linux_dsm_epyc7002/drivers/gpu/drm/i915/display/intel_hdcp.c
Ville Syrjälä 3ce8209735 drm/i915/hdcp: Nuke intel_hdcp_transcoder_config()
intel_hdcp_transcoder_config() is clobbering some globally visible
state in .compute_config(). That is a big no no as .compute_config()
is supposed to have no visible side effects when either the commit
fails or it's just a TEST_ONLY commit.

Inline this stuff into intel_hdcp_enable() so that the state only
gets modified when we actually commit the state to the hardware.

Cc: Ramalingam C <ramalingam.c@intel.com>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Uma Shankar <uma.shankar@intel.com>
Fixes: 39e2df090c ("drm/i915/hdcp: update current transcoder into intel_hdcp")
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191204180549.1267-2-ville.syrjala@linux.intel.com
Reviewed-by: Ramalingam C <ramalingam.c@intel.com>
(cherry picked from commit 67e1d5ed85)
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
2019-12-10 12:37:53 +02:00

2090 lines
56 KiB
C

/* SPDX-License-Identifier: MIT */
/*
* Copyright (C) 2017 Google, Inc.
* Copyright _ 2017-2019, Intel Corporation.
*
* Authors:
* Sean Paul <seanpaul@chromium.org>
* Ramalingam C <ramalingam.c@intel.com>
*/
#include <linux/component.h>
#include <linux/i2c.h>
#include <linux/random.h>
#include <drm/drm_hdcp.h>
#include <drm/i915_component.h>
#include "i915_reg.h"
#include "intel_display_power.h"
#include "intel_display_types.h"
#include "intel_hdcp.h"
#include "intel_sideband.h"
#include "intel_connector.h"
#define KEY_LOAD_TRIES 5
#define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS 50
#define HDCP2_LC_RETRY_CNT 3
static
bool intel_hdcp_is_ksv_valid(u8 *ksv)
{
int i, ones = 0;
/* KSV has 20 1's and 20 0's */
for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
ones += hweight8(ksv[i]);
if (ones != 20)
return false;
return true;
}
static
int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port,
const struct intel_hdcp_shim *shim, u8 *bksv)
{
int ret, i, tries = 2;
/* HDCP spec states that we must retry the bksv if it is invalid */
for (i = 0; i < tries; i++) {
ret = shim->read_bksv(intel_dig_port, bksv);
if (ret)
return ret;
if (intel_hdcp_is_ksv_valid(bksv))
break;
}
if (i == tries) {
DRM_DEBUG_KMS("Bksv is invalid\n");
return -ENODEV;
}
return 0;
}
/* Is HDCP1.4 capable on Platform and Sink */
bool intel_hdcp_capable(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
const struct intel_hdcp_shim *shim = connector->hdcp.shim;
bool capable = false;
u8 bksv[5];
if (!shim)
return capable;
if (shim->hdcp_capable) {
shim->hdcp_capable(intel_dig_port, &capable);
} else {
if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv))
capable = true;
}
return capable;
}
/* Is HDCP2.2 capable on Platform and Sink */
bool intel_hdcp2_capable(struct intel_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
bool capable = false;
/* I915 support for HDCP2.2 */
if (!hdcp->hdcp2_supported)
return false;
/* MEI interface is solid */
mutex_lock(&dev_priv->hdcp_comp_mutex);
if (!dev_priv->hdcp_comp_added || !dev_priv->hdcp_master) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return false;
}
mutex_unlock(&dev_priv->hdcp_comp_mutex);
/* Sink's capability for HDCP2.2 */
hdcp->shim->hdcp_2_2_capable(intel_dig_port, &capable);
return capable;
}
static inline
bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder, enum port port)
{
return I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
HDCP_STATUS_ENC;
}
static inline
bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder, enum port port)
{
return I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
LINK_ENCRYPTION_STATUS;
}
static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
const struct intel_hdcp_shim *shim)
{
int ret, read_ret;
bool ksv_ready;
/* Poll for ksv list ready (spec says max time allowed is 5s) */
ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
&ksv_ready),
read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
100 * 1000);
if (ret)
return ret;
if (read_ret)
return read_ret;
if (!ksv_ready)
return -ETIMEDOUT;
return 0;
}
static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
enum i915_power_well_id id;
bool enabled = false;
/*
* On HSW and BDW, Display HW loads the Key as soon as Display resumes.
* On all BXT+, SW can load the keys only when the PW#1 is turned on.
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
id = HSW_DISP_PW_GLOBAL;
else
id = SKL_DISP_PW_1;
mutex_lock(&power_domains->lock);
/* PG1 (power well #1) needs to be enabled */
for_each_power_well(dev_priv, power_well) {
if (power_well->desc->id == id) {
enabled = power_well->desc->ops->is_enabled(dev_priv,
power_well);
break;
}
}
mutex_unlock(&power_domains->lock);
/*
* Another req for hdcp key loadability is enabled state of pll for
* cdclk. Without active crtc we wont land here. So we are assuming that
* cdclk is already on.
*/
return enabled;
}
static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
{
I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
}
static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
{
int ret;
u32 val;
val = I915_READ(HDCP_KEY_STATUS);
if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
return 0;
/*
* On HSW and BDW HW loads the HDCP1.4 Key when Display comes
* out of reset. So if Key is not already loaded, its an error state.
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
return -ENXIO;
/*
* Initiate loading the HDCP key from fuses.
*
* BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
* platforms except BXT and GLK, differ in the key load trigger process
* from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
*/
if (IS_GEN9_BC(dev_priv)) {
ret = sandybridge_pcode_write(dev_priv,
SKL_PCODE_LOAD_HDCP_KEYS, 1);
if (ret) {
DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
ret);
return ret;
}
} else {
I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
}
/* Wait for the keys to load (500us) */
ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
10, 1, &val);
if (ret)
return ret;
else if (!(val & HDCP_KEY_LOAD_STATUS))
return -ENXIO;
/* Send Aksv over to PCH display for use in authentication */
I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
return 0;
}
/* Returns updated SHA-1 index */
static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
{
I915_WRITE(HDCP_SHA_TEXT, sha_text);
if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
DRM_ERROR("Timed out waiting for SHA1 ready\n");
return -ETIMEDOUT;
}
return 0;
}
static
u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder, enum port port)
{
if (INTEL_GEN(dev_priv) >= 12) {
switch (cpu_transcoder) {
case TRANSCODER_A:
return HDCP_TRANSA_REP_PRESENT |
HDCP_TRANSA_SHA1_M0;
case TRANSCODER_B:
return HDCP_TRANSB_REP_PRESENT |
HDCP_TRANSB_SHA1_M0;
case TRANSCODER_C:
return HDCP_TRANSC_REP_PRESENT |
HDCP_TRANSC_SHA1_M0;
case TRANSCODER_D:
return HDCP_TRANSD_REP_PRESENT |
HDCP_TRANSD_SHA1_M0;
default:
DRM_ERROR("Unknown transcoder %d\n", cpu_transcoder);
return -EINVAL;
}
}
switch (port) {
case PORT_A:
return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
case PORT_B:
return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
case PORT_C:
return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
case PORT_D:
return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
case PORT_E:
return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
default:
DRM_ERROR("Unknown port %d\n", port);
return -EINVAL;
}
}
static
int intel_hdcp_validate_v_prime(struct intel_connector *connector,
const struct intel_hdcp_shim *shim,
u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct drm_i915_private *dev_priv;
enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
enum port port = intel_dig_port->base.port;
u32 vprime, sha_text, sha_leftovers, rep_ctl;
int ret, i, j, sha_idx;
dev_priv = intel_dig_port->base.base.dev->dev_private;
/* Process V' values from the receiver */
for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
if (ret)
return ret;
I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
}
/*
* We need to write the concatenation of all device KSVs, BINFO (DP) ||
* BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
* stream is written via the HDCP_SHA_TEXT register in 32-bit
* increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
* index will keep track of our progress through the 64 bytes as well as
* helping us work the 40-bit KSVs through our 32-bit register.
*
* NOTE: data passed via HDCP_SHA_TEXT should be big-endian
*/
sha_idx = 0;
sha_text = 0;
sha_leftovers = 0;
rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
for (i = 0; i < num_downstream; i++) {
unsigned int sha_empty;
u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
/* Fill up the empty slots in sha_text and write it out */
sha_empty = sizeof(sha_text) - sha_leftovers;
for (j = 0; j < sha_empty; j++)
sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
/* Programming guide writes this every 64 bytes */
sha_idx += sizeof(sha_text);
if (!(sha_idx % 64))
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
/* Store the leftover bytes from the ksv in sha_text */
sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
sha_text = 0;
for (j = 0; j < sha_leftovers; j++)
sha_text |= ksv[sha_empty + j] <<
((sizeof(sha_text) - j - 1) * 8);
/*
* If we still have room in sha_text for more data, continue.
* Otherwise, write it out immediately.
*/
if (sizeof(sha_text) > sha_leftovers)
continue;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_leftovers = 0;
sha_text = 0;
sha_idx += sizeof(sha_text);
}
/*
* We need to write BINFO/BSTATUS, and M0 now. Depending on how many
* bytes are leftover from the last ksv, we might be able to fit them
* all in sha_text (first 2 cases), or we might need to split them up
* into 2 writes (last 2 cases).
*/
if (sha_leftovers == 0) {
/* Write 16 bits of text, 16 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
ret = intel_write_sha_text(dev_priv,
bstatus[0] << 8 | bstatus[1]);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 32 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 16 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else if (sha_leftovers == 1) {
/* Write 24 bits of text, 8 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
/* Only 24-bits of data, must be in the LSB */
sha_text = (sha_text & 0xffffff00) >> 8;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 32 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 24 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else if (sha_leftovers == 2) {
/* Write 32 bits of text */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 64 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
for (i = 0; i < 2; i++) {
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
}
} else if (sha_leftovers == 3) {
/* Write 32 bits of text */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
sha_text |= bstatus[0] << 24;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 8 bits of text, 24 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
ret = intel_write_sha_text(dev_priv, bstatus[1]);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 32 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
/* Write 8 bits of M0 */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
} else {
DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
sha_leftovers);
return -EINVAL;
}
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
ret = intel_write_sha_text(dev_priv, 0);
if (ret < 0)
return ret;
sha_idx += sizeof(sha_text);
}
/*
* Last write gets the length of the concatenation in bits. That is:
* - 5 bytes per device
* - 10 bytes for BINFO/BSTATUS(2), M0(8)
*/
sha_text = (num_downstream * 5 + 10) * 8;
ret = intel_write_sha_text(dev_priv, sha_text);
if (ret < 0)
return ret;
/* Tell the HW we're done with the hash and wait for it to ACK */
I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
HDCP_SHA1_COMPLETE, 1)) {
DRM_ERROR("Timed out waiting for SHA1 complete\n");
return -ETIMEDOUT;
}
if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
return -ENXIO;
}
return 0;
}
/* Implements Part 2 of the HDCP authorization procedure */
static
int intel_hdcp_auth_downstream(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
const struct intel_hdcp_shim *shim = connector->hdcp.shim;
struct drm_device *dev = connector->base.dev;
u8 bstatus[2], num_downstream, *ksv_fifo;
int ret, i, tries = 3;
ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
if (ret) {
DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret);
return ret;
}
ret = shim->read_bstatus(intel_dig_port, bstatus);
if (ret)
return ret;
if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
DRM_DEBUG_KMS("Max Topology Limit Exceeded\n");
return -EPERM;
}
/*
* When repeater reports 0 device count, HDCP1.4 spec allows disabling
* the HDCP encryption. That implies that repeater can't have its own
* display. As there is no consumption of encrypted content in the
* repeater with 0 downstream devices, we are failing the
* authentication.
*/
num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
if (num_downstream == 0) {
DRM_DEBUG_KMS("Repeater with zero downstream devices\n");
return -EINVAL;
}
ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
if (!ksv_fifo) {
DRM_DEBUG_KMS("Out of mem: ksv_fifo\n");
return -ENOMEM;
}
ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
if (ret)
goto err;
if (drm_hdcp_check_ksvs_revoked(dev, ksv_fifo, num_downstream)) {
DRM_ERROR("Revoked Ksv(s) in ksv_fifo\n");
ret = -EPERM;
goto err;
}
/*
* When V prime mismatches, DP Spec mandates re-read of
* V prime atleast twice.
*/
for (i = 0; i < tries; i++) {
ret = intel_hdcp_validate_v_prime(connector, shim,
ksv_fifo, num_downstream,
bstatus);
if (!ret)
break;
}
if (i == tries) {
DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret);
goto err;
}
DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
num_downstream);
ret = 0;
err:
kfree(ksv_fifo);
return ret;
}
/* Implements Part 1 of the HDCP authorization procedure */
static int intel_hdcp_auth(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
struct drm_device *dev = connector->base.dev;
const struct intel_hdcp_shim *shim = hdcp->shim;
struct drm_i915_private *dev_priv;
enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
enum port port;
unsigned long r0_prime_gen_start;
int ret, i, tries = 2;
union {
u32 reg[2];
u8 shim[DRM_HDCP_AN_LEN];
} an;
union {
u32 reg[2];
u8 shim[DRM_HDCP_KSV_LEN];
} bksv;
union {
u32 reg;
u8 shim[DRM_HDCP_RI_LEN];
} ri;
bool repeater_present, hdcp_capable;
dev_priv = intel_dig_port->base.base.dev->dev_private;
port = intel_dig_port->base.port;
/*
* Detects whether the display is HDCP capable. Although we check for
* valid Bksv below, the HDCP over DP spec requires that we check
* whether the display supports HDCP before we write An. For HDMI
* displays, this is not necessary.
*/
if (shim->hdcp_capable) {
ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
if (ret)
return ret;
if (!hdcp_capable) {
DRM_DEBUG_KMS("Panel is not HDCP capable\n");
return -EINVAL;
}
}
/* Initialize An with 2 random values and acquire it */
for (i = 0; i < 2; i++)
I915_WRITE(HDCP_ANINIT(dev_priv, cpu_transcoder, port),
get_random_u32());
I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port),
HDCP_CONF_CAPTURE_AN);
/* Wait for An to be acquired */
if (intel_de_wait_for_set(dev_priv,
HDCP_STATUS(dev_priv, cpu_transcoder, port),
HDCP_STATUS_AN_READY, 1)) {
DRM_ERROR("Timed out waiting for An\n");
return -ETIMEDOUT;
}
an.reg[0] = I915_READ(HDCP_ANLO(dev_priv, cpu_transcoder, port));
an.reg[1] = I915_READ(HDCP_ANHI(dev_priv, cpu_transcoder, port));
ret = shim->write_an_aksv(intel_dig_port, an.shim);
if (ret)
return ret;
r0_prime_gen_start = jiffies;
memset(&bksv, 0, sizeof(bksv));
ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim);
if (ret < 0)
return ret;
if (drm_hdcp_check_ksvs_revoked(dev, bksv.shim, 1)) {
DRM_ERROR("BKSV is revoked\n");
return -EPERM;
}
I915_WRITE(HDCP_BKSVLO(dev_priv, cpu_transcoder, port), bksv.reg[0]);
I915_WRITE(HDCP_BKSVHI(dev_priv, cpu_transcoder, port), bksv.reg[1]);
ret = shim->repeater_present(intel_dig_port, &repeater_present);
if (ret)
return ret;
if (repeater_present)
I915_WRITE(HDCP_REP_CTL,
intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
port));
ret = shim->toggle_signalling(intel_dig_port, true);
if (ret)
return ret;
I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port),
HDCP_CONF_AUTH_AND_ENC);
/* Wait for R0 ready */
if (wait_for(I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
(HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
DRM_ERROR("Timed out waiting for R0 ready\n");
return -ETIMEDOUT;
}
/*
* Wait for R0' to become available. The spec says 100ms from Aksv, but
* some monitors can take longer than this. We'll set the timeout at
* 300ms just to be sure.
*
* On DP, there's an R0_READY bit available but no such bit
* exists on HDMI. Since the upper-bound is the same, we'll just do
* the stupid thing instead of polling on one and not the other.
*/
wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
tries = 3;
/*
* DP HDCP Spec mandates the two more reattempt to read R0, incase
* of R0 mismatch.
*/
for (i = 0; i < tries; i++) {
ri.reg = 0;
ret = shim->read_ri_prime(intel_dig_port, ri.shim);
if (ret)
return ret;
I915_WRITE(HDCP_RPRIME(dev_priv, cpu_transcoder, port), ri.reg);
/* Wait for Ri prime match */
if (!wait_for(I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
port)) &
(HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
break;
}
if (i == tries) {
DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n",
I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
port)));
return -ETIMEDOUT;
}
/* Wait for encryption confirmation */
if (intel_de_wait_for_set(dev_priv,
HDCP_STATUS(dev_priv, cpu_transcoder, port),
HDCP_STATUS_ENC,
ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
DRM_ERROR("Timed out waiting for encryption\n");
return -ETIMEDOUT;
}
/*
* XXX: If we have MST-connected devices, we need to enable encryption
* on those as well.
*/
if (repeater_present)
return intel_hdcp_auth_downstream(connector);
DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
return 0;
}
static int _intel_hdcp_disable(struct intel_connector *connector)
{
struct intel_hdcp *hdcp = &connector->hdcp;
struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
enum port port = intel_dig_port->base.port;
enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
int ret;
DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
connector->base.name, connector->base.base.id);
hdcp->hdcp_encrypted = false;
I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
if (intel_de_wait_for_clear(dev_priv,
HDCP_STATUS(dev_priv, cpu_transcoder, port),
~0, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
return -ETIMEDOUT;
}
ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
if (ret) {
DRM_ERROR("Failed to disable HDCP signalling\n");
return ret;
}
DRM_DEBUG_KMS("HDCP is disabled\n");
return 0;
}
static int _intel_hdcp_enable(struct intel_connector *connector)
{
struct intel_hdcp *hdcp = &connector->hdcp;
struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
int i, ret, tries = 3;
DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
connector->base.name, connector->base.base.id);
if (!hdcp_key_loadable(dev_priv)) {
DRM_ERROR("HDCP key Load is not possible\n");
return -ENXIO;
}
for (i = 0; i < KEY_LOAD_TRIES; i++) {
ret = intel_hdcp_load_keys(dev_priv);
if (!ret)
break;
intel_hdcp_clear_keys(dev_priv);
}
if (ret) {
DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
return ret;
}
/* Incase of authentication failures, HDCP spec expects reauth. */
for (i = 0; i < tries; i++) {
ret = intel_hdcp_auth(connector);
if (!ret) {
hdcp->hdcp_encrypted = true;
return 0;
}
DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
/* Ensuring HDCP encryption and signalling are stopped. */
_intel_hdcp_disable(connector);
}
DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret);
return ret;
}
static inline
struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
{
return container_of(hdcp, struct intel_connector, hdcp);
}
/* Implements Part 3 of the HDCP authorization procedure */
static int intel_hdcp_check_link(struct intel_connector *connector)
{
struct intel_hdcp *hdcp = &connector->hdcp;
struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
enum port port = intel_dig_port->base.port;
enum transcoder cpu_transcoder;
int ret = 0;
mutex_lock(&hdcp->mutex);
cpu_transcoder = hdcp->cpu_transcoder;
/* Check_link valid only when HDCP1.4 is enabled */
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
!hdcp->hdcp_encrypted) {
ret = -EINVAL;
goto out;
}
if (WARN_ON(!intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
DRM_ERROR("%s:%d HDCP link stopped encryption,%x\n",
connector->base.name, connector->base.base.id,
I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
port)));
ret = -ENXIO;
hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&hdcp->prop_work);
goto out;
}
if (hdcp->shim->check_link(intel_dig_port)) {
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
schedule_work(&hdcp->prop_work);
}
goto out;
}
DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
connector->base.name, connector->base.base.id);
ret = _intel_hdcp_disable(connector);
if (ret) {
DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&hdcp->prop_work);
goto out;
}
ret = _intel_hdcp_enable(connector);
if (ret) {
DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&hdcp->prop_work);
goto out;
}
out:
mutex_unlock(&hdcp->mutex);
return ret;
}
static void intel_hdcp_prop_work(struct work_struct *work)
{
struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
prop_work);
struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
struct drm_device *dev = connector->base.dev;
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
mutex_lock(&hdcp->mutex);
/*
* This worker is only used to flip between ENABLED/DESIRED. Either of
* those to UNDESIRED is handled by core. If value == UNDESIRED,
* we're running just after hdcp has been disabled, so just exit
*/
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
drm_hdcp_update_content_protection(&connector->base,
hdcp->value);
mutex_unlock(&hdcp->mutex);
drm_modeset_unlock(&dev->mode_config.connection_mutex);
}
bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
{
/* PORT E doesn't have HDCP, and PORT F is disabled */
return INTEL_INFO(dev_priv)->display.has_hdcp && port < PORT_E;
}
static int
hdcp2_prepare_ake_init(struct intel_connector *connector,
struct hdcp2_ake_init *ake_data)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
if (ret)
DRM_DEBUG_KMS("Prepare_ake_init failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int
hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
struct hdcp2_ake_send_cert *rx_cert,
bool *paired,
struct hdcp2_ake_no_stored_km *ek_pub_km,
size_t *msg_sz)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
rx_cert, paired,
ek_pub_km, msg_sz);
if (ret < 0)
DRM_DEBUG_KMS("Verify rx_cert failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int hdcp2_verify_hprime(struct intel_connector *connector,
struct hdcp2_ake_send_hprime *rx_hprime)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
if (ret < 0)
DRM_DEBUG_KMS("Verify hprime failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int
hdcp2_store_pairing_info(struct intel_connector *connector,
struct hdcp2_ake_send_pairing_info *pairing_info)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
if (ret < 0)
DRM_DEBUG_KMS("Store pairing info failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int
hdcp2_prepare_lc_init(struct intel_connector *connector,
struct hdcp2_lc_init *lc_init)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
if (ret < 0)
DRM_DEBUG_KMS("Prepare lc_init failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int
hdcp2_verify_lprime(struct intel_connector *connector,
struct hdcp2_lc_send_lprime *rx_lprime)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
if (ret < 0)
DRM_DEBUG_KMS("Verify L_Prime failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int hdcp2_prepare_skey(struct intel_connector *connector,
struct hdcp2_ske_send_eks *ske_data)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
if (ret < 0)
DRM_DEBUG_KMS("Get session key failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int
hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
struct hdcp2_rep_send_receiverid_list
*rep_topology,
struct hdcp2_rep_send_ack *rep_send_ack)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
rep_topology,
rep_send_ack);
if (ret < 0)
DRM_DEBUG_KMS("Verify rep topology failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int
hdcp2_verify_mprime(struct intel_connector *connector,
struct hdcp2_rep_stream_ready *stream_ready)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
if (ret < 0)
DRM_DEBUG_KMS("Verify mprime failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int hdcp2_authenticate_port(struct intel_connector *connector)
{
struct hdcp_port_data *data = &connector->hdcp.port_data;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
if (ret < 0)
DRM_DEBUG_KMS("Enable hdcp auth failed. %d\n", ret);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int hdcp2_close_mei_session(struct intel_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct i915_hdcp_comp_master *comp;
int ret;
mutex_lock(&dev_priv->hdcp_comp_mutex);
comp = dev_priv->hdcp_master;
if (!comp || !comp->ops) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return -EINVAL;
}
ret = comp->ops->close_hdcp_session(comp->mei_dev,
&connector->hdcp.port_data);
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return ret;
}
static int hdcp2_deauthenticate_port(struct intel_connector *connector)
{
return hdcp2_close_mei_session(connector);
}
/* Authentication flow starts from here */
static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
struct drm_device *dev = connector->base.dev;
union {
struct hdcp2_ake_init ake_init;
struct hdcp2_ake_send_cert send_cert;
struct hdcp2_ake_no_stored_km no_stored_km;
struct hdcp2_ake_send_hprime send_hprime;
struct hdcp2_ake_send_pairing_info pairing_info;
} msgs;
const struct intel_hdcp_shim *shim = hdcp->shim;
size_t size;
int ret;
/* Init for seq_num */
hdcp->seq_num_v = 0;
hdcp->seq_num_m = 0;
ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
if (ret < 0)
return ret;
ret = shim->write_2_2_msg(intel_dig_port, &msgs.ake_init,
sizeof(msgs.ake_init));
if (ret < 0)
return ret;
ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_CERT,
&msgs.send_cert, sizeof(msgs.send_cert));
if (ret < 0)
return ret;
if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
DRM_DEBUG_KMS("cert.rx_caps dont claim HDCP2.2\n");
return -EINVAL;
}
hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
if (drm_hdcp_check_ksvs_revoked(dev, msgs.send_cert.cert_rx.receiver_id,
1)) {
DRM_ERROR("Receiver ID is revoked\n");
return -EPERM;
}
/*
* Here msgs.no_stored_km will hold msgs corresponding to the km
* stored also.
*/
ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
&hdcp->is_paired,
&msgs.no_stored_km, &size);
if (ret < 0)
return ret;
ret = shim->write_2_2_msg(intel_dig_port, &msgs.no_stored_km, size);
if (ret < 0)
return ret;
ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_HPRIME,
&msgs.send_hprime, sizeof(msgs.send_hprime));
if (ret < 0)
return ret;
ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
if (ret < 0)
return ret;
if (!hdcp->is_paired) {
/* Pairing is required */
ret = shim->read_2_2_msg(intel_dig_port,
HDCP_2_2_AKE_SEND_PAIRING_INFO,
&msgs.pairing_info,
sizeof(msgs.pairing_info));
if (ret < 0)
return ret;
ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
if (ret < 0)
return ret;
hdcp->is_paired = true;
}
return 0;
}
static int hdcp2_locality_check(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
union {
struct hdcp2_lc_init lc_init;
struct hdcp2_lc_send_lprime send_lprime;
} msgs;
const struct intel_hdcp_shim *shim = hdcp->shim;
int tries = HDCP2_LC_RETRY_CNT, ret, i;
for (i = 0; i < tries; i++) {
ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
if (ret < 0)
continue;
ret = shim->write_2_2_msg(intel_dig_port, &msgs.lc_init,
sizeof(msgs.lc_init));
if (ret < 0)
continue;
ret = shim->read_2_2_msg(intel_dig_port,
HDCP_2_2_LC_SEND_LPRIME,
&msgs.send_lprime,
sizeof(msgs.send_lprime));
if (ret < 0)
continue;
ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
if (!ret)
break;
}
return ret;
}
static int hdcp2_session_key_exchange(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
struct hdcp2_ske_send_eks send_eks;
int ret;
ret = hdcp2_prepare_skey(connector, &send_eks);
if (ret < 0)
return ret;
ret = hdcp->shim->write_2_2_msg(intel_dig_port, &send_eks,
sizeof(send_eks));
if (ret < 0)
return ret;
return 0;
}
static
int hdcp2_propagate_stream_management_info(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
union {
struct hdcp2_rep_stream_manage stream_manage;
struct hdcp2_rep_stream_ready stream_ready;
} msgs;
const struct intel_hdcp_shim *shim = hdcp->shim;
int ret;
/* Prepare RepeaterAuth_Stream_Manage msg */
msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
/* K no of streams is fixed as 1. Stored as big-endian. */
msgs.stream_manage.k = cpu_to_be16(1);
/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
msgs.stream_manage.streams[0].stream_id = 0;
msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
/* Send it to Repeater */
ret = shim->write_2_2_msg(intel_dig_port, &msgs.stream_manage,
sizeof(msgs.stream_manage));
if (ret < 0)
return ret;
ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_STREAM_READY,
&msgs.stream_ready, sizeof(msgs.stream_ready));
if (ret < 0)
return ret;
hdcp->port_data.seq_num_m = hdcp->seq_num_m;
hdcp->port_data.streams[0].stream_type = hdcp->content_type;
ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
if (ret < 0)
return ret;
hdcp->seq_num_m++;
if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
DRM_DEBUG_KMS("seq_num_m roll over.\n");
return -1;
}
return 0;
}
static
int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
struct drm_device *dev = connector->base.dev;
union {
struct hdcp2_rep_send_receiverid_list recvid_list;
struct hdcp2_rep_send_ack rep_ack;
} msgs;
const struct intel_hdcp_shim *shim = hdcp->shim;
u32 seq_num_v, device_cnt;
u8 *rx_info;
int ret;
ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
&msgs.recvid_list, sizeof(msgs.recvid_list));
if (ret < 0)
return ret;
rx_info = msgs.recvid_list.rx_info;
if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
DRM_DEBUG_KMS("Topology Max Size Exceeded\n");
return -EINVAL;
}
/* Converting and Storing the seq_num_v to local variable as DWORD */
seq_num_v =
drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
if (seq_num_v < hdcp->seq_num_v) {
/* Roll over of the seq_num_v from repeater. Reauthenticate. */
DRM_DEBUG_KMS("Seq_num_v roll over.\n");
return -EINVAL;
}
device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
if (drm_hdcp_check_ksvs_revoked(dev, msgs.recvid_list.receiver_ids,
device_cnt)) {
DRM_ERROR("Revoked receiver ID(s) is in list\n");
return -EPERM;
}
ret = hdcp2_verify_rep_topology_prepare_ack(connector,
&msgs.recvid_list,
&msgs.rep_ack);
if (ret < 0)
return ret;
hdcp->seq_num_v = seq_num_v;
ret = shim->write_2_2_msg(intel_dig_port, &msgs.rep_ack,
sizeof(msgs.rep_ack));
if (ret < 0)
return ret;
return 0;
}
static int hdcp2_authenticate_repeater(struct intel_connector *connector)
{
int ret;
ret = hdcp2_authenticate_repeater_topology(connector);
if (ret < 0)
return ret;
return hdcp2_propagate_stream_management_info(connector);
}
static int hdcp2_authenticate_sink(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct intel_hdcp *hdcp = &connector->hdcp;
const struct intel_hdcp_shim *shim = hdcp->shim;
int ret;
ret = hdcp2_authentication_key_exchange(connector);
if (ret < 0) {
DRM_DEBUG_KMS("AKE Failed. Err : %d\n", ret);
return ret;
}
ret = hdcp2_locality_check(connector);
if (ret < 0) {
DRM_DEBUG_KMS("Locality Check failed. Err : %d\n", ret);
return ret;
}
ret = hdcp2_session_key_exchange(connector);
if (ret < 0) {
DRM_DEBUG_KMS("SKE Failed. Err : %d\n", ret);
return ret;
}
if (shim->config_stream_type) {
ret = shim->config_stream_type(intel_dig_port,
hdcp->is_repeater,
hdcp->content_type);
if (ret < 0)
return ret;
}
if (hdcp->is_repeater) {
ret = hdcp2_authenticate_repeater(connector);
if (ret < 0) {
DRM_DEBUG_KMS("Repeater Auth Failed. Err: %d\n", ret);
return ret;
}
}
hdcp->port_data.streams[0].stream_type = hdcp->content_type;
ret = hdcp2_authenticate_port(connector);
if (ret < 0)
return ret;
return ret;
}
static int hdcp2_enable_encryption(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = connector->encoder->port;
enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
int ret;
WARN_ON(I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
LINK_ENCRYPTION_STATUS);
if (hdcp->shim->toggle_signalling) {
ret = hdcp->shim->toggle_signalling(intel_dig_port, true);
if (ret) {
DRM_ERROR("Failed to enable HDCP signalling. %d\n",
ret);
return ret;
}
}
if (I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
LINK_AUTH_STATUS) {
/* Link is Authenticated. Now set for Encryption */
I915_WRITE(HDCP2_CTL(dev_priv, cpu_transcoder, port),
I915_READ(HDCP2_CTL(dev_priv, cpu_transcoder,
port)) |
CTL_LINK_ENCRYPTION_REQ);
}
ret = intel_de_wait_for_set(dev_priv,
HDCP2_STATUS(dev_priv, cpu_transcoder,
port),
LINK_ENCRYPTION_STATUS,
ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
return ret;
}
static int hdcp2_disable_encryption(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = connector->encoder->port;
enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
int ret;
WARN_ON(!(I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
LINK_ENCRYPTION_STATUS));
I915_WRITE(HDCP2_CTL(dev_priv, cpu_transcoder, port),
I915_READ(HDCP2_CTL(dev_priv, cpu_transcoder, port)) &
~CTL_LINK_ENCRYPTION_REQ);
ret = intel_de_wait_for_clear(dev_priv,
HDCP2_STATUS(dev_priv, cpu_transcoder,
port),
LINK_ENCRYPTION_STATUS,
ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
if (ret == -ETIMEDOUT)
DRM_DEBUG_KMS("Disable Encryption Timedout");
if (hdcp->shim->toggle_signalling) {
ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
if (ret) {
DRM_ERROR("Failed to disable HDCP signalling. %d\n",
ret);
return ret;
}
}
return ret;
}
static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
{
int ret, i, tries = 3;
for (i = 0; i < tries; i++) {
ret = hdcp2_authenticate_sink(connector);
if (!ret)
break;
/* Clearing the mei hdcp session */
DRM_DEBUG_KMS("HDCP2.2 Auth %d of %d Failed.(%d)\n",
i + 1, tries, ret);
if (hdcp2_deauthenticate_port(connector) < 0)
DRM_DEBUG_KMS("Port deauth failed.\n");
}
if (i != tries) {
/*
* Ensuring the required 200mSec min time interval between
* Session Key Exchange and encryption.
*/
msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
ret = hdcp2_enable_encryption(connector);
if (ret < 0) {
DRM_DEBUG_KMS("Encryption Enable Failed.(%d)\n", ret);
if (hdcp2_deauthenticate_port(connector) < 0)
DRM_DEBUG_KMS("Port deauth failed.\n");
}
}
return ret;
}
static int _intel_hdcp2_enable(struct intel_connector *connector)
{
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
connector->base.name, connector->base.base.id,
hdcp->content_type);
ret = hdcp2_authenticate_and_encrypt(connector);
if (ret) {
DRM_DEBUG_KMS("HDCP2 Type%d Enabling Failed. (%d)\n",
hdcp->content_type, ret);
return ret;
}
DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is enabled. Type %d\n",
connector->base.name, connector->base.base.id,
hdcp->content_type);
hdcp->hdcp2_encrypted = true;
return 0;
}
static int _intel_hdcp2_disable(struct intel_connector *connector)
{
int ret;
DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being Disabled\n",
connector->base.name, connector->base.base.id);
ret = hdcp2_disable_encryption(connector);
if (hdcp2_deauthenticate_port(connector) < 0)
DRM_DEBUG_KMS("Port deauth failed.\n");
connector->hdcp.hdcp2_encrypted = false;
return ret;
}
/* Implements the Link Integrity Check for HDCP2.2 */
static int intel_hdcp2_check_link(struct intel_connector *connector)
{
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = connector->encoder->port;
enum transcoder cpu_transcoder;
int ret = 0;
mutex_lock(&hdcp->mutex);
cpu_transcoder = hdcp->cpu_transcoder;
/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
!hdcp->hdcp2_encrypted) {
ret = -EINVAL;
goto out;
}
if (WARN_ON(!intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
DRM_ERROR("HDCP2.2 link stopped the encryption, %x\n",
I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder,
port)));
ret = -ENXIO;
hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&hdcp->prop_work);
goto out;
}
ret = hdcp->shim->check_2_2_link(intel_dig_port);
if (ret == HDCP_LINK_PROTECTED) {
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
schedule_work(&hdcp->prop_work);
}
goto out;
}
if (ret == HDCP_TOPOLOGY_CHANGE) {
if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
goto out;
DRM_DEBUG_KMS("HDCP2.2 Downstream topology change\n");
ret = hdcp2_authenticate_repeater_topology(connector);
if (!ret) {
hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
schedule_work(&hdcp->prop_work);
goto out;
}
DRM_DEBUG_KMS("[%s:%d] Repeater topology auth failed.(%d)\n",
connector->base.name, connector->base.base.id,
ret);
} else {
DRM_DEBUG_KMS("[%s:%d] HDCP2.2 link failed, retrying auth\n",
connector->base.name, connector->base.base.id);
}
ret = _intel_hdcp2_disable(connector);
if (ret) {
DRM_ERROR("[%s:%d] Failed to disable hdcp2.2 (%d)\n",
connector->base.name, connector->base.base.id, ret);
hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&hdcp->prop_work);
goto out;
}
ret = _intel_hdcp2_enable(connector);
if (ret) {
DRM_DEBUG_KMS("[%s:%d] Failed to enable hdcp2.2 (%d)\n",
connector->base.name, connector->base.base.id,
ret);
hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&hdcp->prop_work);
goto out;
}
out:
mutex_unlock(&hdcp->mutex);
return ret;
}
static void intel_hdcp_check_work(struct work_struct *work)
{
struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
struct intel_hdcp,
check_work);
struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
if (!intel_hdcp2_check_link(connector))
schedule_delayed_work(&hdcp->check_work,
DRM_HDCP2_CHECK_PERIOD_MS);
else if (!intel_hdcp_check_link(connector))
schedule_delayed_work(&hdcp->check_work,
DRM_HDCP_CHECK_PERIOD_MS);
}
static int i915_hdcp_component_bind(struct device *i915_kdev,
struct device *mei_kdev, void *data)
{
struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
DRM_DEBUG("I915 HDCP comp bind\n");
mutex_lock(&dev_priv->hdcp_comp_mutex);
dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
dev_priv->hdcp_master->mei_dev = mei_kdev;
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return 0;
}
static void i915_hdcp_component_unbind(struct device *i915_kdev,
struct device *mei_kdev, void *data)
{
struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
DRM_DEBUG("I915 HDCP comp unbind\n");
mutex_lock(&dev_priv->hdcp_comp_mutex);
dev_priv->hdcp_master = NULL;
mutex_unlock(&dev_priv->hdcp_comp_mutex);
}
static const struct component_ops i915_hdcp_component_ops = {
.bind = i915_hdcp_component_bind,
.unbind = i915_hdcp_component_unbind,
};
static inline
enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
{
switch (port) {
case PORT_A:
return MEI_DDI_A;
case PORT_B ... PORT_F:
return (enum mei_fw_ddi)port;
default:
return MEI_DDI_INVALID_PORT;
}
}
static inline
enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
{
switch (cpu_transcoder) {
case TRANSCODER_A ... TRANSCODER_D:
return (enum mei_fw_tc)(cpu_transcoder | 0x10);
default: /* eDP, DSI TRANSCODERS are non HDCP capable */
return MEI_INVALID_TRANSCODER;
}
}
static inline int initialize_hdcp_port_data(struct intel_connector *connector,
const struct intel_hdcp_shim *shim)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
struct hdcp_port_data *data = &hdcp->port_data;
if (INTEL_GEN(dev_priv) < 12)
data->fw_ddi =
intel_get_mei_fw_ddi_index(connector->encoder->port);
else
/*
* As per ME FW API expectation, for GEN 12+, fw_ddi is filled
* with zero(INVALID PORT index).
*/
data->fw_ddi = MEI_DDI_INVALID_PORT;
/*
* As associated transcoder is set and modified at modeset, here fw_tc
* is initialized to zero (invalid transcoder index). This will be
* retained for <Gen12 forever.
*/
data->fw_tc = MEI_INVALID_TRANSCODER;
data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
data->protocol = (u8)shim->protocol;
data->k = 1;
if (!data->streams)
data->streams = kcalloc(data->k,
sizeof(struct hdcp2_streamid_type),
GFP_KERNEL);
if (!data->streams) {
DRM_ERROR("Out of Memory\n");
return -ENOMEM;
}
data->streams[0].stream_id = 0;
data->streams[0].stream_type = hdcp->content_type;
return 0;
}
static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
{
if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
return false;
return (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv) ||
IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv));
}
void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
{
int ret;
if (!is_hdcp2_supported(dev_priv))
return;
mutex_lock(&dev_priv->hdcp_comp_mutex);
WARN_ON(dev_priv->hdcp_comp_added);
dev_priv->hdcp_comp_added = true;
mutex_unlock(&dev_priv->hdcp_comp_mutex);
ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
I915_COMPONENT_HDCP);
if (ret < 0) {
DRM_DEBUG_KMS("Failed at component add(%d)\n", ret);
mutex_lock(&dev_priv->hdcp_comp_mutex);
dev_priv->hdcp_comp_added = false;
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return;
}
}
static void intel_hdcp2_init(struct intel_connector *connector,
const struct intel_hdcp_shim *shim)
{
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
ret = initialize_hdcp_port_data(connector, shim);
if (ret) {
DRM_DEBUG_KMS("Mei hdcp data init failed\n");
return;
}
hdcp->hdcp2_supported = true;
}
int intel_hdcp_init(struct intel_connector *connector,
const struct intel_hdcp_shim *shim)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
if (!shim)
return -EINVAL;
if (is_hdcp2_supported(dev_priv))
intel_hdcp2_init(connector, shim);
ret =
drm_connector_attach_content_protection_property(&connector->base,
hdcp->hdcp2_supported);
if (ret) {
hdcp->hdcp2_supported = false;
kfree(hdcp->port_data.streams);
return ret;
}
hdcp->shim = shim;
mutex_init(&hdcp->mutex);
INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
init_waitqueue_head(&hdcp->cp_irq_queue);
return 0;
}
int intel_hdcp_enable(struct intel_connector *connector,
enum transcoder cpu_transcoder, u8 content_type)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
int ret = -EINVAL;
if (!hdcp->shim)
return -ENOENT;
mutex_lock(&hdcp->mutex);
WARN_ON(hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
hdcp->content_type = content_type;
if (INTEL_GEN(dev_priv) >= 12) {
hdcp->cpu_transcoder = cpu_transcoder;
hdcp->port_data.fw_tc = intel_get_mei_fw_tc(cpu_transcoder);
}
/*
* Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
* is capable of HDCP2.2, it is preferred to use HDCP2.2.
*/
if (intel_hdcp2_capable(connector)) {
ret = _intel_hdcp2_enable(connector);
if (!ret)
check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
}
/*
* When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
* be attempted.
*/
if (ret && intel_hdcp_capable(connector) &&
hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
ret = _intel_hdcp_enable(connector);
}
if (!ret) {
schedule_delayed_work(&hdcp->check_work, check_link_interval);
hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
schedule_work(&hdcp->prop_work);
}
mutex_unlock(&hdcp->mutex);
return ret;
}
int intel_hdcp_disable(struct intel_connector *connector)
{
struct intel_hdcp *hdcp = &connector->hdcp;
int ret = 0;
if (!hdcp->shim)
return -ENOENT;
mutex_lock(&hdcp->mutex);
if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
if (hdcp->hdcp2_encrypted)
ret = _intel_hdcp2_disable(connector);
else if (hdcp->hdcp_encrypted)
ret = _intel_hdcp_disable(connector);
}
mutex_unlock(&hdcp->mutex);
cancel_delayed_work_sync(&hdcp->check_work);
return ret;
}
void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
{
mutex_lock(&dev_priv->hdcp_comp_mutex);
if (!dev_priv->hdcp_comp_added) {
mutex_unlock(&dev_priv->hdcp_comp_mutex);
return;
}
dev_priv->hdcp_comp_added = false;
mutex_unlock(&dev_priv->hdcp_comp_mutex);
component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
}
void intel_hdcp_cleanup(struct intel_connector *connector)
{
if (!connector->hdcp.shim)
return;
mutex_lock(&connector->hdcp.mutex);
kfree(connector->hdcp.port_data.streams);
mutex_unlock(&connector->hdcp.mutex);
}
void intel_hdcp_atomic_check(struct drm_connector *connector,
struct drm_connector_state *old_state,
struct drm_connector_state *new_state)
{
u64 old_cp = old_state->content_protection;
u64 new_cp = new_state->content_protection;
struct drm_crtc_state *crtc_state;
if (!new_state->crtc) {
/*
* If the connector is being disabled with CP enabled, mark it
* desired so it's re-enabled when the connector is brought back
*/
if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
new_state->content_protection =
DRM_MODE_CONTENT_PROTECTION_DESIRED;
return;
}
/*
* Nothing to do if the state didn't change, or HDCP was activated since
* the last commit. And also no change in hdcp content type.
*/
if (old_cp == new_cp ||
(old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
if (old_state->hdcp_content_type ==
new_state->hdcp_content_type)
return;
}
crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
new_state->crtc);
crtc_state->mode_changed = true;
}
/* Handles the CP_IRQ raised from the DP HDCP sink */
void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
{
struct intel_hdcp *hdcp = &connector->hdcp;
if (!hdcp->shim)
return;
atomic_inc(&connector->hdcp.cp_irq_count);
wake_up_all(&connector->hdcp.cp_irq_queue);
schedule_delayed_work(&hdcp->check_work, 0);
}