mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 09:54:43 +07:00
9f9a742db4
DEC FDDIcontroller 700 (DEFZA) uses a Tx/Rx queue pair to communicate SMT frames with adapter's firmware. Any SMT frame received from the RMC via the Rx queue is queued back by the driver to the SMT Rx queue for the firmware to process. Similarly the firmware uses the SMT Tx queue to supply the driver with SMT frames which are queued back to the Tx queue for the RMC to send to the ring. When a network tap is attached to an FDDI interface handled by `defza' any incoming SMT frames captured are queued to our usual processing of network data received, which in turn delivers them to any listening taps. However the outgoing SMT frames produced by the firmware bypass our network protocol stack and are therefore not delivered to taps. This in turn means that taps are missing a part of network traffic sent by the adapter, which may make it more difficult to track down network problems or do general traffic analysis. Call `dev_queue_xmit_nit' then in the SMT Tx path, having checked that a network tap is attached, with a newly-created `dev_nit_active' helper wrapping the usual condition used in the transmit path. Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org> Signed-off-by: David S. Miller <davem@davemloft.net>
1565 lines
41 KiB
C
1565 lines
41 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* FDDI network adapter driver for DEC FDDIcontroller 700/700-C devices.
|
|
*
|
|
* Copyright (c) 2018 Maciej W. Rozycki
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* References:
|
|
*
|
|
* Dave Sawyer & Phil Weeks & Frank Itkowsky,
|
|
* "DEC FDDIcontroller 700 Port Specification",
|
|
* Revision 1.1, Digital Equipment Corporation
|
|
*/
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* FZA configurable parameters. */
|
|
|
|
/* The number of transmit ring descriptors; either 0 for 512 or 1 for 1024. */
|
|
#define FZA_RING_TX_MODE 0
|
|
|
|
/* The number of receive ring descriptors; from 2 up to 256. */
|
|
#define FZA_RING_RX_SIZE 256
|
|
|
|
/* End of FZA configurable parameters. No need to change anything below. */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/fddidevice.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/tc.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/types.h>
|
|
#include <linux/wait.h>
|
|
|
|
#include <asm/barrier.h>
|
|
|
|
#include "defza.h"
|
|
|
|
#define DRV_NAME "defza"
|
|
#define DRV_VERSION "v.1.1.4"
|
|
#define DRV_RELDATE "Oct 6 2018"
|
|
|
|
static char version[] =
|
|
DRV_NAME ": " DRV_VERSION " " DRV_RELDATE " Maciej W. Rozycki\n";
|
|
|
|
MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
|
|
MODULE_DESCRIPTION("DEC FDDIcontroller 700 (DEFZA-xx) driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int loopback;
|
|
module_param(loopback, int, 0644);
|
|
|
|
/* Ring Purger Multicast */
|
|
static u8 hw_addr_purger[8] = { 0x09, 0x00, 0x2b, 0x02, 0x01, 0x05 };
|
|
/* Directed Beacon Multicast */
|
|
static u8 hw_addr_beacon[8] = { 0x01, 0x80, 0xc2, 0x00, 0x01, 0x00 };
|
|
|
|
/* Shorthands for MMIO accesses that we require to be strongly ordered
|
|
* WRT preceding MMIO accesses.
|
|
*/
|
|
#define readw_o readw_relaxed
|
|
#define readl_o readl_relaxed
|
|
|
|
#define writew_o writew_relaxed
|
|
#define writel_o writel_relaxed
|
|
|
|
/* Shorthands for MMIO accesses that we are happy with being weakly ordered
|
|
* WRT preceding MMIO accesses.
|
|
*/
|
|
#define readw_u readw_relaxed
|
|
#define readl_u readl_relaxed
|
|
#define readq_u readq_relaxed
|
|
|
|
#define writew_u writew_relaxed
|
|
#define writel_u writel_relaxed
|
|
#define writeq_u writeq_relaxed
|
|
|
|
static inline struct sk_buff *fza_alloc_skb_irq(struct net_device *dev,
|
|
unsigned int length)
|
|
{
|
|
return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
|
|
}
|
|
|
|
static inline struct sk_buff *fza_alloc_skb(struct net_device *dev,
|
|
unsigned int length)
|
|
{
|
|
return __netdev_alloc_skb(dev, length, GFP_KERNEL);
|
|
}
|
|
|
|
static inline void fza_skb_align(struct sk_buff *skb, unsigned int v)
|
|
{
|
|
unsigned long x, y;
|
|
|
|
x = (unsigned long)skb->data;
|
|
y = ALIGN(x, v);
|
|
|
|
skb_reserve(skb, y - x);
|
|
}
|
|
|
|
static inline void fza_reads(const void __iomem *from, void *to,
|
|
unsigned long size)
|
|
{
|
|
if (sizeof(unsigned long) == 8) {
|
|
const u64 __iomem *src = from;
|
|
const u32 __iomem *src_trail;
|
|
u64 *dst = to;
|
|
u32 *dst_trail;
|
|
|
|
for (size = (size + 3) / 4; size > 1; size -= 2)
|
|
*dst++ = readq_u(src++);
|
|
if (size) {
|
|
src_trail = (u32 __iomem *)src;
|
|
dst_trail = (u32 *)dst;
|
|
*dst_trail = readl_u(src_trail);
|
|
}
|
|
} else {
|
|
const u32 __iomem *src = from;
|
|
u32 *dst = to;
|
|
|
|
for (size = (size + 3) / 4; size; size--)
|
|
*dst++ = readl_u(src++);
|
|
}
|
|
}
|
|
|
|
static inline void fza_writes(const void *from, void __iomem *to,
|
|
unsigned long size)
|
|
{
|
|
if (sizeof(unsigned long) == 8) {
|
|
const u64 *src = from;
|
|
const u32 *src_trail;
|
|
u64 __iomem *dst = to;
|
|
u32 __iomem *dst_trail;
|
|
|
|
for (size = (size + 3) / 4; size > 1; size -= 2)
|
|
writeq_u(*src++, dst++);
|
|
if (size) {
|
|
src_trail = (u32 *)src;
|
|
dst_trail = (u32 __iomem *)dst;
|
|
writel_u(*src_trail, dst_trail);
|
|
}
|
|
} else {
|
|
const u32 *src = from;
|
|
u32 __iomem *dst = to;
|
|
|
|
for (size = (size + 3) / 4; size; size--)
|
|
writel_u(*src++, dst++);
|
|
}
|
|
}
|
|
|
|
static inline void fza_moves(const void __iomem *from, void __iomem *to,
|
|
unsigned long size)
|
|
{
|
|
if (sizeof(unsigned long) == 8) {
|
|
const u64 __iomem *src = from;
|
|
const u32 __iomem *src_trail;
|
|
u64 __iomem *dst = to;
|
|
u32 __iomem *dst_trail;
|
|
|
|
for (size = (size + 3) / 4; size > 1; size -= 2)
|
|
writeq_u(readq_u(src++), dst++);
|
|
if (size) {
|
|
src_trail = (u32 __iomem *)src;
|
|
dst_trail = (u32 __iomem *)dst;
|
|
writel_u(readl_u(src_trail), dst_trail);
|
|
}
|
|
} else {
|
|
const u32 __iomem *src = from;
|
|
u32 __iomem *dst = to;
|
|
|
|
for (size = (size + 3) / 4; size; size--)
|
|
writel_u(readl_u(src++), dst++);
|
|
}
|
|
}
|
|
|
|
static inline void fza_zeros(void __iomem *to, unsigned long size)
|
|
{
|
|
if (sizeof(unsigned long) == 8) {
|
|
u64 __iomem *dst = to;
|
|
u32 __iomem *dst_trail;
|
|
|
|
for (size = (size + 3) / 4; size > 1; size -= 2)
|
|
writeq_u(0, dst++);
|
|
if (size) {
|
|
dst_trail = (u32 __iomem *)dst;
|
|
writel_u(0, dst_trail);
|
|
}
|
|
} else {
|
|
u32 __iomem *dst = to;
|
|
|
|
for (size = (size + 3) / 4; size; size--)
|
|
writel_u(0, dst++);
|
|
}
|
|
}
|
|
|
|
static inline void fza_regs_dump(struct fza_private *fp)
|
|
{
|
|
pr_debug("%s: iomem registers:\n", fp->name);
|
|
pr_debug(" reset: 0x%04x\n", readw_o(&fp->regs->reset));
|
|
pr_debug(" interrupt event: 0x%04x\n", readw_u(&fp->regs->int_event));
|
|
pr_debug(" status: 0x%04x\n", readw_u(&fp->regs->status));
|
|
pr_debug(" interrupt mask: 0x%04x\n", readw_u(&fp->regs->int_mask));
|
|
pr_debug(" control A: 0x%04x\n", readw_u(&fp->regs->control_a));
|
|
pr_debug(" control B: 0x%04x\n", readw_u(&fp->regs->control_b));
|
|
}
|
|
|
|
static inline void fza_do_reset(struct fza_private *fp)
|
|
{
|
|
/* Reset the board. */
|
|
writew_o(FZA_RESET_INIT, &fp->regs->reset);
|
|
readw_o(&fp->regs->reset); /* Synchronize. */
|
|
readw_o(&fp->regs->reset); /* Read it back for a small delay. */
|
|
writew_o(FZA_RESET_CLR, &fp->regs->reset);
|
|
|
|
/* Enable all interrupt events we handle. */
|
|
writew_o(fp->int_mask, &fp->regs->int_mask);
|
|
readw_o(&fp->regs->int_mask); /* Synchronize. */
|
|
}
|
|
|
|
static inline void fza_do_shutdown(struct fza_private *fp)
|
|
{
|
|
/* Disable the driver mode. */
|
|
writew_o(FZA_CONTROL_B_IDLE, &fp->regs->control_b);
|
|
|
|
/* And reset the board. */
|
|
writew_o(FZA_RESET_INIT, &fp->regs->reset);
|
|
readw_o(&fp->regs->reset); /* Synchronize. */
|
|
writew_o(FZA_RESET_CLR, &fp->regs->reset);
|
|
readw_o(&fp->regs->reset); /* Synchronize. */
|
|
}
|
|
|
|
static int fza_reset(struct fza_private *fp)
|
|
{
|
|
unsigned long flags;
|
|
uint status, state;
|
|
long t;
|
|
|
|
pr_info("%s: resetting the board...\n", fp->name);
|
|
|
|
spin_lock_irqsave(&fp->lock, flags);
|
|
fp->state_chg_flag = 0;
|
|
fza_do_reset(fp);
|
|
spin_unlock_irqrestore(&fp->lock, flags);
|
|
|
|
/* DEC says RESET needs up to 30 seconds to complete. My DEFZA-AA
|
|
* rev. C03 happily finishes in 9.7 seconds. :-) But we need to
|
|
* be on the safe side...
|
|
*/
|
|
t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
|
|
45 * HZ);
|
|
status = readw_u(&fp->regs->status);
|
|
state = FZA_STATUS_GET_STATE(status);
|
|
if (fp->state_chg_flag == 0) {
|
|
pr_err("%s: RESET timed out!, state %x\n", fp->name, state);
|
|
return -EIO;
|
|
}
|
|
if (state != FZA_STATE_UNINITIALIZED) {
|
|
pr_err("%s: RESET failed!, state %x, failure ID %x\n",
|
|
fp->name, state, FZA_STATUS_GET_TEST(status));
|
|
return -EIO;
|
|
}
|
|
pr_info("%s: OK\n", fp->name);
|
|
pr_debug("%s: RESET: %lums elapsed\n", fp->name,
|
|
(45 * HZ - t) * 1000 / HZ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct fza_ring_cmd __iomem *fza_cmd_send(struct net_device *dev,
|
|
int command)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
struct fza_ring_cmd __iomem *ring = fp->ring_cmd + fp->ring_cmd_index;
|
|
unsigned int old_mask, new_mask;
|
|
union fza_cmd_buf __iomem *buf;
|
|
struct netdev_hw_addr *ha;
|
|
int i;
|
|
|
|
old_mask = fp->int_mask;
|
|
new_mask = old_mask & ~FZA_MASK_STATE_CHG;
|
|
writew_u(new_mask, &fp->regs->int_mask);
|
|
readw_o(&fp->regs->int_mask); /* Synchronize. */
|
|
fp->int_mask = new_mask;
|
|
|
|
buf = fp->mmio + readl_u(&ring->buffer);
|
|
|
|
if ((readl_u(&ring->cmd_own) & FZA_RING_OWN_MASK) !=
|
|
FZA_RING_OWN_HOST) {
|
|
pr_warn("%s: command buffer full, command: %u!\n", fp->name,
|
|
command);
|
|
return NULL;
|
|
}
|
|
|
|
switch (command) {
|
|
case FZA_RING_CMD_INIT:
|
|
writel_u(FZA_RING_TX_MODE, &buf->init.tx_mode);
|
|
writel_u(FZA_RING_RX_SIZE, &buf->init.hst_rx_size);
|
|
fza_zeros(&buf->init.counters, sizeof(buf->init.counters));
|
|
break;
|
|
|
|
case FZA_RING_CMD_MODCAM:
|
|
i = 0;
|
|
fza_writes(&hw_addr_purger, &buf->cam.hw_addr[i++],
|
|
sizeof(*buf->cam.hw_addr));
|
|
fza_writes(&hw_addr_beacon, &buf->cam.hw_addr[i++],
|
|
sizeof(*buf->cam.hw_addr));
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
if (i >= FZA_CMD_CAM_SIZE)
|
|
break;
|
|
fza_writes(ha->addr, &buf->cam.hw_addr[i++],
|
|
sizeof(*buf->cam.hw_addr));
|
|
}
|
|
while (i < FZA_CMD_CAM_SIZE)
|
|
fza_zeros(&buf->cam.hw_addr[i++],
|
|
sizeof(*buf->cam.hw_addr));
|
|
break;
|
|
|
|
case FZA_RING_CMD_PARAM:
|
|
writel_u(loopback, &buf->param.loop_mode);
|
|
writel_u(fp->t_max, &buf->param.t_max);
|
|
writel_u(fp->t_req, &buf->param.t_req);
|
|
writel_u(fp->tvx, &buf->param.tvx);
|
|
writel_u(fp->lem_threshold, &buf->param.lem_threshold);
|
|
fza_writes(&fp->station_id, &buf->param.station_id,
|
|
sizeof(buf->param.station_id));
|
|
/* Convert to milliseconds due to buggy firmware. */
|
|
writel_u(fp->rtoken_timeout / 12500,
|
|
&buf->param.rtoken_timeout);
|
|
writel_u(fp->ring_purger, &buf->param.ring_purger);
|
|
break;
|
|
|
|
case FZA_RING_CMD_MODPROM:
|
|
if (dev->flags & IFF_PROMISC) {
|
|
writel_u(1, &buf->modprom.llc_prom);
|
|
writel_u(1, &buf->modprom.smt_prom);
|
|
} else {
|
|
writel_u(0, &buf->modprom.llc_prom);
|
|
writel_u(0, &buf->modprom.smt_prom);
|
|
}
|
|
if (dev->flags & IFF_ALLMULTI ||
|
|
netdev_mc_count(dev) > FZA_CMD_CAM_SIZE - 2)
|
|
writel_u(1, &buf->modprom.llc_multi);
|
|
else
|
|
writel_u(0, &buf->modprom.llc_multi);
|
|
writel_u(1, &buf->modprom.llc_bcast);
|
|
break;
|
|
}
|
|
|
|
/* Trigger the command. */
|
|
writel_u(FZA_RING_OWN_FZA | command, &ring->cmd_own);
|
|
writew_o(FZA_CONTROL_A_CMD_POLL, &fp->regs->control_a);
|
|
|
|
fp->ring_cmd_index = (fp->ring_cmd_index + 1) % FZA_RING_CMD_SIZE;
|
|
|
|
fp->int_mask = old_mask;
|
|
writew_u(fp->int_mask, &fp->regs->int_mask);
|
|
|
|
return ring;
|
|
}
|
|
|
|
static int fza_init_send(struct net_device *dev,
|
|
struct fza_cmd_init *__iomem *init)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
struct fza_ring_cmd __iomem *ring;
|
|
unsigned long flags;
|
|
u32 stat;
|
|
long t;
|
|
|
|
spin_lock_irqsave(&fp->lock, flags);
|
|
fp->cmd_done_flag = 0;
|
|
ring = fza_cmd_send(dev, FZA_RING_CMD_INIT);
|
|
spin_unlock_irqrestore(&fp->lock, flags);
|
|
if (!ring)
|
|
/* This should never happen in the uninitialized state,
|
|
* so do not try to recover and just consider it fatal.
|
|
*/
|
|
return -ENOBUFS;
|
|
|
|
/* INIT may take quite a long time (160ms for my C03). */
|
|
t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
|
|
if (fp->cmd_done_flag == 0) {
|
|
pr_err("%s: INIT command timed out!, state %x\n", fp->name,
|
|
FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
|
|
return -EIO;
|
|
}
|
|
stat = readl_u(&ring->stat);
|
|
if (stat != FZA_RING_STAT_SUCCESS) {
|
|
pr_err("%s: INIT command failed!, status %02x, state %x\n",
|
|
fp->name, stat,
|
|
FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
|
|
return -EIO;
|
|
}
|
|
pr_debug("%s: INIT: %lums elapsed\n", fp->name,
|
|
(3 * HZ - t) * 1000 / HZ);
|
|
|
|
if (init)
|
|
*init = fp->mmio + readl_u(&ring->buffer);
|
|
return 0;
|
|
}
|
|
|
|
static void fza_rx_init(struct fza_private *fp)
|
|
{
|
|
int i;
|
|
|
|
/* Fill the host receive descriptor ring. */
|
|
for (i = 0; i < FZA_RING_RX_SIZE; i++) {
|
|
writel_o(0, &fp->ring_hst_rx[i].rmc);
|
|
writel_o((fp->rx_dma[i] + 0x1000) >> 9,
|
|
&fp->ring_hst_rx[i].buffer1);
|
|
writel_o(fp->rx_dma[i] >> 9 | FZA_RING_OWN_FZA,
|
|
&fp->ring_hst_rx[i].buf0_own);
|
|
}
|
|
}
|
|
|
|
static void fza_set_rx_mode(struct net_device *dev)
|
|
{
|
|
fza_cmd_send(dev, FZA_RING_CMD_MODCAM);
|
|
fza_cmd_send(dev, FZA_RING_CMD_MODPROM);
|
|
}
|
|
|
|
union fza_buffer_txp {
|
|
struct fza_buffer_tx *data_ptr;
|
|
struct fza_buffer_tx __iomem *mmio_ptr;
|
|
};
|
|
|
|
static int fza_do_xmit(union fza_buffer_txp ub, int len,
|
|
struct net_device *dev, int smt)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
struct fza_buffer_tx __iomem *rmc_tx_ptr;
|
|
int i, first, frag_len, left_len;
|
|
u32 own, rmc;
|
|
|
|
if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
|
|
fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
|
|
FZA_TX_BUFFER_SIZE) < len)
|
|
return 1;
|
|
|
|
first = fp->ring_rmc_tx_index;
|
|
|
|
left_len = len;
|
|
frag_len = FZA_TX_BUFFER_SIZE;
|
|
/* First descriptor is relinquished last. */
|
|
own = FZA_RING_TX_OWN_HOST;
|
|
/* First descriptor carries frame length; we don't use cut-through. */
|
|
rmc = FZA_RING_TX_SOP | FZA_RING_TX_VBC | len;
|
|
do {
|
|
i = fp->ring_rmc_tx_index;
|
|
rmc_tx_ptr = &fp->buffer_tx[i];
|
|
|
|
if (left_len < FZA_TX_BUFFER_SIZE)
|
|
frag_len = left_len;
|
|
left_len -= frag_len;
|
|
|
|
/* Length must be a multiple of 4 as only word writes are
|
|
* permitted!
|
|
*/
|
|
frag_len = (frag_len + 3) & ~3;
|
|
if (smt)
|
|
fza_moves(ub.mmio_ptr, rmc_tx_ptr, frag_len);
|
|
else
|
|
fza_writes(ub.data_ptr, rmc_tx_ptr, frag_len);
|
|
|
|
if (left_len == 0)
|
|
rmc |= FZA_RING_TX_EOP; /* Mark last frag. */
|
|
|
|
writel_o(rmc, &fp->ring_rmc_tx[i].rmc);
|
|
writel_o(own, &fp->ring_rmc_tx[i].own);
|
|
|
|
ub.data_ptr++;
|
|
fp->ring_rmc_tx_index = (fp->ring_rmc_tx_index + 1) %
|
|
fp->ring_rmc_tx_size;
|
|
|
|
/* Settings for intermediate frags. */
|
|
own = FZA_RING_TX_OWN_RMC;
|
|
rmc = 0;
|
|
} while (left_len > 0);
|
|
|
|
if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
|
|
fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
|
|
FZA_TX_BUFFER_SIZE) < dev->mtu + dev->hard_header_len) {
|
|
netif_stop_queue(dev);
|
|
pr_debug("%s: queue stopped\n", fp->name);
|
|
}
|
|
|
|
writel_o(FZA_RING_TX_OWN_RMC, &fp->ring_rmc_tx[first].own);
|
|
|
|
/* Go, go, go! */
|
|
writew_o(FZA_CONTROL_A_TX_POLL, &fp->regs->control_a);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fza_do_recv_smt(struct fza_buffer_tx *data_ptr, int len,
|
|
u32 rmc, struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
struct fza_buffer_tx __iomem *smt_rx_ptr;
|
|
u32 own;
|
|
int i;
|
|
|
|
i = fp->ring_smt_rx_index;
|
|
own = readl_o(&fp->ring_smt_rx[i].own);
|
|
if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
|
|
return 1;
|
|
|
|
smt_rx_ptr = fp->mmio + readl_u(&fp->ring_smt_rx[i].buffer);
|
|
|
|
/* Length must be a multiple of 4 as only word writes are permitted! */
|
|
fza_writes(data_ptr, smt_rx_ptr, (len + 3) & ~3);
|
|
|
|
writel_o(rmc, &fp->ring_smt_rx[i].rmc);
|
|
writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_rx[i].own);
|
|
|
|
fp->ring_smt_rx_index =
|
|
(fp->ring_smt_rx_index + 1) % fp->ring_smt_rx_size;
|
|
|
|
/* Grab it! */
|
|
writew_o(FZA_CONTROL_A_SMT_RX_POLL, &fp->regs->control_a);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fza_tx(struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
u32 own, rmc;
|
|
int i;
|
|
|
|
while (1) {
|
|
i = fp->ring_rmc_txd_index;
|
|
if (i == fp->ring_rmc_tx_index)
|
|
break;
|
|
own = readl_o(&fp->ring_rmc_tx[i].own);
|
|
if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC)
|
|
break;
|
|
|
|
rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
|
|
/* Only process the first descriptor. */
|
|
if ((rmc & FZA_RING_TX_SOP) != 0) {
|
|
if ((rmc & FZA_RING_TX_DCC_MASK) ==
|
|
FZA_RING_TX_DCC_SUCCESS) {
|
|
int pkt_len = (rmc & FZA_RING_PBC_MASK) - 3;
|
|
/* Omit PRH. */
|
|
|
|
fp->stats.tx_packets++;
|
|
fp->stats.tx_bytes += pkt_len;
|
|
} else {
|
|
fp->stats.tx_errors++;
|
|
switch (rmc & FZA_RING_TX_DCC_MASK) {
|
|
case FZA_RING_TX_DCC_DTP_SOP:
|
|
case FZA_RING_TX_DCC_DTP:
|
|
case FZA_RING_TX_DCC_ABORT:
|
|
fp->stats.tx_aborted_errors++;
|
|
break;
|
|
case FZA_RING_TX_DCC_UNDRRUN:
|
|
fp->stats.tx_fifo_errors++;
|
|
break;
|
|
case FZA_RING_TX_DCC_PARITY:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
fp->ring_rmc_txd_index = (fp->ring_rmc_txd_index + 1) %
|
|
fp->ring_rmc_tx_size;
|
|
}
|
|
|
|
if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
|
|
fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
|
|
FZA_TX_BUFFER_SIZE) >= dev->mtu + dev->hard_header_len) {
|
|
if (fp->queue_active) {
|
|
netif_wake_queue(dev);
|
|
pr_debug("%s: queue woken\n", fp->name);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int fza_rx_err(struct fza_private *fp,
|
|
const u32 rmc, const u8 fc)
|
|
{
|
|
int len, min_len, max_len;
|
|
|
|
len = rmc & FZA_RING_PBC_MASK;
|
|
|
|
if (unlikely((rmc & FZA_RING_RX_BAD) != 0)) {
|
|
fp->stats.rx_errors++;
|
|
|
|
/* Check special status codes. */
|
|
if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
|
|
FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
|
|
(FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
|
|
FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_ALIAS)) {
|
|
if (len >= 8190)
|
|
fp->stats.rx_length_errors++;
|
|
return 1;
|
|
}
|
|
if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
|
|
FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
|
|
(FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
|
|
FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_CAM)) {
|
|
/* Halt the interface to trigger a reset. */
|
|
writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
|
|
readw_o(&fp->regs->control_a); /* Synchronize. */
|
|
return 1;
|
|
}
|
|
|
|
/* Check the MAC status. */
|
|
switch (rmc & FZA_RING_RX_RRR_MASK) {
|
|
case FZA_RING_RX_RRR_OK:
|
|
if ((rmc & FZA_RING_RX_CRC) != 0)
|
|
fp->stats.rx_crc_errors++;
|
|
else if ((rmc & FZA_RING_RX_FSC_MASK) == 0 ||
|
|
(rmc & FZA_RING_RX_FSB_ERR) != 0)
|
|
fp->stats.rx_frame_errors++;
|
|
return 1;
|
|
case FZA_RING_RX_RRR_SADDR:
|
|
case FZA_RING_RX_RRR_DADDR:
|
|
case FZA_RING_RX_RRR_ABORT:
|
|
/* Halt the interface to trigger a reset. */
|
|
writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
|
|
readw_o(&fp->regs->control_a); /* Synchronize. */
|
|
return 1;
|
|
case FZA_RING_RX_RRR_LENGTH:
|
|
fp->stats.rx_frame_errors++;
|
|
return 1;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Packet received successfully; validate the length. */
|
|
switch (fc & FDDI_FC_K_FORMAT_MASK) {
|
|
case FDDI_FC_K_FORMAT_MANAGEMENT:
|
|
if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_ASYNC)
|
|
min_len = 37;
|
|
else
|
|
min_len = 17;
|
|
break;
|
|
case FDDI_FC_K_FORMAT_LLC:
|
|
min_len = 20;
|
|
break;
|
|
default:
|
|
min_len = 17;
|
|
break;
|
|
}
|
|
max_len = 4495;
|
|
if (len < min_len || len > max_len) {
|
|
fp->stats.rx_errors++;
|
|
fp->stats.rx_length_errors++;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fza_rx(struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
struct sk_buff *skb, *newskb;
|
|
struct fza_fddihdr *frame;
|
|
dma_addr_t dma, newdma;
|
|
u32 own, rmc, buf;
|
|
int i, len;
|
|
u8 fc;
|
|
|
|
while (1) {
|
|
i = fp->ring_hst_rx_index;
|
|
own = readl_o(&fp->ring_hst_rx[i].buf0_own);
|
|
if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
|
|
break;
|
|
|
|
rmc = readl_u(&fp->ring_hst_rx[i].rmc);
|
|
skb = fp->rx_skbuff[i];
|
|
dma = fp->rx_dma[i];
|
|
|
|
/* The RMC doesn't count the preamble and the starting
|
|
* delimiter. We fix it up here for a total of 3 octets.
|
|
*/
|
|
dma_rmb();
|
|
len = (rmc & FZA_RING_PBC_MASK) + 3;
|
|
frame = (struct fza_fddihdr *)skb->data;
|
|
|
|
/* We need to get at real FC. */
|
|
dma_sync_single_for_cpu(fp->bdev,
|
|
dma +
|
|
((u8 *)&frame->hdr.fc - (u8 *)frame),
|
|
sizeof(frame->hdr.fc),
|
|
DMA_FROM_DEVICE);
|
|
fc = frame->hdr.fc;
|
|
|
|
if (fza_rx_err(fp, rmc, fc))
|
|
goto err_rx;
|
|
|
|
/* We have to 512-byte-align RX buffers... */
|
|
newskb = fza_alloc_skb_irq(dev, FZA_RX_BUFFER_SIZE + 511);
|
|
if (newskb) {
|
|
fza_skb_align(newskb, 512);
|
|
newdma = dma_map_single(fp->bdev, newskb->data,
|
|
FZA_RX_BUFFER_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(fp->bdev, newdma)) {
|
|
dev_kfree_skb_irq(newskb);
|
|
newskb = NULL;
|
|
}
|
|
}
|
|
if (newskb) {
|
|
int pkt_len = len - 7; /* Omit P, SD and FCS. */
|
|
int is_multi;
|
|
int rx_stat;
|
|
|
|
dma_unmap_single(fp->bdev, dma, FZA_RX_BUFFER_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* Queue SMT frames to the SMT receive ring. */
|
|
if ((fc & (FDDI_FC_K_CLASS_MASK |
|
|
FDDI_FC_K_FORMAT_MASK)) ==
|
|
(FDDI_FC_K_CLASS_ASYNC |
|
|
FDDI_FC_K_FORMAT_MANAGEMENT) &&
|
|
(rmc & FZA_RING_RX_DA_MASK) !=
|
|
FZA_RING_RX_DA_PROM) {
|
|
if (fza_do_recv_smt((struct fza_buffer_tx *)
|
|
skb->data, len, rmc,
|
|
dev)) {
|
|
writel_o(FZA_CONTROL_A_SMT_RX_OVFL,
|
|
&fp->regs->control_a);
|
|
}
|
|
}
|
|
|
|
is_multi = ((frame->hdr.daddr[0] & 0x01) != 0);
|
|
|
|
skb_reserve(skb, 3); /* Skip over P and SD. */
|
|
skb_put(skb, pkt_len); /* And cut off FCS. */
|
|
skb->protocol = fddi_type_trans(skb, dev);
|
|
|
|
rx_stat = netif_rx(skb);
|
|
if (rx_stat != NET_RX_DROP) {
|
|
fp->stats.rx_packets++;
|
|
fp->stats.rx_bytes += pkt_len;
|
|
if (is_multi)
|
|
fp->stats.multicast++;
|
|
} else {
|
|
fp->stats.rx_dropped++;
|
|
}
|
|
|
|
skb = newskb;
|
|
dma = newdma;
|
|
fp->rx_skbuff[i] = skb;
|
|
fp->rx_dma[i] = dma;
|
|
} else {
|
|
fp->stats.rx_dropped++;
|
|
pr_notice("%s: memory squeeze, dropping packet\n",
|
|
fp->name);
|
|
}
|
|
|
|
err_rx:
|
|
writel_o(0, &fp->ring_hst_rx[i].rmc);
|
|
buf = (dma + 0x1000) >> 9;
|
|
writel_o(buf, &fp->ring_hst_rx[i].buffer1);
|
|
buf = dma >> 9 | FZA_RING_OWN_FZA;
|
|
writel_o(buf, &fp->ring_hst_rx[i].buf0_own);
|
|
fp->ring_hst_rx_index =
|
|
(fp->ring_hst_rx_index + 1) % fp->ring_hst_rx_size;
|
|
}
|
|
}
|
|
|
|
static void fza_tx_smt(struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
struct fza_buffer_tx __iomem *smt_tx_ptr, *skb_data_ptr;
|
|
int i, len;
|
|
u32 own;
|
|
|
|
while (1) {
|
|
i = fp->ring_smt_tx_index;
|
|
own = readl_o(&fp->ring_smt_tx[i].own);
|
|
if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
|
|
break;
|
|
|
|
smt_tx_ptr = fp->mmio + readl_u(&fp->ring_smt_tx[i].buffer);
|
|
len = readl_u(&fp->ring_smt_tx[i].rmc) & FZA_RING_PBC_MASK;
|
|
|
|
if (!netif_queue_stopped(dev)) {
|
|
if (dev_nit_active(dev)) {
|
|
struct sk_buff *skb;
|
|
|
|
/* Length must be a multiple of 4 as only word
|
|
* reads are permitted!
|
|
*/
|
|
skb = fza_alloc_skb_irq(dev, (len + 3) & ~3);
|
|
if (!skb)
|
|
goto err_no_skb; /* Drop. */
|
|
|
|
skb_data_ptr = (struct fza_buffer_tx *)
|
|
skb->data;
|
|
|
|
fza_reads(smt_tx_ptr, skb_data_ptr,
|
|
(len + 3) & ~3);
|
|
skb->dev = dev;
|
|
skb_reserve(skb, 3); /* Skip over PRH. */
|
|
skb_put(skb, len - 3);
|
|
skb_reset_network_header(skb);
|
|
|
|
dev_queue_xmit_nit(skb, dev);
|
|
|
|
dev_kfree_skb_irq(skb);
|
|
|
|
err_no_skb:
|
|
;
|
|
}
|
|
|
|
/* Queue the frame to the RMC transmit ring. */
|
|
fza_do_xmit((union fza_buffer_txp)
|
|
{ .mmio_ptr = smt_tx_ptr },
|
|
len, dev, 1);
|
|
}
|
|
|
|
writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
|
|
fp->ring_smt_tx_index =
|
|
(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
|
|
}
|
|
}
|
|
|
|
static void fza_uns(struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
u32 own;
|
|
int i;
|
|
|
|
while (1) {
|
|
i = fp->ring_uns_index;
|
|
own = readl_o(&fp->ring_uns[i].own);
|
|
if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
|
|
break;
|
|
|
|
if (readl_u(&fp->ring_uns[i].id) == FZA_RING_UNS_RX_OVER) {
|
|
fp->stats.rx_errors++;
|
|
fp->stats.rx_over_errors++;
|
|
}
|
|
|
|
writel_o(FZA_RING_OWN_FZA, &fp->ring_uns[i].own);
|
|
fp->ring_uns_index =
|
|
(fp->ring_uns_index + 1) % FZA_RING_UNS_SIZE;
|
|
}
|
|
}
|
|
|
|
static void fza_tx_flush(struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
u32 own;
|
|
int i;
|
|
|
|
/* Clean up the SMT TX ring. */
|
|
i = fp->ring_smt_tx_index;
|
|
do {
|
|
writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
|
|
fp->ring_smt_tx_index =
|
|
(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
|
|
|
|
} while (i != fp->ring_smt_tx_index);
|
|
|
|
/* Clean up the RMC TX ring. */
|
|
i = fp->ring_rmc_tx_index;
|
|
do {
|
|
own = readl_o(&fp->ring_rmc_tx[i].own);
|
|
if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC) {
|
|
u32 rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
|
|
|
|
writel_u(rmc | FZA_RING_TX_DTP,
|
|
&fp->ring_rmc_tx[i].rmc);
|
|
}
|
|
fp->ring_rmc_tx_index =
|
|
(fp->ring_rmc_tx_index + 1) % fp->ring_rmc_tx_size;
|
|
|
|
} while (i != fp->ring_rmc_tx_index);
|
|
|
|
/* Done. */
|
|
writew_o(FZA_CONTROL_A_FLUSH_DONE, &fp->regs->control_a);
|
|
}
|
|
|
|
static irqreturn_t fza_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
uint int_event;
|
|
|
|
/* Get interrupt events. */
|
|
int_event = readw_o(&fp->regs->int_event) & fp->int_mask;
|
|
if (int_event == 0)
|
|
return IRQ_NONE;
|
|
|
|
/* Clear the events. */
|
|
writew_u(int_event, &fp->regs->int_event);
|
|
|
|
/* Now handle the events. The order matters. */
|
|
|
|
/* Command finished interrupt. */
|
|
if ((int_event & FZA_EVENT_CMD_DONE) != 0) {
|
|
fp->irq_count_cmd_done++;
|
|
|
|
spin_lock(&fp->lock);
|
|
fp->cmd_done_flag = 1;
|
|
wake_up(&fp->cmd_done_wait);
|
|
spin_unlock(&fp->lock);
|
|
}
|
|
|
|
/* Transmit finished interrupt. */
|
|
if ((int_event & FZA_EVENT_TX_DONE) != 0) {
|
|
fp->irq_count_tx_done++;
|
|
fza_tx(dev);
|
|
}
|
|
|
|
/* Host receive interrupt. */
|
|
if ((int_event & FZA_EVENT_RX_POLL) != 0) {
|
|
fp->irq_count_rx_poll++;
|
|
fza_rx(dev);
|
|
}
|
|
|
|
/* SMT transmit interrupt. */
|
|
if ((int_event & FZA_EVENT_SMT_TX_POLL) != 0) {
|
|
fp->irq_count_smt_tx_poll++;
|
|
fza_tx_smt(dev);
|
|
}
|
|
|
|
/* Transmit ring flush request. */
|
|
if ((int_event & FZA_EVENT_FLUSH_TX) != 0) {
|
|
fp->irq_count_flush_tx++;
|
|
fza_tx_flush(dev);
|
|
}
|
|
|
|
/* Link status change interrupt. */
|
|
if ((int_event & FZA_EVENT_LINK_ST_CHG) != 0) {
|
|
uint status;
|
|
|
|
fp->irq_count_link_st_chg++;
|
|
status = readw_u(&fp->regs->status);
|
|
if (FZA_STATUS_GET_LINK(status) == FZA_LINK_ON) {
|
|
netif_carrier_on(dev);
|
|
pr_info("%s: link available\n", fp->name);
|
|
} else {
|
|
netif_carrier_off(dev);
|
|
pr_info("%s: link unavailable\n", fp->name);
|
|
}
|
|
}
|
|
|
|
/* Unsolicited event interrupt. */
|
|
if ((int_event & FZA_EVENT_UNS_POLL) != 0) {
|
|
fp->irq_count_uns_poll++;
|
|
fza_uns(dev);
|
|
}
|
|
|
|
/* State change interrupt. */
|
|
if ((int_event & FZA_EVENT_STATE_CHG) != 0) {
|
|
uint status, state;
|
|
|
|
fp->irq_count_state_chg++;
|
|
|
|
status = readw_u(&fp->regs->status);
|
|
state = FZA_STATUS_GET_STATE(status);
|
|
pr_debug("%s: state change: %x\n", fp->name, state);
|
|
switch (state) {
|
|
case FZA_STATE_RESET:
|
|
break;
|
|
|
|
case FZA_STATE_UNINITIALIZED:
|
|
netif_carrier_off(dev);
|
|
del_timer_sync(&fp->reset_timer);
|
|
fp->ring_cmd_index = 0;
|
|
fp->ring_uns_index = 0;
|
|
fp->ring_rmc_tx_index = 0;
|
|
fp->ring_rmc_txd_index = 0;
|
|
fp->ring_hst_rx_index = 0;
|
|
fp->ring_smt_tx_index = 0;
|
|
fp->ring_smt_rx_index = 0;
|
|
if (fp->state > state) {
|
|
pr_info("%s: OK\n", fp->name);
|
|
fza_cmd_send(dev, FZA_RING_CMD_INIT);
|
|
}
|
|
break;
|
|
|
|
case FZA_STATE_INITIALIZED:
|
|
if (fp->state > state) {
|
|
fza_set_rx_mode(dev);
|
|
fza_cmd_send(dev, FZA_RING_CMD_PARAM);
|
|
}
|
|
break;
|
|
|
|
case FZA_STATE_RUNNING:
|
|
case FZA_STATE_MAINTENANCE:
|
|
fp->state = state;
|
|
fza_rx_init(fp);
|
|
fp->queue_active = 1;
|
|
netif_wake_queue(dev);
|
|
pr_debug("%s: queue woken\n", fp->name);
|
|
break;
|
|
|
|
case FZA_STATE_HALTED:
|
|
fp->queue_active = 0;
|
|
netif_stop_queue(dev);
|
|
pr_debug("%s: queue stopped\n", fp->name);
|
|
del_timer_sync(&fp->reset_timer);
|
|
pr_warn("%s: halted, reason: %x\n", fp->name,
|
|
FZA_STATUS_GET_HALT(status));
|
|
fza_regs_dump(fp);
|
|
pr_info("%s: resetting the board...\n", fp->name);
|
|
fza_do_reset(fp);
|
|
fp->timer_state = 0;
|
|
fp->reset_timer.expires = jiffies + 45 * HZ;
|
|
add_timer(&fp->reset_timer);
|
|
break;
|
|
|
|
default:
|
|
pr_warn("%s: undefined state: %x\n", fp->name, state);
|
|
break;
|
|
}
|
|
|
|
spin_lock(&fp->lock);
|
|
fp->state_chg_flag = 1;
|
|
wake_up(&fp->state_chg_wait);
|
|
spin_unlock(&fp->lock);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void fza_reset_timer(struct timer_list *t)
|
|
{
|
|
struct fza_private *fp = from_timer(fp, t, reset_timer);
|
|
|
|
if (!fp->timer_state) {
|
|
pr_err("%s: RESET timed out!\n", fp->name);
|
|
pr_info("%s: trying harder...\n", fp->name);
|
|
|
|
/* Assert the board reset. */
|
|
writew_o(FZA_RESET_INIT, &fp->regs->reset);
|
|
readw_o(&fp->regs->reset); /* Synchronize. */
|
|
|
|
fp->timer_state = 1;
|
|
fp->reset_timer.expires = jiffies + HZ;
|
|
} else {
|
|
/* Clear the board reset. */
|
|
writew_u(FZA_RESET_CLR, &fp->regs->reset);
|
|
|
|
/* Enable all interrupt events we handle. */
|
|
writew_o(fp->int_mask, &fp->regs->int_mask);
|
|
readw_o(&fp->regs->int_mask); /* Synchronize. */
|
|
|
|
fp->timer_state = 0;
|
|
fp->reset_timer.expires = jiffies + 45 * HZ;
|
|
}
|
|
add_timer(&fp->reset_timer);
|
|
}
|
|
|
|
static int fza_set_mac_address(struct net_device *dev, void *addr)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static netdev_tx_t fza_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
unsigned int old_mask, new_mask;
|
|
int ret;
|
|
u8 fc;
|
|
|
|
skb_push(skb, 3); /* Make room for PRH. */
|
|
|
|
/* Decode FC to set PRH. */
|
|
fc = skb->data[3];
|
|
skb->data[0] = 0;
|
|
skb->data[1] = 0;
|
|
skb->data[2] = FZA_PRH2_NORMAL;
|
|
if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_SYNC)
|
|
skb->data[0] |= FZA_PRH0_FRAME_SYNC;
|
|
switch (fc & FDDI_FC_K_FORMAT_MASK) {
|
|
case FDDI_FC_K_FORMAT_MANAGEMENT:
|
|
if ((fc & FDDI_FC_K_CONTROL_MASK) == 0) {
|
|
/* Token. */
|
|
skb->data[0] |= FZA_PRH0_TKN_TYPE_IMM;
|
|
skb->data[1] |= FZA_PRH1_TKN_SEND_NONE;
|
|
} else {
|
|
/* SMT or MAC. */
|
|
skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
|
|
skb->data[1] |= FZA_PRH1_TKN_SEND_UNR;
|
|
}
|
|
skb->data[1] |= FZA_PRH1_CRC_NORMAL;
|
|
break;
|
|
case FDDI_FC_K_FORMAT_LLC:
|
|
case FDDI_FC_K_FORMAT_FUTURE:
|
|
skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
|
|
skb->data[1] |= FZA_PRH1_CRC_NORMAL | FZA_PRH1_TKN_SEND_UNR;
|
|
break;
|
|
case FDDI_FC_K_FORMAT_IMPLEMENTOR:
|
|
skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
|
|
skb->data[1] |= FZA_PRH1_TKN_SEND_ORIG;
|
|
break;
|
|
}
|
|
|
|
/* SMT transmit interrupts may sneak frames into the RMC
|
|
* transmit ring. We disable them while queueing a frame
|
|
* to maintain consistency.
|
|
*/
|
|
old_mask = fp->int_mask;
|
|
new_mask = old_mask & ~FZA_MASK_SMT_TX_POLL;
|
|
writew_u(new_mask, &fp->regs->int_mask);
|
|
readw_o(&fp->regs->int_mask); /* Synchronize. */
|
|
fp->int_mask = new_mask;
|
|
ret = fza_do_xmit((union fza_buffer_txp)
|
|
{ .data_ptr = (struct fza_buffer_tx *)skb->data },
|
|
skb->len, dev, 0);
|
|
fp->int_mask = old_mask;
|
|
writew_u(fp->int_mask, &fp->regs->int_mask);
|
|
|
|
if (ret) {
|
|
/* Probably an SMT packet filled the remaining space,
|
|
* so just stop the queue, but don't report it as an error.
|
|
*/
|
|
netif_stop_queue(dev);
|
|
pr_debug("%s: queue stopped\n", fp->name);
|
|
fp->stats.tx_dropped++;
|
|
}
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fza_open(struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
struct fza_ring_cmd __iomem *ring;
|
|
struct sk_buff *skb;
|
|
unsigned long flags;
|
|
dma_addr_t dma;
|
|
int ret, i;
|
|
u32 stat;
|
|
long t;
|
|
|
|
for (i = 0; i < FZA_RING_RX_SIZE; i++) {
|
|
/* We have to 512-byte-align RX buffers... */
|
|
skb = fza_alloc_skb(dev, FZA_RX_BUFFER_SIZE + 511);
|
|
if (skb) {
|
|
fza_skb_align(skb, 512);
|
|
dma = dma_map_single(fp->bdev, skb->data,
|
|
FZA_RX_BUFFER_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(fp->bdev, dma)) {
|
|
dev_kfree_skb(skb);
|
|
skb = NULL;
|
|
}
|
|
}
|
|
if (!skb) {
|
|
for (--i; i >= 0; i--) {
|
|
dma_unmap_single(fp->bdev, fp->rx_dma[i],
|
|
FZA_RX_BUFFER_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb(fp->rx_skbuff[i]);
|
|
fp->rx_dma[i] = 0;
|
|
fp->rx_skbuff[i] = NULL;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
fp->rx_skbuff[i] = skb;
|
|
fp->rx_dma[i] = dma;
|
|
}
|
|
|
|
ret = fza_init_send(dev, NULL);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/* Purger and Beacon multicasts need to be supplied before PARAM. */
|
|
fza_set_rx_mode(dev);
|
|
|
|
spin_lock_irqsave(&fp->lock, flags);
|
|
fp->cmd_done_flag = 0;
|
|
ring = fza_cmd_send(dev, FZA_RING_CMD_PARAM);
|
|
spin_unlock_irqrestore(&fp->lock, flags);
|
|
if (!ring)
|
|
return -ENOBUFS;
|
|
|
|
t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
|
|
if (fp->cmd_done_flag == 0) {
|
|
pr_err("%s: PARAM command timed out!, state %x\n", fp->name,
|
|
FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
|
|
return -EIO;
|
|
}
|
|
stat = readl_u(&ring->stat);
|
|
if (stat != FZA_RING_STAT_SUCCESS) {
|
|
pr_err("%s: PARAM command failed!, status %02x, state %x\n",
|
|
fp->name, stat,
|
|
FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
|
|
return -EIO;
|
|
}
|
|
pr_debug("%s: PARAM: %lums elapsed\n", fp->name,
|
|
(3 * HZ - t) * 1000 / HZ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fza_close(struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
unsigned long flags;
|
|
uint state;
|
|
long t;
|
|
int i;
|
|
|
|
netif_stop_queue(dev);
|
|
pr_debug("%s: queue stopped\n", fp->name);
|
|
|
|
del_timer_sync(&fp->reset_timer);
|
|
spin_lock_irqsave(&fp->lock, flags);
|
|
fp->state = FZA_STATE_UNINITIALIZED;
|
|
fp->state_chg_flag = 0;
|
|
/* Shut the interface down. */
|
|
writew_o(FZA_CONTROL_A_SHUT, &fp->regs->control_a);
|
|
readw_o(&fp->regs->control_a); /* Synchronize. */
|
|
spin_unlock_irqrestore(&fp->lock, flags);
|
|
|
|
/* DEC says SHUT needs up to 10 seconds to complete. */
|
|
t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
|
|
15 * HZ);
|
|
state = FZA_STATUS_GET_STATE(readw_o(&fp->regs->status));
|
|
if (fp->state_chg_flag == 0) {
|
|
pr_err("%s: SHUT timed out!, state %x\n", fp->name, state);
|
|
return -EIO;
|
|
}
|
|
if (state != FZA_STATE_UNINITIALIZED) {
|
|
pr_err("%s: SHUT failed!, state %x\n", fp->name, state);
|
|
return -EIO;
|
|
}
|
|
pr_debug("%s: SHUT: %lums elapsed\n", fp->name,
|
|
(15 * HZ - t) * 1000 / HZ);
|
|
|
|
for (i = 0; i < FZA_RING_RX_SIZE; i++)
|
|
if (fp->rx_skbuff[i]) {
|
|
dma_unmap_single(fp->bdev, fp->rx_dma[i],
|
|
FZA_RX_BUFFER_SIZE, DMA_FROM_DEVICE);
|
|
dev_kfree_skb(fp->rx_skbuff[i]);
|
|
fp->rx_dma[i] = 0;
|
|
fp->rx_skbuff[i] = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct net_device_stats *fza_get_stats(struct net_device *dev)
|
|
{
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
|
|
return &fp->stats;
|
|
}
|
|
|
|
static int fza_probe(struct device *bdev)
|
|
{
|
|
static const struct net_device_ops netdev_ops = {
|
|
.ndo_open = fza_open,
|
|
.ndo_stop = fza_close,
|
|
.ndo_start_xmit = fza_start_xmit,
|
|
.ndo_set_rx_mode = fza_set_rx_mode,
|
|
.ndo_set_mac_address = fza_set_mac_address,
|
|
.ndo_get_stats = fza_get_stats,
|
|
};
|
|
static int version_printed;
|
|
char rom_rev[4], fw_rev[4], rmc_rev[4];
|
|
struct tc_dev *tdev = to_tc_dev(bdev);
|
|
struct fza_cmd_init __iomem *init;
|
|
resource_size_t start, len;
|
|
struct net_device *dev;
|
|
struct fza_private *fp;
|
|
uint smt_ver, pmd_type;
|
|
void __iomem *mmio;
|
|
uint hw_addr[2];
|
|
int ret, i;
|
|
|
|
if (!version_printed) {
|
|
pr_info("%s", version);
|
|
version_printed = 1;
|
|
}
|
|
|
|
dev = alloc_fddidev(sizeof(*fp));
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
SET_NETDEV_DEV(dev, bdev);
|
|
|
|
fp = netdev_priv(dev);
|
|
dev_set_drvdata(bdev, dev);
|
|
|
|
fp->bdev = bdev;
|
|
fp->name = dev_name(bdev);
|
|
|
|
/* Request the I/O MEM resource. */
|
|
start = tdev->resource.start;
|
|
len = tdev->resource.end - start + 1;
|
|
if (!request_mem_region(start, len, dev_name(bdev))) {
|
|
pr_err("%s: cannot reserve MMIO region\n", fp->name);
|
|
ret = -EBUSY;
|
|
goto err_out_kfree;
|
|
}
|
|
|
|
/* MMIO mapping setup. */
|
|
mmio = ioremap_nocache(start, len);
|
|
if (!mmio) {
|
|
pr_err("%s: cannot map MMIO\n", fp->name);
|
|
ret = -ENOMEM;
|
|
goto err_out_resource;
|
|
}
|
|
|
|
/* Initialize the new device structure. */
|
|
switch (loopback) {
|
|
case FZA_LOOP_NORMAL:
|
|
case FZA_LOOP_INTERN:
|
|
case FZA_LOOP_EXTERN:
|
|
break;
|
|
default:
|
|
loopback = FZA_LOOP_NORMAL;
|
|
}
|
|
|
|
fp->mmio = mmio;
|
|
dev->irq = tdev->interrupt;
|
|
|
|
pr_info("%s: DEC FDDIcontroller 700 or 700-C at 0x%08llx, irq %d\n",
|
|
fp->name, (long long)tdev->resource.start, dev->irq);
|
|
pr_debug("%s: mapped at: 0x%p\n", fp->name, mmio);
|
|
|
|
fp->regs = mmio + FZA_REG_BASE;
|
|
fp->ring_cmd = mmio + FZA_RING_CMD;
|
|
fp->ring_uns = mmio + FZA_RING_UNS;
|
|
|
|
init_waitqueue_head(&fp->state_chg_wait);
|
|
init_waitqueue_head(&fp->cmd_done_wait);
|
|
spin_lock_init(&fp->lock);
|
|
fp->int_mask = FZA_MASK_NORMAL;
|
|
|
|
timer_setup(&fp->reset_timer, fza_reset_timer, 0);
|
|
|
|
/* Sanitize the board. */
|
|
fza_regs_dump(fp);
|
|
fza_do_shutdown(fp);
|
|
|
|
ret = request_irq(dev->irq, fza_interrupt, IRQF_SHARED, fp->name, dev);
|
|
if (ret != 0) {
|
|
pr_err("%s: unable to get IRQ %d!\n", fp->name, dev->irq);
|
|
goto err_out_map;
|
|
}
|
|
|
|
/* Enable the driver mode. */
|
|
writew_o(FZA_CONTROL_B_DRIVER, &fp->regs->control_b);
|
|
|
|
/* For some reason transmit done interrupts can trigger during
|
|
* reset. This avoids a division error in the handler.
|
|
*/
|
|
fp->ring_rmc_tx_size = FZA_RING_TX_SIZE;
|
|
|
|
ret = fza_reset(fp);
|
|
if (ret != 0)
|
|
goto err_out_irq;
|
|
|
|
ret = fza_init_send(dev, &init);
|
|
if (ret != 0)
|
|
goto err_out_irq;
|
|
|
|
fza_reads(&init->hw_addr, &hw_addr, sizeof(hw_addr));
|
|
memcpy(dev->dev_addr, &hw_addr, FDDI_K_ALEN);
|
|
|
|
fza_reads(&init->rom_rev, &rom_rev, sizeof(rom_rev));
|
|
fza_reads(&init->fw_rev, &fw_rev, sizeof(fw_rev));
|
|
fza_reads(&init->rmc_rev, &rmc_rev, sizeof(rmc_rev));
|
|
for (i = 3; i >= 0 && rom_rev[i] == ' '; i--)
|
|
rom_rev[i] = 0;
|
|
for (i = 3; i >= 0 && fw_rev[i] == ' '; i--)
|
|
fw_rev[i] = 0;
|
|
for (i = 3; i >= 0 && rmc_rev[i] == ' '; i--)
|
|
rmc_rev[i] = 0;
|
|
|
|
fp->ring_rmc_tx = mmio + readl_u(&init->rmc_tx);
|
|
fp->ring_rmc_tx_size = readl_u(&init->rmc_tx_size);
|
|
fp->ring_hst_rx = mmio + readl_u(&init->hst_rx);
|
|
fp->ring_hst_rx_size = readl_u(&init->hst_rx_size);
|
|
fp->ring_smt_tx = mmio + readl_u(&init->smt_tx);
|
|
fp->ring_smt_tx_size = readl_u(&init->smt_tx_size);
|
|
fp->ring_smt_rx = mmio + readl_u(&init->smt_rx);
|
|
fp->ring_smt_rx_size = readl_u(&init->smt_rx_size);
|
|
|
|
fp->buffer_tx = mmio + FZA_TX_BUFFER_ADDR(readl_u(&init->rmc_tx));
|
|
|
|
fp->t_max = readl_u(&init->def_t_max);
|
|
fp->t_req = readl_u(&init->def_t_req);
|
|
fp->tvx = readl_u(&init->def_tvx);
|
|
fp->lem_threshold = readl_u(&init->lem_threshold);
|
|
fza_reads(&init->def_station_id, &fp->station_id,
|
|
sizeof(fp->station_id));
|
|
fp->rtoken_timeout = readl_u(&init->rtoken_timeout);
|
|
fp->ring_purger = readl_u(&init->ring_purger);
|
|
|
|
smt_ver = readl_u(&init->smt_ver);
|
|
pmd_type = readl_u(&init->pmd_type);
|
|
|
|
pr_debug("%s: INIT parameters:\n", fp->name);
|
|
pr_debug(" tx_mode: %u\n", readl_u(&init->tx_mode));
|
|
pr_debug(" hst_rx_size: %u\n", readl_u(&init->hst_rx_size));
|
|
pr_debug(" rmc_rev: %.4s\n", rmc_rev);
|
|
pr_debug(" rom_rev: %.4s\n", rom_rev);
|
|
pr_debug(" fw_rev: %.4s\n", fw_rev);
|
|
pr_debug(" mop_type: %u\n", readl_u(&init->mop_type));
|
|
pr_debug(" hst_rx: 0x%08x\n", readl_u(&init->hst_rx));
|
|
pr_debug(" rmc_tx: 0x%08x\n", readl_u(&init->rmc_tx));
|
|
pr_debug(" rmc_tx_size: %u\n", readl_u(&init->rmc_tx_size));
|
|
pr_debug(" smt_tx: 0x%08x\n", readl_u(&init->smt_tx));
|
|
pr_debug(" smt_tx_size: %u\n", readl_u(&init->smt_tx_size));
|
|
pr_debug(" smt_rx: 0x%08x\n", readl_u(&init->smt_rx));
|
|
pr_debug(" smt_rx_size: %u\n", readl_u(&init->smt_rx_size));
|
|
/* TC systems are always LE, so don't bother swapping. */
|
|
pr_debug(" hw_addr: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
(readl_u(&init->hw_addr[0]) >> 0) & 0xff,
|
|
(readl_u(&init->hw_addr[0]) >> 8) & 0xff,
|
|
(readl_u(&init->hw_addr[0]) >> 16) & 0xff,
|
|
(readl_u(&init->hw_addr[0]) >> 24) & 0xff,
|
|
(readl_u(&init->hw_addr[1]) >> 0) & 0xff,
|
|
(readl_u(&init->hw_addr[1]) >> 8) & 0xff,
|
|
(readl_u(&init->hw_addr[1]) >> 16) & 0xff,
|
|
(readl_u(&init->hw_addr[1]) >> 24) & 0xff);
|
|
pr_debug(" def_t_req: %u\n", readl_u(&init->def_t_req));
|
|
pr_debug(" def_tvx: %u\n", readl_u(&init->def_tvx));
|
|
pr_debug(" def_t_max: %u\n", readl_u(&init->def_t_max));
|
|
pr_debug(" lem_threshold: %u\n", readl_u(&init->lem_threshold));
|
|
/* Don't bother swapping, see above. */
|
|
pr_debug(" def_station_id: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
(readl_u(&init->def_station_id[0]) >> 0) & 0xff,
|
|
(readl_u(&init->def_station_id[0]) >> 8) & 0xff,
|
|
(readl_u(&init->def_station_id[0]) >> 16) & 0xff,
|
|
(readl_u(&init->def_station_id[0]) >> 24) & 0xff,
|
|
(readl_u(&init->def_station_id[1]) >> 0) & 0xff,
|
|
(readl_u(&init->def_station_id[1]) >> 8) & 0xff,
|
|
(readl_u(&init->def_station_id[1]) >> 16) & 0xff,
|
|
(readl_u(&init->def_station_id[1]) >> 24) & 0xff);
|
|
pr_debug(" pmd_type_alt: %u\n", readl_u(&init->pmd_type_alt));
|
|
pr_debug(" smt_ver: %u\n", readl_u(&init->smt_ver));
|
|
pr_debug(" rtoken_timeout: %u\n", readl_u(&init->rtoken_timeout));
|
|
pr_debug(" ring_purger: %u\n", readl_u(&init->ring_purger));
|
|
pr_debug(" smt_ver_max: %u\n", readl_u(&init->smt_ver_max));
|
|
pr_debug(" smt_ver_min: %u\n", readl_u(&init->smt_ver_min));
|
|
pr_debug(" pmd_type: %u\n", readl_u(&init->pmd_type));
|
|
|
|
pr_info("%s: model %s, address %pMF\n",
|
|
fp->name,
|
|
pmd_type == FZA_PMD_TYPE_TW ?
|
|
"700-C (DEFZA-CA), ThinWire PMD selected" :
|
|
pmd_type == FZA_PMD_TYPE_STP ?
|
|
"700-C (DEFZA-CA), STP PMD selected" :
|
|
"700 (DEFZA-AA), MMF PMD",
|
|
dev->dev_addr);
|
|
pr_info("%s: ROM rev. %.4s, firmware rev. %.4s, RMC rev. %.4s, "
|
|
"SMT ver. %u\n", fp->name, rom_rev, fw_rev, rmc_rev, smt_ver);
|
|
|
|
/* Now that we fetched initial parameters just shut the interface
|
|
* until opened.
|
|
*/
|
|
ret = fza_close(dev);
|
|
if (ret != 0)
|
|
goto err_out_irq;
|
|
|
|
/* The FZA-specific entries in the device structure. */
|
|
dev->netdev_ops = &netdev_ops;
|
|
|
|
ret = register_netdev(dev);
|
|
if (ret != 0)
|
|
goto err_out_irq;
|
|
|
|
pr_info("%s: registered as %s\n", fp->name, dev->name);
|
|
fp->name = (const char *)dev->name;
|
|
|
|
get_device(bdev);
|
|
return 0;
|
|
|
|
err_out_irq:
|
|
del_timer_sync(&fp->reset_timer);
|
|
fza_do_shutdown(fp);
|
|
free_irq(dev->irq, dev);
|
|
|
|
err_out_map:
|
|
iounmap(mmio);
|
|
|
|
err_out_resource:
|
|
release_mem_region(start, len);
|
|
|
|
err_out_kfree:
|
|
free_netdev(dev);
|
|
|
|
pr_err("%s: initialization failure, aborting!\n", fp->name);
|
|
return ret;
|
|
}
|
|
|
|
static int fza_remove(struct device *bdev)
|
|
{
|
|
struct net_device *dev = dev_get_drvdata(bdev);
|
|
struct fza_private *fp = netdev_priv(dev);
|
|
struct tc_dev *tdev = to_tc_dev(bdev);
|
|
resource_size_t start, len;
|
|
|
|
put_device(bdev);
|
|
|
|
unregister_netdev(dev);
|
|
|
|
del_timer_sync(&fp->reset_timer);
|
|
fza_do_shutdown(fp);
|
|
free_irq(dev->irq, dev);
|
|
|
|
iounmap(fp->mmio);
|
|
|
|
start = tdev->resource.start;
|
|
len = tdev->resource.end - start + 1;
|
|
release_mem_region(start, len);
|
|
|
|
free_netdev(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct tc_device_id const fza_tc_table[] = {
|
|
{ "DEC ", "PMAF-AA " },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(tc, fza_tc_table);
|
|
|
|
static struct tc_driver fza_driver = {
|
|
.id_table = fza_tc_table,
|
|
.driver = {
|
|
.name = "defza",
|
|
.bus = &tc_bus_type,
|
|
.probe = fza_probe,
|
|
.remove = fza_remove,
|
|
},
|
|
};
|
|
|
|
static int fza_init(void)
|
|
{
|
|
return tc_register_driver(&fza_driver);
|
|
}
|
|
|
|
static void fza_exit(void)
|
|
{
|
|
tc_unregister_driver(&fza_driver);
|
|
}
|
|
|
|
module_init(fza_init);
|
|
module_exit(fza_exit);
|