mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 07:02:31 +07:00
9cd9a21ce0
In commit 6afaf8a484
("UBI: flush wl before clearing update marker") I
managed to trigger and fix a similar bug. Now here is another version of
which I assumed it wouldn't matter back then but it turns out UBI has a
check for it and will error out like this:
|ubi0 warning: validate_vid_hdr: inconsistent used_ebs
|ubi0 error: validate_vid_hdr: inconsistent VID header at PEB 592
All you need to trigger this is? "ubiupdatevol /dev/ubi0_0 file" + a
powercut in the middle of the operation.
ubi_start_update() sets the update-marker and puts all EBs on the erase
list. After that userland can proceed to write new data while the old EB
aren't erased completely. A powercut at this point is usually not that
much of a tragedy. UBI won't give read access to the static volume
because it has the update marker. It will most likely set the corrupted
flag because it misses some EBs.
So we are all good. Unless the size of the image that has been written
differs from the old image in the magnitude of at least one EB. In that
case UBI will find two different values for `used_ebs' and refuse to
attach the image with the error message mentioned above.
So in order not to get in the situation, the patch will ensure that we
wait until everything is removed before it tries to write any data.
The alternative would be to detect such a case and remove all EBs at the
attached time after we processed the volume-table and see the
update-marker set. The patch looks bigger and I doubt it is worth it
since usually the write() will wait from time to time for a new EB since
usually there not that many spare EB that can be used.
Cc: stable@vger.kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Richard Weinberger <richard@nod.at>
434 lines
13 KiB
C
434 lines
13 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
* Copyright (c) Nokia Corporation, 2006
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*
|
|
* Jan 2007: Alexander Schmidt, hacked per-volume update.
|
|
*/
|
|
|
|
/*
|
|
* This file contains implementation of the volume update and atomic LEB change
|
|
* functionality.
|
|
*
|
|
* The update operation is based on the per-volume update marker which is
|
|
* stored in the volume table. The update marker is set before the update
|
|
* starts, and removed after the update has been finished. So if the update was
|
|
* interrupted by an unclean re-boot or due to some other reasons, the update
|
|
* marker stays on the flash media and UBI finds it when it attaches the MTD
|
|
* device next time. If the update marker is set for a volume, the volume is
|
|
* treated as damaged and most I/O operations are prohibited. Only a new update
|
|
* operation is allowed.
|
|
*
|
|
* Note, in general it is possible to implement the update operation as a
|
|
* transaction with a roll-back capability.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/math64.h>
|
|
#include "ubi.h"
|
|
|
|
/**
|
|
* set_update_marker - set update marker.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
*
|
|
* This function sets the update marker flag for volume @vol. Returns zero
|
|
* in case of success and a negative error code in case of failure.
|
|
*/
|
|
static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
|
|
{
|
|
int err;
|
|
struct ubi_vtbl_record vtbl_rec;
|
|
|
|
dbg_gen("set update marker for volume %d", vol->vol_id);
|
|
|
|
if (vol->upd_marker) {
|
|
ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
|
|
dbg_gen("already set");
|
|
return 0;
|
|
}
|
|
|
|
vtbl_rec = ubi->vtbl[vol->vol_id];
|
|
vtbl_rec.upd_marker = 1;
|
|
|
|
mutex_lock(&ubi->device_mutex);
|
|
err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
|
|
vol->upd_marker = 1;
|
|
mutex_unlock(&ubi->device_mutex);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* clear_update_marker - clear update marker.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @bytes: new data size in bytes
|
|
*
|
|
* This function clears the update marker for volume @vol, sets new volume
|
|
* data size and clears the "corrupted" flag (static volumes only). Returns
|
|
* zero in case of success and a negative error code in case of failure.
|
|
*/
|
|
static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
long long bytes)
|
|
{
|
|
int err;
|
|
struct ubi_vtbl_record vtbl_rec;
|
|
|
|
dbg_gen("clear update marker for volume %d", vol->vol_id);
|
|
|
|
vtbl_rec = ubi->vtbl[vol->vol_id];
|
|
ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
|
|
vtbl_rec.upd_marker = 0;
|
|
|
|
if (vol->vol_type == UBI_STATIC_VOLUME) {
|
|
vol->corrupted = 0;
|
|
vol->used_bytes = bytes;
|
|
vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size,
|
|
&vol->last_eb_bytes);
|
|
if (vol->last_eb_bytes)
|
|
vol->used_ebs += 1;
|
|
else
|
|
vol->last_eb_bytes = vol->usable_leb_size;
|
|
}
|
|
|
|
mutex_lock(&ubi->device_mutex);
|
|
err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
|
|
vol->upd_marker = 0;
|
|
mutex_unlock(&ubi->device_mutex);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_start_update - start volume update.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @bytes: update bytes
|
|
*
|
|
* This function starts volume update operation. If @bytes is zero, the volume
|
|
* is just wiped out. Returns zero in case of success and a negative error code
|
|
* in case of failure.
|
|
*/
|
|
int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
long long bytes)
|
|
{
|
|
int i, err;
|
|
|
|
dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes);
|
|
ubi_assert(!vol->updating && !vol->changing_leb);
|
|
vol->updating = 1;
|
|
|
|
vol->upd_buf = vmalloc(ubi->leb_size);
|
|
if (!vol->upd_buf)
|
|
return -ENOMEM;
|
|
|
|
err = set_update_marker(ubi, vol);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Before updating - wipe out the volume */
|
|
for (i = 0; i < vol->reserved_pebs; i++) {
|
|
err = ubi_eba_unmap_leb(ubi, vol, i);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
|
|
if (err)
|
|
return err;
|
|
|
|
if (bytes == 0) {
|
|
err = clear_update_marker(ubi, vol, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
vfree(vol->upd_buf);
|
|
vol->updating = 0;
|
|
return 0;
|
|
}
|
|
|
|
vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1,
|
|
vol->usable_leb_size);
|
|
vol->upd_bytes = bytes;
|
|
vol->upd_received = 0;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_start_leb_change - start atomic LEB change.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @req: operation request
|
|
*
|
|
* This function starts atomic LEB change operation. Returns zero in case of
|
|
* success and a negative error code in case of failure.
|
|
*/
|
|
int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
const struct ubi_leb_change_req *req)
|
|
{
|
|
ubi_assert(!vol->updating && !vol->changing_leb);
|
|
|
|
dbg_gen("start changing LEB %d:%d, %u bytes",
|
|
vol->vol_id, req->lnum, req->bytes);
|
|
if (req->bytes == 0)
|
|
return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0);
|
|
|
|
vol->upd_bytes = req->bytes;
|
|
vol->upd_received = 0;
|
|
vol->changing_leb = 1;
|
|
vol->ch_lnum = req->lnum;
|
|
|
|
vol->upd_buf = vmalloc(ALIGN((int)req->bytes, ubi->min_io_size));
|
|
if (!vol->upd_buf)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* write_leb - write update data.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
* @buf: data to write
|
|
* @len: data size
|
|
* @used_ebs: how many logical eraseblocks will this volume contain (static
|
|
* volumes only)
|
|
*
|
|
* This function writes update data to corresponding logical eraseblock. In
|
|
* case of dynamic volume, this function checks if the data contains 0xFF bytes
|
|
* at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
|
|
* buffer contains only 0xFF bytes, the LEB is left unmapped.
|
|
*
|
|
* The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
|
|
* that we want to make sure that more data may be appended to the logical
|
|
* eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
|
|
* this PEB won't be writable anymore. So if one writes the file-system image
|
|
* to the UBI volume where 0xFFs mean free space - UBI makes sure this free
|
|
* space is writable after the update.
|
|
*
|
|
* We do not do this for static volumes because they are read-only. But this
|
|
* also cannot be done because we have to store per-LEB CRC and the correct
|
|
* data length.
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
|
|
void *buf, int len, int used_ebs)
|
|
{
|
|
int err;
|
|
|
|
if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
|
|
int l = ALIGN(len, ubi->min_io_size);
|
|
|
|
memset(buf + len, 0xFF, l - len);
|
|
len = ubi_calc_data_len(ubi, buf, l);
|
|
if (len == 0) {
|
|
dbg_gen("all %d bytes contain 0xFF - skip", len);
|
|
return 0;
|
|
}
|
|
|
|
err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len);
|
|
} else {
|
|
/*
|
|
* When writing static volume, and this is the last logical
|
|
* eraseblock, the length (@len) does not have to be aligned to
|
|
* the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
|
|
* function accepts exact (unaligned) length and stores it in
|
|
* the VID header. And it takes care of proper alignment by
|
|
* padding the buffer. Here we just make sure the padding will
|
|
* contain zeros, not random trash.
|
|
*/
|
|
memset(buf + len, 0, vol->usable_leb_size - len);
|
|
err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len, used_ebs);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_more_update_data - write more update data.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @buf: write data (user-space memory buffer)
|
|
* @count: how much bytes to write
|
|
*
|
|
* This function writes more data to the volume which is being updated. It may
|
|
* be called arbitrary number of times until all the update data arriveis. This
|
|
* function returns %0 in case of success, number of bytes written during the
|
|
* last call if the whole volume update has been successfully finished, and a
|
|
* negative error code in case of failure.
|
|
*/
|
|
int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
const void __user *buf, int count)
|
|
{
|
|
int lnum, offs, err = 0, len, to_write = count;
|
|
|
|
dbg_gen("write %d of %lld bytes, %lld already passed",
|
|
count, vol->upd_bytes, vol->upd_received);
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
lnum = div_u64_rem(vol->upd_received, vol->usable_leb_size, &offs);
|
|
if (vol->upd_received + count > vol->upd_bytes)
|
|
to_write = count = vol->upd_bytes - vol->upd_received;
|
|
|
|
/*
|
|
* When updating volumes, we accumulate whole logical eraseblock of
|
|
* data and write it at once.
|
|
*/
|
|
if (offs != 0) {
|
|
/*
|
|
* This is a write to the middle of the logical eraseblock. We
|
|
* copy the data to our update buffer and wait for more data or
|
|
* flush it if the whole eraseblock is written or the update
|
|
* is finished.
|
|
*/
|
|
|
|
len = vol->usable_leb_size - offs;
|
|
if (len > count)
|
|
len = count;
|
|
|
|
err = copy_from_user(vol->upd_buf + offs, buf, len);
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
if (offs + len == vol->usable_leb_size ||
|
|
vol->upd_received + len == vol->upd_bytes) {
|
|
int flush_len = offs + len;
|
|
|
|
/*
|
|
* OK, we gathered either the whole eraseblock or this
|
|
* is the last chunk, it's time to flush the buffer.
|
|
*/
|
|
ubi_assert(flush_len <= vol->usable_leb_size);
|
|
err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
|
|
vol->upd_ebs);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
vol->upd_received += len;
|
|
count -= len;
|
|
buf += len;
|
|
lnum += 1;
|
|
}
|
|
|
|
/*
|
|
* If we've got more to write, let's continue. At this point we know we
|
|
* are starting from the beginning of an eraseblock.
|
|
*/
|
|
while (count) {
|
|
if (count > vol->usable_leb_size)
|
|
len = vol->usable_leb_size;
|
|
else
|
|
len = count;
|
|
|
|
err = copy_from_user(vol->upd_buf, buf, len);
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
if (len == vol->usable_leb_size ||
|
|
vol->upd_received + len == vol->upd_bytes) {
|
|
err = write_leb(ubi, vol, lnum, vol->upd_buf,
|
|
len, vol->upd_ebs);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
vol->upd_received += len;
|
|
count -= len;
|
|
lnum += 1;
|
|
buf += len;
|
|
}
|
|
|
|
ubi_assert(vol->upd_received <= vol->upd_bytes);
|
|
if (vol->upd_received == vol->upd_bytes) {
|
|
err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
|
|
if (err)
|
|
return err;
|
|
/* The update is finished, clear the update marker */
|
|
err = clear_update_marker(ubi, vol, vol->upd_bytes);
|
|
if (err)
|
|
return err;
|
|
vol->updating = 0;
|
|
err = to_write;
|
|
vfree(vol->upd_buf);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_more_leb_change_data - accept more data for atomic LEB change.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @buf: write data (user-space memory buffer)
|
|
* @count: how much bytes to write
|
|
*
|
|
* This function accepts more data to the volume which is being under the
|
|
* "atomic LEB change" operation. It may be called arbitrary number of times
|
|
* until all data arrives. This function returns %0 in case of success, number
|
|
* of bytes written during the last call if the whole "atomic LEB change"
|
|
* operation has been successfully finished, and a negative error code in case
|
|
* of failure.
|
|
*/
|
|
int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
const void __user *buf, int count)
|
|
{
|
|
int err;
|
|
|
|
dbg_gen("write %d of %lld bytes, %lld already passed",
|
|
count, vol->upd_bytes, vol->upd_received);
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
if (vol->upd_received + count > vol->upd_bytes)
|
|
count = vol->upd_bytes - vol->upd_received;
|
|
|
|
err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
vol->upd_received += count;
|
|
|
|
if (vol->upd_received == vol->upd_bytes) {
|
|
int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
|
|
|
|
memset(vol->upd_buf + vol->upd_bytes, 0xFF,
|
|
len - vol->upd_bytes);
|
|
len = ubi_calc_data_len(ubi, vol->upd_buf, len);
|
|
err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
|
|
vol->upd_buf, len);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
ubi_assert(vol->upd_received <= vol->upd_bytes);
|
|
if (vol->upd_received == vol->upd_bytes) {
|
|
vol->changing_leb = 0;
|
|
err = count;
|
|
vfree(vol->upd_buf);
|
|
}
|
|
|
|
return err;
|
|
}
|