mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
fe45773b5b
Toggle the LMPM_CHICK register when writing chunks into the FW's extended SRAM. This tells the FW to put the chunk into a different memory space. Signed-off-by: Arik Nemtsov <arikx.nemtsov@intel.com> Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
2272 lines
64 KiB
C
2272 lines
64 KiB
C
/******************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
|
|
* USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called COPYING.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <ilw@linux.intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*****************************************************************************/
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-aspm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "iwl-drv.h"
|
|
#include "iwl-trans.h"
|
|
#include "iwl-csr.h"
|
|
#include "iwl-prph.h"
|
|
#include "iwl-agn-hw.h"
|
|
#include "iwl-fw-error-dump.h"
|
|
#include "internal.h"
|
|
|
|
/* extended range in FW SRAM */
|
|
#define IWL_FW_MEM_EXTENDED_START 0x40000
|
|
#define IWL_FW_MEM_EXTENDED_END 0x57FFF
|
|
|
|
static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (!trans_pcie->fw_mon_page)
|
|
return;
|
|
|
|
dma_unmap_page(trans->dev, trans_pcie->fw_mon_phys,
|
|
trans_pcie->fw_mon_size, DMA_FROM_DEVICE);
|
|
__free_pages(trans_pcie->fw_mon_page,
|
|
get_order(trans_pcie->fw_mon_size));
|
|
trans_pcie->fw_mon_page = NULL;
|
|
trans_pcie->fw_mon_phys = 0;
|
|
trans_pcie->fw_mon_size = 0;
|
|
}
|
|
|
|
static void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct page *page;
|
|
dma_addr_t phys;
|
|
u32 size;
|
|
u8 power;
|
|
|
|
if (trans_pcie->fw_mon_page) {
|
|
dma_sync_single_for_device(trans->dev, trans_pcie->fw_mon_phys,
|
|
trans_pcie->fw_mon_size,
|
|
DMA_FROM_DEVICE);
|
|
return;
|
|
}
|
|
|
|
phys = 0;
|
|
for (power = 26; power >= 11; power--) {
|
|
int order;
|
|
|
|
size = BIT(power);
|
|
order = get_order(size);
|
|
page = alloc_pages(__GFP_COMP | __GFP_NOWARN | __GFP_ZERO,
|
|
order);
|
|
if (!page)
|
|
continue;
|
|
|
|
phys = dma_map_page(trans->dev, page, 0, PAGE_SIZE << order,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(trans->dev, phys)) {
|
|
__free_pages(page, order);
|
|
continue;
|
|
}
|
|
IWL_INFO(trans,
|
|
"Allocated 0x%08x bytes (order %d) for firmware monitor.\n",
|
|
size, order);
|
|
break;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!page))
|
|
return;
|
|
|
|
trans_pcie->fw_mon_page = page;
|
|
trans_pcie->fw_mon_phys = phys;
|
|
trans_pcie->fw_mon_size = size;
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg)
|
|
{
|
|
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
|
|
((reg & 0x0000ffff) | (2 << 28)));
|
|
return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val)
|
|
{
|
|
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val);
|
|
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
|
|
((reg & 0x0000ffff) | (3 << 28)));
|
|
}
|
|
|
|
static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux)
|
|
{
|
|
if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold))
|
|
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
|
|
APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
|
|
~APMG_PS_CTRL_MSK_PWR_SRC);
|
|
else
|
|
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
|
|
APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
|
|
~APMG_PS_CTRL_MSK_PWR_SRC);
|
|
}
|
|
|
|
/* PCI registers */
|
|
#define PCI_CFG_RETRY_TIMEOUT 0x041
|
|
|
|
static void iwl_pcie_apm_config(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u16 lctl;
|
|
u16 cap;
|
|
|
|
/*
|
|
* HW bug W/A for instability in PCIe bus L0S->L1 transition.
|
|
* Check if BIOS (or OS) enabled L1-ASPM on this device.
|
|
* If so (likely), disable L0S, so device moves directly L0->L1;
|
|
* costs negligible amount of power savings.
|
|
* If not (unlikely), enable L0S, so there is at least some
|
|
* power savings, even without L1.
|
|
*/
|
|
pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl);
|
|
if (lctl & PCI_EXP_LNKCTL_ASPM_L1)
|
|
iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
else
|
|
iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
|
|
|
|
pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap);
|
|
trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN;
|
|
dev_info(trans->dev, "L1 %sabled - LTR %sabled\n",
|
|
(lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis",
|
|
trans->ltr_enabled ? "En" : "Dis");
|
|
}
|
|
|
|
/*
|
|
* Start up NIC's basic functionality after it has been reset
|
|
* (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop())
|
|
* NOTE: This does not load uCode nor start the embedded processor
|
|
*/
|
|
static int iwl_pcie_apm_init(struct iwl_trans *trans)
|
|
{
|
|
int ret = 0;
|
|
IWL_DEBUG_INFO(trans, "Init card's basic functions\n");
|
|
|
|
/*
|
|
* Use "set_bit" below rather than "write", to preserve any hardware
|
|
* bits already set by default after reset.
|
|
*/
|
|
|
|
/* Disable L0S exit timer (platform NMI Work/Around) */
|
|
if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
|
|
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
|
|
CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
|
|
|
|
/*
|
|
* Disable L0s without affecting L1;
|
|
* don't wait for ICH L0s (ICH bug W/A)
|
|
*/
|
|
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
|
|
CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
|
|
|
|
/* Set FH wait threshold to maximum (HW error during stress W/A) */
|
|
iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
|
|
|
|
/*
|
|
* Enable HAP INTA (interrupt from management bus) to
|
|
* wake device's PCI Express link L1a -> L0s
|
|
*/
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
|
|
|
|
iwl_pcie_apm_config(trans);
|
|
|
|
/* Configure analog phase-lock-loop before activating to D0A */
|
|
if (trans->cfg->base_params->pll_cfg_val)
|
|
iwl_set_bit(trans, CSR_ANA_PLL_CFG,
|
|
trans->cfg->base_params->pll_cfg_val);
|
|
|
|
/*
|
|
* Set "initialization complete" bit to move adapter from
|
|
* D0U* --> D0A* (powered-up active) state.
|
|
*/
|
|
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/*
|
|
* Wait for clock stabilization; once stabilized, access to
|
|
* device-internal resources is supported, e.g. iwl_write_prph()
|
|
* and accesses to uCode SRAM.
|
|
*/
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
|
|
if (ret < 0) {
|
|
IWL_DEBUG_INFO(trans, "Failed to init the card\n");
|
|
goto out;
|
|
}
|
|
|
|
if (trans->cfg->host_interrupt_operation_mode) {
|
|
/*
|
|
* This is a bit of an abuse - This is needed for 7260 / 3160
|
|
* only check host_interrupt_operation_mode even if this is
|
|
* not related to host_interrupt_operation_mode.
|
|
*
|
|
* Enable the oscillator to count wake up time for L1 exit. This
|
|
* consumes slightly more power (100uA) - but allows to be sure
|
|
* that we wake up from L1 on time.
|
|
*
|
|
* This looks weird: read twice the same register, discard the
|
|
* value, set a bit, and yet again, read that same register
|
|
* just to discard the value. But that's the way the hardware
|
|
* seems to like it.
|
|
*/
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL);
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
}
|
|
|
|
/*
|
|
* Enable DMA clock and wait for it to stabilize.
|
|
*
|
|
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0"
|
|
* bits do not disable clocks. This preserves any hardware
|
|
* bits already set by default in "CLK_CTRL_REG" after reset.
|
|
*/
|
|
if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
|
|
iwl_write_prph(trans, APMG_CLK_EN_REG,
|
|
APMG_CLK_VAL_DMA_CLK_RQT);
|
|
udelay(20);
|
|
|
|
/* Disable L1-Active */
|
|
iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
|
|
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
|
|
|
|
/* Clear the interrupt in APMG if the NIC is in RFKILL */
|
|
iwl_write_prph(trans, APMG_RTC_INT_STT_REG,
|
|
APMG_RTC_INT_STT_RFKILL);
|
|
}
|
|
|
|
set_bit(STATUS_DEVICE_ENABLED, &trans->status);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Enable LP XTAL to avoid HW bug where device may consume much power if
|
|
* FW is not loaded after device reset. LP XTAL is disabled by default
|
|
* after device HW reset. Do it only if XTAL is fed by internal source.
|
|
* Configure device's "persistence" mode to avoid resetting XTAL again when
|
|
* SHRD_HW_RST occurs in S3.
|
|
*/
|
|
static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
u32 apmg_gp1_reg;
|
|
u32 apmg_xtal_cfg_reg;
|
|
u32 dl_cfg_reg;
|
|
|
|
/* Force XTAL ON */
|
|
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
|
|
|
|
/* Reset entire device - do controller reset (results in SHRD_HW_RST) */
|
|
iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
|
|
|
|
udelay(10);
|
|
|
|
/*
|
|
* Set "initialization complete" bit to move adapter from
|
|
* D0U* --> D0A* (powered-up active) state.
|
|
*/
|
|
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/*
|
|
* Wait for clock stabilization; once stabilized, access to
|
|
* device-internal resources is possible.
|
|
*/
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
25000);
|
|
if (WARN_ON(ret < 0)) {
|
|
IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n");
|
|
/* Release XTAL ON request */
|
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clear "disable persistence" to avoid LP XTAL resetting when
|
|
* SHRD_HW_RST is applied in S3.
|
|
*/
|
|
iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG,
|
|
APMG_PCIDEV_STT_VAL_PERSIST_DIS);
|
|
|
|
/*
|
|
* Force APMG XTAL to be active to prevent its disabling by HW
|
|
* caused by APMG idle state.
|
|
*/
|
|
apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans,
|
|
SHR_APMG_XTAL_CFG_REG);
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
|
|
apmg_xtal_cfg_reg |
|
|
SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
|
|
|
|
/*
|
|
* Reset entire device again - do controller reset (results in
|
|
* SHRD_HW_RST). Turn MAC off before proceeding.
|
|
*/
|
|
iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
|
|
|
|
udelay(10);
|
|
|
|
/* Enable LP XTAL by indirect access through CSR */
|
|
apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG);
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg |
|
|
SHR_APMG_GP1_WF_XTAL_LP_EN |
|
|
SHR_APMG_GP1_CHICKEN_BIT_SELECT);
|
|
|
|
/* Clear delay line clock power up */
|
|
dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG);
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg &
|
|
~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP);
|
|
|
|
/*
|
|
* Enable persistence mode to avoid LP XTAL resetting when
|
|
* SHRD_HW_RST is applied in S3.
|
|
*/
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
|
|
|
|
/*
|
|
* Clear "initialization complete" bit to move adapter from
|
|
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
|
|
*/
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/* Activates XTAL resources monitor */
|
|
__iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG,
|
|
CSR_MONITOR_XTAL_RESOURCES);
|
|
|
|
/* Release XTAL ON request */
|
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
|
|
udelay(10);
|
|
|
|
/* Release APMG XTAL */
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
|
|
apmg_xtal_cfg_reg &
|
|
~SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
|
|
}
|
|
|
|
static int iwl_pcie_apm_stop_master(struct iwl_trans *trans)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* stop device's busmaster DMA activity */
|
|
iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
|
|
|
|
ret = iwl_poll_bit(trans, CSR_RESET,
|
|
CSR_RESET_REG_FLAG_MASTER_DISABLED,
|
|
CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
|
|
if (ret < 0)
|
|
IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n");
|
|
|
|
IWL_DEBUG_INFO(trans, "stop master\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_pcie_apm_stop(struct iwl_trans *trans)
|
|
{
|
|
IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n");
|
|
|
|
clear_bit(STATUS_DEVICE_ENABLED, &trans->status);
|
|
|
|
/* Stop device's DMA activity */
|
|
iwl_pcie_apm_stop_master(trans);
|
|
|
|
if (trans->cfg->lp_xtal_workaround) {
|
|
iwl_pcie_apm_lp_xtal_enable(trans);
|
|
return;
|
|
}
|
|
|
|
/* Reset the entire device */
|
|
iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
|
|
|
|
udelay(10);
|
|
|
|
/*
|
|
* Clear "initialization complete" bit to move adapter from
|
|
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
|
|
*/
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
}
|
|
|
|
static int iwl_pcie_nic_init(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
/* nic_init */
|
|
spin_lock(&trans_pcie->irq_lock);
|
|
iwl_pcie_apm_init(trans);
|
|
|
|
spin_unlock(&trans_pcie->irq_lock);
|
|
|
|
if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
|
|
iwl_pcie_set_pwr(trans, false);
|
|
|
|
iwl_op_mode_nic_config(trans->op_mode);
|
|
|
|
/* Allocate the RX queue, or reset if it is already allocated */
|
|
iwl_pcie_rx_init(trans);
|
|
|
|
/* Allocate or reset and init all Tx and Command queues */
|
|
if (iwl_pcie_tx_init(trans))
|
|
return -ENOMEM;
|
|
|
|
if (trans->cfg->base_params->shadow_reg_enable) {
|
|
/* enable shadow regs in HW */
|
|
iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF);
|
|
IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define HW_READY_TIMEOUT (50)
|
|
|
|
/* Note: returns poll_bit return value, which is >= 0 if success */
|
|
static int iwl_pcie_set_hw_ready(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
|
|
|
|
/* See if we got it */
|
|
ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
HW_READY_TIMEOUT);
|
|
|
|
if (ret >= 0)
|
|
iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE);
|
|
|
|
IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : "");
|
|
return ret;
|
|
}
|
|
|
|
/* Note: returns standard 0/-ERROR code */
|
|
static int iwl_pcie_prepare_card_hw(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
int t = 0;
|
|
int iter;
|
|
|
|
IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n");
|
|
|
|
ret = iwl_pcie_set_hw_ready(trans);
|
|
/* If the card is ready, exit 0 */
|
|
if (ret >= 0)
|
|
return 0;
|
|
|
|
for (iter = 0; iter < 10; iter++) {
|
|
/* If HW is not ready, prepare the conditions to check again */
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PREPARE);
|
|
|
|
do {
|
|
ret = iwl_pcie_set_hw_ready(trans);
|
|
if (ret >= 0)
|
|
return 0;
|
|
|
|
usleep_range(200, 1000);
|
|
t += 200;
|
|
} while (t < 150000);
|
|
msleep(25);
|
|
}
|
|
|
|
IWL_ERR(trans, "Couldn't prepare the card\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ucode
|
|
*/
|
|
static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans, u32 dst_addr,
|
|
dma_addr_t phy_addr, u32 byte_cnt)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int ret;
|
|
|
|
trans_pcie->ucode_write_complete = false;
|
|
|
|
iwl_write_direct32(trans,
|
|
FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
|
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
|
|
|
|
iwl_write_direct32(trans,
|
|
FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL),
|
|
dst_addr);
|
|
|
|
iwl_write_direct32(trans,
|
|
FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
|
|
phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
|
|
|
|
iwl_write_direct32(trans,
|
|
FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
|
|
(iwl_get_dma_hi_addr(phy_addr)
|
|
<< FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
|
|
|
|
iwl_write_direct32(trans,
|
|
FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
|
|
1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
|
|
1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
|
|
FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
|
|
|
|
iwl_write_direct32(trans,
|
|
FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
|
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
|
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
|
|
FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
|
|
|
|
ret = wait_event_timeout(trans_pcie->ucode_write_waitq,
|
|
trans_pcie->ucode_write_complete, 5 * HZ);
|
|
if (!ret) {
|
|
IWL_ERR(trans, "Failed to load firmware chunk!\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num,
|
|
const struct fw_desc *section)
|
|
{
|
|
u8 *v_addr;
|
|
dma_addr_t p_addr;
|
|
u32 offset, chunk_sz = section->len;
|
|
int ret = 0;
|
|
|
|
IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n",
|
|
section_num);
|
|
|
|
v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr,
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!v_addr) {
|
|
IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n");
|
|
chunk_sz = PAGE_SIZE;
|
|
v_addr = dma_alloc_coherent(trans->dev, chunk_sz,
|
|
&p_addr, GFP_KERNEL);
|
|
if (!v_addr)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (offset = 0; offset < section->len; offset += chunk_sz) {
|
|
u32 copy_size, dst_addr;
|
|
bool extended_addr = false;
|
|
|
|
copy_size = min_t(u32, chunk_sz, section->len - offset);
|
|
dst_addr = section->offset + offset;
|
|
|
|
if (dst_addr >= IWL_FW_MEM_EXTENDED_START &&
|
|
dst_addr <= IWL_FW_MEM_EXTENDED_END)
|
|
extended_addr = true;
|
|
|
|
if (extended_addr)
|
|
iwl_set_bits_prph(trans, LMPM_CHICK,
|
|
LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
|
|
memcpy(v_addr, (u8 *)section->data + offset, copy_size);
|
|
ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr,
|
|
copy_size);
|
|
|
|
if (extended_addr)
|
|
iwl_clear_bits_prph(trans, LMPM_CHICK,
|
|
LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
|
|
if (ret) {
|
|
IWL_ERR(trans,
|
|
"Could not load the [%d] uCode section\n",
|
|
section_num);
|
|
break;
|
|
}
|
|
}
|
|
|
|
dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr);
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_pcie_load_cpu_secured_sections(struct iwl_trans *trans,
|
|
const struct fw_img *image,
|
|
int cpu,
|
|
int *first_ucode_section)
|
|
{
|
|
int shift_param;
|
|
int i, ret = 0;
|
|
u32 last_read_idx = 0;
|
|
|
|
if (cpu == 1) {
|
|
shift_param = 0;
|
|
*first_ucode_section = 0;
|
|
} else {
|
|
shift_param = 16;
|
|
(*first_ucode_section)++;
|
|
}
|
|
|
|
for (i = *first_ucode_section; i < IWL_UCODE_SECTION_MAX; i++) {
|
|
last_read_idx = i;
|
|
|
|
if (!image->sec[i].data ||
|
|
image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION) {
|
|
IWL_DEBUG_FW(trans,
|
|
"Break since Data not valid or Empty section, sec = %d\n",
|
|
i);
|
|
break;
|
|
}
|
|
|
|
if (i == (*first_ucode_section) + 1)
|
|
/* set CPU to started */
|
|
iwl_set_bits_prph(trans,
|
|
CSR_UCODE_LOAD_STATUS_ADDR,
|
|
LMPM_CPU_HDRS_LOADING_COMPLETED
|
|
<< shift_param);
|
|
|
|
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
/* image loading complete */
|
|
iwl_set_bits_prph(trans,
|
|
CSR_UCODE_LOAD_STATUS_ADDR,
|
|
LMPM_CPU_UCODE_LOADING_COMPLETED << shift_param);
|
|
|
|
*first_ucode_section = last_read_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans,
|
|
const struct fw_img *image,
|
|
int cpu,
|
|
int *first_ucode_section)
|
|
{
|
|
int shift_param;
|
|
int i, ret = 0;
|
|
u32 last_read_idx = 0;
|
|
|
|
if (cpu == 1) {
|
|
shift_param = 0;
|
|
*first_ucode_section = 0;
|
|
} else {
|
|
shift_param = 16;
|
|
(*first_ucode_section)++;
|
|
}
|
|
|
|
for (i = *first_ucode_section; i < IWL_UCODE_SECTION_MAX; i++) {
|
|
last_read_idx = i;
|
|
|
|
if (!image->sec[i].data ||
|
|
image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION) {
|
|
IWL_DEBUG_FW(trans,
|
|
"Break since Data not valid or Empty section, sec = %d\n",
|
|
i);
|
|
break;
|
|
}
|
|
|
|
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
|
|
iwl_set_bits_prph(trans,
|
|
CSR_UCODE_LOAD_STATUS_ADDR,
|
|
(LMPM_CPU_UCODE_LOADING_COMPLETED |
|
|
LMPM_CPU_HDRS_LOADING_COMPLETED |
|
|
LMPM_CPU_UCODE_LOADING_STARTED) <<
|
|
shift_param);
|
|
|
|
*first_ucode_section = last_read_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_pcie_load_given_ucode(struct iwl_trans *trans,
|
|
const struct fw_img *image)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int ret = 0;
|
|
int first_ucode_section;
|
|
|
|
IWL_DEBUG_FW(trans,
|
|
"working with %s CPU\n",
|
|
image->is_dual_cpus ? "Dual" : "Single");
|
|
|
|
/* configure the ucode to be ready to get the secured image */
|
|
if (iwl_has_secure_boot(trans->hw_rev, trans->cfg->device_family)) {
|
|
/* set secure boot inspector addresses */
|
|
iwl_write_prph(trans,
|
|
LMPM_SECURE_INSPECTOR_CODE_ADDR,
|
|
LMPM_SECURE_INSPECTOR_CODE_MEM_SPACE);
|
|
|
|
iwl_write_prph(trans,
|
|
LMPM_SECURE_INSPECTOR_DATA_ADDR,
|
|
LMPM_SECURE_INSPECTOR_DATA_MEM_SPACE);
|
|
|
|
/* set CPU1 header address */
|
|
iwl_write_prph(trans,
|
|
LMPM_SECURE_UCODE_LOAD_CPU1_HDR_ADDR,
|
|
LMPM_SECURE_CPU1_HDR_MEM_SPACE);
|
|
|
|
/* load to FW the binary Secured sections of CPU1 */
|
|
ret = iwl_pcie_load_cpu_secured_sections(trans, image, 1,
|
|
&first_ucode_section);
|
|
if (ret)
|
|
return ret;
|
|
|
|
} else {
|
|
/* load to FW the binary Non secured sections of CPU1 */
|
|
ret = iwl_pcie_load_cpu_sections(trans, image, 1,
|
|
&first_ucode_section);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (image->is_dual_cpus) {
|
|
/* set CPU2 header address */
|
|
iwl_write_prph(trans,
|
|
LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
|
|
LMPM_SECURE_CPU2_HDR_MEM_SPACE);
|
|
|
|
/* load to FW the binary sections of CPU2 */
|
|
if (iwl_has_secure_boot(trans->hw_rev,
|
|
trans->cfg->device_family))
|
|
ret = iwl_pcie_load_cpu_secured_sections(
|
|
trans, image, 2,
|
|
&first_ucode_section);
|
|
else
|
|
ret = iwl_pcie_load_cpu_sections(trans, image, 2,
|
|
&first_ucode_section);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* supported for 7000 only for the moment */
|
|
if (iwlwifi_mod_params.fw_monitor &&
|
|
trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
|
|
iwl_pcie_alloc_fw_monitor(trans);
|
|
|
|
if (trans_pcie->fw_mon_size) {
|
|
iwl_write_prph(trans, MON_BUFF_BASE_ADDR,
|
|
trans_pcie->fw_mon_phys >> 4);
|
|
iwl_write_prph(trans, MON_BUFF_END_ADDR,
|
|
(trans_pcie->fw_mon_phys +
|
|
trans_pcie->fw_mon_size) >> 4);
|
|
}
|
|
}
|
|
|
|
/* release CPU reset */
|
|
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
|
|
iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT);
|
|
else
|
|
iwl_write32(trans, CSR_RESET, 0);
|
|
|
|
if (iwl_has_secure_boot(trans->hw_rev, trans->cfg->device_family)) {
|
|
/* wait for image verification to complete */
|
|
ret = iwl_poll_prph_bit(trans,
|
|
LMPM_SECURE_BOOT_CPU1_STATUS_ADDR,
|
|
LMPM_SECURE_BOOT_STATUS_SUCCESS,
|
|
LMPM_SECURE_BOOT_STATUS_SUCCESS,
|
|
LMPM_SECURE_TIME_OUT);
|
|
|
|
if (ret < 0) {
|
|
IWL_ERR(trans, "Time out on secure boot process\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
|
|
const struct fw_img *fw, bool run_in_rfkill)
|
|
{
|
|
int ret;
|
|
bool hw_rfkill;
|
|
|
|
/* This may fail if AMT took ownership of the device */
|
|
if (iwl_pcie_prepare_card_hw(trans)) {
|
|
IWL_WARN(trans, "Exit HW not ready\n");
|
|
return -EIO;
|
|
}
|
|
|
|
iwl_enable_rfkill_int(trans);
|
|
|
|
/* If platform's RF_KILL switch is NOT set to KILL */
|
|
hw_rfkill = iwl_is_rfkill_set(trans);
|
|
if (hw_rfkill)
|
|
set_bit(STATUS_RFKILL, &trans->status);
|
|
else
|
|
clear_bit(STATUS_RFKILL, &trans->status);
|
|
iwl_trans_pcie_rf_kill(trans, hw_rfkill);
|
|
if (hw_rfkill && !run_in_rfkill)
|
|
return -ERFKILL;
|
|
|
|
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
|
|
|
|
ret = iwl_pcie_nic_init(trans);
|
|
if (ret) {
|
|
IWL_ERR(trans, "Unable to init nic\n");
|
|
return ret;
|
|
}
|
|
|
|
/* make sure rfkill handshake bits are cleared */
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR,
|
|
CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
|
|
|
|
/* clear (again), then enable host interrupts */
|
|
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
|
|
iwl_enable_interrupts(trans);
|
|
|
|
/* really make sure rfkill handshake bits are cleared */
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
|
|
|
|
/* Load the given image to the HW */
|
|
return iwl_pcie_load_given_ucode(trans, fw);
|
|
}
|
|
|
|
static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr)
|
|
{
|
|
iwl_pcie_reset_ict(trans);
|
|
iwl_pcie_tx_start(trans, scd_addr);
|
|
}
|
|
|
|
static void iwl_trans_pcie_stop_device(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
bool hw_rfkill, was_hw_rfkill;
|
|
|
|
was_hw_rfkill = iwl_is_rfkill_set(trans);
|
|
|
|
/* tell the device to stop sending interrupts */
|
|
spin_lock(&trans_pcie->irq_lock);
|
|
iwl_disable_interrupts(trans);
|
|
spin_unlock(&trans_pcie->irq_lock);
|
|
|
|
/* device going down, Stop using ICT table */
|
|
iwl_pcie_disable_ict(trans);
|
|
|
|
/*
|
|
* If a HW restart happens during firmware loading,
|
|
* then the firmware loading might call this function
|
|
* and later it might be called again due to the
|
|
* restart. So don't process again if the device is
|
|
* already dead.
|
|
*/
|
|
if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
|
|
IWL_DEBUG_INFO(trans, "DEVICE_ENABLED bit was set and is now cleared\n");
|
|
iwl_pcie_tx_stop(trans);
|
|
iwl_pcie_rx_stop(trans);
|
|
|
|
/* Power-down device's busmaster DMA clocks */
|
|
iwl_write_prph(trans, APMG_CLK_DIS_REG,
|
|
APMG_CLK_VAL_DMA_CLK_RQT);
|
|
udelay(5);
|
|
}
|
|
|
|
/* Make sure (redundant) we've released our request to stay awake */
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
|
|
/* Stop the device, and put it in low power state */
|
|
iwl_pcie_apm_stop(trans);
|
|
|
|
/* Upon stop, the APM issues an interrupt if HW RF kill is set.
|
|
* Clean again the interrupt here
|
|
*/
|
|
spin_lock(&trans_pcie->irq_lock);
|
|
iwl_disable_interrupts(trans);
|
|
spin_unlock(&trans_pcie->irq_lock);
|
|
|
|
/* stop and reset the on-board processor */
|
|
iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
|
|
udelay(20);
|
|
|
|
/* clear all status bits */
|
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
|
clear_bit(STATUS_INT_ENABLED, &trans->status);
|
|
clear_bit(STATUS_TPOWER_PMI, &trans->status);
|
|
clear_bit(STATUS_RFKILL, &trans->status);
|
|
|
|
/*
|
|
* Even if we stop the HW, we still want the RF kill
|
|
* interrupt
|
|
*/
|
|
iwl_enable_rfkill_int(trans);
|
|
|
|
/*
|
|
* Check again since the RF kill state may have changed while
|
|
* all the interrupts were disabled, in this case we couldn't
|
|
* receive the RF kill interrupt and update the state in the
|
|
* op_mode.
|
|
* Don't call the op_mode if the rkfill state hasn't changed.
|
|
* This allows the op_mode to call stop_device from the rfkill
|
|
* notification without endless recursion. Under very rare
|
|
* circumstances, we might have a small recursion if the rfkill
|
|
* state changed exactly now while we were called from stop_device.
|
|
* This is very unlikely but can happen and is supported.
|
|
*/
|
|
hw_rfkill = iwl_is_rfkill_set(trans);
|
|
if (hw_rfkill)
|
|
set_bit(STATUS_RFKILL, &trans->status);
|
|
else
|
|
clear_bit(STATUS_RFKILL, &trans->status);
|
|
if (hw_rfkill != was_hw_rfkill)
|
|
iwl_trans_pcie_rf_kill(trans, hw_rfkill);
|
|
}
|
|
|
|
void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state)
|
|
{
|
|
if (iwl_op_mode_hw_rf_kill(trans->op_mode, state))
|
|
iwl_trans_pcie_stop_device(trans);
|
|
}
|
|
|
|
static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test)
|
|
{
|
|
iwl_disable_interrupts(trans);
|
|
|
|
/*
|
|
* in testing mode, the host stays awake and the
|
|
* hardware won't be reset (not even partially)
|
|
*/
|
|
if (test)
|
|
return;
|
|
|
|
iwl_pcie_disable_ict(trans);
|
|
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/*
|
|
* reset TX queues -- some of their registers reset during S3
|
|
* so if we don't reset everything here the D3 image would try
|
|
* to execute some invalid memory upon resume
|
|
*/
|
|
iwl_trans_pcie_tx_reset(trans);
|
|
|
|
iwl_pcie_set_pwr(trans, true);
|
|
}
|
|
|
|
static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
|
|
enum iwl_d3_status *status,
|
|
bool test)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
if (test) {
|
|
iwl_enable_interrupts(trans);
|
|
*status = IWL_D3_STATUS_ALIVE;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Also enables interrupts - none will happen as the device doesn't
|
|
* know we're waking it up, only when the opmode actually tells it
|
|
* after this call.
|
|
*/
|
|
iwl_pcie_reset_ict(trans);
|
|
|
|
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
|
|
udelay(2);
|
|
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
25000);
|
|
if (ret < 0) {
|
|
IWL_ERR(trans, "Failed to resume the device (mac ready)\n");
|
|
return ret;
|
|
}
|
|
|
|
iwl_pcie_set_pwr(trans, false);
|
|
|
|
iwl_trans_pcie_tx_reset(trans);
|
|
|
|
ret = iwl_pcie_rx_init(trans);
|
|
if (ret) {
|
|
IWL_ERR(trans, "Failed to resume the device (RX reset)\n");
|
|
return ret;
|
|
}
|
|
|
|
val = iwl_read32(trans, CSR_RESET);
|
|
if (val & CSR_RESET_REG_FLAG_NEVO_RESET)
|
|
*status = IWL_D3_STATUS_RESET;
|
|
else
|
|
*status = IWL_D3_STATUS_ALIVE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_trans_pcie_start_hw(struct iwl_trans *trans)
|
|
{
|
|
bool hw_rfkill;
|
|
int err;
|
|
|
|
err = iwl_pcie_prepare_card_hw(trans);
|
|
if (err) {
|
|
IWL_ERR(trans, "Error while preparing HW: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
/* Reset the entire device */
|
|
iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
|
|
|
|
usleep_range(10, 15);
|
|
|
|
iwl_pcie_apm_init(trans);
|
|
|
|
/* From now on, the op_mode will be kept updated about RF kill state */
|
|
iwl_enable_rfkill_int(trans);
|
|
|
|
hw_rfkill = iwl_is_rfkill_set(trans);
|
|
if (hw_rfkill)
|
|
set_bit(STATUS_RFKILL, &trans->status);
|
|
else
|
|
clear_bit(STATUS_RFKILL, &trans->status);
|
|
iwl_trans_pcie_rf_kill(trans, hw_rfkill);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
/* disable interrupts - don't enable HW RF kill interrupt */
|
|
spin_lock(&trans_pcie->irq_lock);
|
|
iwl_disable_interrupts(trans);
|
|
spin_unlock(&trans_pcie->irq_lock);
|
|
|
|
iwl_pcie_apm_stop(trans);
|
|
|
|
spin_lock(&trans_pcie->irq_lock);
|
|
iwl_disable_interrupts(trans);
|
|
spin_unlock(&trans_pcie->irq_lock);
|
|
|
|
iwl_pcie_disable_ict(trans);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val)
|
|
{
|
|
writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val)
|
|
{
|
|
writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs)
|
|
{
|
|
return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg)
|
|
{
|
|
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR,
|
|
((reg & 0x000FFFFF) | (3 << 24)));
|
|
return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr,
|
|
u32 val)
|
|
{
|
|
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR,
|
|
((addr & 0x000FFFFF) | (3 << 24)));
|
|
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val);
|
|
}
|
|
|
|
static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_trans_pcie_configure(struct iwl_trans *trans,
|
|
const struct iwl_trans_config *trans_cfg)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
trans_pcie->cmd_queue = trans_cfg->cmd_queue;
|
|
trans_pcie->cmd_fifo = trans_cfg->cmd_fifo;
|
|
if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS))
|
|
trans_pcie->n_no_reclaim_cmds = 0;
|
|
else
|
|
trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds;
|
|
if (trans_pcie->n_no_reclaim_cmds)
|
|
memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds,
|
|
trans_pcie->n_no_reclaim_cmds * sizeof(u8));
|
|
|
|
trans_pcie->rx_buf_size_8k = trans_cfg->rx_buf_size_8k;
|
|
if (trans_pcie->rx_buf_size_8k)
|
|
trans_pcie->rx_page_order = get_order(8 * 1024);
|
|
else
|
|
trans_pcie->rx_page_order = get_order(4 * 1024);
|
|
|
|
trans_pcie->wd_timeout =
|
|
msecs_to_jiffies(trans_cfg->queue_watchdog_timeout);
|
|
|
|
trans_pcie->command_names = trans_cfg->command_names;
|
|
trans_pcie->bc_table_dword = trans_cfg->bc_table_dword;
|
|
trans_pcie->scd_set_active = trans_cfg->scd_set_active;
|
|
|
|
/* Initialize NAPI here - it should be before registering to mac80211
|
|
* in the opmode but after the HW struct is allocated.
|
|
* As this function may be called again in some corner cases don't
|
|
* do anything if NAPI was already initialized.
|
|
*/
|
|
if (!trans_pcie->napi.poll && trans->op_mode->ops->napi_add) {
|
|
init_dummy_netdev(&trans_pcie->napi_dev);
|
|
iwl_op_mode_napi_add(trans->op_mode, &trans_pcie->napi,
|
|
&trans_pcie->napi_dev,
|
|
iwl_pcie_dummy_napi_poll, 64);
|
|
}
|
|
}
|
|
|
|
void iwl_trans_pcie_free(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
synchronize_irq(trans_pcie->pci_dev->irq);
|
|
|
|
iwl_pcie_tx_free(trans);
|
|
iwl_pcie_rx_free(trans);
|
|
|
|
free_irq(trans_pcie->pci_dev->irq, trans);
|
|
iwl_pcie_free_ict(trans);
|
|
|
|
pci_disable_msi(trans_pcie->pci_dev);
|
|
iounmap(trans_pcie->hw_base);
|
|
pci_release_regions(trans_pcie->pci_dev);
|
|
pci_disable_device(trans_pcie->pci_dev);
|
|
kmem_cache_destroy(trans->dev_cmd_pool);
|
|
|
|
if (trans_pcie->napi.poll)
|
|
netif_napi_del(&trans_pcie->napi);
|
|
|
|
iwl_pcie_free_fw_monitor(trans);
|
|
|
|
kfree(trans);
|
|
}
|
|
|
|
static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state)
|
|
{
|
|
if (state)
|
|
set_bit(STATUS_TPOWER_PMI, &trans->status);
|
|
else
|
|
clear_bit(STATUS_TPOWER_PMI, &trans->status);
|
|
}
|
|
|
|
static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans, bool silent,
|
|
unsigned long *flags)
|
|
{
|
|
int ret;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
spin_lock_irqsave(&trans_pcie->reg_lock, *flags);
|
|
|
|
if (trans_pcie->cmd_in_flight)
|
|
goto out;
|
|
|
|
/* this bit wakes up the NIC */
|
|
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
|
|
udelay(2);
|
|
|
|
/*
|
|
* These bits say the device is running, and should keep running for
|
|
* at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
|
|
* but they do not indicate that embedded SRAM is restored yet;
|
|
* 3945 and 4965 have volatile SRAM, and must save/restore contents
|
|
* to/from host DRAM when sleeping/waking for power-saving.
|
|
* Each direction takes approximately 1/4 millisecond; with this
|
|
* overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
|
|
* series of register accesses are expected (e.g. reading Event Log),
|
|
* to keep device from sleeping.
|
|
*
|
|
* CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
|
|
* SRAM is okay/restored. We don't check that here because this call
|
|
* is just for hardware register access; but GP1 MAC_SLEEP check is a
|
|
* good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
|
|
*
|
|
* 5000 series and later (including 1000 series) have non-volatile SRAM,
|
|
* and do not save/restore SRAM when power cycling.
|
|
*/
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
|
|
(CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
|
|
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
|
|
if (unlikely(ret < 0)) {
|
|
iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
|
|
if (!silent) {
|
|
u32 val = iwl_read32(trans, CSR_GP_CNTRL);
|
|
WARN_ONCE(1,
|
|
"Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n",
|
|
val);
|
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* Fool sparse by faking we release the lock - sparse will
|
|
* track nic_access anyway.
|
|
*/
|
|
__release(&trans_pcie->reg_lock);
|
|
return true;
|
|
}
|
|
|
|
static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans,
|
|
unsigned long *flags)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
lockdep_assert_held(&trans_pcie->reg_lock);
|
|
|
|
/*
|
|
* Fool sparse by faking we acquiring the lock - sparse will
|
|
* track nic_access anyway.
|
|
*/
|
|
__acquire(&trans_pcie->reg_lock);
|
|
|
|
if (trans_pcie->cmd_in_flight)
|
|
goto out;
|
|
|
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
/*
|
|
* Above we read the CSR_GP_CNTRL register, which will flush
|
|
* any previous writes, but we need the write that clears the
|
|
* MAC_ACCESS_REQ bit to be performed before any other writes
|
|
* scheduled on different CPUs (after we drop reg_lock).
|
|
*/
|
|
mmiowb();
|
|
out:
|
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
|
|
}
|
|
|
|
static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
|
|
void *buf, int dwords)
|
|
{
|
|
unsigned long flags;
|
|
int offs, ret = 0;
|
|
u32 *vals = buf;
|
|
|
|
if (iwl_trans_grab_nic_access(trans, false, &flags)) {
|
|
iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr);
|
|
for (offs = 0; offs < dwords; offs++)
|
|
vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
} else {
|
|
ret = -EBUSY;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
|
|
const void *buf, int dwords)
|
|
{
|
|
unsigned long flags;
|
|
int offs, ret = 0;
|
|
const u32 *vals = buf;
|
|
|
|
if (iwl_trans_grab_nic_access(trans, false, &flags)) {
|
|
iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr);
|
|
for (offs = 0; offs < dwords; offs++)
|
|
iwl_write32(trans, HBUS_TARG_MEM_WDAT,
|
|
vals ? vals[offs] : 0);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
} else {
|
|
ret = -EBUSY;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define IWL_FLUSH_WAIT_MS 2000
|
|
|
|
static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, u32 txq_bm)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq;
|
|
struct iwl_queue *q;
|
|
int cnt;
|
|
unsigned long now = jiffies;
|
|
u32 scd_sram_addr;
|
|
u8 buf[16];
|
|
int ret = 0;
|
|
|
|
/* waiting for all the tx frames complete might take a while */
|
|
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
|
|
u8 wr_ptr;
|
|
|
|
if (cnt == trans_pcie->cmd_queue)
|
|
continue;
|
|
if (!test_bit(cnt, trans_pcie->queue_used))
|
|
continue;
|
|
if (!(BIT(cnt) & txq_bm))
|
|
continue;
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", cnt);
|
|
txq = &trans_pcie->txq[cnt];
|
|
q = &txq->q;
|
|
wr_ptr = ACCESS_ONCE(q->write_ptr);
|
|
|
|
while (q->read_ptr != ACCESS_ONCE(q->write_ptr) &&
|
|
!time_after(jiffies,
|
|
now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) {
|
|
u8 write_ptr = ACCESS_ONCE(q->write_ptr);
|
|
|
|
if (WARN_ONCE(wr_ptr != write_ptr,
|
|
"WR pointer moved while flushing %d -> %d\n",
|
|
wr_ptr, write_ptr))
|
|
return -ETIMEDOUT;
|
|
msleep(1);
|
|
}
|
|
|
|
if (q->read_ptr != q->write_ptr) {
|
|
IWL_ERR(trans,
|
|
"fail to flush all tx fifo queues Q %d\n", cnt);
|
|
ret = -ETIMEDOUT;
|
|
break;
|
|
}
|
|
IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", cnt);
|
|
}
|
|
|
|
if (!ret)
|
|
return 0;
|
|
|
|
IWL_ERR(trans, "Current SW read_ptr %d write_ptr %d\n",
|
|
txq->q.read_ptr, txq->q.write_ptr);
|
|
|
|
scd_sram_addr = trans_pcie->scd_base_addr +
|
|
SCD_TX_STTS_QUEUE_OFFSET(txq->q.id);
|
|
iwl_trans_read_mem_bytes(trans, scd_sram_addr, buf, sizeof(buf));
|
|
|
|
iwl_print_hex_error(trans, buf, sizeof(buf));
|
|
|
|
for (cnt = 0; cnt < FH_TCSR_CHNL_NUM; cnt++)
|
|
IWL_ERR(trans, "FH TRBs(%d) = 0x%08x\n", cnt,
|
|
iwl_read_direct32(trans, FH_TX_TRB_REG(cnt)));
|
|
|
|
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
|
|
u32 status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(cnt));
|
|
u8 fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7;
|
|
bool active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE));
|
|
u32 tbl_dw =
|
|
iwl_trans_read_mem32(trans, trans_pcie->scd_base_addr +
|
|
SCD_TRANS_TBL_OFFSET_QUEUE(cnt));
|
|
|
|
if (cnt & 0x1)
|
|
tbl_dw = (tbl_dw & 0xFFFF0000) >> 16;
|
|
else
|
|
tbl_dw = tbl_dw & 0x0000FFFF;
|
|
|
|
IWL_ERR(trans,
|
|
"Q %d is %sactive and mapped to fifo %d ra_tid 0x%04x [%d,%d]\n",
|
|
cnt, active ? "" : "in", fifo, tbl_dw,
|
|
iwl_read_prph(trans, SCD_QUEUE_RDPTR(cnt)) &
|
|
(TFD_QUEUE_SIZE_MAX - 1),
|
|
iwl_read_prph(trans, SCD_QUEUE_WRPTR(cnt)));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
|
|
u32 mask, u32 value)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&trans_pcie->reg_lock, flags);
|
|
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, value);
|
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
|
|
}
|
|
|
|
static const char *get_csr_string(int cmd)
|
|
{
|
|
#define IWL_CMD(x) case x: return #x
|
|
switch (cmd) {
|
|
IWL_CMD(CSR_HW_IF_CONFIG_REG);
|
|
IWL_CMD(CSR_INT_COALESCING);
|
|
IWL_CMD(CSR_INT);
|
|
IWL_CMD(CSR_INT_MASK);
|
|
IWL_CMD(CSR_FH_INT_STATUS);
|
|
IWL_CMD(CSR_GPIO_IN);
|
|
IWL_CMD(CSR_RESET);
|
|
IWL_CMD(CSR_GP_CNTRL);
|
|
IWL_CMD(CSR_HW_REV);
|
|
IWL_CMD(CSR_EEPROM_REG);
|
|
IWL_CMD(CSR_EEPROM_GP);
|
|
IWL_CMD(CSR_OTP_GP_REG);
|
|
IWL_CMD(CSR_GIO_REG);
|
|
IWL_CMD(CSR_GP_UCODE_REG);
|
|
IWL_CMD(CSR_GP_DRIVER_REG);
|
|
IWL_CMD(CSR_UCODE_DRV_GP1);
|
|
IWL_CMD(CSR_UCODE_DRV_GP2);
|
|
IWL_CMD(CSR_LED_REG);
|
|
IWL_CMD(CSR_DRAM_INT_TBL_REG);
|
|
IWL_CMD(CSR_GIO_CHICKEN_BITS);
|
|
IWL_CMD(CSR_ANA_PLL_CFG);
|
|
IWL_CMD(CSR_HW_REV_WA_REG);
|
|
IWL_CMD(CSR_MONITOR_STATUS_REG);
|
|
IWL_CMD(CSR_DBG_HPET_MEM_REG);
|
|
default:
|
|
return "UNKNOWN";
|
|
}
|
|
#undef IWL_CMD
|
|
}
|
|
|
|
void iwl_pcie_dump_csr(struct iwl_trans *trans)
|
|
{
|
|
int i;
|
|
static const u32 csr_tbl[] = {
|
|
CSR_HW_IF_CONFIG_REG,
|
|
CSR_INT_COALESCING,
|
|
CSR_INT,
|
|
CSR_INT_MASK,
|
|
CSR_FH_INT_STATUS,
|
|
CSR_GPIO_IN,
|
|
CSR_RESET,
|
|
CSR_GP_CNTRL,
|
|
CSR_HW_REV,
|
|
CSR_EEPROM_REG,
|
|
CSR_EEPROM_GP,
|
|
CSR_OTP_GP_REG,
|
|
CSR_GIO_REG,
|
|
CSR_GP_UCODE_REG,
|
|
CSR_GP_DRIVER_REG,
|
|
CSR_UCODE_DRV_GP1,
|
|
CSR_UCODE_DRV_GP2,
|
|
CSR_LED_REG,
|
|
CSR_DRAM_INT_TBL_REG,
|
|
CSR_GIO_CHICKEN_BITS,
|
|
CSR_ANA_PLL_CFG,
|
|
CSR_MONITOR_STATUS_REG,
|
|
CSR_HW_REV_WA_REG,
|
|
CSR_DBG_HPET_MEM_REG
|
|
};
|
|
IWL_ERR(trans, "CSR values:\n");
|
|
IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is "
|
|
"CSR_INT_PERIODIC_REG)\n");
|
|
for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) {
|
|
IWL_ERR(trans, " %25s: 0X%08x\n",
|
|
get_csr_string(csr_tbl[i]),
|
|
iwl_read32(trans, csr_tbl[i]));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_IWLWIFI_DEBUGFS
|
|
/* create and remove of files */
|
|
#define DEBUGFS_ADD_FILE(name, parent, mode) do { \
|
|
if (!debugfs_create_file(#name, mode, parent, trans, \
|
|
&iwl_dbgfs_##name##_ops)) \
|
|
goto err; \
|
|
} while (0)
|
|
|
|
/* file operation */
|
|
#define DEBUGFS_READ_FILE_OPS(name) \
|
|
static const struct file_operations iwl_dbgfs_##name##_ops = { \
|
|
.read = iwl_dbgfs_##name##_read, \
|
|
.open = simple_open, \
|
|
.llseek = generic_file_llseek, \
|
|
};
|
|
|
|
#define DEBUGFS_WRITE_FILE_OPS(name) \
|
|
static const struct file_operations iwl_dbgfs_##name##_ops = { \
|
|
.write = iwl_dbgfs_##name##_write, \
|
|
.open = simple_open, \
|
|
.llseek = generic_file_llseek, \
|
|
};
|
|
|
|
#define DEBUGFS_READ_WRITE_FILE_OPS(name) \
|
|
static const struct file_operations iwl_dbgfs_##name##_ops = { \
|
|
.write = iwl_dbgfs_##name##_write, \
|
|
.read = iwl_dbgfs_##name##_read, \
|
|
.open = simple_open, \
|
|
.llseek = generic_file_llseek, \
|
|
};
|
|
|
|
static ssize_t iwl_dbgfs_tx_queue_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq;
|
|
struct iwl_queue *q;
|
|
char *buf;
|
|
int pos = 0;
|
|
int cnt;
|
|
int ret;
|
|
size_t bufsz;
|
|
|
|
bufsz = sizeof(char) * 64 * trans->cfg->base_params->num_of_queues;
|
|
|
|
if (!trans_pcie->txq)
|
|
return -EAGAIN;
|
|
|
|
buf = kzalloc(bufsz, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
|
|
txq = &trans_pcie->txq[cnt];
|
|
q = &txq->q;
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d%s\n",
|
|
cnt, q->read_ptr, q->write_ptr,
|
|
!!test_bit(cnt, trans_pcie->queue_used),
|
|
!!test_bit(cnt, trans_pcie->queue_stopped),
|
|
txq->need_update,
|
|
(cnt == trans_pcie->cmd_queue ? " HCMD" : ""));
|
|
}
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_rx_queue_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_rxq *rxq = &trans_pcie->rxq;
|
|
char buf[256];
|
|
int pos = 0;
|
|
const size_t bufsz = sizeof(buf);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "read: %u\n",
|
|
rxq->read);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "write: %u\n",
|
|
rxq->write);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "write_actual: %u\n",
|
|
rxq->write_actual);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "need_update: %d\n",
|
|
rxq->need_update);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "free_count: %u\n",
|
|
rxq->free_count);
|
|
if (rxq->rb_stts) {
|
|
pos += scnprintf(buf + pos, bufsz - pos, "closed_rb_num: %u\n",
|
|
le16_to_cpu(rxq->rb_stts->closed_rb_num) & 0x0FFF);
|
|
} else {
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"closed_rb_num: Not Allocated\n");
|
|
}
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_interrupt_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
|
|
|
|
int pos = 0;
|
|
char *buf;
|
|
int bufsz = 24 * 64; /* 24 items * 64 char per item */
|
|
ssize_t ret;
|
|
|
|
buf = kzalloc(bufsz, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"Interrupt Statistics Report:\n");
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n",
|
|
isr_stats->hw);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n",
|
|
isr_stats->sw);
|
|
if (isr_stats->sw || isr_stats->hw) {
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"\tLast Restarting Code: 0x%X\n",
|
|
isr_stats->err_code);
|
|
}
|
|
#ifdef CONFIG_IWLWIFI_DEBUG
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n",
|
|
isr_stats->sch);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n",
|
|
isr_stats->alive);
|
|
#endif
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n",
|
|
isr_stats->ctkill);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n",
|
|
isr_stats->wakeup);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"Rx command responses:\t\t %u\n", isr_stats->rx);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n",
|
|
isr_stats->tx);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n",
|
|
isr_stats->unhandled);
|
|
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_interrupt_write(struct file *file,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
|
|
|
|
char buf[8];
|
|
int buf_size;
|
|
u32 reset_flag;
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
buf_size = min(count, sizeof(buf) - 1);
|
|
if (copy_from_user(buf, user_buf, buf_size))
|
|
return -EFAULT;
|
|
if (sscanf(buf, "%x", &reset_flag) != 1)
|
|
return -EFAULT;
|
|
if (reset_flag == 0)
|
|
memset(isr_stats, 0, sizeof(*isr_stats));
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_csr_write(struct file *file,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
char buf[8];
|
|
int buf_size;
|
|
int csr;
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
buf_size = min(count, sizeof(buf) - 1);
|
|
if (copy_from_user(buf, user_buf, buf_size))
|
|
return -EFAULT;
|
|
if (sscanf(buf, "%d", &csr) != 1)
|
|
return -EFAULT;
|
|
|
|
iwl_pcie_dump_csr(trans);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_fh_reg_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
char *buf = NULL;
|
|
ssize_t ret;
|
|
|
|
ret = iwl_dump_fh(trans, &buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!buf)
|
|
return -EINVAL;
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
DEBUGFS_READ_WRITE_FILE_OPS(interrupt);
|
|
DEBUGFS_READ_FILE_OPS(fh_reg);
|
|
DEBUGFS_READ_FILE_OPS(rx_queue);
|
|
DEBUGFS_READ_FILE_OPS(tx_queue);
|
|
DEBUGFS_WRITE_FILE_OPS(csr);
|
|
|
|
/*
|
|
* Create the debugfs files and directories
|
|
*
|
|
*/
|
|
static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans,
|
|
struct dentry *dir)
|
|
{
|
|
DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR);
|
|
DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR);
|
|
DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR);
|
|
DEBUGFS_ADD_FILE(csr, dir, S_IWUSR);
|
|
DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR);
|
|
return 0;
|
|
|
|
err:
|
|
IWL_ERR(trans, "failed to create the trans debugfs entry\n");
|
|
return -ENOMEM;
|
|
}
|
|
#else
|
|
static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans,
|
|
struct dentry *dir)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /*CONFIG_IWLWIFI_DEBUGFS */
|
|
|
|
static u32 iwl_trans_pcie_get_cmdlen(struct iwl_tfd *tfd)
|
|
{
|
|
u32 cmdlen = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < IWL_NUM_OF_TBS; i++)
|
|
cmdlen += iwl_pcie_tfd_tb_get_len(tfd, i);
|
|
|
|
return cmdlen;
|
|
}
|
|
|
|
static const struct {
|
|
u32 start, end;
|
|
} iwl_prph_dump_addr[] = {
|
|
{ .start = 0x00a00000, .end = 0x00a00000 },
|
|
{ .start = 0x00a0000c, .end = 0x00a00024 },
|
|
{ .start = 0x00a0002c, .end = 0x00a0003c },
|
|
{ .start = 0x00a00410, .end = 0x00a00418 },
|
|
{ .start = 0x00a00420, .end = 0x00a00420 },
|
|
{ .start = 0x00a00428, .end = 0x00a00428 },
|
|
{ .start = 0x00a00430, .end = 0x00a0043c },
|
|
{ .start = 0x00a00444, .end = 0x00a00444 },
|
|
{ .start = 0x00a004c0, .end = 0x00a004cc },
|
|
{ .start = 0x00a004d8, .end = 0x00a004d8 },
|
|
{ .start = 0x00a004e0, .end = 0x00a004f0 },
|
|
{ .start = 0x00a00840, .end = 0x00a00840 },
|
|
{ .start = 0x00a00850, .end = 0x00a00858 },
|
|
{ .start = 0x00a01004, .end = 0x00a01008 },
|
|
{ .start = 0x00a01010, .end = 0x00a01010 },
|
|
{ .start = 0x00a01018, .end = 0x00a01018 },
|
|
{ .start = 0x00a01024, .end = 0x00a01024 },
|
|
{ .start = 0x00a0102c, .end = 0x00a01034 },
|
|
{ .start = 0x00a0103c, .end = 0x00a01040 },
|
|
{ .start = 0x00a01048, .end = 0x00a01094 },
|
|
{ .start = 0x00a01c00, .end = 0x00a01c20 },
|
|
{ .start = 0x00a01c58, .end = 0x00a01c58 },
|
|
{ .start = 0x00a01c7c, .end = 0x00a01c7c },
|
|
{ .start = 0x00a01c28, .end = 0x00a01c54 },
|
|
{ .start = 0x00a01c5c, .end = 0x00a01c5c },
|
|
{ .start = 0x00a01c84, .end = 0x00a01c84 },
|
|
{ .start = 0x00a01ce0, .end = 0x00a01d0c },
|
|
{ .start = 0x00a01d18, .end = 0x00a01d20 },
|
|
{ .start = 0x00a01d2c, .end = 0x00a01d30 },
|
|
{ .start = 0x00a01d40, .end = 0x00a01d5c },
|
|
{ .start = 0x00a01d80, .end = 0x00a01d80 },
|
|
{ .start = 0x00a01d98, .end = 0x00a01d98 },
|
|
{ .start = 0x00a01dc0, .end = 0x00a01dfc },
|
|
{ .start = 0x00a01e00, .end = 0x00a01e2c },
|
|
{ .start = 0x00a01e40, .end = 0x00a01e60 },
|
|
{ .start = 0x00a01e84, .end = 0x00a01e90 },
|
|
{ .start = 0x00a01e9c, .end = 0x00a01ec4 },
|
|
{ .start = 0x00a01ed0, .end = 0x00a01ed0 },
|
|
{ .start = 0x00a01f00, .end = 0x00a01f14 },
|
|
{ .start = 0x00a01f44, .end = 0x00a01f58 },
|
|
{ .start = 0x00a01f80, .end = 0x00a01fa8 },
|
|
{ .start = 0x00a01fb0, .end = 0x00a01fbc },
|
|
{ .start = 0x00a01ff8, .end = 0x00a01ffc },
|
|
{ .start = 0x00a02000, .end = 0x00a02048 },
|
|
{ .start = 0x00a02068, .end = 0x00a020f0 },
|
|
{ .start = 0x00a02100, .end = 0x00a02118 },
|
|
{ .start = 0x00a02140, .end = 0x00a0214c },
|
|
{ .start = 0x00a02168, .end = 0x00a0218c },
|
|
{ .start = 0x00a021c0, .end = 0x00a021c0 },
|
|
{ .start = 0x00a02400, .end = 0x00a02410 },
|
|
{ .start = 0x00a02418, .end = 0x00a02420 },
|
|
{ .start = 0x00a02428, .end = 0x00a0242c },
|
|
{ .start = 0x00a02434, .end = 0x00a02434 },
|
|
{ .start = 0x00a02440, .end = 0x00a02460 },
|
|
{ .start = 0x00a02468, .end = 0x00a024b0 },
|
|
{ .start = 0x00a024c8, .end = 0x00a024cc },
|
|
{ .start = 0x00a02500, .end = 0x00a02504 },
|
|
{ .start = 0x00a0250c, .end = 0x00a02510 },
|
|
{ .start = 0x00a02540, .end = 0x00a02554 },
|
|
{ .start = 0x00a02580, .end = 0x00a025f4 },
|
|
{ .start = 0x00a02600, .end = 0x00a0260c },
|
|
{ .start = 0x00a02648, .end = 0x00a02650 },
|
|
{ .start = 0x00a02680, .end = 0x00a02680 },
|
|
{ .start = 0x00a026c0, .end = 0x00a026d0 },
|
|
{ .start = 0x00a02700, .end = 0x00a0270c },
|
|
{ .start = 0x00a02804, .end = 0x00a02804 },
|
|
{ .start = 0x00a02818, .end = 0x00a0281c },
|
|
{ .start = 0x00a02c00, .end = 0x00a02db4 },
|
|
{ .start = 0x00a02df4, .end = 0x00a02fb0 },
|
|
{ .start = 0x00a03000, .end = 0x00a03014 },
|
|
{ .start = 0x00a0301c, .end = 0x00a0302c },
|
|
{ .start = 0x00a03034, .end = 0x00a03038 },
|
|
{ .start = 0x00a03040, .end = 0x00a03048 },
|
|
{ .start = 0x00a03060, .end = 0x00a03068 },
|
|
{ .start = 0x00a03070, .end = 0x00a03074 },
|
|
{ .start = 0x00a0307c, .end = 0x00a0307c },
|
|
{ .start = 0x00a03080, .end = 0x00a03084 },
|
|
{ .start = 0x00a0308c, .end = 0x00a03090 },
|
|
{ .start = 0x00a03098, .end = 0x00a03098 },
|
|
{ .start = 0x00a030a0, .end = 0x00a030a0 },
|
|
{ .start = 0x00a030a8, .end = 0x00a030b4 },
|
|
{ .start = 0x00a030bc, .end = 0x00a030bc },
|
|
{ .start = 0x00a030c0, .end = 0x00a0312c },
|
|
{ .start = 0x00a03c00, .end = 0x00a03c5c },
|
|
{ .start = 0x00a04400, .end = 0x00a04454 },
|
|
{ .start = 0x00a04460, .end = 0x00a04474 },
|
|
{ .start = 0x00a044c0, .end = 0x00a044ec },
|
|
{ .start = 0x00a04500, .end = 0x00a04504 },
|
|
{ .start = 0x00a04510, .end = 0x00a04538 },
|
|
{ .start = 0x00a04540, .end = 0x00a04548 },
|
|
{ .start = 0x00a04560, .end = 0x00a0457c },
|
|
{ .start = 0x00a04590, .end = 0x00a04598 },
|
|
{ .start = 0x00a045c0, .end = 0x00a045f4 },
|
|
};
|
|
|
|
static u32 iwl_trans_pcie_dump_prph(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data)
|
|
{
|
|
struct iwl_fw_error_dump_prph *prph;
|
|
unsigned long flags;
|
|
u32 prph_len = 0, i;
|
|
|
|
if (!iwl_trans_grab_nic_access(trans, false, &flags))
|
|
return 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(iwl_prph_dump_addr); i++) {
|
|
/* The range includes both boundaries */
|
|
int num_bytes_in_chunk = iwl_prph_dump_addr[i].end -
|
|
iwl_prph_dump_addr[i].start + 4;
|
|
int reg;
|
|
__le32 *val;
|
|
|
|
prph_len += sizeof(**data) + sizeof(*prph) + num_bytes_in_chunk;
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PRPH);
|
|
(*data)->len = cpu_to_le32(sizeof(*prph) +
|
|
num_bytes_in_chunk);
|
|
prph = (void *)(*data)->data;
|
|
prph->prph_start = cpu_to_le32(iwl_prph_dump_addr[i].start);
|
|
val = (void *)prph->data;
|
|
|
|
for (reg = iwl_prph_dump_addr[i].start;
|
|
reg <= iwl_prph_dump_addr[i].end;
|
|
reg += 4)
|
|
*val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans,
|
|
reg));
|
|
*data = iwl_fw_error_next_data(*data);
|
|
}
|
|
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
|
|
return prph_len;
|
|
}
|
|
|
|
#define IWL_CSR_TO_DUMP (0x250)
|
|
|
|
static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data)
|
|
{
|
|
u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP;
|
|
__le32 *val;
|
|
int i;
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR);
|
|
(*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP);
|
|
val = (void *)(*data)->data;
|
|
|
|
for (i = 0; i < IWL_CSR_TO_DUMP; i += 4)
|
|
*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
|
|
|
|
*data = iwl_fw_error_next_data(*data);
|
|
|
|
return csr_len;
|
|
}
|
|
|
|
static
|
|
struct iwl_trans_dump_data *iwl_trans_pcie_dump_data(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_fw_error_dump_data *data;
|
|
struct iwl_txq *cmdq = &trans_pcie->txq[trans_pcie->cmd_queue];
|
|
struct iwl_fw_error_dump_txcmd *txcmd;
|
|
struct iwl_trans_dump_data *dump_data;
|
|
u32 len;
|
|
int i, ptr;
|
|
|
|
/* transport dump header */
|
|
len = sizeof(*dump_data);
|
|
|
|
/* host commands */
|
|
len += sizeof(*data) +
|
|
cmdq->q.n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE);
|
|
|
|
/* CSR registers */
|
|
len += sizeof(*data) + IWL_CSR_TO_DUMP;
|
|
|
|
/* PRPH registers */
|
|
for (i = 0; i < ARRAY_SIZE(iwl_prph_dump_addr); i++) {
|
|
/* The range includes both boundaries */
|
|
int num_bytes_in_chunk = iwl_prph_dump_addr[i].end -
|
|
iwl_prph_dump_addr[i].start + 4;
|
|
|
|
len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_prph) +
|
|
num_bytes_in_chunk;
|
|
}
|
|
|
|
/* FW monitor */
|
|
if (trans_pcie->fw_mon_page)
|
|
len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) +
|
|
trans_pcie->fw_mon_size;
|
|
|
|
dump_data = vzalloc(len);
|
|
if (!dump_data)
|
|
return NULL;
|
|
|
|
len = 0;
|
|
data = (void *)dump_data->data;
|
|
data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD);
|
|
txcmd = (void *)data->data;
|
|
spin_lock_bh(&cmdq->lock);
|
|
ptr = cmdq->q.write_ptr;
|
|
for (i = 0; i < cmdq->q.n_window; i++) {
|
|
u8 idx = get_cmd_index(&cmdq->q, ptr);
|
|
u32 caplen, cmdlen;
|
|
|
|
cmdlen = iwl_trans_pcie_get_cmdlen(&cmdq->tfds[ptr]);
|
|
caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen);
|
|
|
|
if (cmdlen) {
|
|
len += sizeof(*txcmd) + caplen;
|
|
txcmd->cmdlen = cpu_to_le32(cmdlen);
|
|
txcmd->caplen = cpu_to_le32(caplen);
|
|
memcpy(txcmd->data, cmdq->entries[idx].cmd, caplen);
|
|
txcmd = (void *)((u8 *)txcmd->data + caplen);
|
|
}
|
|
|
|
ptr = iwl_queue_dec_wrap(ptr);
|
|
}
|
|
spin_unlock_bh(&cmdq->lock);
|
|
|
|
data->len = cpu_to_le32(len);
|
|
len += sizeof(*data);
|
|
data = iwl_fw_error_next_data(data);
|
|
|
|
len += iwl_trans_pcie_dump_prph(trans, &data);
|
|
len += iwl_trans_pcie_dump_csr(trans, &data);
|
|
/* data is already pointing to the next section */
|
|
|
|
if (trans_pcie->fw_mon_page) {
|
|
struct iwl_fw_error_dump_fw_mon *fw_mon_data;
|
|
|
|
data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR);
|
|
data->len = cpu_to_le32(trans_pcie->fw_mon_size +
|
|
sizeof(*fw_mon_data));
|
|
fw_mon_data = (void *)data->data;
|
|
fw_mon_data->fw_mon_wr_ptr =
|
|
cpu_to_le32(iwl_read_prph(trans, MON_BUFF_WRPTR));
|
|
fw_mon_data->fw_mon_cycle_cnt =
|
|
cpu_to_le32(iwl_read_prph(trans, MON_BUFF_CYCLE_CNT));
|
|
fw_mon_data->fw_mon_base_ptr =
|
|
cpu_to_le32(iwl_read_prph(trans, MON_BUFF_BASE_ADDR));
|
|
|
|
/*
|
|
* The firmware is now asserted, it won't write anything to
|
|
* the buffer. CPU can take ownership to fetch the data.
|
|
* The buffer will be handed back to the device before the
|
|
* firmware will be restarted.
|
|
*/
|
|
dma_sync_single_for_cpu(trans->dev, trans_pcie->fw_mon_phys,
|
|
trans_pcie->fw_mon_size,
|
|
DMA_FROM_DEVICE);
|
|
memcpy(fw_mon_data->data, page_address(trans_pcie->fw_mon_page),
|
|
trans_pcie->fw_mon_size);
|
|
|
|
len += sizeof(*data) + sizeof(*fw_mon_data) +
|
|
trans_pcie->fw_mon_size;
|
|
}
|
|
|
|
dump_data->len = len;
|
|
|
|
return dump_data;
|
|
}
|
|
|
|
static const struct iwl_trans_ops trans_ops_pcie = {
|
|
.start_hw = iwl_trans_pcie_start_hw,
|
|
.op_mode_leave = iwl_trans_pcie_op_mode_leave,
|
|
.fw_alive = iwl_trans_pcie_fw_alive,
|
|
.start_fw = iwl_trans_pcie_start_fw,
|
|
.stop_device = iwl_trans_pcie_stop_device,
|
|
|
|
.d3_suspend = iwl_trans_pcie_d3_suspend,
|
|
.d3_resume = iwl_trans_pcie_d3_resume,
|
|
|
|
.send_cmd = iwl_trans_pcie_send_hcmd,
|
|
|
|
.tx = iwl_trans_pcie_tx,
|
|
.reclaim = iwl_trans_pcie_reclaim,
|
|
|
|
.txq_disable = iwl_trans_pcie_txq_disable,
|
|
.txq_enable = iwl_trans_pcie_txq_enable,
|
|
|
|
.dbgfs_register = iwl_trans_pcie_dbgfs_register,
|
|
|
|
.wait_tx_queue_empty = iwl_trans_pcie_wait_txq_empty,
|
|
|
|
.write8 = iwl_trans_pcie_write8,
|
|
.write32 = iwl_trans_pcie_write32,
|
|
.read32 = iwl_trans_pcie_read32,
|
|
.read_prph = iwl_trans_pcie_read_prph,
|
|
.write_prph = iwl_trans_pcie_write_prph,
|
|
.read_mem = iwl_trans_pcie_read_mem,
|
|
.write_mem = iwl_trans_pcie_write_mem,
|
|
.configure = iwl_trans_pcie_configure,
|
|
.set_pmi = iwl_trans_pcie_set_pmi,
|
|
.grab_nic_access = iwl_trans_pcie_grab_nic_access,
|
|
.release_nic_access = iwl_trans_pcie_release_nic_access,
|
|
.set_bits_mask = iwl_trans_pcie_set_bits_mask,
|
|
|
|
.dump_data = iwl_trans_pcie_dump_data,
|
|
};
|
|
|
|
struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent,
|
|
const struct iwl_cfg *cfg)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie;
|
|
struct iwl_trans *trans;
|
|
u16 pci_cmd;
|
|
int err;
|
|
|
|
trans = kzalloc(sizeof(struct iwl_trans) +
|
|
sizeof(struct iwl_trans_pcie), GFP_KERNEL);
|
|
if (!trans) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
trans->ops = &trans_ops_pcie;
|
|
trans->cfg = cfg;
|
|
trans_lockdep_init(trans);
|
|
trans_pcie->trans = trans;
|
|
spin_lock_init(&trans_pcie->irq_lock);
|
|
spin_lock_init(&trans_pcie->reg_lock);
|
|
init_waitqueue_head(&trans_pcie->ucode_write_waitq);
|
|
|
|
err = pci_enable_device(pdev);
|
|
if (err)
|
|
goto out_no_pci;
|
|
|
|
if (!cfg->base_params->pcie_l1_allowed) {
|
|
/*
|
|
* W/A - seems to solve weird behavior. We need to remove this
|
|
* if we don't want to stay in L1 all the time. This wastes a
|
|
* lot of power.
|
|
*/
|
|
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S |
|
|
PCIE_LINK_STATE_L1 |
|
|
PCIE_LINK_STATE_CLKPM);
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(36));
|
|
if (!err)
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(36));
|
|
if (err) {
|
|
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (!err)
|
|
err = pci_set_consistent_dma_mask(pdev,
|
|
DMA_BIT_MASK(32));
|
|
/* both attempts failed: */
|
|
if (err) {
|
|
dev_err(&pdev->dev, "No suitable DMA available\n");
|
|
goto out_pci_disable_device;
|
|
}
|
|
}
|
|
|
|
err = pci_request_regions(pdev, DRV_NAME);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "pci_request_regions failed\n");
|
|
goto out_pci_disable_device;
|
|
}
|
|
|
|
trans_pcie->hw_base = pci_ioremap_bar(pdev, 0);
|
|
if (!trans_pcie->hw_base) {
|
|
dev_err(&pdev->dev, "pci_ioremap_bar failed\n");
|
|
err = -ENODEV;
|
|
goto out_pci_release_regions;
|
|
}
|
|
|
|
/* We disable the RETRY_TIMEOUT register (0x41) to keep
|
|
* PCI Tx retries from interfering with C3 CPU state */
|
|
pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
|
|
|
|
trans->dev = &pdev->dev;
|
|
trans_pcie->pci_dev = pdev;
|
|
iwl_disable_interrupts(trans);
|
|
|
|
err = pci_enable_msi(pdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "pci_enable_msi failed(0X%x)\n", err);
|
|
/* enable rfkill interrupt: hw bug w/a */
|
|
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
|
|
if (pci_cmd & PCI_COMMAND_INTX_DISABLE) {
|
|
pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
|
|
pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
|
|
}
|
|
}
|
|
|
|
trans->hw_rev = iwl_read32(trans, CSR_HW_REV);
|
|
/*
|
|
* In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
|
|
* changed, and now the revision step also includes bit 0-1 (no more
|
|
* "dash" value). To keep hw_rev backwards compatible - we'll store it
|
|
* in the old format.
|
|
*/
|
|
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
|
|
trans->hw_rev = (trans->hw_rev & 0xfff0) |
|
|
(CSR_HW_REV_STEP(trans->hw_rev << 2) << 2);
|
|
|
|
trans->hw_id = (pdev->device << 16) + pdev->subsystem_device;
|
|
snprintf(trans->hw_id_str, sizeof(trans->hw_id_str),
|
|
"PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device);
|
|
|
|
/* Initialize the wait queue for commands */
|
|
init_waitqueue_head(&trans_pcie->wait_command_queue);
|
|
|
|
snprintf(trans->dev_cmd_pool_name, sizeof(trans->dev_cmd_pool_name),
|
|
"iwl_cmd_pool:%s", dev_name(trans->dev));
|
|
|
|
trans->dev_cmd_headroom = 0;
|
|
trans->dev_cmd_pool =
|
|
kmem_cache_create(trans->dev_cmd_pool_name,
|
|
sizeof(struct iwl_device_cmd)
|
|
+ trans->dev_cmd_headroom,
|
|
sizeof(void *),
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
|
|
if (!trans->dev_cmd_pool) {
|
|
err = -ENOMEM;
|
|
goto out_pci_disable_msi;
|
|
}
|
|
|
|
if (iwl_pcie_alloc_ict(trans))
|
|
goto out_free_cmd_pool;
|
|
|
|
err = request_threaded_irq(pdev->irq, iwl_pcie_isr,
|
|
iwl_pcie_irq_handler,
|
|
IRQF_SHARED, DRV_NAME, trans);
|
|
if (err) {
|
|
IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq);
|
|
goto out_free_ict;
|
|
}
|
|
|
|
trans_pcie->inta_mask = CSR_INI_SET_MASK;
|
|
|
|
return trans;
|
|
|
|
out_free_ict:
|
|
iwl_pcie_free_ict(trans);
|
|
out_free_cmd_pool:
|
|
kmem_cache_destroy(trans->dev_cmd_pool);
|
|
out_pci_disable_msi:
|
|
pci_disable_msi(pdev);
|
|
out_pci_release_regions:
|
|
pci_release_regions(pdev);
|
|
out_pci_disable_device:
|
|
pci_disable_device(pdev);
|
|
out_no_pci:
|
|
kfree(trans);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|