mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 14:28:06 +07:00
4218a95546
Use GFP_NOIO for memory allocations in the I/O path. Other memory allocations in the initialization path can use GFP_KERNEL. Reported-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
968 lines
23 KiB
C
968 lines
23 KiB
C
/*
|
|
* Copyright (C) 2017 Western Digital Corporation or its affiliates.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm-zoned.h"
|
|
|
|
#include <linux/module.h>
|
|
|
|
#define DM_MSG_PREFIX "zoned"
|
|
|
|
#define DMZ_MIN_BIOS 8192
|
|
|
|
/*
|
|
* Zone BIO context.
|
|
*/
|
|
struct dmz_bioctx {
|
|
struct dmz_target *target;
|
|
struct dm_zone *zone;
|
|
struct bio *bio;
|
|
atomic_t ref;
|
|
blk_status_t status;
|
|
};
|
|
|
|
/*
|
|
* Chunk work descriptor.
|
|
*/
|
|
struct dm_chunk_work {
|
|
struct work_struct work;
|
|
atomic_t refcount;
|
|
struct dmz_target *target;
|
|
unsigned int chunk;
|
|
struct bio_list bio_list;
|
|
};
|
|
|
|
/*
|
|
* Target descriptor.
|
|
*/
|
|
struct dmz_target {
|
|
struct dm_dev *ddev;
|
|
|
|
unsigned long flags;
|
|
|
|
/* Zoned block device information */
|
|
struct dmz_dev *dev;
|
|
|
|
/* For metadata handling */
|
|
struct dmz_metadata *metadata;
|
|
|
|
/* For reclaim */
|
|
struct dmz_reclaim *reclaim;
|
|
|
|
/* For chunk work */
|
|
struct mutex chunk_lock;
|
|
struct radix_tree_root chunk_rxtree;
|
|
struct workqueue_struct *chunk_wq;
|
|
|
|
/* For cloned BIOs to zones */
|
|
struct bio_set *bio_set;
|
|
|
|
/* For flush */
|
|
spinlock_t flush_lock;
|
|
struct bio_list flush_list;
|
|
struct delayed_work flush_work;
|
|
struct workqueue_struct *flush_wq;
|
|
};
|
|
|
|
/*
|
|
* Flush intervals (seconds).
|
|
*/
|
|
#define DMZ_FLUSH_PERIOD (10 * HZ)
|
|
|
|
/*
|
|
* Target BIO completion.
|
|
*/
|
|
static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
|
|
{
|
|
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
|
|
|
if (bioctx->status == BLK_STS_OK && status != BLK_STS_OK)
|
|
bioctx->status = status;
|
|
bio_endio(bio);
|
|
}
|
|
|
|
/*
|
|
* Partial clone read BIO completion callback. This terminates the
|
|
* target BIO when there are no more references to its context.
|
|
*/
|
|
static void dmz_read_bio_end_io(struct bio *bio)
|
|
{
|
|
struct dmz_bioctx *bioctx = bio->bi_private;
|
|
blk_status_t status = bio->bi_status;
|
|
|
|
bio_put(bio);
|
|
dmz_bio_endio(bioctx->bio, status);
|
|
}
|
|
|
|
/*
|
|
* Issue a BIO to a zone. The BIO may only partially process the
|
|
* original target BIO.
|
|
*/
|
|
static int dmz_submit_read_bio(struct dmz_target *dmz, struct dm_zone *zone,
|
|
struct bio *bio, sector_t chunk_block,
|
|
unsigned int nr_blocks)
|
|
{
|
|
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
|
sector_t sector;
|
|
struct bio *clone;
|
|
|
|
/* BIO remap sector */
|
|
sector = dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
|
|
|
|
/* If the read is not partial, there is no need to clone the BIO */
|
|
if (nr_blocks == dmz_bio_blocks(bio)) {
|
|
/* Setup and submit the BIO */
|
|
bio->bi_iter.bi_sector = sector;
|
|
atomic_inc(&bioctx->ref);
|
|
generic_make_request(bio);
|
|
return 0;
|
|
}
|
|
|
|
/* Partial BIO: we need to clone the BIO */
|
|
clone = bio_clone_fast(bio, GFP_NOIO, dmz->bio_set);
|
|
if (!clone)
|
|
return -ENOMEM;
|
|
|
|
/* Setup the clone */
|
|
clone->bi_iter.bi_sector = sector;
|
|
clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
|
|
clone->bi_end_io = dmz_read_bio_end_io;
|
|
clone->bi_private = bioctx;
|
|
|
|
bio_advance(bio, clone->bi_iter.bi_size);
|
|
|
|
/* Submit the clone */
|
|
atomic_inc(&bioctx->ref);
|
|
generic_make_request(clone);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Zero out pages of discarded blocks accessed by a read BIO.
|
|
*/
|
|
static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
|
|
sector_t chunk_block, unsigned int nr_blocks)
|
|
{
|
|
unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
|
|
|
|
/* Clear nr_blocks */
|
|
swap(bio->bi_iter.bi_size, size);
|
|
zero_fill_bio(bio);
|
|
swap(bio->bi_iter.bi_size, size);
|
|
|
|
bio_advance(bio, size);
|
|
}
|
|
|
|
/*
|
|
* Process a read BIO.
|
|
*/
|
|
static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
|
|
struct bio *bio)
|
|
{
|
|
sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
|
|
unsigned int nr_blocks = dmz_bio_blocks(bio);
|
|
sector_t end_block = chunk_block + nr_blocks;
|
|
struct dm_zone *rzone, *bzone;
|
|
int ret;
|
|
|
|
/* Read into unmapped chunks need only zeroing the BIO buffer */
|
|
if (!zone) {
|
|
zero_fill_bio(bio);
|
|
return 0;
|
|
}
|
|
|
|
dmz_dev_debug(dmz->dev, "READ chunk %llu -> %s zone %u, block %llu, %u blocks",
|
|
(unsigned long long)dmz_bio_chunk(dmz->dev, bio),
|
|
(dmz_is_rnd(zone) ? "RND" : "SEQ"),
|
|
dmz_id(dmz->metadata, zone),
|
|
(unsigned long long)chunk_block, nr_blocks);
|
|
|
|
/* Check block validity to determine the read location */
|
|
bzone = zone->bzone;
|
|
while (chunk_block < end_block) {
|
|
nr_blocks = 0;
|
|
if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) {
|
|
/* Test block validity in the data zone */
|
|
ret = dmz_block_valid(dmz->metadata, zone, chunk_block);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret > 0) {
|
|
/* Read data zone blocks */
|
|
nr_blocks = ret;
|
|
rzone = zone;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No valid blocks found in the data zone.
|
|
* Check the buffer zone, if there is one.
|
|
*/
|
|
if (!nr_blocks && bzone) {
|
|
ret = dmz_block_valid(dmz->metadata, bzone, chunk_block);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret > 0) {
|
|
/* Read buffer zone blocks */
|
|
nr_blocks = ret;
|
|
rzone = bzone;
|
|
}
|
|
}
|
|
|
|
if (nr_blocks) {
|
|
/* Valid blocks found: read them */
|
|
nr_blocks = min_t(unsigned int, nr_blocks, end_block - chunk_block);
|
|
ret = dmz_submit_read_bio(dmz, rzone, bio, chunk_block, nr_blocks);
|
|
if (ret)
|
|
return ret;
|
|
chunk_block += nr_blocks;
|
|
} else {
|
|
/* No valid block: zeroout the current BIO block */
|
|
dmz_handle_read_zero(dmz, bio, chunk_block, 1);
|
|
chunk_block++;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Issue a write BIO to a zone.
|
|
*/
|
|
static void dmz_submit_write_bio(struct dmz_target *dmz, struct dm_zone *zone,
|
|
struct bio *bio, sector_t chunk_block,
|
|
unsigned int nr_blocks)
|
|
{
|
|
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
|
|
|
/* Setup and submit the BIO */
|
|
bio->bi_bdev = dmz->dev->bdev;
|
|
bio->bi_iter.bi_sector = dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
|
|
atomic_inc(&bioctx->ref);
|
|
generic_make_request(bio);
|
|
|
|
if (dmz_is_seq(zone))
|
|
zone->wp_block += nr_blocks;
|
|
}
|
|
|
|
/*
|
|
* Write blocks directly in a data zone, at the write pointer.
|
|
* If a buffer zone is assigned, invalidate the blocks written
|
|
* in place.
|
|
*/
|
|
static int dmz_handle_direct_write(struct dmz_target *dmz,
|
|
struct dm_zone *zone, struct bio *bio,
|
|
sector_t chunk_block,
|
|
unsigned int nr_blocks)
|
|
{
|
|
struct dmz_metadata *zmd = dmz->metadata;
|
|
struct dm_zone *bzone = zone->bzone;
|
|
int ret;
|
|
|
|
if (dmz_is_readonly(zone))
|
|
return -EROFS;
|
|
|
|
/* Submit write */
|
|
dmz_submit_write_bio(dmz, zone, bio, chunk_block, nr_blocks);
|
|
|
|
/*
|
|
* Validate the blocks in the data zone and invalidate
|
|
* in the buffer zone, if there is one.
|
|
*/
|
|
ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
|
|
if (ret == 0 && bzone)
|
|
ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write blocks in the buffer zone of @zone.
|
|
* If no buffer zone is assigned yet, get one.
|
|
* Called with @zone write locked.
|
|
*/
|
|
static int dmz_handle_buffered_write(struct dmz_target *dmz,
|
|
struct dm_zone *zone, struct bio *bio,
|
|
sector_t chunk_block,
|
|
unsigned int nr_blocks)
|
|
{
|
|
struct dmz_metadata *zmd = dmz->metadata;
|
|
struct dm_zone *bzone;
|
|
int ret;
|
|
|
|
/* Get the buffer zone. One will be allocated if needed */
|
|
bzone = dmz_get_chunk_buffer(zmd, zone);
|
|
if (!bzone)
|
|
return -ENOSPC;
|
|
|
|
if (dmz_is_readonly(bzone))
|
|
return -EROFS;
|
|
|
|
/* Submit write */
|
|
dmz_submit_write_bio(dmz, bzone, bio, chunk_block, nr_blocks);
|
|
|
|
/*
|
|
* Validate the blocks in the buffer zone
|
|
* and invalidate in the data zone.
|
|
*/
|
|
ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
|
|
if (ret == 0 && chunk_block < zone->wp_block)
|
|
ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Process a write BIO.
|
|
*/
|
|
static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
|
|
struct bio *bio)
|
|
{
|
|
sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
|
|
unsigned int nr_blocks = dmz_bio_blocks(bio);
|
|
|
|
if (!zone)
|
|
return -ENOSPC;
|
|
|
|
dmz_dev_debug(dmz->dev, "WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
|
|
(unsigned long long)dmz_bio_chunk(dmz->dev, bio),
|
|
(dmz_is_rnd(zone) ? "RND" : "SEQ"),
|
|
dmz_id(dmz->metadata, zone),
|
|
(unsigned long long)chunk_block, nr_blocks);
|
|
|
|
if (dmz_is_rnd(zone) || chunk_block == zone->wp_block) {
|
|
/*
|
|
* zone is a random zone or it is a sequential zone
|
|
* and the BIO is aligned to the zone write pointer:
|
|
* direct write the zone.
|
|
*/
|
|
return dmz_handle_direct_write(dmz, zone, bio, chunk_block, nr_blocks);
|
|
}
|
|
|
|
/*
|
|
* This is an unaligned write in a sequential zone:
|
|
* use buffered write.
|
|
*/
|
|
return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
|
|
}
|
|
|
|
/*
|
|
* Process a discard BIO.
|
|
*/
|
|
static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
|
|
struct bio *bio)
|
|
{
|
|
struct dmz_metadata *zmd = dmz->metadata;
|
|
sector_t block = dmz_bio_block(bio);
|
|
unsigned int nr_blocks = dmz_bio_blocks(bio);
|
|
sector_t chunk_block = dmz_chunk_block(dmz->dev, block);
|
|
int ret = 0;
|
|
|
|
/* For unmapped chunks, there is nothing to do */
|
|
if (!zone)
|
|
return 0;
|
|
|
|
if (dmz_is_readonly(zone))
|
|
return -EROFS;
|
|
|
|
dmz_dev_debug(dmz->dev, "DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
|
|
(unsigned long long)dmz_bio_chunk(dmz->dev, bio),
|
|
dmz_id(zmd, zone),
|
|
(unsigned long long)chunk_block, nr_blocks);
|
|
|
|
/*
|
|
* Invalidate blocks in the data zone and its
|
|
* buffer zone if one is mapped.
|
|
*/
|
|
if (dmz_is_rnd(zone) || chunk_block < zone->wp_block)
|
|
ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
|
|
if (ret == 0 && zone->bzone)
|
|
ret = dmz_invalidate_blocks(zmd, zone->bzone,
|
|
chunk_block, nr_blocks);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Process a BIO.
|
|
*/
|
|
static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
|
|
struct bio *bio)
|
|
{
|
|
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
|
struct dmz_metadata *zmd = dmz->metadata;
|
|
struct dm_zone *zone;
|
|
int ret;
|
|
|
|
/*
|
|
* Write may trigger a zone allocation. So make sure the
|
|
* allocation can succeed.
|
|
*/
|
|
if (bio_op(bio) == REQ_OP_WRITE)
|
|
dmz_schedule_reclaim(dmz->reclaim);
|
|
|
|
dmz_lock_metadata(zmd);
|
|
|
|
/*
|
|
* Get the data zone mapping the chunk. There may be no
|
|
* mapping for read and discard. If a mapping is obtained,
|
|
+ the zone returned will be set to active state.
|
|
*/
|
|
zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(dmz->dev, bio),
|
|
bio_op(bio));
|
|
if (IS_ERR(zone)) {
|
|
ret = PTR_ERR(zone);
|
|
goto out;
|
|
}
|
|
|
|
/* Process the BIO */
|
|
if (zone) {
|
|
dmz_activate_zone(zone);
|
|
bioctx->zone = zone;
|
|
}
|
|
|
|
switch (bio_op(bio)) {
|
|
case REQ_OP_READ:
|
|
ret = dmz_handle_read(dmz, zone, bio);
|
|
break;
|
|
case REQ_OP_WRITE:
|
|
ret = dmz_handle_write(dmz, zone, bio);
|
|
break;
|
|
case REQ_OP_DISCARD:
|
|
case REQ_OP_WRITE_ZEROES:
|
|
ret = dmz_handle_discard(dmz, zone, bio);
|
|
break;
|
|
default:
|
|
dmz_dev_err(dmz->dev, "Unsupported BIO operation 0x%x",
|
|
bio_op(bio));
|
|
ret = -EIO;
|
|
}
|
|
|
|
/*
|
|
* Release the chunk mapping. This will check that the mapping
|
|
* is still valid, that is, that the zone used still has valid blocks.
|
|
*/
|
|
if (zone)
|
|
dmz_put_chunk_mapping(zmd, zone);
|
|
out:
|
|
dmz_bio_endio(bio, errno_to_blk_status(ret));
|
|
|
|
dmz_unlock_metadata(zmd);
|
|
}
|
|
|
|
/*
|
|
* Increment a chunk reference counter.
|
|
*/
|
|
static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
|
|
{
|
|
atomic_inc(&cw->refcount);
|
|
}
|
|
|
|
/*
|
|
* Decrement a chunk work reference count and
|
|
* free it if it becomes 0.
|
|
*/
|
|
static void dmz_put_chunk_work(struct dm_chunk_work *cw)
|
|
{
|
|
if (atomic_dec_and_test(&cw->refcount)) {
|
|
WARN_ON(!bio_list_empty(&cw->bio_list));
|
|
radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
|
|
kfree(cw);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Chunk BIO work function.
|
|
*/
|
|
static void dmz_chunk_work(struct work_struct *work)
|
|
{
|
|
struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
|
|
struct dmz_target *dmz = cw->target;
|
|
struct bio *bio;
|
|
|
|
mutex_lock(&dmz->chunk_lock);
|
|
|
|
/* Process the chunk BIOs */
|
|
while ((bio = bio_list_pop(&cw->bio_list))) {
|
|
mutex_unlock(&dmz->chunk_lock);
|
|
dmz_handle_bio(dmz, cw, bio);
|
|
mutex_lock(&dmz->chunk_lock);
|
|
dmz_put_chunk_work(cw);
|
|
}
|
|
|
|
/* Queueing the work incremented the work refcount */
|
|
dmz_put_chunk_work(cw);
|
|
|
|
mutex_unlock(&dmz->chunk_lock);
|
|
}
|
|
|
|
/*
|
|
* Flush work.
|
|
*/
|
|
static void dmz_flush_work(struct work_struct *work)
|
|
{
|
|
struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
|
|
struct bio *bio;
|
|
int ret;
|
|
|
|
/* Flush dirty metadata blocks */
|
|
ret = dmz_flush_metadata(dmz->metadata);
|
|
|
|
/* Process queued flush requests */
|
|
while (1) {
|
|
spin_lock(&dmz->flush_lock);
|
|
bio = bio_list_pop(&dmz->flush_list);
|
|
spin_unlock(&dmz->flush_lock);
|
|
|
|
if (!bio)
|
|
break;
|
|
|
|
dmz_bio_endio(bio, errno_to_blk_status(ret));
|
|
}
|
|
|
|
queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
|
|
}
|
|
|
|
/*
|
|
* Get a chunk work and start it to process a new BIO.
|
|
* If the BIO chunk has no work yet, create one.
|
|
*/
|
|
static void dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
|
|
{
|
|
unsigned int chunk = dmz_bio_chunk(dmz->dev, bio);
|
|
struct dm_chunk_work *cw;
|
|
|
|
mutex_lock(&dmz->chunk_lock);
|
|
|
|
/* Get the BIO chunk work. If one is not active yet, create one */
|
|
cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
|
|
if (!cw) {
|
|
int ret;
|
|
|
|
/* Create a new chunk work */
|
|
cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
|
|
if (!cw)
|
|
goto out;
|
|
|
|
INIT_WORK(&cw->work, dmz_chunk_work);
|
|
atomic_set(&cw->refcount, 0);
|
|
cw->target = dmz;
|
|
cw->chunk = chunk;
|
|
bio_list_init(&cw->bio_list);
|
|
|
|
ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
|
|
if (unlikely(ret)) {
|
|
kfree(cw);
|
|
cw = NULL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
bio_list_add(&cw->bio_list, bio);
|
|
dmz_get_chunk_work(cw);
|
|
|
|
if (queue_work(dmz->chunk_wq, &cw->work))
|
|
dmz_get_chunk_work(cw);
|
|
out:
|
|
mutex_unlock(&dmz->chunk_lock);
|
|
}
|
|
|
|
/*
|
|
* Process a new BIO.
|
|
*/
|
|
static int dmz_map(struct dm_target *ti, struct bio *bio)
|
|
{
|
|
struct dmz_target *dmz = ti->private;
|
|
struct dmz_dev *dev = dmz->dev;
|
|
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
|
sector_t sector = bio->bi_iter.bi_sector;
|
|
unsigned int nr_sectors = bio_sectors(bio);
|
|
sector_t chunk_sector;
|
|
|
|
dmz_dev_debug(dev, "BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
|
|
bio_op(bio), (unsigned long long)sector, nr_sectors,
|
|
(unsigned long long)dmz_bio_chunk(dmz->dev, bio),
|
|
(unsigned long long)dmz_chunk_block(dmz->dev, dmz_bio_block(bio)),
|
|
(unsigned int)dmz_bio_blocks(bio));
|
|
|
|
bio->bi_bdev = dev->bdev;
|
|
|
|
if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
|
|
return DM_MAPIO_REMAPPED;
|
|
|
|
/* The BIO should be block aligned */
|
|
if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
|
|
return DM_MAPIO_KILL;
|
|
|
|
/* Initialize the BIO context */
|
|
bioctx->target = dmz;
|
|
bioctx->zone = NULL;
|
|
bioctx->bio = bio;
|
|
atomic_set(&bioctx->ref, 1);
|
|
bioctx->status = BLK_STS_OK;
|
|
|
|
/* Set the BIO pending in the flush list */
|
|
if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
|
|
spin_lock(&dmz->flush_lock);
|
|
bio_list_add(&dmz->flush_list, bio);
|
|
spin_unlock(&dmz->flush_lock);
|
|
mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
/* Split zone BIOs to fit entirely into a zone */
|
|
chunk_sector = sector & (dev->zone_nr_sectors - 1);
|
|
if (chunk_sector + nr_sectors > dev->zone_nr_sectors)
|
|
dm_accept_partial_bio(bio, dev->zone_nr_sectors - chunk_sector);
|
|
|
|
/* Now ready to handle this BIO */
|
|
dmz_reclaim_bio_acc(dmz->reclaim);
|
|
dmz_queue_chunk_work(dmz, bio);
|
|
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
/*
|
|
* Completed target BIO processing.
|
|
*/
|
|
static int dmz_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
|
|
{
|
|
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
|
|
|
if (bioctx->status == BLK_STS_OK && *error)
|
|
bioctx->status = *error;
|
|
|
|
if (!atomic_dec_and_test(&bioctx->ref))
|
|
return DM_ENDIO_INCOMPLETE;
|
|
|
|
/* Done */
|
|
bio->bi_status = bioctx->status;
|
|
|
|
if (bioctx->zone) {
|
|
struct dm_zone *zone = bioctx->zone;
|
|
|
|
if (*error && bio_op(bio) == REQ_OP_WRITE) {
|
|
if (dmz_is_seq(zone))
|
|
set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
|
|
}
|
|
dmz_deactivate_zone(zone);
|
|
}
|
|
|
|
return DM_ENDIO_DONE;
|
|
}
|
|
|
|
/*
|
|
* Get zoned device information.
|
|
*/
|
|
static int dmz_get_zoned_device(struct dm_target *ti, char *path)
|
|
{
|
|
struct dmz_target *dmz = ti->private;
|
|
struct request_queue *q;
|
|
struct dmz_dev *dev;
|
|
int ret;
|
|
|
|
/* Get the target device */
|
|
ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &dmz->ddev);
|
|
if (ret) {
|
|
ti->error = "Get target device failed";
|
|
dmz->ddev = NULL;
|
|
return ret;
|
|
}
|
|
|
|
dev = kzalloc(sizeof(struct dmz_dev), GFP_KERNEL);
|
|
if (!dev) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
dev->bdev = dmz->ddev->bdev;
|
|
(void)bdevname(dev->bdev, dev->name);
|
|
|
|
if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE) {
|
|
ti->error = "Not a zoned block device";
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
dev->capacity = i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
|
|
if (ti->begin || (ti->len != dev->capacity)) {
|
|
ti->error = "Partial mapping not supported";
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
q = bdev_get_queue(dev->bdev);
|
|
dev->zone_nr_sectors = q->limits.chunk_sectors;
|
|
dev->zone_nr_sectors_shift = ilog2(dev->zone_nr_sectors);
|
|
|
|
dev->zone_nr_blocks = dmz_sect2blk(dev->zone_nr_sectors);
|
|
dev->zone_nr_blocks_shift = ilog2(dev->zone_nr_blocks);
|
|
|
|
dev->nr_zones = (dev->capacity + dev->zone_nr_sectors - 1)
|
|
>> dev->zone_nr_sectors_shift;
|
|
|
|
dmz->dev = dev;
|
|
|
|
return 0;
|
|
err:
|
|
dm_put_device(ti, dmz->ddev);
|
|
kfree(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Cleanup zoned device information.
|
|
*/
|
|
static void dmz_put_zoned_device(struct dm_target *ti)
|
|
{
|
|
struct dmz_target *dmz = ti->private;
|
|
|
|
dm_put_device(ti, dmz->ddev);
|
|
kfree(dmz->dev);
|
|
dmz->dev = NULL;
|
|
}
|
|
|
|
/*
|
|
* Setup target.
|
|
*/
|
|
static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
|
|
{
|
|
struct dmz_target *dmz;
|
|
struct dmz_dev *dev;
|
|
int ret;
|
|
|
|
/* Check arguments */
|
|
if (argc != 1) {
|
|
ti->error = "Invalid argument count";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allocate and initialize the target descriptor */
|
|
dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
|
|
if (!dmz) {
|
|
ti->error = "Unable to allocate the zoned target descriptor";
|
|
return -ENOMEM;
|
|
}
|
|
ti->private = dmz;
|
|
|
|
/* Get the target zoned block device */
|
|
ret = dmz_get_zoned_device(ti, argv[0]);
|
|
if (ret) {
|
|
dmz->ddev = NULL;
|
|
goto err;
|
|
}
|
|
|
|
/* Initialize metadata */
|
|
dev = dmz->dev;
|
|
ret = dmz_ctr_metadata(dev, &dmz->metadata);
|
|
if (ret) {
|
|
ti->error = "Metadata initialization failed";
|
|
goto err_dev;
|
|
}
|
|
|
|
/* Set target (no write same support) */
|
|
ti->max_io_len = dev->zone_nr_sectors << 9;
|
|
ti->num_flush_bios = 1;
|
|
ti->num_discard_bios = 1;
|
|
ti->num_write_zeroes_bios = 1;
|
|
ti->per_io_data_size = sizeof(struct dmz_bioctx);
|
|
ti->flush_supported = true;
|
|
ti->discards_supported = true;
|
|
ti->split_discard_bios = true;
|
|
|
|
/* The exposed capacity is the number of chunks that can be mapped */
|
|
ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) << dev->zone_nr_sectors_shift;
|
|
|
|
/* Zone BIO */
|
|
dmz->bio_set = bioset_create(DMZ_MIN_BIOS, 0, 0);
|
|
if (!dmz->bio_set) {
|
|
ti->error = "Create BIO set failed";
|
|
ret = -ENOMEM;
|
|
goto err_meta;
|
|
}
|
|
|
|
/* Chunk BIO work */
|
|
mutex_init(&dmz->chunk_lock);
|
|
INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_KERNEL);
|
|
dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s", WQ_MEM_RECLAIM | WQ_UNBOUND,
|
|
0, dev->name);
|
|
if (!dmz->chunk_wq) {
|
|
ti->error = "Create chunk workqueue failed";
|
|
ret = -ENOMEM;
|
|
goto err_bio;
|
|
}
|
|
|
|
/* Flush work */
|
|
spin_lock_init(&dmz->flush_lock);
|
|
bio_list_init(&dmz->flush_list);
|
|
INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
|
|
dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
|
|
dev->name);
|
|
if (!dmz->flush_wq) {
|
|
ti->error = "Create flush workqueue failed";
|
|
ret = -ENOMEM;
|
|
goto err_cwq;
|
|
}
|
|
mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
|
|
|
|
/* Initialize reclaim */
|
|
ret = dmz_ctr_reclaim(dev, dmz->metadata, &dmz->reclaim);
|
|
if (ret) {
|
|
ti->error = "Zone reclaim initialization failed";
|
|
goto err_fwq;
|
|
}
|
|
|
|
dmz_dev_info(dev, "Target device: %llu 512-byte logical sectors (%llu blocks)",
|
|
(unsigned long long)ti->len,
|
|
(unsigned long long)dmz_sect2blk(ti->len));
|
|
|
|
return 0;
|
|
err_fwq:
|
|
destroy_workqueue(dmz->flush_wq);
|
|
err_cwq:
|
|
destroy_workqueue(dmz->chunk_wq);
|
|
err_bio:
|
|
bioset_free(dmz->bio_set);
|
|
err_meta:
|
|
dmz_dtr_metadata(dmz->metadata);
|
|
err_dev:
|
|
dmz_put_zoned_device(ti);
|
|
err:
|
|
kfree(dmz);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Cleanup target.
|
|
*/
|
|
static void dmz_dtr(struct dm_target *ti)
|
|
{
|
|
struct dmz_target *dmz = ti->private;
|
|
|
|
flush_workqueue(dmz->chunk_wq);
|
|
destroy_workqueue(dmz->chunk_wq);
|
|
|
|
dmz_dtr_reclaim(dmz->reclaim);
|
|
|
|
cancel_delayed_work_sync(&dmz->flush_work);
|
|
destroy_workqueue(dmz->flush_wq);
|
|
|
|
(void) dmz_flush_metadata(dmz->metadata);
|
|
|
|
dmz_dtr_metadata(dmz->metadata);
|
|
|
|
bioset_free(dmz->bio_set);
|
|
|
|
dmz_put_zoned_device(ti);
|
|
|
|
kfree(dmz);
|
|
}
|
|
|
|
/*
|
|
* Setup target request queue limits.
|
|
*/
|
|
static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
|
|
{
|
|
struct dmz_target *dmz = ti->private;
|
|
unsigned int chunk_sectors = dmz->dev->zone_nr_sectors;
|
|
|
|
limits->logical_block_size = DMZ_BLOCK_SIZE;
|
|
limits->physical_block_size = DMZ_BLOCK_SIZE;
|
|
|
|
blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
|
|
blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
|
|
|
|
limits->discard_alignment = DMZ_BLOCK_SIZE;
|
|
limits->discard_granularity = DMZ_BLOCK_SIZE;
|
|
limits->max_discard_sectors = chunk_sectors;
|
|
limits->max_hw_discard_sectors = chunk_sectors;
|
|
limits->max_write_zeroes_sectors = chunk_sectors;
|
|
|
|
/* FS hint to try to align to the device zone size */
|
|
limits->chunk_sectors = chunk_sectors;
|
|
limits->max_sectors = chunk_sectors;
|
|
|
|
/* We are exposing a drive-managed zoned block device */
|
|
limits->zoned = BLK_ZONED_NONE;
|
|
}
|
|
|
|
/*
|
|
* Pass on ioctl to the backend device.
|
|
*/
|
|
static int dmz_prepare_ioctl(struct dm_target *ti,
|
|
struct block_device **bdev, fmode_t *mode)
|
|
{
|
|
struct dmz_target *dmz = ti->private;
|
|
|
|
*bdev = dmz->dev->bdev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop works on suspend.
|
|
*/
|
|
static void dmz_suspend(struct dm_target *ti)
|
|
{
|
|
struct dmz_target *dmz = ti->private;
|
|
|
|
flush_workqueue(dmz->chunk_wq);
|
|
dmz_suspend_reclaim(dmz->reclaim);
|
|
cancel_delayed_work_sync(&dmz->flush_work);
|
|
}
|
|
|
|
/*
|
|
* Restart works on resume or if suspend failed.
|
|
*/
|
|
static void dmz_resume(struct dm_target *ti)
|
|
{
|
|
struct dmz_target *dmz = ti->private;
|
|
|
|
queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
|
|
dmz_resume_reclaim(dmz->reclaim);
|
|
}
|
|
|
|
static int dmz_iterate_devices(struct dm_target *ti,
|
|
iterate_devices_callout_fn fn, void *data)
|
|
{
|
|
struct dmz_target *dmz = ti->private;
|
|
|
|
return fn(ti, dmz->ddev, 0, dmz->dev->capacity, data);
|
|
}
|
|
|
|
static struct target_type dmz_type = {
|
|
.name = "zoned",
|
|
.version = {1, 0, 0},
|
|
.features = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM,
|
|
.module = THIS_MODULE,
|
|
.ctr = dmz_ctr,
|
|
.dtr = dmz_dtr,
|
|
.map = dmz_map,
|
|
.end_io = dmz_end_io,
|
|
.io_hints = dmz_io_hints,
|
|
.prepare_ioctl = dmz_prepare_ioctl,
|
|
.postsuspend = dmz_suspend,
|
|
.resume = dmz_resume,
|
|
.iterate_devices = dmz_iterate_devices,
|
|
};
|
|
|
|
static int __init dmz_init(void)
|
|
{
|
|
return dm_register_target(&dmz_type);
|
|
}
|
|
|
|
static void __exit dmz_exit(void)
|
|
{
|
|
dm_unregister_target(&dmz_type);
|
|
}
|
|
|
|
module_init(dmz_init);
|
|
module_exit(dmz_exit);
|
|
|
|
MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
|
|
MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
|
|
MODULE_LICENSE("GPL");
|