_FEATURES,
.soft_reset = &genphy_soft_reset,
.config_init = &vsc85xx_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.ack_interrupt = &vsc85xx_ack_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc85xx_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8541,
.name = "Microsemi VSC8541 SyncE",
.phy_id_mask = 0xfffffff0,
.features = PHY_GBIT_FEATURES,
.soft_reset = &genphy_soft_reset,
.config_init = &vsc85xx_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.ack_interrupt = &vsc85xx_ack_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc85xx_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
},
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
{
.phy_id = PHY_ID_VSC8574,
.name = "Microsemi GE VSC8574 SyncE",
.phy_id_mask = 0xfffffff0,
.features = PHY_GBIT_FEATURES,
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.ack_interrupt = &vsc85xx_ack_interrupt,
.config_intr = &vsc85xx_config_intr,
.did_interrupt = &vsc8584_did_interrupt,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8574_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
{
.phy_id = PHY_ID_VSC8584,
.name = "Microsemi GE VSC8584 SyncE",
.phy_id_mask = 0xfffffff0,
.features = PHY_GBIT_FEATURES,
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.ack_interrupt = &vsc85xx_ack_interrupt,
.config_intr = &vsc85xx_config_intr,
.did_interrupt = &vsc8584_did_interrupt,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8584_probe,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
}
};
module_phy_driver(vsc85xx_driver);
static struct mdio_device_id __maybe_unused vsc85xx_tbl[] = {
{ PHY_ID_VSC8530, 0xfffffff0, },
{ PHY_ID_VSC8531, 0xfffffff0, },
{ PHY_ID_VSC8540, 0xfffffff0, },
{ PHY_ID_VSC8541, 0xfffffff0, },
net: phy: mscc: add support for VSC8574 PHY The VSC8574 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports WOL, downshifting and can set the blinking pattern of each of its 4 LEDs, supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, WOL, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8574 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:43 +07:00
{ PHY_ID_VSC8574, 0xfffffff0, },
net: phy: mscc: add support for VSC8584 PHY The VSC8584 PHY is a 4-ports PHY that is 10/100/1000BASE-T, 100BASE-FX, 1000BASE-X and triple-speed copper SFP capable, can communicate with the MAC via SGMII, QSGMII or 1000BASE-X, supports downshifting and can set the blinking pattern of each of its 4 LEDs, supports hardware offloading of MACsec and supports SyncE as well as HP Auto-MDIX detection. This adds support for 10/100/1000BASE-T, SGMII/QSGMII link with the MAC, downshifting, HP Auto-MDIX detection and blinking pattern for its 4 LEDs. The VSC8584 has also an internal Intel 8051 microcontroller whose firmware needs to be patched when the PHY is reset. If the 8051's firmware has the expected CRC, its patching can be skipped. The microcontroller can be accessed from any port of the PHY, though the CRC function can only be done through the PHY that is the base PHY of the package (internal address 0) due to a limitation of the firmware. The GPIO register bank is a set of registers that are common to all PHYs in the package. So any modification in any register of this bank affects all PHYs of the package. If the PHYs haven't been reset before booting the Linux kernel and were configured to use interrupts for e.g. link status updates, it is required to clear the interrupts mask register of all PHYs before being able to use interrupts with any PHY. The first PHY of the package that will be init will take care of clearing all PHYs interrupts mask registers. Thus, we need to keep track of the init sequence in the package, if it's already been done or if it's to be done. Most of the init sequence of a PHY of the package is common to all PHYs in the package, thus we use the SMI broadcast feature which enables us to propagate a write in one register of one PHY to all PHYs in the same package. The revA of the VSC8584 PHY (which is not and will not be publicly released) should NOT patch the firmware of the microcontroller or it'll make things worse, the easiest way is just to not support it. Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-08 17:14:42 +07:00
{ PHY_ID_VSC8584, 0xfffffff0, },
{ }
};
MODULE_DEVICE_TABLE(mdio, vsc85xx_tbl);
MODULE_DESCRIPTION("Microsemi VSC85xx PHY driver");
MODULE_AUTHOR("Nagaraju Lakkaraju");
MODULE_LICENSE("Dual MIT/GPL");