mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 19:25:46 +07:00
8d994cada2
Leave blank space between the right-hand and left-hand side of the assignment to meet the kernel coding style better. Signed-off-by: chenqiwu <chenqiwu@xiaomi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Michel Lespinasse <walken@google.com> Link: http://lkml.kernel.org/r/1582621140-25850-1-git-send-email-qiwuchen55@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
598 lines
16 KiB
C
598 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
Red Black Trees
|
|
(C) 1999 Andrea Arcangeli <andrea@suse.de>
|
|
(C) 2002 David Woodhouse <dwmw2@infradead.org>
|
|
(C) 2012 Michel Lespinasse <walken@google.com>
|
|
|
|
|
|
linux/lib/rbtree.c
|
|
*/
|
|
|
|
#include <linux/rbtree_augmented.h>
|
|
#include <linux/export.h>
|
|
|
|
/*
|
|
* red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
|
|
*
|
|
* 1) A node is either red or black
|
|
* 2) The root is black
|
|
* 3) All leaves (NULL) are black
|
|
* 4) Both children of every red node are black
|
|
* 5) Every simple path from root to leaves contains the same number
|
|
* of black nodes.
|
|
*
|
|
* 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
|
|
* consecutive red nodes in a path and every red node is therefore followed by
|
|
* a black. So if B is the number of black nodes on every simple path (as per
|
|
* 5), then the longest possible path due to 4 is 2B.
|
|
*
|
|
* We shall indicate color with case, where black nodes are uppercase and red
|
|
* nodes will be lowercase. Unknown color nodes shall be drawn as red within
|
|
* parentheses and have some accompanying text comment.
|
|
*/
|
|
|
|
/*
|
|
* Notes on lockless lookups:
|
|
*
|
|
* All stores to the tree structure (rb_left and rb_right) must be done using
|
|
* WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
|
|
* tree structure as seen in program order.
|
|
*
|
|
* These two requirements will allow lockless iteration of the tree -- not
|
|
* correct iteration mind you, tree rotations are not atomic so a lookup might
|
|
* miss entire subtrees.
|
|
*
|
|
* But they do guarantee that any such traversal will only see valid elements
|
|
* and that it will indeed complete -- does not get stuck in a loop.
|
|
*
|
|
* It also guarantees that if the lookup returns an element it is the 'correct'
|
|
* one. But not returning an element does _NOT_ mean it's not present.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* Stores to __rb_parent_color are not important for simple lookups so those
|
|
* are left undone as of now. Nor did I check for loops involving parent
|
|
* pointers.
|
|
*/
|
|
|
|
static inline void rb_set_black(struct rb_node *rb)
|
|
{
|
|
rb->__rb_parent_color |= RB_BLACK;
|
|
}
|
|
|
|
static inline struct rb_node *rb_red_parent(struct rb_node *red)
|
|
{
|
|
return (struct rb_node *)red->__rb_parent_color;
|
|
}
|
|
|
|
/*
|
|
* Helper function for rotations:
|
|
* - old's parent and color get assigned to new
|
|
* - old gets assigned new as a parent and 'color' as a color.
|
|
*/
|
|
static inline void
|
|
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
|
|
struct rb_root *root, int color)
|
|
{
|
|
struct rb_node *parent = rb_parent(old);
|
|
new->__rb_parent_color = old->__rb_parent_color;
|
|
rb_set_parent_color(old, new, color);
|
|
__rb_change_child(old, new, parent, root);
|
|
}
|
|
|
|
static __always_inline void
|
|
__rb_insert(struct rb_node *node, struct rb_root *root,
|
|
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
{
|
|
struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
|
|
|
|
while (true) {
|
|
/*
|
|
* Loop invariant: node is red.
|
|
*/
|
|
if (unlikely(!parent)) {
|
|
/*
|
|
* The inserted node is root. Either this is the
|
|
* first node, or we recursed at Case 1 below and
|
|
* are no longer violating 4).
|
|
*/
|
|
rb_set_parent_color(node, NULL, RB_BLACK);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If there is a black parent, we are done.
|
|
* Otherwise, take some corrective action as,
|
|
* per 4), we don't want a red root or two
|
|
* consecutive red nodes.
|
|
*/
|
|
if(rb_is_black(parent))
|
|
break;
|
|
|
|
gparent = rb_red_parent(parent);
|
|
|
|
tmp = gparent->rb_right;
|
|
if (parent != tmp) { /* parent == gparent->rb_left */
|
|
if (tmp && rb_is_red(tmp)) {
|
|
/*
|
|
* Case 1 - node's uncle is red (color flips).
|
|
*
|
|
* G g
|
|
* / \ / \
|
|
* p u --> P U
|
|
* / /
|
|
* n n
|
|
*
|
|
* However, since g's parent might be red, and
|
|
* 4) does not allow this, we need to recurse
|
|
* at g.
|
|
*/
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
rb_set_parent_color(parent, gparent, RB_BLACK);
|
|
node = gparent;
|
|
parent = rb_parent(node);
|
|
rb_set_parent_color(node, parent, RB_RED);
|
|
continue;
|
|
}
|
|
|
|
tmp = parent->rb_right;
|
|
if (node == tmp) {
|
|
/*
|
|
* Case 2 - node's uncle is black and node is
|
|
* the parent's right child (left rotate at parent).
|
|
*
|
|
* G G
|
|
* / \ / \
|
|
* p U --> n U
|
|
* \ /
|
|
* n p
|
|
*
|
|
* This still leaves us in violation of 4), the
|
|
* continuation into Case 3 will fix that.
|
|
*/
|
|
tmp = node->rb_left;
|
|
WRITE_ONCE(parent->rb_right, tmp);
|
|
WRITE_ONCE(node->rb_left, parent);
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, parent,
|
|
RB_BLACK);
|
|
rb_set_parent_color(parent, node, RB_RED);
|
|
augment_rotate(parent, node);
|
|
parent = node;
|
|
tmp = node->rb_right;
|
|
}
|
|
|
|
/*
|
|
* Case 3 - node's uncle is black and node is
|
|
* the parent's left child (right rotate at gparent).
|
|
*
|
|
* G P
|
|
* / \ / \
|
|
* p U --> n g
|
|
* / \
|
|
* n U
|
|
*/
|
|
WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
|
|
WRITE_ONCE(parent->rb_right, gparent);
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|
augment_rotate(gparent, parent);
|
|
break;
|
|
} else {
|
|
tmp = gparent->rb_left;
|
|
if (tmp && rb_is_red(tmp)) {
|
|
/* Case 1 - color flips */
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
rb_set_parent_color(parent, gparent, RB_BLACK);
|
|
node = gparent;
|
|
parent = rb_parent(node);
|
|
rb_set_parent_color(node, parent, RB_RED);
|
|
continue;
|
|
}
|
|
|
|
tmp = parent->rb_left;
|
|
if (node == tmp) {
|
|
/* Case 2 - right rotate at parent */
|
|
tmp = node->rb_right;
|
|
WRITE_ONCE(parent->rb_left, tmp);
|
|
WRITE_ONCE(node->rb_right, parent);
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, parent,
|
|
RB_BLACK);
|
|
rb_set_parent_color(parent, node, RB_RED);
|
|
augment_rotate(parent, node);
|
|
parent = node;
|
|
tmp = node->rb_left;
|
|
}
|
|
|
|
/* Case 3 - left rotate at gparent */
|
|
WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
|
|
WRITE_ONCE(parent->rb_left, gparent);
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|
augment_rotate(gparent, parent);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Inline version for rb_erase() use - we want to be able to inline
|
|
* and eliminate the dummy_rotate callback there
|
|
*/
|
|
static __always_inline void
|
|
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
|
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
{
|
|
struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
|
|
|
|
while (true) {
|
|
/*
|
|
* Loop invariants:
|
|
* - node is black (or NULL on first iteration)
|
|
* - node is not the root (parent is not NULL)
|
|
* - All leaf paths going through parent and node have a
|
|
* black node count that is 1 lower than other leaf paths.
|
|
*/
|
|
sibling = parent->rb_right;
|
|
if (node != sibling) { /* node == parent->rb_left */
|
|
if (rb_is_red(sibling)) {
|
|
/*
|
|
* Case 1 - left rotate at parent
|
|
*
|
|
* P S
|
|
* / \ / \
|
|
* N s --> p Sr
|
|
* / \ / \
|
|
* Sl Sr N Sl
|
|
*/
|
|
tmp1 = sibling->rb_left;
|
|
WRITE_ONCE(parent->rb_right, tmp1);
|
|
WRITE_ONCE(sibling->rb_left, parent);
|
|
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_RED);
|
|
augment_rotate(parent, sibling);
|
|
sibling = tmp1;
|
|
}
|
|
tmp1 = sibling->rb_right;
|
|
if (!tmp1 || rb_is_black(tmp1)) {
|
|
tmp2 = sibling->rb_left;
|
|
if (!tmp2 || rb_is_black(tmp2)) {
|
|
/*
|
|
* Case 2 - sibling color flip
|
|
* (p could be either color here)
|
|
*
|
|
* (p) (p)
|
|
* / \ / \
|
|
* N S --> N s
|
|
* / \ / \
|
|
* Sl Sr Sl Sr
|
|
*
|
|
* This leaves us violating 5) which
|
|
* can be fixed by flipping p to black
|
|
* if it was red, or by recursing at p.
|
|
* p is red when coming from Case 1.
|
|
*/
|
|
rb_set_parent_color(sibling, parent,
|
|
RB_RED);
|
|
if (rb_is_red(parent))
|
|
rb_set_black(parent);
|
|
else {
|
|
node = parent;
|
|
parent = rb_parent(node);
|
|
if (parent)
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* Case 3 - right rotate at sibling
|
|
* (p could be either color here)
|
|
*
|
|
* (p) (p)
|
|
* / \ / \
|
|
* N S --> N sl
|
|
* / \ \
|
|
* sl Sr S
|
|
* \
|
|
* Sr
|
|
*
|
|
* Note: p might be red, and then both
|
|
* p and sl are red after rotation(which
|
|
* breaks property 4). This is fixed in
|
|
* Case 4 (in __rb_rotate_set_parents()
|
|
* which set sl the color of p
|
|
* and set p RB_BLACK)
|
|
*
|
|
* (p) (sl)
|
|
* / \ / \
|
|
* N sl --> P S
|
|
* \ / \
|
|
* S N Sr
|
|
* \
|
|
* Sr
|
|
*/
|
|
tmp1 = tmp2->rb_right;
|
|
WRITE_ONCE(sibling->rb_left, tmp1);
|
|
WRITE_ONCE(tmp2->rb_right, sibling);
|
|
WRITE_ONCE(parent->rb_right, tmp2);
|
|
if (tmp1)
|
|
rb_set_parent_color(tmp1, sibling,
|
|
RB_BLACK);
|
|
augment_rotate(sibling, tmp2);
|
|
tmp1 = sibling;
|
|
sibling = tmp2;
|
|
}
|
|
/*
|
|
* Case 4 - left rotate at parent + color flips
|
|
* (p and sl could be either color here.
|
|
* After rotation, p becomes black, s acquires
|
|
* p's color, and sl keeps its color)
|
|
*
|
|
* (p) (s)
|
|
* / \ / \
|
|
* N S --> P Sr
|
|
* / \ / \
|
|
* (sl) sr N (sl)
|
|
*/
|
|
tmp2 = sibling->rb_left;
|
|
WRITE_ONCE(parent->rb_right, tmp2);
|
|
WRITE_ONCE(sibling->rb_left, parent);
|
|
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|
if (tmp2)
|
|
rb_set_parent(tmp2, parent);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_BLACK);
|
|
augment_rotate(parent, sibling);
|
|
break;
|
|
} else {
|
|
sibling = parent->rb_left;
|
|
if (rb_is_red(sibling)) {
|
|
/* Case 1 - right rotate at parent */
|
|
tmp1 = sibling->rb_right;
|
|
WRITE_ONCE(parent->rb_left, tmp1);
|
|
WRITE_ONCE(sibling->rb_right, parent);
|
|
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_RED);
|
|
augment_rotate(parent, sibling);
|
|
sibling = tmp1;
|
|
}
|
|
tmp1 = sibling->rb_left;
|
|
if (!tmp1 || rb_is_black(tmp1)) {
|
|
tmp2 = sibling->rb_right;
|
|
if (!tmp2 || rb_is_black(tmp2)) {
|
|
/* Case 2 - sibling color flip */
|
|
rb_set_parent_color(sibling, parent,
|
|
RB_RED);
|
|
if (rb_is_red(parent))
|
|
rb_set_black(parent);
|
|
else {
|
|
node = parent;
|
|
parent = rb_parent(node);
|
|
if (parent)
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
/* Case 3 - left rotate at sibling */
|
|
tmp1 = tmp2->rb_left;
|
|
WRITE_ONCE(sibling->rb_right, tmp1);
|
|
WRITE_ONCE(tmp2->rb_left, sibling);
|
|
WRITE_ONCE(parent->rb_left, tmp2);
|
|
if (tmp1)
|
|
rb_set_parent_color(tmp1, sibling,
|
|
RB_BLACK);
|
|
augment_rotate(sibling, tmp2);
|
|
tmp1 = sibling;
|
|
sibling = tmp2;
|
|
}
|
|
/* Case 4 - right rotate at parent + color flips */
|
|
tmp2 = sibling->rb_right;
|
|
WRITE_ONCE(parent->rb_left, tmp2);
|
|
WRITE_ONCE(sibling->rb_right, parent);
|
|
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|
if (tmp2)
|
|
rb_set_parent(tmp2, parent);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_BLACK);
|
|
augment_rotate(parent, sibling);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Non-inline version for rb_erase_augmented() use */
|
|
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
|
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
{
|
|
____rb_erase_color(parent, root, augment_rotate);
|
|
}
|
|
|
|
/*
|
|
* Non-augmented rbtree manipulation functions.
|
|
*
|
|
* We use dummy augmented callbacks here, and have the compiler optimize them
|
|
* out of the rb_insert_color() and rb_erase() function definitions.
|
|
*/
|
|
|
|
static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
|
|
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
|
|
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
|
|
|
|
static const struct rb_augment_callbacks dummy_callbacks = {
|
|
.propagate = dummy_propagate,
|
|
.copy = dummy_copy,
|
|
.rotate = dummy_rotate
|
|
};
|
|
|
|
void rb_insert_color(struct rb_node *node, struct rb_root *root)
|
|
{
|
|
__rb_insert(node, root, dummy_rotate);
|
|
}
|
|
|
|
void rb_erase(struct rb_node *node, struct rb_root *root)
|
|
{
|
|
struct rb_node *rebalance;
|
|
rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
|
|
if (rebalance)
|
|
____rb_erase_color(rebalance, root, dummy_rotate);
|
|
}
|
|
|
|
/*
|
|
* Augmented rbtree manipulation functions.
|
|
*
|
|
* This instantiates the same __always_inline functions as in the non-augmented
|
|
* case, but this time with user-defined callbacks.
|
|
*/
|
|
|
|
void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
|
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
{
|
|
__rb_insert(node, root, augment_rotate);
|
|
}
|
|
|
|
/*
|
|
* This function returns the first node (in sort order) of the tree.
|
|
*/
|
|
struct rb_node *rb_first(const struct rb_root *root)
|
|
{
|
|
struct rb_node *n;
|
|
|
|
n = root->rb_node;
|
|
if (!n)
|
|
return NULL;
|
|
while (n->rb_left)
|
|
n = n->rb_left;
|
|
return n;
|
|
}
|
|
|
|
struct rb_node *rb_last(const struct rb_root *root)
|
|
{
|
|
struct rb_node *n;
|
|
|
|
n = root->rb_node;
|
|
if (!n)
|
|
return NULL;
|
|
while (n->rb_right)
|
|
n = n->rb_right;
|
|
return n;
|
|
}
|
|
|
|
struct rb_node *rb_next(const struct rb_node *node)
|
|
{
|
|
struct rb_node *parent;
|
|
|
|
if (RB_EMPTY_NODE(node))
|
|
return NULL;
|
|
|
|
/*
|
|
* If we have a right-hand child, go down and then left as far
|
|
* as we can.
|
|
*/
|
|
if (node->rb_right) {
|
|
node = node->rb_right;
|
|
while (node->rb_left)
|
|
node = node->rb_left;
|
|
return (struct rb_node *)node;
|
|
}
|
|
|
|
/*
|
|
* No right-hand children. Everything down and left is smaller than us,
|
|
* so any 'next' node must be in the general direction of our parent.
|
|
* Go up the tree; any time the ancestor is a right-hand child of its
|
|
* parent, keep going up. First time it's a left-hand child of its
|
|
* parent, said parent is our 'next' node.
|
|
*/
|
|
while ((parent = rb_parent(node)) && node == parent->rb_right)
|
|
node = parent;
|
|
|
|
return parent;
|
|
}
|
|
|
|
struct rb_node *rb_prev(const struct rb_node *node)
|
|
{
|
|
struct rb_node *parent;
|
|
|
|
if (RB_EMPTY_NODE(node))
|
|
return NULL;
|
|
|
|
/*
|
|
* If we have a left-hand child, go down and then right as far
|
|
* as we can.
|
|
*/
|
|
if (node->rb_left) {
|
|
node = node->rb_left;
|
|
while (node->rb_right)
|
|
node = node->rb_right;
|
|
return (struct rb_node *)node;
|
|
}
|
|
|
|
/*
|
|
* No left-hand children. Go up till we find an ancestor which
|
|
* is a right-hand child of its parent.
|
|
*/
|
|
while ((parent = rb_parent(node)) && node == parent->rb_left)
|
|
node = parent;
|
|
|
|
return parent;
|
|
}
|
|
|
|
void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
|
struct rb_root *root)
|
|
{
|
|
struct rb_node *parent = rb_parent(victim);
|
|
|
|
/* Copy the pointers/colour from the victim to the replacement */
|
|
*new = *victim;
|
|
|
|
/* Set the surrounding nodes to point to the replacement */
|
|
if (victim->rb_left)
|
|
rb_set_parent(victim->rb_left, new);
|
|
if (victim->rb_right)
|
|
rb_set_parent(victim->rb_right, new);
|
|
__rb_change_child(victim, new, parent, root);
|
|
}
|
|
|
|
static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
|
|
{
|
|
for (;;) {
|
|
if (node->rb_left)
|
|
node = node->rb_left;
|
|
else if (node->rb_right)
|
|
node = node->rb_right;
|
|
else
|
|
return (struct rb_node *)node;
|
|
}
|
|
}
|
|
|
|
struct rb_node *rb_next_postorder(const struct rb_node *node)
|
|
{
|
|
const struct rb_node *parent;
|
|
if (!node)
|
|
return NULL;
|
|
parent = rb_parent(node);
|
|
|
|
/* If we're sitting on node, we've already seen our children */
|
|
if (parent && node == parent->rb_left && parent->rb_right) {
|
|
/* If we are the parent's left node, go to the parent's right
|
|
* node then all the way down to the left */
|
|
return rb_left_deepest_node(parent->rb_right);
|
|
} else
|
|
/* Otherwise we are the parent's right node, and the parent
|
|
* should be next */
|
|
return (struct rb_node *)parent;
|
|
}
|
|
|
|
struct rb_node *rb_first_postorder(const struct rb_root *root)
|
|
{
|
|
if (!root->rb_node)
|
|
return NULL;
|
|
|
|
return rb_left_deepest_node(root->rb_node);
|
|
}
|