mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-14 13:36:07 +07:00
024f7f31ed
Implements the generic probe and disconnect functions that will be called by the USB and SDIO driver's probe/disconnect functions. Implements the backends for the WiMAX stack's basic operations: message passing, rfkill control and reset. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
729 lines
21 KiB
C
729 lines
21 KiB
C
/*
|
|
* Intel Wireless WiMAX Connection 2400m
|
|
* Generic probe/disconnect, reset and message passing
|
|
*
|
|
*
|
|
* Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
|
|
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License version
|
|
* 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA.
|
|
*
|
|
*
|
|
* See i2400m.h for driver documentation. This contains helpers for
|
|
* the driver model glue [_setup()/_release()], handling device resets
|
|
* [_dev_reset_handle()], and the backends for the WiMAX stack ops
|
|
* reset [_op_reset()] and message from user [_op_msg_from_user()].
|
|
*
|
|
* ROADMAP:
|
|
*
|
|
* i2400m_op_msg_from_user()
|
|
* i2400m_msg_to_dev()
|
|
* wimax_msg_to_user_send()
|
|
*
|
|
* i2400m_op_reset()
|
|
* i240m->bus_reset()
|
|
*
|
|
* i2400m_dev_reset_handle()
|
|
* __i2400m_dev_reset_handle()
|
|
* __i2400m_dev_stop()
|
|
* __i2400m_dev_start()
|
|
*
|
|
* i2400m_setup()
|
|
* i2400m_bootrom_init()
|
|
* register_netdev()
|
|
* i2400m_dev_start()
|
|
* __i2400m_dev_start()
|
|
* i2400m_dev_bootstrap()
|
|
* i2400m_tx_setup()
|
|
* i2400m->bus_dev_start()
|
|
* i2400m_check_mac_addr()
|
|
* wimax_dev_add()
|
|
*
|
|
* i2400m_release()
|
|
* wimax_dev_rm()
|
|
* i2400m_dev_stop()
|
|
* __i2400m_dev_stop()
|
|
* i2400m_dev_shutdown()
|
|
* i2400m->bus_dev_stop()
|
|
* i2400m_tx_release()
|
|
* unregister_netdev()
|
|
*/
|
|
#include "i2400m.h"
|
|
#include <linux/wimax/i2400m.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
|
|
#define D_SUBMODULE driver
|
|
#include "debug-levels.h"
|
|
|
|
|
|
int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */
|
|
module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
|
|
MODULE_PARM_DESC(idle_mode_disabled,
|
|
"If true, the device will not enable idle mode negotiation "
|
|
"with the base station (when connected) to save power.");
|
|
|
|
/**
|
|
* i2400m_queue_work - schedule work on a i2400m's queue
|
|
*
|
|
* @i2400m: device descriptor
|
|
*
|
|
* @fn: function to run to execute work. It gets passed a 'struct
|
|
* work_struct' that is wrapped in a 'struct i2400m_work'. Once
|
|
* done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
|
|
* (2) kfree(i2400m_work).
|
|
*
|
|
* @gfp_flags: GFP flags for memory allocation.
|
|
*
|
|
* @pl: pointer to a payload buffer that you want to pass to the _work
|
|
* function. Use this to pack (for example) a struct with extra
|
|
* arguments.
|
|
*
|
|
* @pl_size: size of the payload buffer.
|
|
*
|
|
* We do this quite often, so this just saves typing; allocate a
|
|
* wrapper for a i2400m, get a ref to it, pack arguments and launch
|
|
* the work.
|
|
*
|
|
* A usual workflow is:
|
|
*
|
|
* struct my_work_args {
|
|
* void *something;
|
|
* int whatever;
|
|
* };
|
|
* ...
|
|
*
|
|
* struct my_work_args my_args = {
|
|
* .something = FOO,
|
|
* .whaetever = BLAH
|
|
* };
|
|
* i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
|
|
* &args, sizeof(args))
|
|
*
|
|
* And now the work function can unpack the arguments and call the
|
|
* real function (or do the job itself):
|
|
*
|
|
* static
|
|
* void my_work_fn((struct work_struct *ws)
|
|
* {
|
|
* struct i2400m_work *iw =
|
|
* container_of(ws, struct i2400m_work, ws);
|
|
* struct my_work_args *my_args = (void *) iw->pl;
|
|
*
|
|
* my_work(iw->i2400m, my_args->something, my_args->whatevert);
|
|
* }
|
|
*/
|
|
int i2400m_queue_work(struct i2400m *i2400m,
|
|
void (*fn)(struct work_struct *), gfp_t gfp_flags,
|
|
const void *pl, size_t pl_size)
|
|
{
|
|
int result;
|
|
struct i2400m_work *iw;
|
|
|
|
BUG_ON(i2400m->work_queue == NULL);
|
|
result = -ENOMEM;
|
|
iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
|
|
if (iw == NULL)
|
|
goto error_kzalloc;
|
|
iw->i2400m = i2400m_get(i2400m);
|
|
memcpy(iw->pl, pl, pl_size);
|
|
INIT_WORK(&iw->ws, fn);
|
|
result = queue_work(i2400m->work_queue, &iw->ws);
|
|
error_kzalloc:
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i2400m_queue_work);
|
|
|
|
|
|
/*
|
|
* Schedule i2400m's specific work on the system's queue.
|
|
*
|
|
* Used for a few cases where we really need it; otherwise, identical
|
|
* to i2400m_queue_work().
|
|
*
|
|
* Returns < 0 errno code on error, 1 if ok.
|
|
*
|
|
* If it returns zero, something really bad happened, as it means the
|
|
* works struct was already queued, but we have just allocated it, so
|
|
* it should not happen.
|
|
*/
|
|
int i2400m_schedule_work(struct i2400m *i2400m,
|
|
void (*fn)(struct work_struct *), gfp_t gfp_flags)
|
|
{
|
|
int result;
|
|
struct i2400m_work *iw;
|
|
|
|
BUG_ON(i2400m->work_queue == NULL);
|
|
result = -ENOMEM;
|
|
iw = kzalloc(sizeof(*iw), gfp_flags);
|
|
if (iw == NULL)
|
|
goto error_kzalloc;
|
|
iw->i2400m = i2400m_get(i2400m);
|
|
INIT_WORK(&iw->ws, fn);
|
|
result = schedule_work(&iw->ws);
|
|
if (result == 0)
|
|
result = -ENXIO;
|
|
error_kzalloc:
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* WiMAX stack operation: relay a message from user space
|
|
*
|
|
* @wimax_dev: device descriptor
|
|
* @pipe_name: named pipe the message is for
|
|
* @msg_buf: pointer to the message bytes
|
|
* @msg_len: length of the buffer
|
|
* @genl_info: passed by the generic netlink layer
|
|
*
|
|
* The WiMAX stack will call this function when a message was received
|
|
* from user space.
|
|
*
|
|
* For the i2400m, this is an L3L4 message, as specified in
|
|
* include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
|
|
* i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
|
|
* coded in Little Endian.
|
|
*
|
|
* This function just verifies that the header declaration and the
|
|
* payload are consistent and then deals with it, either forwarding it
|
|
* to the device or procesing it locally.
|
|
*
|
|
* In the i2400m, messages are basically commands that will carry an
|
|
* ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
|
|
* user space. The rx.c code might intercept the response and use it
|
|
* to update the driver's state, but then it will pass it on so it can
|
|
* be relayed back to user space.
|
|
*
|
|
* Note that asynchronous events from the device are processed and
|
|
* sent to user space in rx.c.
|
|
*/
|
|
static
|
|
int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
|
|
const char *pipe_name,
|
|
const void *msg_buf, size_t msg_len,
|
|
const struct genl_info *genl_info)
|
|
{
|
|
int result;
|
|
struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
|
|
struct device *dev = i2400m_dev(i2400m);
|
|
struct sk_buff *ack_skb;
|
|
|
|
d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
|
|
"msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
|
|
msg_buf, msg_len, genl_info);
|
|
ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
|
|
result = PTR_ERR(ack_skb);
|
|
if (IS_ERR(ack_skb))
|
|
goto error_msg_to_dev;
|
|
if (unlikely(i2400m->trace_msg_from_user))
|
|
wimax_msg(&i2400m->wimax_dev, "trace",
|
|
msg_buf, msg_len, GFP_KERNEL);
|
|
result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
|
|
error_msg_to_dev:
|
|
d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
|
|
"genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
|
|
genl_info, result);
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Context to wait for a reset to finalize
|
|
*/
|
|
struct i2400m_reset_ctx {
|
|
struct completion completion;
|
|
int result;
|
|
};
|
|
|
|
|
|
/*
|
|
* WiMAX stack operation: reset a device
|
|
*
|
|
* @wimax_dev: device descriptor
|
|
*
|
|
* See the documentation for wimax_reset() and wimax_dev->op_reset for
|
|
* the requirements of this function. The WiMAX stack guarantees
|
|
* serialization on calls to this function.
|
|
*
|
|
* Do a warm reset on the device; if it fails, resort to a cold reset
|
|
* and return -ENODEV. On successful warm reset, we need to block
|
|
* until it is complete.
|
|
*
|
|
* The bus-driver implementation of reset takes care of falling back
|
|
* to cold reset if warm fails.
|
|
*/
|
|
static
|
|
int i2400m_op_reset(struct wimax_dev *wimax_dev)
|
|
{
|
|
int result;
|
|
struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
|
|
struct device *dev = i2400m_dev(i2400m);
|
|
struct i2400m_reset_ctx ctx = {
|
|
.completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
|
|
.result = 0,
|
|
};
|
|
|
|
d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
|
|
mutex_lock(&i2400m->init_mutex);
|
|
i2400m->reset_ctx = &ctx;
|
|
mutex_unlock(&i2400m->init_mutex);
|
|
result = i2400m->bus_reset(i2400m, I2400M_RT_WARM);
|
|
if (result < 0)
|
|
goto out;
|
|
result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
|
|
if (result == 0)
|
|
result = -ETIMEDOUT;
|
|
else if (result > 0)
|
|
result = ctx.result;
|
|
/* if result < 0, pass it on */
|
|
mutex_lock(&i2400m->init_mutex);
|
|
i2400m->reset_ctx = NULL;
|
|
mutex_unlock(&i2400m->init_mutex);
|
|
out:
|
|
d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Check the MAC address we got from boot mode is ok
|
|
*
|
|
* @i2400m: device descriptor
|
|
*
|
|
* Returns: 0 if ok, < 0 errno code on error.
|
|
*/
|
|
static
|
|
int i2400m_check_mac_addr(struct i2400m *i2400m)
|
|
{
|
|
int result;
|
|
struct device *dev = i2400m_dev(i2400m);
|
|
struct sk_buff *skb;
|
|
const struct i2400m_tlv_detailed_device_info *ddi;
|
|
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
|
|
const unsigned char zeromac[ETH_ALEN] = { 0 };
|
|
|
|
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
|
skb = i2400m_get_device_info(i2400m);
|
|
if (IS_ERR(skb)) {
|
|
result = PTR_ERR(skb);
|
|
dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
|
|
result);
|
|
goto error;
|
|
}
|
|
/* Extract MAC addresss */
|
|
ddi = (void *) skb->data;
|
|
BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
|
|
d_printf(2, dev, "GET DEVICE INFO: mac addr "
|
|
"%02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
ddi->mac_address[0], ddi->mac_address[1],
|
|
ddi->mac_address[2], ddi->mac_address[3],
|
|
ddi->mac_address[4], ddi->mac_address[5]);
|
|
if (!memcmp(net_dev->perm_addr, ddi->mac_address,
|
|
sizeof(ddi->mac_address)))
|
|
goto ok;
|
|
dev_warn(dev, "warning: device reports a different MAC address "
|
|
"to that of boot mode's\n");
|
|
dev_warn(dev, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
ddi->mac_address[0], ddi->mac_address[1],
|
|
ddi->mac_address[2], ddi->mac_address[3],
|
|
ddi->mac_address[4], ddi->mac_address[5]);
|
|
dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
net_dev->perm_addr[0], net_dev->perm_addr[1],
|
|
net_dev->perm_addr[2], net_dev->perm_addr[3],
|
|
net_dev->perm_addr[4], net_dev->perm_addr[5]);
|
|
if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
|
|
dev_err(dev, "device reports an invalid MAC address, "
|
|
"not updating\n");
|
|
else {
|
|
dev_warn(dev, "updating MAC address\n");
|
|
net_dev->addr_len = ETH_ALEN;
|
|
memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
|
|
memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
|
|
}
|
|
ok:
|
|
result = 0;
|
|
kfree_skb(skb);
|
|
error:
|
|
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
* __i2400m_dev_start - Bring up driver communication with the device
|
|
*
|
|
* @i2400m: device descriptor
|
|
* @flags: boot mode flags
|
|
*
|
|
* Returns: 0 if ok, < 0 errno code on error.
|
|
*
|
|
* Uploads firmware and brings up all the resources needed to be able
|
|
* to communicate with the device.
|
|
*
|
|
* TX needs to be setup before the bus-specific code (otherwise on
|
|
* shutdown, the bus-tx code could try to access it).
|
|
*/
|
|
static
|
|
int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
|
|
{
|
|
int result;
|
|
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
|
|
struct net_device *net_dev = wimax_dev->net_dev;
|
|
struct device *dev = i2400m_dev(i2400m);
|
|
int times = 3;
|
|
|
|
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
|
retry:
|
|
result = i2400m_dev_bootstrap(i2400m, flags);
|
|
if (result < 0) {
|
|
dev_err(dev, "cannot bootstrap device: %d\n", result);
|
|
goto error_bootstrap;
|
|
}
|
|
result = i2400m_tx_setup(i2400m);
|
|
if (result < 0)
|
|
goto error_tx_setup;
|
|
result = i2400m->bus_dev_start(i2400m);
|
|
if (result < 0)
|
|
goto error_bus_dev_start;
|
|
i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
|
|
if (i2400m->work_queue == NULL) {
|
|
result = -ENOMEM;
|
|
dev_err(dev, "cannot create workqueue\n");
|
|
goto error_create_workqueue;
|
|
}
|
|
/* At this point is ok to send commands to the device */
|
|
result = i2400m_check_mac_addr(i2400m);
|
|
if (result < 0)
|
|
goto error_check_mac_addr;
|
|
i2400m->ready = 1;
|
|
wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
|
|
result = i2400m_dev_initialize(i2400m);
|
|
if (result < 0)
|
|
goto error_dev_initialize;
|
|
/* At this point, reports will come for the device and set it
|
|
* to the right state if it is different than UNINITIALIZED */
|
|
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
|
|
net_dev, i2400m, result);
|
|
return result;
|
|
|
|
error_dev_initialize:
|
|
error_check_mac_addr:
|
|
destroy_workqueue(i2400m->work_queue);
|
|
error_create_workqueue:
|
|
i2400m->bus_dev_stop(i2400m);
|
|
error_bus_dev_start:
|
|
i2400m_tx_release(i2400m);
|
|
error_tx_setup:
|
|
error_bootstrap:
|
|
if (result == -ERESTARTSYS && times-- > 0) {
|
|
flags = I2400M_BRI_SOFT;
|
|
goto retry;
|
|
}
|
|
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
|
|
net_dev, i2400m, result);
|
|
return result;
|
|
}
|
|
|
|
|
|
static
|
|
int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
|
|
{
|
|
int result;
|
|
mutex_lock(&i2400m->init_mutex); /* Well, start the device */
|
|
result = __i2400m_dev_start(i2400m, bm_flags);
|
|
if (result >= 0)
|
|
i2400m->updown = 1;
|
|
mutex_unlock(&i2400m->init_mutex);
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
* i2400m_dev_stop - Tear down driver communication with the device
|
|
*
|
|
* @i2400m: device descriptor
|
|
*
|
|
* Returns: 0 if ok, < 0 errno code on error.
|
|
*
|
|
* Releases all the resources allocated to communicate with the device.
|
|
*/
|
|
static
|
|
void __i2400m_dev_stop(struct i2400m *i2400m)
|
|
{
|
|
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
|
|
struct device *dev = i2400m_dev(i2400m);
|
|
|
|
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
|
wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
|
|
i2400m_dev_shutdown(i2400m);
|
|
i2400m->ready = 0;
|
|
destroy_workqueue(i2400m->work_queue);
|
|
i2400m->bus_dev_stop(i2400m);
|
|
i2400m_tx_release(i2400m);
|
|
wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
|
|
d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
|
|
}
|
|
|
|
|
|
/*
|
|
* Watch out -- we only need to stop if there is a need for it. The
|
|
* device could have reset itself and failed to come up again (see
|
|
* _i2400m_dev_reset_handle()).
|
|
*/
|
|
static
|
|
void i2400m_dev_stop(struct i2400m *i2400m)
|
|
{
|
|
mutex_lock(&i2400m->init_mutex);
|
|
if (i2400m->updown) {
|
|
__i2400m_dev_stop(i2400m);
|
|
i2400m->updown = 0;
|
|
}
|
|
mutex_unlock(&i2400m->init_mutex);
|
|
}
|
|
|
|
|
|
/*
|
|
* The device has rebooted; fix up the device and the driver
|
|
*
|
|
* Tear down the driver communication with the device, reload the
|
|
* firmware and reinitialize the communication with the device.
|
|
*
|
|
* If someone calls a reset when the device's firmware is down, in
|
|
* theory we won't see it because we are not listening. However, just
|
|
* in case, leave the code to handle it.
|
|
*
|
|
* If there is a reset context, use it; this means someone is waiting
|
|
* for us to tell him when the reset operation is complete and the
|
|
* device is ready to rock again.
|
|
*
|
|
* NOTE: if we are in the process of bringing up or down the
|
|
* communication with the device [running i2400m_dev_start() or
|
|
* _stop()], don't do anything, let it fail and handle it.
|
|
*
|
|
* This function is ran always in a thread context
|
|
*/
|
|
static
|
|
void __i2400m_dev_reset_handle(struct work_struct *ws)
|
|
{
|
|
int result;
|
|
struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
|
|
struct i2400m *i2400m = iw->i2400m;
|
|
struct device *dev = i2400m_dev(i2400m);
|
|
enum wimax_st wimax_state;
|
|
struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
|
|
|
|
d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m);
|
|
result = 0;
|
|
if (mutex_trylock(&i2400m->init_mutex) == 0) {
|
|
/* We are still in i2400m_dev_start() [let it fail] or
|
|
* i2400m_dev_stop() [we are shutting down anyway, so
|
|
* ignore it] or we are resetting somewhere else. */
|
|
dev_err(dev, "device rebooted\n");
|
|
i2400m_msg_to_dev_cancel_wait(i2400m, -ERESTARTSYS);
|
|
complete(&i2400m->msg_completion);
|
|
goto out;
|
|
}
|
|
wimax_state = wimax_state_get(&i2400m->wimax_dev);
|
|
if (wimax_state < WIMAX_ST_UNINITIALIZED) {
|
|
dev_info(dev, "device rebooted: it is down, ignoring\n");
|
|
goto out_unlock; /* ifconfig up/down wasn't called */
|
|
}
|
|
dev_err(dev, "device rebooted: reinitializing driver\n");
|
|
__i2400m_dev_stop(i2400m);
|
|
i2400m->updown = 0;
|
|
result = __i2400m_dev_start(i2400m,
|
|
I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
|
|
if (result < 0) {
|
|
dev_err(dev, "device reboot: cannot start the device: %d\n",
|
|
result);
|
|
result = i2400m->bus_reset(i2400m, I2400M_RT_BUS);
|
|
if (result >= 0)
|
|
result = -ENODEV;
|
|
} else
|
|
i2400m->updown = 1;
|
|
out_unlock:
|
|
if (i2400m->reset_ctx) {
|
|
ctx->result = result;
|
|
complete(&ctx->completion);
|
|
}
|
|
mutex_unlock(&i2400m->init_mutex);
|
|
out:
|
|
i2400m_put(i2400m);
|
|
kfree(iw);
|
|
d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m);
|
|
return;
|
|
}
|
|
|
|
|
|
/**
|
|
* i2400m_dev_reset_handle - Handle a device's reset in a thread context
|
|
*
|
|
* Schedule a device reset handling out on a thread context, so it
|
|
* is safe to call from atomic context. We can't use the i2400m's
|
|
* queue as we are going to destroy it and reinitialize it as part of
|
|
* the driver bringup/bringup process.
|
|
*
|
|
* See __i2400m_dev_reset_handle() for details; that takes care of
|
|
* reinitializing the driver to handle the reset, calling into the
|
|
* bus-specific functions ops as needed.
|
|
*/
|
|
int i2400m_dev_reset_handle(struct i2400m *i2400m)
|
|
{
|
|
return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
|
|
GFP_ATOMIC);
|
|
}
|
|
EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
|
|
|
|
|
|
/**
|
|
* i2400m_setup - bus-generic setup function for the i2400m device
|
|
*
|
|
* @i2400m: device descriptor (bus-specific parts have been initialized)
|
|
*
|
|
* Returns: 0 if ok, < 0 errno code on error.
|
|
*
|
|
* Initializes the bus-generic parts of the i2400m driver; the
|
|
* bus-specific parts have been initialized, function pointers filled
|
|
* out by the bus-specific probe function.
|
|
*
|
|
* As well, this registers the WiMAX and net device nodes. Once this
|
|
* function returns, the device is operative and has to be ready to
|
|
* receive and send network traffic and WiMAX control operations.
|
|
*/
|
|
int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
|
|
{
|
|
int result = -ENODEV;
|
|
struct device *dev = i2400m_dev(i2400m);
|
|
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
|
|
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
|
|
|
|
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
|
|
|
snprintf(wimax_dev->name, sizeof(wimax_dev->name),
|
|
"i2400m-%s:%s", dev->bus->name, dev->bus_id);
|
|
|
|
i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
|
|
if (i2400m->bm_cmd_buf == NULL) {
|
|
dev_err(dev, "cannot allocate USB command buffer\n");
|
|
goto error_bm_cmd_kzalloc;
|
|
}
|
|
i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
|
|
if (i2400m->bm_ack_buf == NULL) {
|
|
dev_err(dev, "cannot allocate USB ack buffer\n");
|
|
goto error_bm_ack_buf_kzalloc;
|
|
}
|
|
result = i2400m_bootrom_init(i2400m, bm_flags);
|
|
if (result < 0) {
|
|
dev_err(dev, "read mac addr: bootrom init "
|
|
"failed: %d\n", result);
|
|
goto error_bootrom_init;
|
|
}
|
|
result = i2400m_read_mac_addr(i2400m);
|
|
if (result < 0)
|
|
goto error_read_mac_addr;
|
|
|
|
result = register_netdev(net_dev); /* Okey dokey, bring it up */
|
|
if (result < 0) {
|
|
dev_err(dev, "cannot register i2400m network device: %d\n",
|
|
result);
|
|
goto error_register_netdev;
|
|
}
|
|
netif_carrier_off(net_dev);
|
|
|
|
result = i2400m_dev_start(i2400m, bm_flags);
|
|
if (result < 0)
|
|
goto error_dev_start;
|
|
|
|
i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
|
|
i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
|
|
i2400m->wimax_dev.op_reset = i2400m_op_reset;
|
|
result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
|
|
if (result < 0)
|
|
goto error_wimax_dev_add;
|
|
/* User space needs to do some init stuff */
|
|
wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
|
|
|
|
/* Now setup all that requires a registered net and wimax device. */
|
|
result = i2400m_debugfs_add(i2400m);
|
|
if (result < 0) {
|
|
dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
|
|
goto error_debugfs_setup;
|
|
}
|
|
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
|
|
return result;
|
|
|
|
error_debugfs_setup:
|
|
wimax_dev_rm(&i2400m->wimax_dev);
|
|
error_wimax_dev_add:
|
|
i2400m_dev_stop(i2400m);
|
|
error_dev_start:
|
|
unregister_netdev(net_dev);
|
|
error_register_netdev:
|
|
error_read_mac_addr:
|
|
error_bootrom_init:
|
|
kfree(i2400m->bm_ack_buf);
|
|
error_bm_ack_buf_kzalloc:
|
|
kfree(i2400m->bm_cmd_buf);
|
|
error_bm_cmd_kzalloc:
|
|
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i2400m_setup);
|
|
|
|
|
|
/**
|
|
* i2400m_release - release the bus-generic driver resources
|
|
*
|
|
* Sends a disconnect message and undoes any setup done by i2400m_setup()
|
|
*/
|
|
void i2400m_release(struct i2400m *i2400m)
|
|
{
|
|
struct device *dev = i2400m_dev(i2400m);
|
|
|
|
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
|
netif_stop_queue(i2400m->wimax_dev.net_dev);
|
|
|
|
i2400m_debugfs_rm(i2400m);
|
|
wimax_dev_rm(&i2400m->wimax_dev);
|
|
i2400m_dev_stop(i2400m);
|
|
unregister_netdev(i2400m->wimax_dev.net_dev);
|
|
kfree(i2400m->bm_ack_buf);
|
|
kfree(i2400m->bm_cmd_buf);
|
|
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
|
|
}
|
|
EXPORT_SYMBOL_GPL(i2400m_release);
|
|
|
|
|
|
static
|
|
int __init i2400m_driver_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
module_init(i2400m_driver_init);
|
|
|
|
static
|
|
void __exit i2400m_driver_exit(void)
|
|
{
|
|
/* for scheds i2400m_dev_reset_handle() */
|
|
flush_scheduled_work();
|
|
return;
|
|
}
|
|
module_exit(i2400m_driver_exit);
|
|
|
|
MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
|
|
MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
|
|
MODULE_LICENSE("GPL");
|