linux_dsm_epyc7002/lib/rbtree_test.c
Kees Cook 6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

411 lines
9.4 KiB
C

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/rbtree_augmented.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <asm/timex.h>
#define __param(type, name, init, msg) \
static type name = init; \
module_param(name, type, 0444); \
MODULE_PARM_DESC(name, msg);
__param(int, nnodes, 100, "Number of nodes in the rb-tree");
__param(int, perf_loops, 1000, "Number of iterations modifying the rb-tree");
__param(int, check_loops, 100, "Number of iterations modifying and verifying the rb-tree");
struct test_node {
u32 key;
struct rb_node rb;
/* following fields used for testing augmented rbtree functionality */
u32 val;
u32 augmented;
};
static struct rb_root_cached root = RB_ROOT_CACHED;
static struct test_node *nodes = NULL;
static struct rnd_state rnd;
static void insert(struct test_node *node, struct rb_root_cached *root)
{
struct rb_node **new = &root->rb_root.rb_node, *parent = NULL;
u32 key = node->key;
while (*new) {
parent = *new;
if (key < rb_entry(parent, struct test_node, rb)->key)
new = &parent->rb_left;
else
new = &parent->rb_right;
}
rb_link_node(&node->rb, parent, new);
rb_insert_color(&node->rb, &root->rb_root);
}
static void insert_cached(struct test_node *node, struct rb_root_cached *root)
{
struct rb_node **new = &root->rb_root.rb_node, *parent = NULL;
u32 key = node->key;
bool leftmost = true;
while (*new) {
parent = *new;
if (key < rb_entry(parent, struct test_node, rb)->key)
new = &parent->rb_left;
else {
new = &parent->rb_right;
leftmost = false;
}
}
rb_link_node(&node->rb, parent, new);
rb_insert_color_cached(&node->rb, root, leftmost);
}
static inline void erase(struct test_node *node, struct rb_root_cached *root)
{
rb_erase(&node->rb, &root->rb_root);
}
static inline void erase_cached(struct test_node *node, struct rb_root_cached *root)
{
rb_erase_cached(&node->rb, root);
}
static inline u32 augment_recompute(struct test_node *node)
{
u32 max = node->val, child_augmented;
if (node->rb.rb_left) {
child_augmented = rb_entry(node->rb.rb_left, struct test_node,
rb)->augmented;
if (max < child_augmented)
max = child_augmented;
}
if (node->rb.rb_right) {
child_augmented = rb_entry(node->rb.rb_right, struct test_node,
rb)->augmented;
if (max < child_augmented)
max = child_augmented;
}
return max;
}
RB_DECLARE_CALLBACKS(static, augment_callbacks, struct test_node, rb,
u32, augmented, augment_recompute)
static void insert_augmented(struct test_node *node,
struct rb_root_cached *root)
{
struct rb_node **new = &root->rb_root.rb_node, *rb_parent = NULL;
u32 key = node->key;
u32 val = node->val;
struct test_node *parent;
while (*new) {
rb_parent = *new;
parent = rb_entry(rb_parent, struct test_node, rb);
if (parent->augmented < val)
parent->augmented = val;
if (key < parent->key)
new = &parent->rb.rb_left;
else
new = &parent->rb.rb_right;
}
node->augmented = val;
rb_link_node(&node->rb, rb_parent, new);
rb_insert_augmented(&node->rb, &root->rb_root, &augment_callbacks);
}
static void insert_augmented_cached(struct test_node *node,
struct rb_root_cached *root)
{
struct rb_node **new = &root->rb_root.rb_node, *rb_parent = NULL;
u32 key = node->key;
u32 val = node->val;
struct test_node *parent;
bool leftmost = true;
while (*new) {
rb_parent = *new;
parent = rb_entry(rb_parent, struct test_node, rb);
if (parent->augmented < val)
parent->augmented = val;
if (key < parent->key)
new = &parent->rb.rb_left;
else {
new = &parent->rb.rb_right;
leftmost = false;
}
}
node->augmented = val;
rb_link_node(&node->rb, rb_parent, new);
rb_insert_augmented_cached(&node->rb, root,
leftmost, &augment_callbacks);
}
static void erase_augmented(struct test_node *node, struct rb_root_cached *root)
{
rb_erase_augmented(&node->rb, &root->rb_root, &augment_callbacks);
}
static void erase_augmented_cached(struct test_node *node,
struct rb_root_cached *root)
{
rb_erase_augmented_cached(&node->rb, root, &augment_callbacks);
}
static void init(void)
{
int i;
for (i = 0; i < nnodes; i++) {
nodes[i].key = prandom_u32_state(&rnd);
nodes[i].val = prandom_u32_state(&rnd);
}
}
static bool is_red(struct rb_node *rb)
{
return !(rb->__rb_parent_color & 1);
}
static int black_path_count(struct rb_node *rb)
{
int count;
for (count = 0; rb; rb = rb_parent(rb))
count += !is_red(rb);
return count;
}
static void check_postorder_foreach(int nr_nodes)
{
struct test_node *cur, *n;
int count = 0;
rbtree_postorder_for_each_entry_safe(cur, n, &root.rb_root, rb)
count++;
WARN_ON_ONCE(count != nr_nodes);
}
static void check_postorder(int nr_nodes)
{
struct rb_node *rb;
int count = 0;
for (rb = rb_first_postorder(&root.rb_root); rb; rb = rb_next_postorder(rb))
count++;
WARN_ON_ONCE(count != nr_nodes);
}
static void check(int nr_nodes)
{
struct rb_node *rb;
int count = 0, blacks = 0;
u32 prev_key = 0;
for (rb = rb_first(&root.rb_root); rb; rb = rb_next(rb)) {
struct test_node *node = rb_entry(rb, struct test_node, rb);
WARN_ON_ONCE(node->key < prev_key);
WARN_ON_ONCE(is_red(rb) &&
(!rb_parent(rb) || is_red(rb_parent(rb))));
if (!count)
blacks = black_path_count(rb);
else
WARN_ON_ONCE((!rb->rb_left || !rb->rb_right) &&
blacks != black_path_count(rb));
prev_key = node->key;
count++;
}
WARN_ON_ONCE(count != nr_nodes);
WARN_ON_ONCE(count < (1 << black_path_count(rb_last(&root.rb_root))) - 1);
check_postorder(nr_nodes);
check_postorder_foreach(nr_nodes);
}
static void check_augmented(int nr_nodes)
{
struct rb_node *rb;
check(nr_nodes);
for (rb = rb_first(&root.rb_root); rb; rb = rb_next(rb)) {
struct test_node *node = rb_entry(rb, struct test_node, rb);
WARN_ON_ONCE(node->augmented != augment_recompute(node));
}
}
static int __init rbtree_test_init(void)
{
int i, j;
cycles_t time1, time2, time;
struct rb_node *node;
nodes = kmalloc_array(nnodes, sizeof(*nodes), GFP_KERNEL);
if (!nodes)
return -ENOMEM;
printk(KERN_ALERT "rbtree testing");
prandom_seed_state(&rnd, 3141592653589793238ULL);
init();
time1 = get_cycles();
for (i = 0; i < perf_loops; i++) {
for (j = 0; j < nnodes; j++)
insert(nodes + j, &root);
for (j = 0; j < nnodes; j++)
erase(nodes + j, &root);
}
time2 = get_cycles();
time = time2 - time1;
time = div_u64(time, perf_loops);
printk(" -> test 1 (latency of nnodes insert+delete): %llu cycles\n",
(unsigned long long)time);
time1 = get_cycles();
for (i = 0; i < perf_loops; i++) {
for (j = 0; j < nnodes; j++)
insert_cached(nodes + j, &root);
for (j = 0; j < nnodes; j++)
erase_cached(nodes + j, &root);
}
time2 = get_cycles();
time = time2 - time1;
time = div_u64(time, perf_loops);
printk(" -> test 2 (latency of nnodes cached insert+delete): %llu cycles\n",
(unsigned long long)time);
for (i = 0; i < nnodes; i++)
insert(nodes + i, &root);
time1 = get_cycles();
for (i = 0; i < perf_loops; i++) {
for (node = rb_first(&root.rb_root); node; node = rb_next(node))
;
}
time2 = get_cycles();
time = time2 - time1;
time = div_u64(time, perf_loops);
printk(" -> test 3 (latency of inorder traversal): %llu cycles\n",
(unsigned long long)time);
time1 = get_cycles();
for (i = 0; i < perf_loops; i++)
node = rb_first(&root.rb_root);
time2 = get_cycles();
time = time2 - time1;
time = div_u64(time, perf_loops);
printk(" -> test 4 (latency to fetch first node)\n");
printk(" non-cached: %llu cycles\n", (unsigned long long)time);
time1 = get_cycles();
for (i = 0; i < perf_loops; i++)
node = rb_first_cached(&root);
time2 = get_cycles();
time = time2 - time1;
time = div_u64(time, perf_loops);
printk(" cached: %llu cycles\n", (unsigned long long)time);
for (i = 0; i < nnodes; i++)
erase(nodes + i, &root);
/* run checks */
for (i = 0; i < check_loops; i++) {
init();
for (j = 0; j < nnodes; j++) {
check(j);
insert(nodes + j, &root);
}
for (j = 0; j < nnodes; j++) {
check(nnodes - j);
erase(nodes + j, &root);
}
check(0);
}
printk(KERN_ALERT "augmented rbtree testing");
init();
time1 = get_cycles();
for (i = 0; i < perf_loops; i++) {
for (j = 0; j < nnodes; j++)
insert_augmented(nodes + j, &root);
for (j = 0; j < nnodes; j++)
erase_augmented(nodes + j, &root);
}
time2 = get_cycles();
time = time2 - time1;
time = div_u64(time, perf_loops);
printk(" -> test 1 (latency of nnodes insert+delete): %llu cycles\n", (unsigned long long)time);
time1 = get_cycles();
for (i = 0; i < perf_loops; i++) {
for (j = 0; j < nnodes; j++)
insert_augmented_cached(nodes + j, &root);
for (j = 0; j < nnodes; j++)
erase_augmented_cached(nodes + j, &root);
}
time2 = get_cycles();
time = time2 - time1;
time = div_u64(time, perf_loops);
printk(" -> test 2 (latency of nnodes cached insert+delete): %llu cycles\n", (unsigned long long)time);
for (i = 0; i < check_loops; i++) {
init();
for (j = 0; j < nnodes; j++) {
check_augmented(j);
insert_augmented(nodes + j, &root);
}
for (j = 0; j < nnodes; j++) {
check_augmented(nnodes - j);
erase_augmented(nodes + j, &root);
}
check_augmented(0);
}
kfree(nodes);
return -EAGAIN; /* Fail will directly unload the module */
}
static void __exit rbtree_test_exit(void)
{
printk(KERN_ALERT "test exit\n");
}
module_init(rbtree_test_init)
module_exit(rbtree_test_exit)
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michel Lespinasse");
MODULE_DESCRIPTION("Red Black Tree test");