linux_dsm_epyc7002/drivers/gpu/drm/sti/sti_hda.c
Sam Ravnborg 5e2f97a93f drm/sti: drop use of drmP.h
Stop using the deprecated drmP.h header file.
Replaced with relevant forwards or headers files.
Header files sorted in all files touched.

Build tested with allyesconfig, allmodconfig for a number of
architectures.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Cc: Vincent Abriou <vincent.abriou@st.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Signed-off-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20190605134835.25112-2-sam@ravnborg.org
2019-06-06 17:11:26 +02:00

822 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics SA 2014
* Author: Fabien Dessenne <fabien.dessenne@st.com> for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_debugfs.h>
#include <drm/drm_device.h>
#include <drm/drm_file.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
/* HDformatter registers */
#define HDA_ANA_CFG 0x0000
#define HDA_ANA_SCALE_CTRL_Y 0x0004
#define HDA_ANA_SCALE_CTRL_CB 0x0008
#define HDA_ANA_SCALE_CTRL_CR 0x000C
#define HDA_ANA_ANC_CTRL 0x0010
#define HDA_ANA_SRC_Y_CFG 0x0014
#define HDA_COEFF_Y_PH1_TAP123 0x0018
#define HDA_COEFF_Y_PH1_TAP456 0x001C
#define HDA_COEFF_Y_PH2_TAP123 0x0020
#define HDA_COEFF_Y_PH2_TAP456 0x0024
#define HDA_COEFF_Y_PH3_TAP123 0x0028
#define HDA_COEFF_Y_PH3_TAP456 0x002C
#define HDA_COEFF_Y_PH4_TAP123 0x0030
#define HDA_COEFF_Y_PH4_TAP456 0x0034
#define HDA_ANA_SRC_C_CFG 0x0040
#define HDA_COEFF_C_PH1_TAP123 0x0044
#define HDA_COEFF_C_PH1_TAP456 0x0048
#define HDA_COEFF_C_PH2_TAP123 0x004C
#define HDA_COEFF_C_PH2_TAP456 0x0050
#define HDA_COEFF_C_PH3_TAP123 0x0054
#define HDA_COEFF_C_PH3_TAP456 0x0058
#define HDA_COEFF_C_PH4_TAP123 0x005C
#define HDA_COEFF_C_PH4_TAP456 0x0060
#define HDA_SYNC_AWGI 0x0300
/* HDA_ANA_CFG */
#define CFG_AWG_ASYNC_EN BIT(0)
#define CFG_AWG_ASYNC_HSYNC_MTD BIT(1)
#define CFG_AWG_ASYNC_VSYNC_MTD BIT(2)
#define CFG_AWG_SYNC_DEL BIT(3)
#define CFG_AWG_FLTR_MODE_SHIFT 4
#define CFG_AWG_FLTR_MODE_MASK (0xF << CFG_AWG_FLTR_MODE_SHIFT)
#define CFG_AWG_FLTR_MODE_SD (0 << CFG_AWG_FLTR_MODE_SHIFT)
#define CFG_AWG_FLTR_MODE_ED (1 << CFG_AWG_FLTR_MODE_SHIFT)
#define CFG_AWG_FLTR_MODE_HD (2 << CFG_AWG_FLTR_MODE_SHIFT)
#define CFG_SYNC_ON_PBPR_MASK BIT(8)
#define CFG_PREFILTER_EN_MASK BIT(9)
#define CFG_PBPR_SYNC_OFF_SHIFT 16
#define CFG_PBPR_SYNC_OFF_MASK (0x7FF << CFG_PBPR_SYNC_OFF_SHIFT)
#define CFG_PBPR_SYNC_OFF_VAL 0x117 /* Voltage dependent. stiH416 */
/* Default scaling values */
#define SCALE_CTRL_Y_DFLT 0x00C50256
#define SCALE_CTRL_CB_DFLT 0x00DB0249
#define SCALE_CTRL_CR_DFLT 0x00DB0249
/* Video DACs control */
#define DAC_CFG_HD_HZUVW_OFF_MASK BIT(1)
/* Upsampler values for the alternative 2X Filter */
#define SAMPLER_COEF_NB 8
#define HDA_ANA_SRC_Y_CFG_ALT_2X 0x01130000
static u32 coef_y_alt_2x[] = {
0x00FE83FB, 0x1F900401, 0x00000000, 0x00000000,
0x00F408F9, 0x055F7C25, 0x00000000, 0x00000000
};
#define HDA_ANA_SRC_C_CFG_ALT_2X 0x01750004
static u32 coef_c_alt_2x[] = {
0x001305F7, 0x05274BD0, 0x00000000, 0x00000000,
0x0004907C, 0x09C80B9D, 0x00000000, 0x00000000
};
/* Upsampler values for the 4X Filter */
#define HDA_ANA_SRC_Y_CFG_4X 0x01ED0005
#define HDA_ANA_SRC_C_CFG_4X 0x01ED0004
static u32 coef_yc_4x[] = {
0x00FC827F, 0x008FE20B, 0x00F684FC, 0x050F7C24,
0x00F4857C, 0x0A1F402E, 0x00FA027F, 0x0E076E1D
};
/* AWG instructions for some video modes */
#define AWG_MAX_INST 64
/* 720p@50 */
static u32 AWGi_720p_50[] = {
0x00000971, 0x00000C26, 0x0000013B, 0x00000CDA,
0x00000104, 0x00000E7E, 0x00000E7F, 0x0000013B,
0x00000D8E, 0x00000104, 0x00001804, 0x00000971,
0x00000C26, 0x0000003B, 0x00000FB4, 0x00000FB5,
0x00000104, 0x00001AE8
};
#define NN_720p_50 ARRAY_SIZE(AWGi_720p_50)
/* 720p@60 */
static u32 AWGi_720p_60[] = {
0x00000971, 0x00000C26, 0x0000013B, 0x00000CDA,
0x00000104, 0x00000E7E, 0x00000E7F, 0x0000013B,
0x00000C44, 0x00000104, 0x00001804, 0x00000971,
0x00000C26, 0x0000003B, 0x00000F0F, 0x00000F10,
0x00000104, 0x00001AE8
};
#define NN_720p_60 ARRAY_SIZE(AWGi_720p_60)
/* 1080p@30 */
static u32 AWGi_1080p_30[] = {
0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56,
0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B,
0x00000C2A, 0x00000104, 0x00001804, 0x00000971,
0x00000C2A, 0x0000003B, 0x00000EBE, 0x00000EBF,
0x00000EBF, 0x00000104, 0x00001A2F, 0x00001C4B,
0x00001C52
};
#define NN_1080p_30 ARRAY_SIZE(AWGi_1080p_30)
/* 1080p@25 */
static u32 AWGi_1080p_25[] = {
0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56,
0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B,
0x00000DE2, 0x00000104, 0x00001804, 0x00000971,
0x00000C2A, 0x0000003B, 0x00000F51, 0x00000F51,
0x00000F52, 0x00000104, 0x00001A2F, 0x00001C4B,
0x00001C52
};
#define NN_1080p_25 ARRAY_SIZE(AWGi_1080p_25)
/* 1080p@24 */
static u32 AWGi_1080p_24[] = {
0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56,
0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B,
0x00000E50, 0x00000104, 0x00001804, 0x00000971,
0x00000C2A, 0x0000003B, 0x00000F76, 0x00000F76,
0x00000F76, 0x00000104, 0x00001A2F, 0x00001C4B,
0x00001C52
};
#define NN_1080p_24 ARRAY_SIZE(AWGi_1080p_24)
/* 720x480p@60 */
static u32 AWGi_720x480p_60[] = {
0x00000904, 0x00000F18, 0x0000013B, 0x00001805,
0x00000904, 0x00000C3D, 0x0000003B, 0x00001A06
};
#define NN_720x480p_60 ARRAY_SIZE(AWGi_720x480p_60)
/* Video mode category */
enum sti_hda_vid_cat {
VID_SD,
VID_ED,
VID_HD_74M,
VID_HD_148M
};
struct sti_hda_video_config {
struct drm_display_mode mode;
u32 *awg_instr;
int nb_instr;
enum sti_hda_vid_cat vid_cat;
};
/* HD analog supported modes
* Interlaced modes may be added when supported by the whole display chain
*/
static const struct sti_hda_video_config hda_supported_modes[] = {
/* 1080p30 74.250Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_30, NN_1080p_30, VID_HD_74M},
/* 1080p30 74.176Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74176, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_30, NN_1080p_30, VID_HD_74M},
/* 1080p24 74.250Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_24, NN_1080p_24, VID_HD_74M},
/* 1080p24 74.176Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74176, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_24, NN_1080p_24, VID_HD_74M},
/* 1080p25 74.250Mhz */
{{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_1080p_25, NN_1080p_25, VID_HD_74M},
/* 720p60 74.250Mhz */
{{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_720p_60, NN_720p_60, VID_HD_74M},
/* 720p60 74.176Mhz */
{{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74176, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_720p_60, NN_720p_60, VID_HD_74M},
/* 720p50 74.250Mhz */
{{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)},
AWGi_720p_50, NN_720p_50, VID_HD_74M},
/* 720x480p60 27.027Mhz */
{{DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27027, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC)},
AWGi_720x480p_60, NN_720x480p_60, VID_ED},
/* 720x480p60 27.000Mhz */
{{DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC)},
AWGi_720x480p_60, NN_720x480p_60, VID_ED}
};
/**
* STI hd analog structure
*
* @dev: driver device
* @drm_dev: pointer to drm device
* @mode: current display mode selected
* @regs: HD analog register
* @video_dacs_ctrl: video DACS control register
* @enabled: true if HD analog is enabled else false
*/
struct sti_hda {
struct device dev;
struct drm_device *drm_dev;
struct drm_display_mode mode;
void __iomem *regs;
void __iomem *video_dacs_ctrl;
struct clk *clk_pix;
struct clk *clk_hddac;
bool enabled;
};
struct sti_hda_connector {
struct drm_connector drm_connector;
struct drm_encoder *encoder;
struct sti_hda *hda;
};
#define to_sti_hda_connector(x) \
container_of(x, struct sti_hda_connector, drm_connector)
static u32 hda_read(struct sti_hda *hda, int offset)
{
return readl(hda->regs + offset);
}
static void hda_write(struct sti_hda *hda, u32 val, int offset)
{
writel(val, hda->regs + offset);
}
/**
* Search for a video mode in the supported modes table
*
* @mode: mode being searched
* @idx: index of the found mode
*
* Return true if mode is found
*/
static bool hda_get_mode_idx(struct drm_display_mode mode, int *idx)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(hda_supported_modes); i++)
if (drm_mode_equal(&hda_supported_modes[i].mode, &mode)) {
*idx = i;
return true;
}
return false;
}
/**
* Enable the HD DACS
*
* @hda: pointer to HD analog structure
* @enable: true if HD DACS need to be enabled, else false
*/
static void hda_enable_hd_dacs(struct sti_hda *hda, bool enable)
{
if (hda->video_dacs_ctrl) {
u32 val;
val = readl(hda->video_dacs_ctrl);
if (enable)
val &= ~DAC_CFG_HD_HZUVW_OFF_MASK;
else
val |= DAC_CFG_HD_HZUVW_OFF_MASK;
writel(val, hda->video_dacs_ctrl);
}
}
#define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \
readl(hda->regs + reg))
static void hda_dbg_cfg(struct seq_file *s, int val)
{
seq_puts(s, "\tAWG ");
seq_puts(s, val & CFG_AWG_ASYNC_EN ? "enabled" : "disabled");
}
static void hda_dbg_awg_microcode(struct seq_file *s, void __iomem *reg)
{
unsigned int i;
seq_puts(s, "\n\n HDA AWG microcode:");
for (i = 0; i < AWG_MAX_INST; i++) {
if (i % 8 == 0)
seq_printf(s, "\n %04X:", i);
seq_printf(s, " %04X", readl(reg + i * 4));
}
}
static void hda_dbg_video_dacs_ctrl(struct seq_file *s, void __iomem *reg)
{
u32 val = readl(reg);
seq_printf(s, "\n\n %-25s 0x%08X", "VIDEO_DACS_CONTROL", val);
seq_puts(s, "\tHD DACs ");
seq_puts(s, val & DAC_CFG_HD_HZUVW_OFF_MASK ? "disabled" : "enabled");
}
static int hda_dbg_show(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct sti_hda *hda = (struct sti_hda *)node->info_ent->data;
seq_printf(s, "HD Analog: (vaddr = 0x%p)", hda->regs);
DBGFS_DUMP(HDA_ANA_CFG);
hda_dbg_cfg(s, readl(hda->regs + HDA_ANA_CFG));
DBGFS_DUMP(HDA_ANA_SCALE_CTRL_Y);
DBGFS_DUMP(HDA_ANA_SCALE_CTRL_CB);
DBGFS_DUMP(HDA_ANA_SCALE_CTRL_CR);
DBGFS_DUMP(HDA_ANA_ANC_CTRL);
DBGFS_DUMP(HDA_ANA_SRC_Y_CFG);
DBGFS_DUMP(HDA_ANA_SRC_C_CFG);
hda_dbg_awg_microcode(s, hda->regs + HDA_SYNC_AWGI);
if (hda->video_dacs_ctrl)
hda_dbg_video_dacs_ctrl(s, hda->video_dacs_ctrl);
seq_putc(s, '\n');
return 0;
}
static struct drm_info_list hda_debugfs_files[] = {
{ "hda", hda_dbg_show, 0, NULL },
};
static int hda_debugfs_init(struct sti_hda *hda, struct drm_minor *minor)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(hda_debugfs_files); i++)
hda_debugfs_files[i].data = hda;
return drm_debugfs_create_files(hda_debugfs_files,
ARRAY_SIZE(hda_debugfs_files),
minor->debugfs_root, minor);
}
/**
* Configure AWG, writing instructions
*
* @hda: pointer to HD analog structure
* @awg_instr: pointer to AWG instructions table
* @nb: nb of AWG instructions
*/
static void sti_hda_configure_awg(struct sti_hda *hda, u32 *awg_instr, int nb)
{
unsigned int i;
DRM_DEBUG_DRIVER("\n");
for (i = 0; i < nb; i++)
hda_write(hda, awg_instr[i], HDA_SYNC_AWGI + i * 4);
for (i = nb; i < AWG_MAX_INST; i++)
hda_write(hda, 0, HDA_SYNC_AWGI + i * 4);
}
static void sti_hda_disable(struct drm_bridge *bridge)
{
struct sti_hda *hda = bridge->driver_private;
u32 val;
if (!hda->enabled)
return;
DRM_DEBUG_DRIVER("\n");
/* Disable HD DAC and AWG */
val = hda_read(hda, HDA_ANA_CFG);
val &= ~CFG_AWG_ASYNC_EN;
hda_write(hda, val, HDA_ANA_CFG);
hda_write(hda, 0, HDA_ANA_ANC_CTRL);
hda_enable_hd_dacs(hda, false);
/* Disable/unprepare hda clock */
clk_disable_unprepare(hda->clk_hddac);
clk_disable_unprepare(hda->clk_pix);
hda->enabled = false;
}
static void sti_hda_pre_enable(struct drm_bridge *bridge)
{
struct sti_hda *hda = bridge->driver_private;
u32 val, i, mode_idx;
u32 src_filter_y, src_filter_c;
u32 *coef_y, *coef_c;
u32 filter_mode;
DRM_DEBUG_DRIVER("\n");
if (hda->enabled)
return;
/* Prepare/enable clocks */
if (clk_prepare_enable(hda->clk_pix))
DRM_ERROR("Failed to prepare/enable hda_pix clk\n");
if (clk_prepare_enable(hda->clk_hddac))
DRM_ERROR("Failed to prepare/enable hda_hddac clk\n");
if (!hda_get_mode_idx(hda->mode, &mode_idx)) {
DRM_ERROR("Undefined mode\n");
return;
}
switch (hda_supported_modes[mode_idx].vid_cat) {
case VID_HD_148M:
DRM_ERROR("Beyond HD analog capabilities\n");
return;
case VID_HD_74M:
/* HD use alternate 2x filter */
filter_mode = CFG_AWG_FLTR_MODE_HD;
src_filter_y = HDA_ANA_SRC_Y_CFG_ALT_2X;
src_filter_c = HDA_ANA_SRC_C_CFG_ALT_2X;
coef_y = coef_y_alt_2x;
coef_c = coef_c_alt_2x;
break;
case VID_ED:
/* ED uses 4x filter */
filter_mode = CFG_AWG_FLTR_MODE_ED;
src_filter_y = HDA_ANA_SRC_Y_CFG_4X;
src_filter_c = HDA_ANA_SRC_C_CFG_4X;
coef_y = coef_yc_4x;
coef_c = coef_yc_4x;
break;
case VID_SD:
DRM_ERROR("Not supported\n");
return;
default:
DRM_ERROR("Undefined resolution\n");
return;
}
DRM_DEBUG_DRIVER("Using HDA mode #%d\n", mode_idx);
/* Enable HD Video DACs */
hda_enable_hd_dacs(hda, true);
/* Configure scaler */
hda_write(hda, SCALE_CTRL_Y_DFLT, HDA_ANA_SCALE_CTRL_Y);
hda_write(hda, SCALE_CTRL_CB_DFLT, HDA_ANA_SCALE_CTRL_CB);
hda_write(hda, SCALE_CTRL_CR_DFLT, HDA_ANA_SCALE_CTRL_CR);
/* Configure sampler */
hda_write(hda , src_filter_y, HDA_ANA_SRC_Y_CFG);
hda_write(hda, src_filter_c, HDA_ANA_SRC_C_CFG);
for (i = 0; i < SAMPLER_COEF_NB; i++) {
hda_write(hda, coef_y[i], HDA_COEFF_Y_PH1_TAP123 + i * 4);
hda_write(hda, coef_c[i], HDA_COEFF_C_PH1_TAP123 + i * 4);
}
/* Configure main HDFormatter */
val = 0;
val |= (hda->mode.flags & DRM_MODE_FLAG_INTERLACE) ?
0 : CFG_AWG_ASYNC_VSYNC_MTD;
val |= (CFG_PBPR_SYNC_OFF_VAL << CFG_PBPR_SYNC_OFF_SHIFT);
val |= filter_mode;
hda_write(hda, val, HDA_ANA_CFG);
/* Configure AWG */
sti_hda_configure_awg(hda, hda_supported_modes[mode_idx].awg_instr,
hda_supported_modes[mode_idx].nb_instr);
/* Enable AWG */
val = hda_read(hda, HDA_ANA_CFG);
val |= CFG_AWG_ASYNC_EN;
hda_write(hda, val, HDA_ANA_CFG);
hda->enabled = true;
}
static void sti_hda_set_mode(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct sti_hda *hda = bridge->driver_private;
u32 mode_idx;
int hddac_rate;
int ret;
DRM_DEBUG_DRIVER("\n");
memcpy(&hda->mode, mode, sizeof(struct drm_display_mode));
if (!hda_get_mode_idx(hda->mode, &mode_idx)) {
DRM_ERROR("Undefined mode\n");
return;
}
switch (hda_supported_modes[mode_idx].vid_cat) {
case VID_HD_74M:
/* HD use alternate 2x filter */
hddac_rate = mode->clock * 1000 * 2;
break;
case VID_ED:
/* ED uses 4x filter */
hddac_rate = mode->clock * 1000 * 4;
break;
default:
DRM_ERROR("Undefined mode\n");
return;
}
/* HD DAC = 148.5Mhz or 108 Mhz */
ret = clk_set_rate(hda->clk_hddac, hddac_rate);
if (ret < 0)
DRM_ERROR("Cannot set rate (%dHz) for hda_hddac clk\n",
hddac_rate);
/* HDformatter clock = compositor clock */
ret = clk_set_rate(hda->clk_pix, mode->clock * 1000);
if (ret < 0)
DRM_ERROR("Cannot set rate (%dHz) for hda_pix clk\n",
mode->clock * 1000);
}
static void sti_hda_bridge_nope(struct drm_bridge *bridge)
{
/* do nothing */
}
static const struct drm_bridge_funcs sti_hda_bridge_funcs = {
.pre_enable = sti_hda_pre_enable,
.enable = sti_hda_bridge_nope,
.disable = sti_hda_disable,
.post_disable = sti_hda_bridge_nope,
.mode_set = sti_hda_set_mode,
};
static int sti_hda_connector_get_modes(struct drm_connector *connector)
{
unsigned int i;
int count = 0;
struct sti_hda_connector *hda_connector
= to_sti_hda_connector(connector);
struct sti_hda *hda = hda_connector->hda;
DRM_DEBUG_DRIVER("\n");
for (i = 0; i < ARRAY_SIZE(hda_supported_modes); i++) {
struct drm_display_mode *mode =
drm_mode_duplicate(hda->drm_dev,
&hda_supported_modes[i].mode);
if (!mode)
continue;
mode->vrefresh = drm_mode_vrefresh(mode);
/* the first mode is the preferred mode */
if (i == 0)
mode->type |= DRM_MODE_TYPE_PREFERRED;
drm_mode_probed_add(connector, mode);
count++;
}
return count;
}
#define CLK_TOLERANCE_HZ 50
static int sti_hda_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
int target = mode->clock * 1000;
int target_min = target - CLK_TOLERANCE_HZ;
int target_max = target + CLK_TOLERANCE_HZ;
int result;
int idx;
struct sti_hda_connector *hda_connector
= to_sti_hda_connector(connector);
struct sti_hda *hda = hda_connector->hda;
if (!hda_get_mode_idx(*mode, &idx)) {
return MODE_BAD;
} else {
result = clk_round_rate(hda->clk_pix, target);
DRM_DEBUG_DRIVER("target rate = %d => available rate = %d\n",
target, result);
if ((result < target_min) || (result > target_max)) {
DRM_DEBUG_DRIVER("hda pixclk=%d not supported\n",
target);
return MODE_BAD;
}
}
return MODE_OK;
}
static const
struct drm_connector_helper_funcs sti_hda_connector_helper_funcs = {
.get_modes = sti_hda_connector_get_modes,
.mode_valid = sti_hda_connector_mode_valid,
};
static int sti_hda_late_register(struct drm_connector *connector)
{
struct sti_hda_connector *hda_connector
= to_sti_hda_connector(connector);
struct sti_hda *hda = hda_connector->hda;
if (hda_debugfs_init(hda, hda->drm_dev->primary)) {
DRM_ERROR("HDA debugfs setup failed\n");
return -EINVAL;
}
return 0;
}
static const struct drm_connector_funcs sti_hda_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.late_register = sti_hda_late_register,
};
static struct drm_encoder *sti_hda_find_encoder(struct drm_device *dev)
{
struct drm_encoder *encoder;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DAC)
return encoder;
}
return NULL;
}
static int sti_hda_bind(struct device *dev, struct device *master, void *data)
{
struct sti_hda *hda = dev_get_drvdata(dev);
struct drm_device *drm_dev = data;
struct drm_encoder *encoder;
struct sti_hda_connector *connector;
struct drm_connector *drm_connector;
struct drm_bridge *bridge;
int err;
/* Set the drm device handle */
hda->drm_dev = drm_dev;
encoder = sti_hda_find_encoder(drm_dev);
if (!encoder)
return -ENOMEM;
connector = devm_kzalloc(dev, sizeof(*connector), GFP_KERNEL);
if (!connector)
return -ENOMEM;
connector->hda = hda;
bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL);
if (!bridge)
return -ENOMEM;
bridge->driver_private = hda;
bridge->funcs = &sti_hda_bridge_funcs;
drm_bridge_attach(encoder, bridge, NULL);
connector->encoder = encoder;
drm_connector = (struct drm_connector *)connector;
drm_connector->polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_init(drm_dev, drm_connector,
&sti_hda_connector_funcs, DRM_MODE_CONNECTOR_Component);
drm_connector_helper_add(drm_connector,
&sti_hda_connector_helper_funcs);
err = drm_connector_attach_encoder(drm_connector, encoder);
if (err) {
DRM_ERROR("Failed to attach a connector to a encoder\n");
goto err_sysfs;
}
/* force to disable hd dacs at startup */
hda_enable_hd_dacs(hda, false);
return 0;
err_sysfs:
return -EINVAL;
}
static void sti_hda_unbind(struct device *dev,
struct device *master, void *data)
{
}
static const struct component_ops sti_hda_ops = {
.bind = sti_hda_bind,
.unbind = sti_hda_unbind,
};
static int sti_hda_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sti_hda *hda;
struct resource *res;
DRM_INFO("%s\n", __func__);
hda = devm_kzalloc(dev, sizeof(*hda), GFP_KERNEL);
if (!hda)
return -ENOMEM;
hda->dev = pdev->dev;
/* Get resources */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hda-reg");
if (!res) {
DRM_ERROR("Invalid hda resource\n");
return -ENOMEM;
}
hda->regs = devm_ioremap_nocache(dev, res->start, resource_size(res));
if (!hda->regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"video-dacs-ctrl");
if (res) {
hda->video_dacs_ctrl = devm_ioremap_nocache(dev, res->start,
resource_size(res));
if (!hda->video_dacs_ctrl)
return -ENOMEM;
} else {
/* If no existing video-dacs-ctrl resource continue the probe */
DRM_DEBUG_DRIVER("No video-dacs-ctrl resource\n");
hda->video_dacs_ctrl = NULL;
}
/* Get clock resources */
hda->clk_pix = devm_clk_get(dev, "pix");
if (IS_ERR(hda->clk_pix)) {
DRM_ERROR("Cannot get hda_pix clock\n");
return PTR_ERR(hda->clk_pix);
}
hda->clk_hddac = devm_clk_get(dev, "hddac");
if (IS_ERR(hda->clk_hddac)) {
DRM_ERROR("Cannot get hda_hddac clock\n");
return PTR_ERR(hda->clk_hddac);
}
platform_set_drvdata(pdev, hda);
return component_add(&pdev->dev, &sti_hda_ops);
}
static int sti_hda_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &sti_hda_ops);
return 0;
}
static const struct of_device_id hda_of_match[] = {
{ .compatible = "st,stih416-hda", },
{ .compatible = "st,stih407-hda", },
{ /* end node */ }
};
MODULE_DEVICE_TABLE(of, hda_of_match);
struct platform_driver sti_hda_driver = {
.driver = {
.name = "sti-hda",
.owner = THIS_MODULE,
.of_match_table = hda_of_match,
},
.probe = sti_hda_probe,
.remove = sti_hda_remove,
};
MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver");
MODULE_LICENSE("GPL");