mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 23:53:45 +07:00
973b83194b
These are internal btree functions; we don't need them to be dispatched via function pointers. Make them static again and just check the overlapped flag to figure out what we need to do. The strategy behind this patch was suggested by Christoph. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Suggested-by: Christoph Hellwig <hch@infradead.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
512 lines
13 KiB
C
512 lines
13 KiB
C
/*
|
|
* Copyright (c) 2014 Red Hat, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_rmap_btree.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_cksum.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_extent_busy.h"
|
|
|
|
/*
|
|
* Reverse map btree.
|
|
*
|
|
* This is a per-ag tree used to track the owner(s) of a given extent. With
|
|
* reflink it is possible for there to be multiple owners, which is a departure
|
|
* from classic XFS. Owner records for data extents are inserted when the
|
|
* extent is mapped and removed when an extent is unmapped. Owner records for
|
|
* all other block types (i.e. metadata) are inserted when an extent is
|
|
* allocated and removed when an extent is freed. There can only be one owner
|
|
* of a metadata extent, usually an inode or some other metadata structure like
|
|
* an AG btree.
|
|
*
|
|
* The rmap btree is part of the free space management, so blocks for the tree
|
|
* are sourced from the agfl. Hence we need transaction reservation support for
|
|
* this tree so that the freelist is always large enough. This also impacts on
|
|
* the minimum space we need to leave free in the AG.
|
|
*
|
|
* The tree is ordered by [ag block, owner, offset]. This is a large key size,
|
|
* but it is the only way to enforce unique keys when a block can be owned by
|
|
* multiple files at any offset. There's no need to order/search by extent
|
|
* size for online updating/management of the tree. It is intended that most
|
|
* reverse lookups will be to find the owner(s) of a particular block, or to
|
|
* try to recover tree and file data from corrupt primary metadata.
|
|
*/
|
|
|
|
static struct xfs_btree_cur *
|
|
xfs_rmapbt_dup_cursor(
|
|
struct xfs_btree_cur *cur)
|
|
{
|
|
return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
|
|
cur->bc_private.a.agbp, cur->bc_private.a.agno);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_rmapbt_set_root(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr,
|
|
int inc)
|
|
{
|
|
struct xfs_buf *agbp = cur->bc_private.a.agbp;
|
|
struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
|
|
xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
|
|
int btnum = cur->bc_btnum;
|
|
struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
|
|
|
|
ASSERT(ptr->s != 0);
|
|
|
|
agf->agf_roots[btnum] = ptr->s;
|
|
be32_add_cpu(&agf->agf_levels[btnum], inc);
|
|
pag->pagf_levels[btnum] += inc;
|
|
xfs_perag_put(pag);
|
|
|
|
xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_rmapbt_alloc_block(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *start,
|
|
union xfs_btree_ptr *new,
|
|
int *stat)
|
|
{
|
|
int error;
|
|
xfs_agblock_t bno;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
|
|
/* Allocate the new block from the freelist. If we can't, give up. */
|
|
error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
|
|
&bno, 1);
|
|
if (error) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
|
|
bno, 1);
|
|
if (bno == NULLAGBLOCK) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
}
|
|
|
|
xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
|
|
false);
|
|
|
|
xfs_trans_agbtree_delta(cur->bc_tp, 1);
|
|
new->s = cpu_to_be32(bno);
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_rmapbt_free_block(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_buf *agbp = cur->bc_private.a.agbp;
|
|
struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
|
|
xfs_agblock_t bno;
|
|
int error;
|
|
|
|
bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
|
|
trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
|
|
bno, 1);
|
|
error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
|
|
XFS_EXTENT_BUSY_SKIP_DISCARD);
|
|
xfs_trans_agbtree_delta(cur->bc_tp, -1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_rmapbt_get_minrecs(
|
|
struct xfs_btree_cur *cur,
|
|
int level)
|
|
{
|
|
return cur->bc_mp->m_rmap_mnr[level != 0];
|
|
}
|
|
|
|
STATIC int
|
|
xfs_rmapbt_get_maxrecs(
|
|
struct xfs_btree_cur *cur,
|
|
int level)
|
|
{
|
|
return cur->bc_mp->m_rmap_mxr[level != 0];
|
|
}
|
|
|
|
STATIC void
|
|
xfs_rmapbt_init_key_from_rec(
|
|
union xfs_btree_key *key,
|
|
union xfs_btree_rec *rec)
|
|
{
|
|
key->rmap.rm_startblock = rec->rmap.rm_startblock;
|
|
key->rmap.rm_owner = rec->rmap.rm_owner;
|
|
key->rmap.rm_offset = rec->rmap.rm_offset;
|
|
}
|
|
|
|
/*
|
|
* The high key for a reverse mapping record can be computed by shifting
|
|
* the startblock and offset to the highest value that would still map
|
|
* to that record. In practice this means that we add blockcount-1 to
|
|
* the startblock for all records, and if the record is for a data/attr
|
|
* fork mapping, we add blockcount-1 to the offset too.
|
|
*/
|
|
STATIC void
|
|
xfs_rmapbt_init_high_key_from_rec(
|
|
union xfs_btree_key *key,
|
|
union xfs_btree_rec *rec)
|
|
{
|
|
__uint64_t off;
|
|
int adj;
|
|
|
|
adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
|
|
|
|
key->rmap.rm_startblock = rec->rmap.rm_startblock;
|
|
be32_add_cpu(&key->rmap.rm_startblock, adj);
|
|
key->rmap.rm_owner = rec->rmap.rm_owner;
|
|
key->rmap.rm_offset = rec->rmap.rm_offset;
|
|
if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
|
|
XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
|
|
return;
|
|
off = be64_to_cpu(key->rmap.rm_offset);
|
|
off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
|
|
key->rmap.rm_offset = cpu_to_be64(off);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_rmapbt_init_rec_from_cur(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_rec *rec)
|
|
{
|
|
rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
|
|
rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
|
|
rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
|
|
rec->rmap.rm_offset = cpu_to_be64(
|
|
xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
|
|
}
|
|
|
|
STATIC void
|
|
xfs_rmapbt_init_ptr_from_cur(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
|
|
|
|
ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
|
|
ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
|
|
|
|
ptr->s = agf->agf_roots[cur->bc_btnum];
|
|
}
|
|
|
|
STATIC __int64_t
|
|
xfs_rmapbt_key_diff(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *key)
|
|
{
|
|
struct xfs_rmap_irec *rec = &cur->bc_rec.r;
|
|
struct xfs_rmap_key *kp = &key->rmap;
|
|
__u64 x, y;
|
|
__int64_t d;
|
|
|
|
d = (__int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
|
|
if (d)
|
|
return d;
|
|
|
|
x = be64_to_cpu(kp->rm_owner);
|
|
y = rec->rm_owner;
|
|
if (x > y)
|
|
return 1;
|
|
else if (y > x)
|
|
return -1;
|
|
|
|
x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
|
|
y = rec->rm_offset;
|
|
if (x > y)
|
|
return 1;
|
|
else if (y > x)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
STATIC __int64_t
|
|
xfs_rmapbt_diff_two_keys(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *k1,
|
|
union xfs_btree_key *k2)
|
|
{
|
|
struct xfs_rmap_key *kp1 = &k1->rmap;
|
|
struct xfs_rmap_key *kp2 = &k2->rmap;
|
|
__int64_t d;
|
|
__u64 x, y;
|
|
|
|
d = (__int64_t)be32_to_cpu(kp1->rm_startblock) -
|
|
be32_to_cpu(kp2->rm_startblock);
|
|
if (d)
|
|
return d;
|
|
|
|
x = be64_to_cpu(kp1->rm_owner);
|
|
y = be64_to_cpu(kp2->rm_owner);
|
|
if (x > y)
|
|
return 1;
|
|
else if (y > x)
|
|
return -1;
|
|
|
|
x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
|
|
y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
|
|
if (x > y)
|
|
return 1;
|
|
else if (y > x)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
xfs_rmapbt_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
struct xfs_perag *pag = bp->b_pag;
|
|
unsigned int level;
|
|
|
|
/*
|
|
* magic number and level verification
|
|
*
|
|
* During growfs operations, we can't verify the exact level or owner as
|
|
* the perag is not fully initialised and hence not attached to the
|
|
* buffer. In this case, check against the maximum tree depth.
|
|
*
|
|
* Similarly, during log recovery we will have a perag structure
|
|
* attached, but the agf information will not yet have been initialised
|
|
* from the on disk AGF. Again, we can only check against maximum limits
|
|
* in this case.
|
|
*/
|
|
if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
|
|
return false;
|
|
|
|
if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
|
|
return false;
|
|
if (!xfs_btree_sblock_v5hdr_verify(bp))
|
|
return false;
|
|
|
|
level = be16_to_cpu(block->bb_level);
|
|
if (pag && pag->pagf_init) {
|
|
if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
|
|
return false;
|
|
} else if (level >= mp->m_rmap_maxlevels)
|
|
return false;
|
|
|
|
return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
|
|
}
|
|
|
|
static void
|
|
xfs_rmapbt_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (!xfs_btree_sblock_verify_crc(bp))
|
|
xfs_buf_ioerror(bp, -EFSBADCRC);
|
|
else if (!xfs_rmapbt_verify(bp))
|
|
xfs_buf_ioerror(bp, -EFSCORRUPTED);
|
|
|
|
if (bp->b_error) {
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
xfs_verifier_error(bp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_rmapbt_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (!xfs_rmapbt_verify(bp)) {
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
xfs_buf_ioerror(bp, -EFSCORRUPTED);
|
|
xfs_verifier_error(bp);
|
|
return;
|
|
}
|
|
xfs_btree_sblock_calc_crc(bp);
|
|
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
|
|
.name = "xfs_rmapbt",
|
|
.verify_read = xfs_rmapbt_read_verify,
|
|
.verify_write = xfs_rmapbt_write_verify,
|
|
};
|
|
|
|
#if defined(DEBUG) || defined(XFS_WARN)
|
|
STATIC int
|
|
xfs_rmapbt_keys_inorder(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *k1,
|
|
union xfs_btree_key *k2)
|
|
{
|
|
__uint32_t x;
|
|
__uint32_t y;
|
|
__uint64_t a;
|
|
__uint64_t b;
|
|
|
|
x = be32_to_cpu(k1->rmap.rm_startblock);
|
|
y = be32_to_cpu(k2->rmap.rm_startblock);
|
|
if (x < y)
|
|
return 1;
|
|
else if (x > y)
|
|
return 0;
|
|
a = be64_to_cpu(k1->rmap.rm_owner);
|
|
b = be64_to_cpu(k2->rmap.rm_owner);
|
|
if (a < b)
|
|
return 1;
|
|
else if (a > b)
|
|
return 0;
|
|
a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
|
|
b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
|
|
if (a <= b)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_rmapbt_recs_inorder(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_rec *r1,
|
|
union xfs_btree_rec *r2)
|
|
{
|
|
__uint32_t x;
|
|
__uint32_t y;
|
|
__uint64_t a;
|
|
__uint64_t b;
|
|
|
|
x = be32_to_cpu(r1->rmap.rm_startblock);
|
|
y = be32_to_cpu(r2->rmap.rm_startblock);
|
|
if (x < y)
|
|
return 1;
|
|
else if (x > y)
|
|
return 0;
|
|
a = be64_to_cpu(r1->rmap.rm_owner);
|
|
b = be64_to_cpu(r2->rmap.rm_owner);
|
|
if (a < b)
|
|
return 1;
|
|
else if (a > b)
|
|
return 0;
|
|
a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
|
|
b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
|
|
if (a <= b)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
static const struct xfs_btree_ops xfs_rmapbt_ops = {
|
|
.rec_len = sizeof(struct xfs_rmap_rec),
|
|
.key_len = 2 * sizeof(struct xfs_rmap_key),
|
|
|
|
.dup_cursor = xfs_rmapbt_dup_cursor,
|
|
.set_root = xfs_rmapbt_set_root,
|
|
.alloc_block = xfs_rmapbt_alloc_block,
|
|
.free_block = xfs_rmapbt_free_block,
|
|
.get_minrecs = xfs_rmapbt_get_minrecs,
|
|
.get_maxrecs = xfs_rmapbt_get_maxrecs,
|
|
.init_key_from_rec = xfs_rmapbt_init_key_from_rec,
|
|
.init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
|
|
.init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
|
|
.init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
|
|
.key_diff = xfs_rmapbt_key_diff,
|
|
.buf_ops = &xfs_rmapbt_buf_ops,
|
|
.diff_two_keys = xfs_rmapbt_diff_two_keys,
|
|
#if defined(DEBUG) || defined(XFS_WARN)
|
|
.keys_inorder = xfs_rmapbt_keys_inorder,
|
|
.recs_inorder = xfs_rmapbt_recs_inorder,
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Allocate a new allocation btree cursor.
|
|
*/
|
|
struct xfs_btree_cur *
|
|
xfs_rmapbt_init_cursor(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
xfs_agnumber_t agno)
|
|
{
|
|
struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
|
|
struct xfs_btree_cur *cur;
|
|
|
|
cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
|
|
cur->bc_tp = tp;
|
|
cur->bc_mp = mp;
|
|
/* Overlapping btree; 2 keys per pointer. */
|
|
cur->bc_btnum = XFS_BTNUM_RMAP;
|
|
cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
|
|
cur->bc_blocklog = mp->m_sb.sb_blocklog;
|
|
cur->bc_ops = &xfs_rmapbt_ops;
|
|
cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
|
|
|
|
cur->bc_private.a.agbp = agbp;
|
|
cur->bc_private.a.agno = agno;
|
|
|
|
return cur;
|
|
}
|
|
|
|
/*
|
|
* Calculate number of records in an rmap btree block.
|
|
*/
|
|
int
|
|
xfs_rmapbt_maxrecs(
|
|
struct xfs_mount *mp,
|
|
int blocklen,
|
|
int leaf)
|
|
{
|
|
blocklen -= XFS_RMAP_BLOCK_LEN;
|
|
|
|
if (leaf)
|
|
return blocklen / sizeof(struct xfs_rmap_rec);
|
|
return blocklen /
|
|
(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
|
|
}
|
|
|
|
/* Compute the maximum height of an rmap btree. */
|
|
void
|
|
xfs_rmapbt_compute_maxlevels(
|
|
struct xfs_mount *mp)
|
|
{
|
|
mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(mp,
|
|
mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
|
|
}
|