linux_dsm_epyc7002/net/sched/cls_u32.c

1440 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* The filters are packed to hash tables of key nodes
* with a set of 32bit key/mask pairs at every node.
* Nodes reference next level hash tables etc.
*
* This scheme is the best universal classifier I managed to
* invent; it is not super-fast, but it is not slow (provided you
* program it correctly), and general enough. And its relative
* speed grows as the number of rules becomes larger.
*
* It seems that it represents the best middle point between
* speed and manageability both by human and by machine.
*
* It is especially useful for link sharing combined with QoS;
* pure RSVP doesn't need such a general approach and can use
* much simpler (and faster) schemes, sort of cls_rsvp.c.
*
* nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
*/
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/percpu.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
net_sched: avoid generating same handle for u32 filters When kernel generates a handle for a u32 filter, it tries to start from the max in the bucket. So when we have a filter with the max (fff) handle, it will cause kernel always generates the same handle for new filters. This can be shown by the following command: tc qdisc add dev eth0 ingress tc filter add dev eth0 parent ffff: protocol ip pref 770 handle 800::fff u32 match ip protocol 1 0xff tc filter add dev eth0 parent ffff: protocol ip pref 770 u32 match ip protocol 1 0xff ... we will get some u32 filters with same handle: # tc filter show dev eth0 parent ffff: filter protocol ip pref 770 u32 filter protocol ip pref 770 u32 fh 800: ht divisor 1 filter protocol ip pref 770 u32 fh 800::fff order 4095 key ht 800 bkt 0 match 00010000/00ff0000 at 8 filter protocol ip pref 770 u32 fh 800::fff order 4095 key ht 800 bkt 0 match 00010000/00ff0000 at 8 filter protocol ip pref 770 u32 fh 800::fff order 4095 key ht 800 bkt 0 match 00010000/00ff0000 at 8 filter protocol ip pref 770 u32 fh 800::fff order 4095 key ht 800 bkt 0 match 00010000/00ff0000 at 8 handles should be unique. This patch fixes it by looking up a bitmap, so that can guarantee the handle is as unique as possible. For compatibility, we still start from 0x800. Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Cong Wang <cwang@twopensource.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-18 07:34:53 +07:00
#include <linux/bitmap.h>
#include <linux/netdevice.h>
#include <linux/hash.h>
#include <net/netlink.h>
#include <net/act_api.h>
#include <net/pkt_cls.h>
#include <linux/idr.h>
struct tc_u_knode {
struct tc_u_knode __rcu *next;
u32 handle;
struct tc_u_hnode __rcu *ht_up;
struct tcf_exts exts;
int ifindex;
u8 fshift;
struct tcf_result res;
struct tc_u_hnode __rcu *ht_down;
#ifdef CONFIG_CLS_U32_PERF
struct tc_u32_pcnt __percpu *pf;
#endif
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
u32 flags;
unsigned int in_hw_count;
#ifdef CONFIG_CLS_U32_MARK
u32 val;
u32 mask;
u32 __percpu *pcpu_success;
#endif
struct rcu_work rwork;
/* The 'sel' field MUST be the last field in structure to allow for
* tc_u32_keys allocated at end of structure.
*/
struct tc_u32_sel sel;
};
struct tc_u_hnode {
struct tc_u_hnode __rcu *next;
u32 handle;
u32 prio;
int refcnt;
unsigned int divisor;
struct idr handle_idr;
bool is_root;
struct rcu_head rcu;
u32 flags;
/* The 'ht' field MUST be the last field in structure to allow for
* more entries allocated at end of structure.
*/
struct tc_u_knode __rcu *ht[1];
};
struct tc_u_common {
struct tc_u_hnode __rcu *hlist;
void *ptr;
int refcnt;
struct idr handle_idr;
struct hlist_node hnode;
long knodes;
};
static inline unsigned int u32_hash_fold(__be32 key,
const struct tc_u32_sel *sel,
u8 fshift)
{
unsigned int h = ntohl(key & sel->hmask) >> fshift;
return h;
}
static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
struct tcf_result *res)
{
struct {
struct tc_u_knode *knode;
unsigned int off;
} stack[TC_U32_MAXDEPTH];
struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
unsigned int off = skb_network_offset(skb);
struct tc_u_knode *n;
int sdepth = 0;
int off2 = 0;
int sel = 0;
#ifdef CONFIG_CLS_U32_PERF
int j;
#endif
int i, r;
next_ht:
n = rcu_dereference_bh(ht->ht[sel]);
next_knode:
if (n) {
struct tc_u32_key *key = n->sel.keys;
#ifdef CONFIG_CLS_U32_PERF
__this_cpu_inc(n->pf->rcnt);
j = 0;
#endif
if (tc_skip_sw(n->flags)) {
n = rcu_dereference_bh(n->next);
goto next_knode;
}
#ifdef CONFIG_CLS_U32_MARK
if ((skb->mark & n->mask) != n->val) {
n = rcu_dereference_bh(n->next);
goto next_knode;
} else {
__this_cpu_inc(*n->pcpu_success);
}
#endif
for (i = n->sel.nkeys; i > 0; i--, key++) {
int toff = off + key->off + (off2 & key->offmask);
__be32 *data, hdata;
if (skb_headroom(skb) + toff > INT_MAX)
goto out;
data = skb_header_pointer(skb, toff, 4, &hdata);
if (!data)
goto out;
if ((*data ^ key->val) & key->mask) {
n = rcu_dereference_bh(n->next);
goto next_knode;
}
#ifdef CONFIG_CLS_U32_PERF
__this_cpu_inc(n->pf->kcnts[j]);
j++;
#endif
}
ht = rcu_dereference_bh(n->ht_down);
if (!ht) {
check_terminal:
if (n->sel.flags & TC_U32_TERMINAL) {
*res = n->res;
if (!tcf_match_indev(skb, n->ifindex)) {
n = rcu_dereference_bh(n->next);
goto next_knode;
}
#ifdef CONFIG_CLS_U32_PERF
__this_cpu_inc(n->pf->rhit);
#endif
r = tcf_exts_exec(skb, &n->exts, res);
if (r < 0) {
n = rcu_dereference_bh(n->next);
goto next_knode;
}
return r;
}
n = rcu_dereference_bh(n->next);
goto next_knode;
}
/* PUSH */
if (sdepth >= TC_U32_MAXDEPTH)
goto deadloop;
stack[sdepth].knode = n;
stack[sdepth].off = off;
sdepth++;
ht = rcu_dereference_bh(n->ht_down);
sel = 0;
if (ht->divisor) {
__be32 *data, hdata;
data = skb_header_pointer(skb, off + n->sel.hoff, 4,
&hdata);
if (!data)
goto out;
sel = ht->divisor & u32_hash_fold(*data, &n->sel,
n->fshift);
}
if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
goto next_ht;
if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
off2 = n->sel.off + 3;
if (n->sel.flags & TC_U32_VAROFFSET) {
__be16 *data, hdata;
data = skb_header_pointer(skb,
off + n->sel.offoff,
2, &hdata);
if (!data)
goto out;
off2 += ntohs(n->sel.offmask & *data) >>
n->sel.offshift;
}
off2 &= ~3;
}
if (n->sel.flags & TC_U32_EAT) {
off += off2;
off2 = 0;
}
if (off < skb->len)
goto next_ht;
}
/* POP */
if (sdepth--) {
n = stack[sdepth].knode;
ht = rcu_dereference_bh(n->ht_up);
off = stack[sdepth].off;
goto check_terminal;
}
out:
return -1;
deadloop:
net_warn_ratelimited("cls_u32: dead loop\n");
return -1;
}
static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
{
struct tc_u_hnode *ht;
for (ht = rtnl_dereference(tp_c->hlist);
ht;
ht = rtnl_dereference(ht->next))
if (ht->handle == handle)
break;
return ht;
}
static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
{
unsigned int sel;
struct tc_u_knode *n = NULL;
sel = TC_U32_HASH(handle);
if (sel > ht->divisor)
goto out;
for (n = rtnl_dereference(ht->ht[sel]);
n;
n = rtnl_dereference(n->next))
if (n->handle == handle)
break;
out:
return n;
}
static void *u32_get(struct tcf_proto *tp, u32 handle)
{
struct tc_u_hnode *ht;
struct tc_u_common *tp_c = tp->data;
if (TC_U32_HTID(handle) == TC_U32_ROOT)
ht = rtnl_dereference(tp->root);
else
ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
if (!ht)
return NULL;
if (TC_U32_KEY(handle) == 0)
return ht;
return u32_lookup_key(ht, handle);
}
/* Protected by rtnl lock */
static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr)
{
int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL);
if (id < 0)
return 0;
return (id | 0x800U) << 20;
}
static struct hlist_head *tc_u_common_hash;
#define U32_HASH_SHIFT 10
#define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
static void *tc_u_common_ptr(const struct tcf_proto *tp)
{
struct tcf_block *block = tp->chain->block;
/* The block sharing is currently supported only
* for classless qdiscs. In that case we use block
* for tc_u_common identification. In case the
* block is not shared, block->q is a valid pointer
* and we can use that. That works for classful qdiscs.
*/
if (tcf_block_shared(block))
return block;
else
return block->q;
}
static struct hlist_head *tc_u_hash(void *key)
{
return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT);
}
static struct tc_u_common *tc_u_common_find(void *key)
{
struct tc_u_common *tc;
hlist_for_each_entry(tc, tc_u_hash(key), hnode) {
if (tc->ptr == key)
return tc;
}
return NULL;
}
static int u32_init(struct tcf_proto *tp)
{
struct tc_u_hnode *root_ht;
void *key = tc_u_common_ptr(tp);
struct tc_u_common *tp_c = tc_u_common_find(key);
root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
if (root_ht == NULL)
return -ENOBUFS;
root_ht->refcnt++;
root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000;
root_ht->prio = tp->prio;
root_ht->is_root = true;
idr_init(&root_ht->handle_idr);
if (tp_c == NULL) {
tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
if (tp_c == NULL) {
kfree(root_ht);
return -ENOBUFS;
}
tp_c->ptr = key;
INIT_HLIST_NODE(&tp_c->hnode);
idr_init(&tp_c->handle_idr);
hlist_add_head(&tp_c->hnode, tc_u_hash(key));
}
tp_c->refcnt++;
RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
rcu_assign_pointer(tp_c->hlist, root_ht);
net: sched: cls_u32: fix hnode refcounting cls_u32.c misuses refcounts for struct tc_u_hnode - it counts references via ->hlist and via ->tp_root together. u32_destroy() drops the former and, in case when there had been links, leaves the sucker on the list. As the result, there's nothing to protect it from getting freed once links are dropped. That also makes the "is it busy" check incapable of catching the root hnode - it *is* busy (there's a reference from tp), but we don't see it as something separate. "Is it our root?" check partially covers that, but the problem exists for others' roots as well. AFAICS, the minimal fix preserving the existing behaviour (where it doesn't include oopsen, that is) would be this: * count tp->root and tp_c->hlist as separate references. I.e. have u32_init() set refcount to 2, not 1. * in u32_destroy() we always drop the former; in u32_destroy_hnode() - the latter. That way we have *all* references contributing to refcount. List removal happens in u32_destroy_hnode() (called only when ->refcnt is 1) an in u32_destroy() in case of tc_u_common going away, along with everything reachable from it. IOW, that way we know that u32_destroy_key() won't free something still on the list (or pointed to by someone's ->root). Reproducer: tc qdisc add dev eth0 ingress tc filter add dev eth0 parent ffff: protocol ip prio 100 handle 1: \ u32 divisor 1 tc filter add dev eth0 parent ffff: protocol ip prio 200 handle 2: \ u32 divisor 1 tc filter add dev eth0 parent ffff: protocol ip prio 100 \ handle 1:0:11 u32 ht 1: link 801: offset at 0 mask 0f00 shift 6 \ plus 0 eat match ip protocol 6 ff tc filter delete dev eth0 parent ffff: protocol ip prio 200 tc filter change dev eth0 parent ffff: protocol ip prio 100 \ handle 1:0:11 u32 ht 1: link 0: offset at 0 mask 0f00 shift 6 plus 0 \ eat match ip protocol 6 ff tc filter delete dev eth0 parent ffff: protocol ip prio 100 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-07 18:40:17 +07:00
root_ht->refcnt++;
rcu_assign_pointer(tp->root, root_ht);
tp->data = tp_c;
return 0;
}
static int u32_destroy_key(struct tc_u_knode *n, bool free_pf)
{
cls_u32: fix use after free in u32_destroy_key() Li Shuang reported an Oops with cls_u32 due to an use-after-free in u32_destroy_key(). The use-after-free can be triggered with: dev=lo tc qdisc add dev $dev root handle 1: htb default 10 tc filter add dev $dev parent 1: prio 5 handle 1: protocol ip u32 divisor 256 tc filter add dev $dev protocol ip parent 1: prio 5 u32 ht 800:: match ip dst\ 10.0.0.0/8 hashkey mask 0x0000ff00 at 16 link 1: tc qdisc del dev $dev root Which causes the following kasan splat: ================================================================== BUG: KASAN: use-after-free in u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] Read of size 4 at addr ffff881b83dae618 by task kworker/u48:5/571 CPU: 17 PID: 571 Comm: kworker/u48:5 Not tainted 4.15.0+ #87 Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.1.7 06/16/2016 Workqueue: tc_filter_workqueue u32_delete_key_freepf_work [cls_u32] Call Trace: dump_stack+0xd6/0x182 ? dma_virt_map_sg+0x22e/0x22e print_address_description+0x73/0x290 kasan_report+0x277/0x360 ? u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] u32_delete_key_freepf_work+0x1c/0x30 [cls_u32] process_one_work+0xae0/0x1c80 ? sched_clock+0x5/0x10 ? pwq_dec_nr_in_flight+0x3c0/0x3c0 ? _raw_spin_unlock_irq+0x29/0x40 ? trace_hardirqs_on_caller+0x381/0x570 ? _raw_spin_unlock_irq+0x29/0x40 ? finish_task_switch+0x1e5/0x760 ? finish_task_switch+0x208/0x760 ? preempt_notifier_dec+0x20/0x20 ? __schedule+0x839/0x1ee0 ? check_noncircular+0x20/0x20 ? firmware_map_remove+0x73/0x73 ? find_held_lock+0x39/0x1c0 ? worker_thread+0x434/0x1820 ? lock_contended+0xee0/0xee0 ? lock_release+0x1100/0x1100 ? init_rescuer.part.16+0x150/0x150 ? retint_kernel+0x10/0x10 worker_thread+0x216/0x1820 ? process_one_work+0x1c80/0x1c80 ? lock_acquire+0x1a5/0x540 ? lock_downgrade+0x6b0/0x6b0 ? sched_clock+0x5/0x10 ? lock_release+0x1100/0x1100 ? compat_start_thread+0x80/0x80 ? do_raw_spin_trylock+0x190/0x190 ? _raw_spin_unlock_irq+0x29/0x40 ? trace_hardirqs_on_caller+0x381/0x570 ? _raw_spin_unlock_irq+0x29/0x40 ? finish_task_switch+0x1e5/0x760 ? finish_task_switch+0x208/0x760 ? preempt_notifier_dec+0x20/0x20 ? __schedule+0x839/0x1ee0 ? kmem_cache_alloc_trace+0x143/0x320 ? firmware_map_remove+0x73/0x73 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0x18/0x170 ? find_held_lock+0x39/0x1c0 ? schedule+0xf3/0x3b0 ? lock_downgrade+0x6b0/0x6b0 ? __schedule+0x1ee0/0x1ee0 ? do_wait_intr_irq+0x340/0x340 ? do_raw_spin_trylock+0x190/0x190 ? _raw_spin_unlock_irqrestore+0x32/0x60 ? process_one_work+0x1c80/0x1c80 ? process_one_work+0x1c80/0x1c80 kthread+0x312/0x3d0 ? kthread_create_worker_on_cpu+0xc0/0xc0 ret_from_fork+0x3a/0x50 Allocated by task 1688: kasan_kmalloc+0xa0/0xd0 __kmalloc+0x162/0x380 u32_change+0x1220/0x3c9e [cls_u32] tc_ctl_tfilter+0x1ba6/0x2f80 rtnetlink_rcv_msg+0x4f0/0x9d0 netlink_rcv_skb+0x124/0x320 netlink_unicast+0x430/0x600 netlink_sendmsg+0x8fa/0xd60 sock_sendmsg+0xb1/0xe0 ___sys_sendmsg+0x678/0x980 __sys_sendmsg+0xc4/0x210 do_syscall_64+0x232/0x7f0 return_from_SYSCALL_64+0x0/0x75 Freed by task 112: kasan_slab_free+0x71/0xc0 kfree+0x114/0x320 rcu_process_callbacks+0xc3f/0x1600 __do_softirq+0x2bf/0xc06 The buggy address belongs to the object at ffff881b83dae600 which belongs to the cache kmalloc-4096 of size 4096 The buggy address is located 24 bytes inside of 4096-byte region [ffff881b83dae600, ffff881b83daf600) The buggy address belongs to the page: page:ffffea006e0f6a00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0x17ffffc0008100(slab|head) raw: 0017ffffc0008100 0000000000000000 0000000000000000 0000000100070007 raw: dead000000000100 dead000000000200 ffff880187c0e600 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff881b83dae500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff881b83dae580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff881b83dae600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff881b83dae680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff881b83dae700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== The problem is that the htnode is freed before the linked knodes and the latter will try to access the first at u32_destroy_key() time. This change addresses the issue using the htnode refcnt to guarantee the correct free order. While at it also add a RCU annotation, to keep sparse happy. v1 -> v2: use rtnl_derefence() instead of RCU read locks v2 -> v3: - don't check refcnt in u32_destroy_hnode() - cleaned-up u32_destroy() implementation - cleaned-up code comment v3 -> v4: - dropped unneeded comment Reported-by: Li Shuang <shuali@redhat.com> Fixes: c0d378ef1266 ("net_sched: use tcf_queue_work() in u32 filter") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-06 04:23:01 +07:00
struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
tcf_exts_destroy(&n->exts);
tcf_exts_put_net(&n->exts);
cls_u32: fix use after free in u32_destroy_key() Li Shuang reported an Oops with cls_u32 due to an use-after-free in u32_destroy_key(). The use-after-free can be triggered with: dev=lo tc qdisc add dev $dev root handle 1: htb default 10 tc filter add dev $dev parent 1: prio 5 handle 1: protocol ip u32 divisor 256 tc filter add dev $dev protocol ip parent 1: prio 5 u32 ht 800:: match ip dst\ 10.0.0.0/8 hashkey mask 0x0000ff00 at 16 link 1: tc qdisc del dev $dev root Which causes the following kasan splat: ================================================================== BUG: KASAN: use-after-free in u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] Read of size 4 at addr ffff881b83dae618 by task kworker/u48:5/571 CPU: 17 PID: 571 Comm: kworker/u48:5 Not tainted 4.15.0+ #87 Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.1.7 06/16/2016 Workqueue: tc_filter_workqueue u32_delete_key_freepf_work [cls_u32] Call Trace: dump_stack+0xd6/0x182 ? dma_virt_map_sg+0x22e/0x22e print_address_description+0x73/0x290 kasan_report+0x277/0x360 ? u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] u32_delete_key_freepf_work+0x1c/0x30 [cls_u32] process_one_work+0xae0/0x1c80 ? sched_clock+0x5/0x10 ? pwq_dec_nr_in_flight+0x3c0/0x3c0 ? _raw_spin_unlock_irq+0x29/0x40 ? trace_hardirqs_on_caller+0x381/0x570 ? _raw_spin_unlock_irq+0x29/0x40 ? finish_task_switch+0x1e5/0x760 ? finish_task_switch+0x208/0x760 ? preempt_notifier_dec+0x20/0x20 ? __schedule+0x839/0x1ee0 ? check_noncircular+0x20/0x20 ? firmware_map_remove+0x73/0x73 ? find_held_lock+0x39/0x1c0 ? worker_thread+0x434/0x1820 ? lock_contended+0xee0/0xee0 ? lock_release+0x1100/0x1100 ? init_rescuer.part.16+0x150/0x150 ? retint_kernel+0x10/0x10 worker_thread+0x216/0x1820 ? process_one_work+0x1c80/0x1c80 ? lock_acquire+0x1a5/0x540 ? lock_downgrade+0x6b0/0x6b0 ? sched_clock+0x5/0x10 ? lock_release+0x1100/0x1100 ? compat_start_thread+0x80/0x80 ? do_raw_spin_trylock+0x190/0x190 ? _raw_spin_unlock_irq+0x29/0x40 ? trace_hardirqs_on_caller+0x381/0x570 ? _raw_spin_unlock_irq+0x29/0x40 ? finish_task_switch+0x1e5/0x760 ? finish_task_switch+0x208/0x760 ? preempt_notifier_dec+0x20/0x20 ? __schedule+0x839/0x1ee0 ? kmem_cache_alloc_trace+0x143/0x320 ? firmware_map_remove+0x73/0x73 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0x18/0x170 ? find_held_lock+0x39/0x1c0 ? schedule+0xf3/0x3b0 ? lock_downgrade+0x6b0/0x6b0 ? __schedule+0x1ee0/0x1ee0 ? do_wait_intr_irq+0x340/0x340 ? do_raw_spin_trylock+0x190/0x190 ? _raw_spin_unlock_irqrestore+0x32/0x60 ? process_one_work+0x1c80/0x1c80 ? process_one_work+0x1c80/0x1c80 kthread+0x312/0x3d0 ? kthread_create_worker_on_cpu+0xc0/0xc0 ret_from_fork+0x3a/0x50 Allocated by task 1688: kasan_kmalloc+0xa0/0xd0 __kmalloc+0x162/0x380 u32_change+0x1220/0x3c9e [cls_u32] tc_ctl_tfilter+0x1ba6/0x2f80 rtnetlink_rcv_msg+0x4f0/0x9d0 netlink_rcv_skb+0x124/0x320 netlink_unicast+0x430/0x600 netlink_sendmsg+0x8fa/0xd60 sock_sendmsg+0xb1/0xe0 ___sys_sendmsg+0x678/0x980 __sys_sendmsg+0xc4/0x210 do_syscall_64+0x232/0x7f0 return_from_SYSCALL_64+0x0/0x75 Freed by task 112: kasan_slab_free+0x71/0xc0 kfree+0x114/0x320 rcu_process_callbacks+0xc3f/0x1600 __do_softirq+0x2bf/0xc06 The buggy address belongs to the object at ffff881b83dae600 which belongs to the cache kmalloc-4096 of size 4096 The buggy address is located 24 bytes inside of 4096-byte region [ffff881b83dae600, ffff881b83daf600) The buggy address belongs to the page: page:ffffea006e0f6a00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0x17ffffc0008100(slab|head) raw: 0017ffffc0008100 0000000000000000 0000000000000000 0000000100070007 raw: dead000000000100 dead000000000200 ffff880187c0e600 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff881b83dae500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff881b83dae580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff881b83dae600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff881b83dae680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff881b83dae700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== The problem is that the htnode is freed before the linked knodes and the latter will try to access the first at u32_destroy_key() time. This change addresses the issue using the htnode refcnt to guarantee the correct free order. While at it also add a RCU annotation, to keep sparse happy. v1 -> v2: use rtnl_derefence() instead of RCU read locks v2 -> v3: - don't check refcnt in u32_destroy_hnode() - cleaned-up u32_destroy() implementation - cleaned-up code comment v3 -> v4: - dropped unneeded comment Reported-by: Li Shuang <shuali@redhat.com> Fixes: c0d378ef1266 ("net_sched: use tcf_queue_work() in u32 filter") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-06 04:23:01 +07:00
if (ht && --ht->refcnt == 0)
kfree(ht);
#ifdef CONFIG_CLS_U32_PERF
if (free_pf)
free_percpu(n->pf);
#endif
#ifdef CONFIG_CLS_U32_MARK
if (free_pf)
free_percpu(n->pcpu_success);
#endif
kfree(n);
return 0;
}
/* u32_delete_key_rcu should be called when free'ing a copied
* version of a tc_u_knode obtained from u32_init_knode(). When
* copies are obtained from u32_init_knode() the statistics are
* shared between the old and new copies to allow readers to
* continue to update the statistics during the copy. To support
* this the u32_delete_key_rcu variant does not free the percpu
* statistics.
*/
static void u32_delete_key_work(struct work_struct *work)
{
struct tc_u_knode *key = container_of(to_rcu_work(work),
struct tc_u_knode,
rwork);
rtnl_lock();
u32_destroy_key(key, false);
rtnl_unlock();
}
/* u32_delete_key_freepf_rcu is the rcu callback variant
* that free's the entire structure including the statistics
* percpu variables. Only use this if the key is not a copy
* returned by u32_init_knode(). See u32_delete_key_rcu()
* for the variant that should be used with keys return from
* u32_init_knode()
*/
static void u32_delete_key_freepf_work(struct work_struct *work)
{
struct tc_u_knode *key = container_of(to_rcu_work(work),
struct tc_u_knode,
rwork);
rtnl_lock();
u32_destroy_key(key, true);
rtnl_unlock();
}
static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_knode __rcu **kp;
struct tc_u_knode *pkp;
struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
if (ht) {
kp = &ht->ht[TC_U32_HASH(key->handle)];
for (pkp = rtnl_dereference(*kp); pkp;
kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
if (pkp == key) {
RCU_INIT_POINTER(*kp, key->next);
tp_c->knodes--;
net_sched: avoid calling tcf_unbind_filter() in call_rcu callback This fixes the following crash: [ 63.976822] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ 63.980094] CPU: 1 PID: 15 Comm: ksoftirqd/1 Not tainted 3.17.0-rc6+ #648 [ 63.980094] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 63.980094] task: ffff880117dea690 ti: ffff880117dfc000 task.ti: ffff880117dfc000 [ 63.980094] RIP: 0010:[<ffffffff817e6d07>] [<ffffffff817e6d07>] u32_destroy_key+0x27/0x6d [ 63.980094] RSP: 0018:ffff880117dffcc0 EFLAGS: 00010202 [ 63.980094] RAX: ffff880117dea690 RBX: ffff8800d02e0820 RCX: 0000000000000000 [ 63.980094] RDX: 0000000000000001 RSI: 0000000000000002 RDI: 6b6b6b6b6b6b6b6b [ 63.980094] RBP: ffff880117dffcd0 R08: 0000000000000000 R09: 0000000000000000 [ 63.980094] R10: 00006c0900006ba8 R11: 00006ba100006b9d R12: 0000000000000001 [ 63.980094] R13: ffff8800d02e0898 R14: ffffffff817e6d4d R15: ffff880117387a30 [ 63.980094] FS: 0000000000000000(0000) GS:ffff88011a800000(0000) knlGS:0000000000000000 [ 63.980094] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 63.980094] CR2: 00007f07e6732fed CR3: 000000011665b000 CR4: 00000000000006e0 [ 63.980094] Stack: [ 63.980094] ffff88011a9cd300 ffffffff82051ac0 ffff880117dffce0 ffffffff817e6d68 [ 63.980094] ffff880117dffd70 ffffffff810cb4c7 ffffffff810cb3cd ffff880117dfffd8 [ 63.980094] ffff880117dea690 ffff880117dea690 ffff880117dfffd8 000000000000000a [ 63.980094] Call Trace: [ 63.980094] [<ffffffff817e6d68>] u32_delete_key_freepf_rcu+0x1b/0x1d [ 63.980094] [<ffffffff810cb4c7>] rcu_process_callbacks+0x3bb/0x691 [ 63.980094] [<ffffffff810cb3cd>] ? rcu_process_callbacks+0x2c1/0x691 [ 63.980094] [<ffffffff817e6d4d>] ? u32_destroy_key+0x6d/0x6d [ 63.980094] [<ffffffff810780a4>] __do_softirq+0x142/0x323 [ 63.980094] [<ffffffff810782a8>] run_ksoftirqd+0x23/0x53 [ 63.980094] [<ffffffff81092126>] smpboot_thread_fn+0x203/0x221 [ 63.980094] [<ffffffff81091f23>] ? smpboot_unpark_thread+0x33/0x33 [ 63.980094] [<ffffffff8108e44d>] kthread+0xc9/0xd1 [ 63.980094] [<ffffffff819e00ea>] ? do_wait_for_common+0xf8/0x125 [ 63.980094] [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61 [ 63.980094] [<ffffffff819e43ec>] ret_from_fork+0x7c/0xb0 [ 63.980094] [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61 tp could be freed in call_rcu callback too, the order is not guaranteed. John Fastabend says: ==================== Its worth noting why this is safe. Any running schedulers will either read the valid class field or it will be zeroed. All schedulers today when the class is 0 do a lookup using the same call used by the tcf_exts_bind(). So even if we have a running classifier hit the null class pointer it will do a lookup and get to the same result. This is particularly fragile at the moment because the only way to verify this is to audit the schedulers call sites. ==================== Cc: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-01 06:07:24 +07:00
tcf_unbind_filter(tp, &key->res);
idr_remove(&ht->handle_idr, key->handle);
tcf_exts_get_net(&key->exts);
tcf_queue_work(&key->rwork, u32_delete_key_freepf_work);
return 0;
}
}
}
WARN_ON(1);
return 0;
}
static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
struct netlink_ext_ack *extack)
{
struct tcf_block *block = tp->chain->block;
struct tc_cls_u32_offload cls_u32 = {};
tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack);
cls_u32.command = TC_CLSU32_DELETE_HNODE;
cls_u32.hnode.divisor = h->divisor;
cls_u32.hnode.handle = h->handle;
cls_u32.hnode.prio = h->prio;
tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false);
}
static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
u32 flags, struct netlink_ext_ack *extack)
{
struct tcf_block *block = tp->chain->block;
struct tc_cls_u32_offload cls_u32 = {};
bool skip_sw = tc_skip_sw(flags);
bool offloaded = false;
int err;
tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
cls_u32.command = TC_CLSU32_NEW_HNODE;
cls_u32.hnode.divisor = h->divisor;
cls_u32.hnode.handle = h->handle;
cls_u32.hnode.prio = h->prio;
err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw);
if (err < 0) {
u32_clear_hw_hnode(tp, h, NULL);
return err;
} else if (err > 0) {
offloaded = true;
}
if (skip_sw && !offloaded)
return -EINVAL;
return 0;
}
static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
struct netlink_ext_ack *extack)
{
struct tcf_block *block = tp->chain->block;
struct tc_cls_u32_offload cls_u32 = {};
tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
cls_u32.command = TC_CLSU32_DELETE_KNODE;
cls_u32.knode.handle = n->handle;
tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false);
tcf_block_offload_dec(block, &n->flags);
}
static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
u32 flags, struct netlink_ext_ack *extack)
{
struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
struct tcf_block *block = tp->chain->block;
struct tc_cls_u32_offload cls_u32 = {};
bool skip_sw = tc_skip_sw(flags);
int err;
tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
cls_u32.command = TC_CLSU32_REPLACE_KNODE;
cls_u32.knode.handle = n->handle;
cls_u32.knode.fshift = n->fshift;
#ifdef CONFIG_CLS_U32_MARK
cls_u32.knode.val = n->val;
cls_u32.knode.mask = n->mask;
#else
cls_u32.knode.val = 0;
cls_u32.knode.mask = 0;
#endif
cls_u32.knode.sel = &n->sel;
cls_u32.knode.res = &n->res;
cls_u32.knode.exts = &n->exts;
if (n->ht_down)
cls_u32.knode.link_handle = ht->handle;
err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw);
if (err < 0) {
u32_remove_hw_knode(tp, n, NULL);
return err;
} else if (err > 0) {
n->in_hw_count = err;
tcf_block_offload_inc(block, &n->flags);
}
if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW))
return -EINVAL;
return 0;
}
static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
struct netlink_ext_ack *extack)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_knode *n;
unsigned int h;
for (h = 0; h <= ht->divisor; h++) {
while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
RCU_INIT_POINTER(ht->ht[h],
rtnl_dereference(n->next));
tp_c->knodes--;
net_sched: avoid calling tcf_unbind_filter() in call_rcu callback This fixes the following crash: [ 63.976822] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ 63.980094] CPU: 1 PID: 15 Comm: ksoftirqd/1 Not tainted 3.17.0-rc6+ #648 [ 63.980094] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 63.980094] task: ffff880117dea690 ti: ffff880117dfc000 task.ti: ffff880117dfc000 [ 63.980094] RIP: 0010:[<ffffffff817e6d07>] [<ffffffff817e6d07>] u32_destroy_key+0x27/0x6d [ 63.980094] RSP: 0018:ffff880117dffcc0 EFLAGS: 00010202 [ 63.980094] RAX: ffff880117dea690 RBX: ffff8800d02e0820 RCX: 0000000000000000 [ 63.980094] RDX: 0000000000000001 RSI: 0000000000000002 RDI: 6b6b6b6b6b6b6b6b [ 63.980094] RBP: ffff880117dffcd0 R08: 0000000000000000 R09: 0000000000000000 [ 63.980094] R10: 00006c0900006ba8 R11: 00006ba100006b9d R12: 0000000000000001 [ 63.980094] R13: ffff8800d02e0898 R14: ffffffff817e6d4d R15: ffff880117387a30 [ 63.980094] FS: 0000000000000000(0000) GS:ffff88011a800000(0000) knlGS:0000000000000000 [ 63.980094] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 63.980094] CR2: 00007f07e6732fed CR3: 000000011665b000 CR4: 00000000000006e0 [ 63.980094] Stack: [ 63.980094] ffff88011a9cd300 ffffffff82051ac0 ffff880117dffce0 ffffffff817e6d68 [ 63.980094] ffff880117dffd70 ffffffff810cb4c7 ffffffff810cb3cd ffff880117dfffd8 [ 63.980094] ffff880117dea690 ffff880117dea690 ffff880117dfffd8 000000000000000a [ 63.980094] Call Trace: [ 63.980094] [<ffffffff817e6d68>] u32_delete_key_freepf_rcu+0x1b/0x1d [ 63.980094] [<ffffffff810cb4c7>] rcu_process_callbacks+0x3bb/0x691 [ 63.980094] [<ffffffff810cb3cd>] ? rcu_process_callbacks+0x2c1/0x691 [ 63.980094] [<ffffffff817e6d4d>] ? u32_destroy_key+0x6d/0x6d [ 63.980094] [<ffffffff810780a4>] __do_softirq+0x142/0x323 [ 63.980094] [<ffffffff810782a8>] run_ksoftirqd+0x23/0x53 [ 63.980094] [<ffffffff81092126>] smpboot_thread_fn+0x203/0x221 [ 63.980094] [<ffffffff81091f23>] ? smpboot_unpark_thread+0x33/0x33 [ 63.980094] [<ffffffff8108e44d>] kthread+0xc9/0xd1 [ 63.980094] [<ffffffff819e00ea>] ? do_wait_for_common+0xf8/0x125 [ 63.980094] [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61 [ 63.980094] [<ffffffff819e43ec>] ret_from_fork+0x7c/0xb0 [ 63.980094] [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61 tp could be freed in call_rcu callback too, the order is not guaranteed. John Fastabend says: ==================== Its worth noting why this is safe. Any running schedulers will either read the valid class field or it will be zeroed. All schedulers today when the class is 0 do a lookup using the same call used by the tcf_exts_bind(). So even if we have a running classifier hit the null class pointer it will do a lookup and get to the same result. This is particularly fragile at the moment because the only way to verify this is to audit the schedulers call sites. ==================== Cc: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-01 06:07:24 +07:00
tcf_unbind_filter(tp, &n->res);
u32_remove_hw_knode(tp, n, extack);
idr_remove(&ht->handle_idr, n->handle);
if (tcf_exts_get_net(&n->exts))
tcf_queue_work(&n->rwork, u32_delete_key_freepf_work);
else
u32_destroy_key(n, true);
}
}
}
static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
struct netlink_ext_ack *extack)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode __rcu **hn;
struct tc_u_hnode *phn;
net: sched: cls_u32: fix hnode refcounting cls_u32.c misuses refcounts for struct tc_u_hnode - it counts references via ->hlist and via ->tp_root together. u32_destroy() drops the former and, in case when there had been links, leaves the sucker on the list. As the result, there's nothing to protect it from getting freed once links are dropped. That also makes the "is it busy" check incapable of catching the root hnode - it *is* busy (there's a reference from tp), but we don't see it as something separate. "Is it our root?" check partially covers that, but the problem exists for others' roots as well. AFAICS, the minimal fix preserving the existing behaviour (where it doesn't include oopsen, that is) would be this: * count tp->root and tp_c->hlist as separate references. I.e. have u32_init() set refcount to 2, not 1. * in u32_destroy() we always drop the former; in u32_destroy_hnode() - the latter. That way we have *all* references contributing to refcount. List removal happens in u32_destroy_hnode() (called only when ->refcnt is 1) an in u32_destroy() in case of tc_u_common going away, along with everything reachable from it. IOW, that way we know that u32_destroy_key() won't free something still on the list (or pointed to by someone's ->root). Reproducer: tc qdisc add dev eth0 ingress tc filter add dev eth0 parent ffff: protocol ip prio 100 handle 1: \ u32 divisor 1 tc filter add dev eth0 parent ffff: protocol ip prio 200 handle 2: \ u32 divisor 1 tc filter add dev eth0 parent ffff: protocol ip prio 100 \ handle 1:0:11 u32 ht 1: link 801: offset at 0 mask 0f00 shift 6 \ plus 0 eat match ip protocol 6 ff tc filter delete dev eth0 parent ffff: protocol ip prio 200 tc filter change dev eth0 parent ffff: protocol ip prio 100 \ handle 1:0:11 u32 ht 1: link 0: offset at 0 mask 0f00 shift 6 plus 0 \ eat match ip protocol 6 ff tc filter delete dev eth0 parent ffff: protocol ip prio 100 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-07 18:40:17 +07:00
WARN_ON(--ht->refcnt);
u32_clear_hnode(tp, ht, extack);
hn = &tp_c->hlist;
for (phn = rtnl_dereference(*hn);
phn;
hn = &phn->next, phn = rtnl_dereference(*hn)) {
if (phn == ht) {
u32_clear_hw_hnode(tp, ht, extack);
idr_destroy(&ht->handle_idr);
idr_remove(&tp_c->handle_idr, ht->handle);
RCU_INIT_POINTER(*hn, ht->next);
kfree_rcu(ht, rcu);
return 0;
}
}
return -ENOENT;
}
static void u32_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
WARN_ON(root_ht == NULL);
net: sched: cls_u32: fix hnode refcounting cls_u32.c misuses refcounts for struct tc_u_hnode - it counts references via ->hlist and via ->tp_root together. u32_destroy() drops the former and, in case when there had been links, leaves the sucker on the list. As the result, there's nothing to protect it from getting freed once links are dropped. That also makes the "is it busy" check incapable of catching the root hnode - it *is* busy (there's a reference from tp), but we don't see it as something separate. "Is it our root?" check partially covers that, but the problem exists for others' roots as well. AFAICS, the minimal fix preserving the existing behaviour (where it doesn't include oopsen, that is) would be this: * count tp->root and tp_c->hlist as separate references. I.e. have u32_init() set refcount to 2, not 1. * in u32_destroy() we always drop the former; in u32_destroy_hnode() - the latter. That way we have *all* references contributing to refcount. List removal happens in u32_destroy_hnode() (called only when ->refcnt is 1) an in u32_destroy() in case of tc_u_common going away, along with everything reachable from it. IOW, that way we know that u32_destroy_key() won't free something still on the list (or pointed to by someone's ->root). Reproducer: tc qdisc add dev eth0 ingress tc filter add dev eth0 parent ffff: protocol ip prio 100 handle 1: \ u32 divisor 1 tc filter add dev eth0 parent ffff: protocol ip prio 200 handle 2: \ u32 divisor 1 tc filter add dev eth0 parent ffff: protocol ip prio 100 \ handle 1:0:11 u32 ht 1: link 801: offset at 0 mask 0f00 shift 6 \ plus 0 eat match ip protocol 6 ff tc filter delete dev eth0 parent ffff: protocol ip prio 200 tc filter change dev eth0 parent ffff: protocol ip prio 100 \ handle 1:0:11 u32 ht 1: link 0: offset at 0 mask 0f00 shift 6 plus 0 \ eat match ip protocol 6 ff tc filter delete dev eth0 parent ffff: protocol ip prio 100 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-07 18:40:17 +07:00
if (root_ht && --root_ht->refcnt == 1)
u32_destroy_hnode(tp, root_ht, extack);
if (--tp_c->refcnt == 0) {
struct tc_u_hnode *ht;
hlist_del(&tp_c->hnode);
while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
cls_u32: fix use after free in u32_destroy_key() Li Shuang reported an Oops with cls_u32 due to an use-after-free in u32_destroy_key(). The use-after-free can be triggered with: dev=lo tc qdisc add dev $dev root handle 1: htb default 10 tc filter add dev $dev parent 1: prio 5 handle 1: protocol ip u32 divisor 256 tc filter add dev $dev protocol ip parent 1: prio 5 u32 ht 800:: match ip dst\ 10.0.0.0/8 hashkey mask 0x0000ff00 at 16 link 1: tc qdisc del dev $dev root Which causes the following kasan splat: ================================================================== BUG: KASAN: use-after-free in u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] Read of size 4 at addr ffff881b83dae618 by task kworker/u48:5/571 CPU: 17 PID: 571 Comm: kworker/u48:5 Not tainted 4.15.0+ #87 Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.1.7 06/16/2016 Workqueue: tc_filter_workqueue u32_delete_key_freepf_work [cls_u32] Call Trace: dump_stack+0xd6/0x182 ? dma_virt_map_sg+0x22e/0x22e print_address_description+0x73/0x290 kasan_report+0x277/0x360 ? u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] u32_delete_key_freepf_work+0x1c/0x30 [cls_u32] process_one_work+0xae0/0x1c80 ? sched_clock+0x5/0x10 ? pwq_dec_nr_in_flight+0x3c0/0x3c0 ? _raw_spin_unlock_irq+0x29/0x40 ? trace_hardirqs_on_caller+0x381/0x570 ? _raw_spin_unlock_irq+0x29/0x40 ? finish_task_switch+0x1e5/0x760 ? finish_task_switch+0x208/0x760 ? preempt_notifier_dec+0x20/0x20 ? __schedule+0x839/0x1ee0 ? check_noncircular+0x20/0x20 ? firmware_map_remove+0x73/0x73 ? find_held_lock+0x39/0x1c0 ? worker_thread+0x434/0x1820 ? lock_contended+0xee0/0xee0 ? lock_release+0x1100/0x1100 ? init_rescuer.part.16+0x150/0x150 ? retint_kernel+0x10/0x10 worker_thread+0x216/0x1820 ? process_one_work+0x1c80/0x1c80 ? lock_acquire+0x1a5/0x540 ? lock_downgrade+0x6b0/0x6b0 ? sched_clock+0x5/0x10 ? lock_release+0x1100/0x1100 ? compat_start_thread+0x80/0x80 ? do_raw_spin_trylock+0x190/0x190 ? _raw_spin_unlock_irq+0x29/0x40 ? trace_hardirqs_on_caller+0x381/0x570 ? _raw_spin_unlock_irq+0x29/0x40 ? finish_task_switch+0x1e5/0x760 ? finish_task_switch+0x208/0x760 ? preempt_notifier_dec+0x20/0x20 ? __schedule+0x839/0x1ee0 ? kmem_cache_alloc_trace+0x143/0x320 ? firmware_map_remove+0x73/0x73 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0x18/0x170 ? find_held_lock+0x39/0x1c0 ? schedule+0xf3/0x3b0 ? lock_downgrade+0x6b0/0x6b0 ? __schedule+0x1ee0/0x1ee0 ? do_wait_intr_irq+0x340/0x340 ? do_raw_spin_trylock+0x190/0x190 ? _raw_spin_unlock_irqrestore+0x32/0x60 ? process_one_work+0x1c80/0x1c80 ? process_one_work+0x1c80/0x1c80 kthread+0x312/0x3d0 ? kthread_create_worker_on_cpu+0xc0/0xc0 ret_from_fork+0x3a/0x50 Allocated by task 1688: kasan_kmalloc+0xa0/0xd0 __kmalloc+0x162/0x380 u32_change+0x1220/0x3c9e [cls_u32] tc_ctl_tfilter+0x1ba6/0x2f80 rtnetlink_rcv_msg+0x4f0/0x9d0 netlink_rcv_skb+0x124/0x320 netlink_unicast+0x430/0x600 netlink_sendmsg+0x8fa/0xd60 sock_sendmsg+0xb1/0xe0 ___sys_sendmsg+0x678/0x980 __sys_sendmsg+0xc4/0x210 do_syscall_64+0x232/0x7f0 return_from_SYSCALL_64+0x0/0x75 Freed by task 112: kasan_slab_free+0x71/0xc0 kfree+0x114/0x320 rcu_process_callbacks+0xc3f/0x1600 __do_softirq+0x2bf/0xc06 The buggy address belongs to the object at ffff881b83dae600 which belongs to the cache kmalloc-4096 of size 4096 The buggy address is located 24 bytes inside of 4096-byte region [ffff881b83dae600, ffff881b83daf600) The buggy address belongs to the page: page:ffffea006e0f6a00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0x17ffffc0008100(slab|head) raw: 0017ffffc0008100 0000000000000000 0000000000000000 0000000100070007 raw: dead000000000100 dead000000000200 ffff880187c0e600 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff881b83dae500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff881b83dae580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff881b83dae600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff881b83dae680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff881b83dae700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== The problem is that the htnode is freed before the linked knodes and the latter will try to access the first at u32_destroy_key() time. This change addresses the issue using the htnode refcnt to guarantee the correct free order. While at it also add a RCU annotation, to keep sparse happy. v1 -> v2: use rtnl_derefence() instead of RCU read locks v2 -> v3: - don't check refcnt in u32_destroy_hnode() - cleaned-up u32_destroy() implementation - cleaned-up code comment v3 -> v4: - dropped unneeded comment Reported-by: Li Shuang <shuali@redhat.com> Fixes: c0d378ef1266 ("net_sched: use tcf_queue_work() in u32 filter") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-06 04:23:01 +07:00
u32_clear_hnode(tp, ht, extack);
RCU_INIT_POINTER(tp_c->hlist, ht->next);
cls_u32: fix use after free in u32_destroy_key() Li Shuang reported an Oops with cls_u32 due to an use-after-free in u32_destroy_key(). The use-after-free can be triggered with: dev=lo tc qdisc add dev $dev root handle 1: htb default 10 tc filter add dev $dev parent 1: prio 5 handle 1: protocol ip u32 divisor 256 tc filter add dev $dev protocol ip parent 1: prio 5 u32 ht 800:: match ip dst\ 10.0.0.0/8 hashkey mask 0x0000ff00 at 16 link 1: tc qdisc del dev $dev root Which causes the following kasan splat: ================================================================== BUG: KASAN: use-after-free in u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] Read of size 4 at addr ffff881b83dae618 by task kworker/u48:5/571 CPU: 17 PID: 571 Comm: kworker/u48:5 Not tainted 4.15.0+ #87 Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.1.7 06/16/2016 Workqueue: tc_filter_workqueue u32_delete_key_freepf_work [cls_u32] Call Trace: dump_stack+0xd6/0x182 ? dma_virt_map_sg+0x22e/0x22e print_address_description+0x73/0x290 kasan_report+0x277/0x360 ? u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] u32_destroy_key.constprop.21+0x117/0x140 [cls_u32] u32_delete_key_freepf_work+0x1c/0x30 [cls_u32] process_one_work+0xae0/0x1c80 ? sched_clock+0x5/0x10 ? pwq_dec_nr_in_flight+0x3c0/0x3c0 ? _raw_spin_unlock_irq+0x29/0x40 ? trace_hardirqs_on_caller+0x381/0x570 ? _raw_spin_unlock_irq+0x29/0x40 ? finish_task_switch+0x1e5/0x760 ? finish_task_switch+0x208/0x760 ? preempt_notifier_dec+0x20/0x20 ? __schedule+0x839/0x1ee0 ? check_noncircular+0x20/0x20 ? firmware_map_remove+0x73/0x73 ? find_held_lock+0x39/0x1c0 ? worker_thread+0x434/0x1820 ? lock_contended+0xee0/0xee0 ? lock_release+0x1100/0x1100 ? init_rescuer.part.16+0x150/0x150 ? retint_kernel+0x10/0x10 worker_thread+0x216/0x1820 ? process_one_work+0x1c80/0x1c80 ? lock_acquire+0x1a5/0x540 ? lock_downgrade+0x6b0/0x6b0 ? sched_clock+0x5/0x10 ? lock_release+0x1100/0x1100 ? compat_start_thread+0x80/0x80 ? do_raw_spin_trylock+0x190/0x190 ? _raw_spin_unlock_irq+0x29/0x40 ? trace_hardirqs_on_caller+0x381/0x570 ? _raw_spin_unlock_irq+0x29/0x40 ? finish_task_switch+0x1e5/0x760 ? finish_task_switch+0x208/0x760 ? preempt_notifier_dec+0x20/0x20 ? __schedule+0x839/0x1ee0 ? kmem_cache_alloc_trace+0x143/0x320 ? firmware_map_remove+0x73/0x73 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0x18/0x170 ? find_held_lock+0x39/0x1c0 ? schedule+0xf3/0x3b0 ? lock_downgrade+0x6b0/0x6b0 ? __schedule+0x1ee0/0x1ee0 ? do_wait_intr_irq+0x340/0x340 ? do_raw_spin_trylock+0x190/0x190 ? _raw_spin_unlock_irqrestore+0x32/0x60 ? process_one_work+0x1c80/0x1c80 ? process_one_work+0x1c80/0x1c80 kthread+0x312/0x3d0 ? kthread_create_worker_on_cpu+0xc0/0xc0 ret_from_fork+0x3a/0x50 Allocated by task 1688: kasan_kmalloc+0xa0/0xd0 __kmalloc+0x162/0x380 u32_change+0x1220/0x3c9e [cls_u32] tc_ctl_tfilter+0x1ba6/0x2f80 rtnetlink_rcv_msg+0x4f0/0x9d0 netlink_rcv_skb+0x124/0x320 netlink_unicast+0x430/0x600 netlink_sendmsg+0x8fa/0xd60 sock_sendmsg+0xb1/0xe0 ___sys_sendmsg+0x678/0x980 __sys_sendmsg+0xc4/0x210 do_syscall_64+0x232/0x7f0 return_from_SYSCALL_64+0x0/0x75 Freed by task 112: kasan_slab_free+0x71/0xc0 kfree+0x114/0x320 rcu_process_callbacks+0xc3f/0x1600 __do_softirq+0x2bf/0xc06 The buggy address belongs to the object at ffff881b83dae600 which belongs to the cache kmalloc-4096 of size 4096 The buggy address is located 24 bytes inside of 4096-byte region [ffff881b83dae600, ffff881b83daf600) The buggy address belongs to the page: page:ffffea006e0f6a00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0x17ffffc0008100(slab|head) raw: 0017ffffc0008100 0000000000000000 0000000000000000 0000000100070007 raw: dead000000000100 dead000000000200 ffff880187c0e600 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff881b83dae500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff881b83dae580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff881b83dae600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff881b83dae680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff881b83dae700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== The problem is that the htnode is freed before the linked knodes and the latter will try to access the first at u32_destroy_key() time. This change addresses the issue using the htnode refcnt to guarantee the correct free order. While at it also add a RCU annotation, to keep sparse happy. v1 -> v2: use rtnl_derefence() instead of RCU read locks v2 -> v3: - don't check refcnt in u32_destroy_hnode() - cleaned-up u32_destroy() implementation - cleaned-up code comment v3 -> v4: - dropped unneeded comment Reported-by: Li Shuang <shuali@redhat.com> Fixes: c0d378ef1266 ("net_sched: use tcf_queue_work() in u32 filter") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-06 04:23:01 +07:00
/* u32_destroy_key() will later free ht for us, if it's
* still referenced by some knode
*/
if (--ht->refcnt == 0)
kfree_rcu(ht, rcu);
}
idr_destroy(&tp_c->handle_idr);
kfree(tp_c);
}
tp->data = NULL;
}
static int u32_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct tc_u_hnode *ht = arg;
struct tc_u_common *tp_c = tp->data;
int ret = 0;
if (TC_U32_KEY(ht->handle)) {
u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack);
ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
goto out;
}
if (ht->is_root) {
NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node");
return -EINVAL;
}
if (ht->refcnt == 1) {
u32_destroy_hnode(tp, ht, extack);
} else {
NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter");
return -EBUSY;
}
out:
*last = tp_c->refcnt == 1 && tp_c->knodes == 0;
return ret;
}
static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid)
{
u32 index = htid | 0x800;
u32 max = htid | 0xFFF;
if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) {
index = htid + 1;
if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max,
GFP_KERNEL))
index = max;
}
net_sched: avoid generating same handle for u32 filters When kernel generates a handle for a u32 filter, it tries to start from the max in the bucket. So when we have a filter with the max (fff) handle, it will cause kernel always generates the same handle for new filters. This can be shown by the following command: tc qdisc add dev eth0 ingress tc filter add dev eth0 parent ffff: protocol ip pref 770 handle 800::fff u32 match ip protocol 1 0xff tc filter add dev eth0 parent ffff: protocol ip pref 770 u32 match ip protocol 1 0xff ... we will get some u32 filters with same handle: # tc filter show dev eth0 parent ffff: filter protocol ip pref 770 u32 filter protocol ip pref 770 u32 fh 800: ht divisor 1 filter protocol ip pref 770 u32 fh 800::fff order 4095 key ht 800 bkt 0 match 00010000/00ff0000 at 8 filter protocol ip pref 770 u32 fh 800::fff order 4095 key ht 800 bkt 0 match 00010000/00ff0000 at 8 filter protocol ip pref 770 u32 fh 800::fff order 4095 key ht 800 bkt 0 match 00010000/00ff0000 at 8 filter protocol ip pref 770 u32 fh 800::fff order 4095 key ht 800 bkt 0 match 00010000/00ff0000 at 8 handles should be unique. This patch fixes it by looking up a bitmap, so that can guarantee the handle is as unique as possible. For compatibility, we still start from 0x800. Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Cong Wang <cwang@twopensource.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-18 07:34:53 +07:00
return index;
}
static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
[TCA_U32_CLASSID] = { .type = NLA_U32 },
[TCA_U32_HASH] = { .type = NLA_U32 },
[TCA_U32_LINK] = { .type = NLA_U32 },
[TCA_U32_DIVISOR] = { .type = NLA_U32 },
[TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
[TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
[TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
[TCA_U32_FLAGS] = { .type = NLA_U32 },
};
static int u32_set_parms(struct net *net, struct tcf_proto *tp,
unsigned long base,
struct tc_u_knode *n, struct nlattr **tb,
struct nlattr *est, bool ovr,
struct netlink_ext_ack *extack)
{
int err;
err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr, true, extack);
if (err < 0)
return err;
if (tb[TCA_U32_LINK]) {
u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
struct tc_u_hnode *ht_down = NULL, *ht_old;
if (TC_U32_KEY(handle)) {
NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table");
return -EINVAL;
}
if (handle) {
ht_down = u32_lookup_ht(tp->data, handle);
if (!ht_down) {
NL_SET_ERR_MSG_MOD(extack, "Link hash table not found");
return -EINVAL;
}
if (ht_down->is_root) {
NL_SET_ERR_MSG_MOD(extack, "Not linking to root node");
return -EINVAL;
}
ht_down->refcnt++;
}
ht_old = rtnl_dereference(n->ht_down);
rcu_assign_pointer(n->ht_down, ht_down);
if (ht_old)
ht_old->refcnt--;
}
if (tb[TCA_U32_CLASSID]) {
n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
tcf_bind_filter(tp, &n->res, base);
}
if (tb[TCA_U32_INDEV]) {
int ret;
ret = tcf_change_indev(net, tb[TCA_U32_INDEV], extack);
if (ret < 0)
return -EINVAL;
n->ifindex = ret;
}
return 0;
}
static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
struct tc_u_knode *n)
{
struct tc_u_knode __rcu **ins;
struct tc_u_knode *pins;
struct tc_u_hnode *ht;
if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
ht = rtnl_dereference(tp->root);
else
ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
ins = &ht->ht[TC_U32_HASH(n->handle)];
/* The node must always exist for it to be replaced if this is not the
* case then something went very wrong elsewhere.
*/
for (pins = rtnl_dereference(*ins); ;
ins = &pins->next, pins = rtnl_dereference(*ins))
if (pins->handle == n->handle)
break;
idr_replace(&ht->handle_idr, n, n->handle);
RCU_INIT_POINTER(n->next, pins->next);
rcu_assign_pointer(*ins, n);
}
static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp,
struct tc_u_knode *n)
{
struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
struct tc_u32_sel *s = &n->sel;
struct tc_u_knode *new;
new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
GFP_KERNEL);
if (!new)
return NULL;
RCU_INIT_POINTER(new->next, n->next);
new->handle = n->handle;
RCU_INIT_POINTER(new->ht_up, n->ht_up);
new->ifindex = n->ifindex;
new->fshift = n->fshift;
new->res = n->res;
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
new->flags = n->flags;
RCU_INIT_POINTER(new->ht_down, ht);
/* bump reference count as long as we hold pointer to structure */
if (ht)
ht->refcnt++;
#ifdef CONFIG_CLS_U32_PERF
/* Statistics may be incremented by readers during update
* so we must keep them in tact. When the node is later destroyed
* a special destroy call must be made to not free the pf memory.
*/
new->pf = n->pf;
#endif
#ifdef CONFIG_CLS_U32_MARK
new->val = n->val;
new->mask = n->mask;
/* Similarly success statistics must be moved as pointers */
new->pcpu_success = n->pcpu_success;
#endif
memcpy(&new->sel, s, struct_size(s, keys, s->nkeys));
if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) {
kfree(new);
return NULL;
}
return new;
}
static int u32_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base, u32 handle,
struct nlattr **tca, void **arg, bool ovr, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *ht;
struct tc_u_knode *n;
struct tc_u32_sel *s;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_U32_MAX + 1];
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
u32 htid, flags = 0;
size_t sel_size;
int err;
#ifdef CONFIG_CLS_U32_PERF
size_t size;
#endif
if (!opt) {
if (handle) {
NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options");
return -EINVAL;
} else {
return 0;
}
}
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 19:07:28 +07:00
err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy,
extack);
if (err < 0)
return err;
if (tb[TCA_U32_FLAGS]) {
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
flags = nla_get_u32(tb[TCA_U32_FLAGS]);
if (!tc_flags_valid(flags)) {
NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags");
return -EINVAL;
}
}
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
n = *arg;
if (n) {
struct tc_u_knode *new;
if (TC_U32_KEY(n->handle) == 0) {
NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero");
return -EINVAL;
}
if ((n->flags ^ flags) &
~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) {
NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags");
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
return -EINVAL;
}
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
new = u32_init_knode(net, tp, n);
if (!new)
return -ENOMEM;
err = u32_set_parms(net, tp, base, new, tb,
tca[TCA_RATE], ovr, extack);
if (err) {
u32_destroy_key(new, false);
return err;
}
err = u32_replace_hw_knode(tp, new, flags, extack);
if (err) {
u32_destroy_key(new, false);
return err;
}
if (!tc_in_hw(new->flags))
new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
u32_replace_knode(tp, tp_c, new);
net_sched: avoid calling tcf_unbind_filter() in call_rcu callback This fixes the following crash: [ 63.976822] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ 63.980094] CPU: 1 PID: 15 Comm: ksoftirqd/1 Not tainted 3.17.0-rc6+ #648 [ 63.980094] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 63.980094] task: ffff880117dea690 ti: ffff880117dfc000 task.ti: ffff880117dfc000 [ 63.980094] RIP: 0010:[<ffffffff817e6d07>] [<ffffffff817e6d07>] u32_destroy_key+0x27/0x6d [ 63.980094] RSP: 0018:ffff880117dffcc0 EFLAGS: 00010202 [ 63.980094] RAX: ffff880117dea690 RBX: ffff8800d02e0820 RCX: 0000000000000000 [ 63.980094] RDX: 0000000000000001 RSI: 0000000000000002 RDI: 6b6b6b6b6b6b6b6b [ 63.980094] RBP: ffff880117dffcd0 R08: 0000000000000000 R09: 0000000000000000 [ 63.980094] R10: 00006c0900006ba8 R11: 00006ba100006b9d R12: 0000000000000001 [ 63.980094] R13: ffff8800d02e0898 R14: ffffffff817e6d4d R15: ffff880117387a30 [ 63.980094] FS: 0000000000000000(0000) GS:ffff88011a800000(0000) knlGS:0000000000000000 [ 63.980094] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 63.980094] CR2: 00007f07e6732fed CR3: 000000011665b000 CR4: 00000000000006e0 [ 63.980094] Stack: [ 63.980094] ffff88011a9cd300 ffffffff82051ac0 ffff880117dffce0 ffffffff817e6d68 [ 63.980094] ffff880117dffd70 ffffffff810cb4c7 ffffffff810cb3cd ffff880117dfffd8 [ 63.980094] ffff880117dea690 ffff880117dea690 ffff880117dfffd8 000000000000000a [ 63.980094] Call Trace: [ 63.980094] [<ffffffff817e6d68>] u32_delete_key_freepf_rcu+0x1b/0x1d [ 63.980094] [<ffffffff810cb4c7>] rcu_process_callbacks+0x3bb/0x691 [ 63.980094] [<ffffffff810cb3cd>] ? rcu_process_callbacks+0x2c1/0x691 [ 63.980094] [<ffffffff817e6d4d>] ? u32_destroy_key+0x6d/0x6d [ 63.980094] [<ffffffff810780a4>] __do_softirq+0x142/0x323 [ 63.980094] [<ffffffff810782a8>] run_ksoftirqd+0x23/0x53 [ 63.980094] [<ffffffff81092126>] smpboot_thread_fn+0x203/0x221 [ 63.980094] [<ffffffff81091f23>] ? smpboot_unpark_thread+0x33/0x33 [ 63.980094] [<ffffffff8108e44d>] kthread+0xc9/0xd1 [ 63.980094] [<ffffffff819e00ea>] ? do_wait_for_common+0xf8/0x125 [ 63.980094] [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61 [ 63.980094] [<ffffffff819e43ec>] ret_from_fork+0x7c/0xb0 [ 63.980094] [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61 tp could be freed in call_rcu callback too, the order is not guaranteed. John Fastabend says: ==================== Its worth noting why this is safe. Any running schedulers will either read the valid class field or it will be zeroed. All schedulers today when the class is 0 do a lookup using the same call used by the tcf_exts_bind(). So even if we have a running classifier hit the null class pointer it will do a lookup and get to the same result. This is particularly fragile at the moment because the only way to verify this is to audit the schedulers call sites. ==================== Cc: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-01 06:07:24 +07:00
tcf_unbind_filter(tp, &n->res);
tcf_exts_get_net(&n->exts);
tcf_queue_work(&n->rwork, u32_delete_key_work);
return 0;
}
if (tb[TCA_U32_DIVISOR]) {
unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
if (!is_power_of_2(divisor)) {
NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2");
return -EINVAL;
}
if (divisor-- > 0x100) {
NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets");
return -EINVAL;
}
if (TC_U32_KEY(handle)) {
NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table");
return -EINVAL;
}
ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
if (ht == NULL)
return -ENOBUFS;
if (handle == 0) {
handle = gen_new_htid(tp->data, ht);
if (handle == 0) {
kfree(ht);
return -ENOMEM;
}
} else {
err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle,
handle, GFP_KERNEL);
if (err) {
kfree(ht);
return err;
}
}
ht->refcnt = 1;
ht->divisor = divisor;
ht->handle = handle;
ht->prio = tp->prio;
idr_init(&ht->handle_idr);
ht->flags = flags;
err = u32_replace_hw_hnode(tp, ht, flags, extack);
if (err) {
idr_remove(&tp_c->handle_idr, handle);
kfree(ht);
return err;
}
RCU_INIT_POINTER(ht->next, tp_c->hlist);
rcu_assign_pointer(tp_c->hlist, ht);
*arg = ht;
return 0;
}
if (tb[TCA_U32_HASH]) {
htid = nla_get_u32(tb[TCA_U32_HASH]);
if (TC_U32_HTID(htid) == TC_U32_ROOT) {
ht = rtnl_dereference(tp->root);
htid = ht->handle;
} else {
ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
if (!ht) {
NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found");
return -EINVAL;
}
}
} else {
ht = rtnl_dereference(tp->root);
htid = ht->handle;
}
if (ht->divisor < TC_U32_HASH(htid)) {
NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value");
return -EINVAL;
}
if (handle) {
if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) {
NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch");
return -EINVAL;
}
handle = htid | TC_U32_NODE(handle);
err = idr_alloc_u32(&ht->handle_idr, NULL, &handle, handle,
GFP_KERNEL);
if (err)
return err;
} else
handle = gen_new_kid(ht, htid);
if (tb[TCA_U32_SEL] == NULL) {
NL_SET_ERR_MSG_MOD(extack, "Selector not specified");
err = -EINVAL;
goto erridr;
}
s = nla_data(tb[TCA_U32_SEL]);
sel_size = struct_size(s, keys, s->nkeys);
if (nla_len(tb[TCA_U32_SEL]) < sel_size) {
err = -EINVAL;
goto erridr;
}
n = kzalloc(offsetof(typeof(*n), sel) + sel_size, GFP_KERNEL);
if (n == NULL) {
err = -ENOBUFS;
goto erridr;
}
#ifdef CONFIG_CLS_U32_PERF
size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
if (!n->pf) {
err = -ENOBUFS;
goto errfree;
}
#endif
memcpy(&n->sel, s, sel_size);
RCU_INIT_POINTER(n->ht_up, ht);
n->handle = handle;
n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
n->flags = flags;
err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE);
if (err < 0)
goto errout;
#ifdef CONFIG_CLS_U32_MARK
n->pcpu_success = alloc_percpu(u32);
if (!n->pcpu_success) {
err = -ENOMEM;
goto errout;
}
if (tb[TCA_U32_MARK]) {
struct tc_u32_mark *mark;
mark = nla_data(tb[TCA_U32_MARK]);
n->val = mark->val;
n->mask = mark->mask;
}
#endif
err = u32_set_parms(net, tp, base, n, tb, tca[TCA_RATE], ovr,
extack);
if (err == 0) {
struct tc_u_knode __rcu **ins;
struct tc_u_knode *pins;
err = u32_replace_hw_knode(tp, n, flags, extack);
if (err)
goto errhw;
if (!tc_in_hw(n->flags))
n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
ins = &ht->ht[TC_U32_HASH(handle)];
for (pins = rtnl_dereference(*ins); pins;
ins = &pins->next, pins = rtnl_dereference(*ins))
if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
break;
RCU_INIT_POINTER(n->next, pins);
rcu_assign_pointer(*ins, n);
tp_c->knodes++;
*arg = n;
return 0;
}
errhw:
#ifdef CONFIG_CLS_U32_MARK
free_percpu(n->pcpu_success);
#endif
errout:
tcf_exts_destroy(&n->exts);
#ifdef CONFIG_CLS_U32_PERF
errfree:
free_percpu(n->pf);
#endif
kfree(n);
erridr:
idr_remove(&ht->handle_idr, handle);
return err;
}
static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *ht;
struct tc_u_knode *n;
unsigned int h;
if (arg->stop)
return;
for (ht = rtnl_dereference(tp_c->hlist);
ht;
ht = rtnl_dereference(ht->next)) {
if (ht->prio != tp->prio)
continue;
if (arg->count >= arg->skip) {
if (arg->fn(tp, ht, arg) < 0) {
arg->stop = 1;
return;
}
}
arg->count++;
for (h = 0; h <= ht->divisor; h++) {
for (n = rtnl_dereference(ht->ht[h]);
n;
n = rtnl_dereference(n->next)) {
if (arg->count < arg->skip) {
arg->count++;
continue;
}
if (arg->fn(tp, n, arg) < 0) {
arg->stop = 1;
return;
}
arg->count++;
}
}
}
}
static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
bool add, flow_setup_cb_t *cb, void *cb_priv,
struct netlink_ext_ack *extack)
{
struct tc_cls_u32_offload cls_u32 = {};
int err;
tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack);
cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE;
cls_u32.hnode.divisor = ht->divisor;
cls_u32.hnode.handle = ht->handle;
cls_u32.hnode.prio = ht->prio;
err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv);
if (err && add && tc_skip_sw(ht->flags))
return err;
return 0;
}
static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n,
bool add, flow_setup_cb_t *cb, void *cb_priv,
struct netlink_ext_ack *extack)
{
struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
struct tcf_block *block = tp->chain->block;
struct tc_cls_u32_offload cls_u32 = {};
int err;
tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
cls_u32.command = add ?
TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE;
cls_u32.knode.handle = n->handle;
if (add) {
cls_u32.knode.fshift = n->fshift;
#ifdef CONFIG_CLS_U32_MARK
cls_u32.knode.val = n->val;
cls_u32.knode.mask = n->mask;
#else
cls_u32.knode.val = 0;
cls_u32.knode.mask = 0;
#endif
cls_u32.knode.sel = &n->sel;
cls_u32.knode.res = &n->res;
cls_u32.knode.exts = &n->exts;
if (n->ht_down)
cls_u32.knode.link_handle = ht->handle;
}
err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv);
if (err) {
if (add && tc_skip_sw(n->flags))
return err;
return 0;
}
tc_cls_offload_cnt_update(block, &n->in_hw_count, &n->flags, add);
return 0;
}
static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
void *cb_priv, struct netlink_ext_ack *extack)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *ht;
struct tc_u_knode *n;
unsigned int h;
int err;
for (ht = rtnl_dereference(tp_c->hlist);
ht;
ht = rtnl_dereference(ht->next)) {
if (ht->prio != tp->prio)
continue;
/* When adding filters to a new dev, try to offload the
* hashtable first. When removing, do the filters before the
* hashtable.
*/
if (add && !tc_skip_hw(ht->flags)) {
err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv,
extack);
if (err)
return err;
}
for (h = 0; h <= ht->divisor; h++) {
for (n = rtnl_dereference(ht->ht[h]);
n;
n = rtnl_dereference(n->next)) {
if (tc_skip_hw(n->flags))
continue;
err = u32_reoffload_knode(tp, n, add, cb,
cb_priv, extack);
if (err)
return err;
}
}
if (!add && !tc_skip_hw(ht->flags))
u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack);
}
return 0;
}
static void u32_bind_class(void *fh, u32 classid, unsigned long cl)
{
struct tc_u_knode *n = fh;
if (n && n->res.classid == classid)
n->res.class = cl;
}
static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct tc_u_knode *n = fh;
struct tc_u_hnode *ht_up, *ht_down;
struct nlattr *nest;
if (n == NULL)
return skb->len;
t->tcm_handle = n->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (TC_U32_KEY(n->handle) == 0) {
struct tc_u_hnode *ht = fh;
u32 divisor = ht->divisor + 1;
if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
goto nla_put_failure;
} else {
#ifdef CONFIG_CLS_U32_PERF
struct tc_u32_pcnt *gpf;
int cpu;
#endif
if (nla_put(skb, TCA_U32_SEL,
sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
&n->sel))
goto nla_put_failure;
ht_up = rtnl_dereference(n->ht_up);
if (ht_up) {
u32 htid = n->handle & 0xFFFFF000;
if (nla_put_u32(skb, TCA_U32_HASH, htid))
goto nla_put_failure;
}
if (n->res.classid &&
nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
goto nla_put_failure;
ht_down = rtnl_dereference(n->ht_down);
if (ht_down &&
nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
goto nla_put_failure;
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
goto nla_put_failure;
#ifdef CONFIG_CLS_U32_MARK
if ((n->val || n->mask)) {
struct tc_u32_mark mark = {.val = n->val,
.mask = n->mask,
.success = 0};
int cpum;
for_each_possible_cpu(cpum) {
__u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
mark.success += cnt;
}
if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
goto nla_put_failure;
}
#endif
if (tcf_exts_dump(skb, &n->exts) < 0)
goto nla_put_failure;
if (n->ifindex) {
struct net_device *dev;
dev = __dev_get_by_index(net, n->ifindex);
if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
goto nla_put_failure;
}
#ifdef CONFIG_CLS_U32_PERF
gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
n->sel.nkeys * sizeof(u64),
GFP_KERNEL);
if (!gpf)
goto nla_put_failure;
for_each_possible_cpu(cpu) {
int i;
struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
gpf->rcnt += pf->rcnt;
gpf->rhit += pf->rhit;
for (i = 0; i < n->sel.nkeys; i++)
gpf->kcnts[i] += pf->kcnts[i];
}
if (nla_put_64bit(skb, TCA_U32_PCNT,
sizeof(struct tc_u32_pcnt) +
n->sel.nkeys * sizeof(u64),
gpf, TCA_U32_PAD)) {
kfree(gpf);
goto nla_put_failure;
}
kfree(gpf);
#endif
}
nla_nest_end(skb, nest);
if (TC_U32_KEY(n->handle))
if (tcf_exts_dump_stats(skb, &n->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static struct tcf_proto_ops cls_u32_ops __read_mostly = {
.kind = "u32",
.classify = u32_classify,
.init = u32_init,
.destroy = u32_destroy,
.get = u32_get,
.change = u32_change,
.delete = u32_delete,
.walk = u32_walk,
.reoffload = u32_reoffload,
.dump = u32_dump,
.bind_class = u32_bind_class,
.owner = THIS_MODULE,
};
static int __init init_u32(void)
{
int i, ret;
pr_info("u32 classifier\n");
#ifdef CONFIG_CLS_U32_PERF
pr_info(" Performance counters on\n");
#endif
pr_info(" input device check on\n");
#ifdef CONFIG_NET_CLS_ACT
pr_info(" Actions configured\n");
#endif
tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
sizeof(struct hlist_head),
GFP_KERNEL);
if (!tc_u_common_hash)
return -ENOMEM;
for (i = 0; i < U32_HASH_SIZE; i++)
INIT_HLIST_HEAD(&tc_u_common_hash[i]);
ret = register_tcf_proto_ops(&cls_u32_ops);
if (ret)
kvfree(tc_u_common_hash);
return ret;
}
static void __exit exit_u32(void)
{
unregister_tcf_proto_ops(&cls_u32_ops);
kvfree(tc_u_common_hash);
}
module_init(init_u32)
module_exit(exit_u32)
MODULE_LICENSE("GPL");