mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 19:29:46 +07:00
7b9121040d
The documentation claims that two sched groups must not overlap. This is no longer true, as overlapping sched groups are used on NUMA systems. This change has been introduced by commite3589f6c81
and was documented by an in-code comment in commit35a566e6e8
. Signed-off-by: Adrian Freund <adrian@freund.io> Link: https://lore.kernel.org/r/20200407130525.76663-1-adrian@freund.io Signed-off-by: Jonathan Corbet <corbet@lwn.net>
86 lines
4.5 KiB
ReStructuredText
86 lines
4.5 KiB
ReStructuredText
=================
|
|
Scheduler Domains
|
|
=================
|
|
|
|
Each CPU has a "base" scheduling domain (struct sched_domain). The domain
|
|
hierarchy is built from these base domains via the ->parent pointer. ->parent
|
|
MUST be NULL terminated, and domain structures should be per-CPU as they are
|
|
locklessly updated.
|
|
|
|
Each scheduling domain spans a number of CPUs (stored in the ->span field).
|
|
A domain's span MUST be a superset of it child's span (this restriction could
|
|
be relaxed if the need arises), and a base domain for CPU i MUST span at least
|
|
i. The top domain for each CPU will generally span all CPUs in the system
|
|
although strictly it doesn't have to, but this could lead to a case where some
|
|
CPUs will never be given tasks to run unless the CPUs allowed mask is
|
|
explicitly set. A sched domain's span means "balance process load among these
|
|
CPUs".
|
|
|
|
Each scheduling domain must have one or more CPU groups (struct sched_group)
|
|
which are organised as a circular one way linked list from the ->groups
|
|
pointer. The union of cpumasks of these groups MUST be the same as the
|
|
domain's span. The group pointed to by the ->groups pointer MUST contain the CPU
|
|
to which the domain belongs. Groups may be shared among CPUs as they contain
|
|
read only data after they have been set up. The intersection of cpumasks from
|
|
any two of these groups may be non empty. If this is the case the SD_OVERLAP
|
|
flag is set on the corresponding scheduling domain and its groups may not be
|
|
shared between CPUs.
|
|
|
|
Balancing within a sched domain occurs between groups. That is, each group
|
|
is treated as one entity. The load of a group is defined as the sum of the
|
|
load of each of its member CPUs, and only when the load of a group becomes
|
|
out of balance are tasks moved between groups.
|
|
|
|
In kernel/sched/core.c, trigger_load_balance() is run periodically on each CPU
|
|
through scheduler_tick(). It raises a softirq after the next regularly scheduled
|
|
rebalancing event for the current runqueue has arrived. The actual load
|
|
balancing workhorse, run_rebalance_domains()->rebalance_domains(), is then run
|
|
in softirq context (SCHED_SOFTIRQ).
|
|
|
|
The latter function takes two arguments: the current CPU and whether it was idle
|
|
at the time the scheduler_tick() happened and iterates over all sched domains
|
|
our CPU is on, starting from its base domain and going up the ->parent chain.
|
|
While doing that, it checks to see if the current domain has exhausted its
|
|
rebalance interval. If so, it runs load_balance() on that domain. It then checks
|
|
the parent sched_domain (if it exists), and the parent of the parent and so
|
|
forth.
|
|
|
|
Initially, load_balance() finds the busiest group in the current sched domain.
|
|
If it succeeds, it looks for the busiest runqueue of all the CPUs' runqueues in
|
|
that group. If it manages to find such a runqueue, it locks both our initial
|
|
CPU's runqueue and the newly found busiest one and starts moving tasks from it
|
|
to our runqueue. The exact number of tasks amounts to an imbalance previously
|
|
computed while iterating over this sched domain's groups.
|
|
|
|
Implementing sched domains
|
|
==========================
|
|
|
|
The "base" domain will "span" the first level of the hierarchy. In the case
|
|
of SMT, you'll span all siblings of the physical CPU, with each group being
|
|
a single virtual CPU.
|
|
|
|
In SMP, the parent of the base domain will span all physical CPUs in the
|
|
node. Each group being a single physical CPU. Then with NUMA, the parent
|
|
of the SMP domain will span the entire machine, with each group having the
|
|
cpumask of a node. Or, you could do multi-level NUMA or Opteron, for example,
|
|
might have just one domain covering its one NUMA level.
|
|
|
|
The implementor should read comments in include/linux/sched.h:
|
|
struct sched_domain fields, SD_FLAG_*, SD_*_INIT to get an idea of
|
|
the specifics and what to tune.
|
|
|
|
Architectures may retain the regular override the default SD_*_INIT flags
|
|
while using the generic domain builder in kernel/sched/core.c if they wish to
|
|
retain the traditional SMT->SMP->NUMA topology (or some subset of that). This
|
|
can be done by #define'ing ARCH_HASH_SCHED_TUNE.
|
|
|
|
Alternatively, the architecture may completely override the generic domain
|
|
builder by #define'ing ARCH_HASH_SCHED_DOMAIN, and exporting your
|
|
arch_init_sched_domains function. This function will attach domains to all
|
|
CPUs using cpu_attach_domain.
|
|
|
|
The sched-domains debugging infrastructure can be enabled by enabling
|
|
CONFIG_SCHED_DEBUG. This enables an error checking parse of the sched domains
|
|
which should catch most possible errors (described above). It also prints out
|
|
the domain structure in a visual format.
|