linux_dsm_epyc7002/drivers/ieee1394/ieee1394_core.c
Pieter Palmers 3dc5ea9b31 ieee1394: cycle timer read extension for raw1394
This implements the simultaneous read of the isochronous cycle timer and
the system clock (in usecs).  This allows to express the exact receive
time of an ISO packet as a system time with microsecond accuracy.
http://bugzilla.kernel.org/show_bug.cgi?id=7773

The counterpart patch for libraw1394 can be found at
http://thread.gmane.org/gmane.linux.kernel.firewire.devel/8934

Patch update (Stefan R.):  Disable preemption and local interrupts.
Prevent integer overflow.  Add paranoid error checks and kerneldoc to
hpsb_read_cycle_timer.  Move it to other ieee1394_core high-level API
functions.  Change comments.  Adjust whitespace.  Rename struct
_raw1394_cycle_timer.

Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
Acked-by: Pieter Palmers <pieterp@joow.be>
Acked-by: Dan Dennedy <dan@dennedy.org>
2007-02-17 14:39:33 +01:00

1322 lines
34 KiB
C

/*
* IEEE 1394 for Linux
*
* Core support: hpsb_packet management, packet handling and forwarding to
* highlevel or lowlevel code
*
* Copyright (C) 1999, 2000 Andreas E. Bombe
* 2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
*
* This code is licensed under the GPL. See the file COPYING in the root
* directory of the kernel sources for details.
*
*
* Contributions:
*
* Manfred Weihs <weihs@ict.tuwien.ac.at>
* loopback functionality in hpsb_send_packet
* allow highlevel drivers to disable automatic response generation
* and to generate responses themselves (deferred)
*
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/bitops.h>
#include <linux/kdev_t.h>
#include <linux/skbuff.h>
#include <linux/suspend.h>
#include <linux/kthread.h>
#include <linux/preempt.h>
#include <linux/time.h>
#include <asm/system.h>
#include <asm/byteorder.h>
#include "ieee1394_types.h"
#include "ieee1394.h"
#include "hosts.h"
#include "ieee1394_core.h"
#include "highlevel.h"
#include "ieee1394_transactions.h"
#include "csr.h"
#include "nodemgr.h"
#include "dma.h"
#include "iso.h"
#include "config_roms.h"
/*
* Disable the nodemgr detection and config rom reading functionality.
*/
static int disable_nodemgr;
module_param(disable_nodemgr, int, 0444);
MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");
/* Disable Isochronous Resource Manager functionality */
int hpsb_disable_irm = 0;
module_param_named(disable_irm, hpsb_disable_irm, bool, 0444);
MODULE_PARM_DESC(disable_irm,
"Disable Isochronous Resource Manager functionality.");
/* We are GPL, so treat us special */
MODULE_LICENSE("GPL");
/* Some globals used */
const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
struct class *hpsb_protocol_class;
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
{
int i;
size /= 4;
size = (size > 4 ? 4 : size);
printk(KERN_DEBUG "ieee1394: %s", text);
if (speed > -1 && speed < 6)
printk(" at %s", hpsb_speedto_str[speed]);
printk(":");
for (i = 0; i < size; i++)
printk(" %08x", data[i]);
printk("\n");
}
#else
#define dump_packet(a,b,c,d) do {} while (0)
#endif
static void abort_requests(struct hpsb_host *host);
static void queue_packet_complete(struct hpsb_packet *packet);
/**
* hpsb_set_packet_complete_task - set the task that runs when a packet
* completes. You cannot call this more than once on a single packet
* before it is sent.
*
* @packet: the packet whose completion we want the task added to
* @routine: function to call
* @data: data (if any) to pass to the above function
*/
void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
void (*routine)(void *), void *data)
{
WARN_ON(packet->complete_routine != NULL);
packet->complete_routine = routine;
packet->complete_data = data;
return;
}
/**
* hpsb_alloc_packet - allocate new packet structure
* @data_size: size of the data block to be allocated
*
* This function allocates, initializes and returns a new &struct hpsb_packet.
* It can be used in interrupt context. A header block is always included, its
* size is big enough to contain all possible 1394 headers. The data block is
* only allocated when @data_size is not zero.
*
* For packets for which responses will be received the @data_size has to be big
* enough to contain the response's data block since no further allocation
* occurs at response matching time.
*
* The packet's generation value will be set to the current generation number
* for ease of use. Remember to overwrite it with your own recorded generation
* number if you can not be sure that your code will not race with a bus reset.
*
* Return value: A pointer to a &struct hpsb_packet or NULL on allocation
* failure.
*/
struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
{
struct hpsb_packet *packet = NULL;
struct sk_buff *skb;
data_size = ((data_size + 3) & ~3);
skb = alloc_skb(data_size + sizeof(*packet), GFP_ATOMIC);
if (skb == NULL)
return NULL;
memset(skb->data, 0, data_size + sizeof(*packet));
packet = (struct hpsb_packet *)skb->data;
packet->skb = skb;
packet->header = packet->embedded_header;
packet->state = hpsb_unused;
packet->generation = -1;
INIT_LIST_HEAD(&packet->driver_list);
atomic_set(&packet->refcnt, 1);
if (data_size) {
packet->data = (quadlet_t *)(skb->data + sizeof(*packet));
packet->data_size = data_size;
}
return packet;
}
/**
* hpsb_free_packet - free packet and data associated with it
* @packet: packet to free (is NULL safe)
*
* This function will free packet->data and finally the packet itself.
*/
void hpsb_free_packet(struct hpsb_packet *packet)
{
if (packet && atomic_dec_and_test(&packet->refcnt)) {
BUG_ON(!list_empty(&packet->driver_list));
kfree_skb(packet->skb);
}
}
int hpsb_reset_bus(struct hpsb_host *host, int type)
{
if (!host->in_bus_reset) {
host->driver->devctl(host, RESET_BUS, type);
return 0;
} else {
return 1;
}
}
/**
* hpsb_read_cycle_timer - read cycle timer register and system time
* @host: host whose isochronous cycle timer register is read
* @cycle_timer: address of bitfield to return the register contents
* @local_time: address to return the system time
*
* The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This
* format is also read from non-OHCI controllers. * @local_time contains the
* system time in microseconds since the Epoch, read at the moment when the
* cycle timer was read.
*
* Return value: 0 for success or error number otherwise.
*/
int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer,
u64 *local_time)
{
int ctr;
struct timeval tv;
unsigned long flags;
if (!host || !cycle_timer || !local_time)
return -EINVAL;
preempt_disable();
local_irq_save(flags);
ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0);
if (ctr)
do_gettimeofday(&tv);
local_irq_restore(flags);
preempt_enable();
if (!ctr)
return -EIO;
*cycle_timer = ctr;
*local_time = tv.tv_sec * 1000000ULL + tv.tv_usec;
return 0;
}
int hpsb_bus_reset(struct hpsb_host *host)
{
if (host->in_bus_reset) {
HPSB_NOTICE("%s called while bus reset already in progress",
__FUNCTION__);
return 1;
}
abort_requests(host);
host->in_bus_reset = 1;
host->irm_id = -1;
host->is_irm = 0;
host->busmgr_id = -1;
host->is_busmgr = 0;
host->is_cycmst = 0;
host->node_count = 0;
host->selfid_count = 0;
return 0;
}
/*
* Verify num_of_selfids SelfIDs and return number of nodes. Return zero in
* case verification failed.
*/
static int check_selfids(struct hpsb_host *host)
{
int nodeid = -1;
int rest_of_selfids = host->selfid_count;
struct selfid *sid = (struct selfid *)host->topology_map;
struct ext_selfid *esid;
int esid_seq = 23;
host->nodes_active = 0;
while (rest_of_selfids--) {
if (!sid->extended) {
nodeid++;
esid_seq = 0;
if (sid->phy_id != nodeid) {
HPSB_INFO("SelfIDs failed monotony check with "
"%d", sid->phy_id);
return 0;
}
if (sid->link_active) {
host->nodes_active++;
if (sid->contender)
host->irm_id = LOCAL_BUS | sid->phy_id;
}
} else {
esid = (struct ext_selfid *)sid;
if ((esid->phy_id != nodeid)
|| (esid->seq_nr != esid_seq)) {
HPSB_INFO("SelfIDs failed monotony check with "
"%d/%d", esid->phy_id, esid->seq_nr);
return 0;
}
esid_seq++;
}
sid++;
}
esid = (struct ext_selfid *)(sid - 1);
while (esid->extended) {
if ((esid->porta == SELFID_PORT_PARENT) ||
(esid->portb == SELFID_PORT_PARENT) ||
(esid->portc == SELFID_PORT_PARENT) ||
(esid->portd == SELFID_PORT_PARENT) ||
(esid->porte == SELFID_PORT_PARENT) ||
(esid->portf == SELFID_PORT_PARENT) ||
(esid->portg == SELFID_PORT_PARENT) ||
(esid->porth == SELFID_PORT_PARENT)) {
HPSB_INFO("SelfIDs failed root check on "
"extended SelfID");
return 0;
}
esid--;
}
sid = (struct selfid *)esid;
if ((sid->port0 == SELFID_PORT_PARENT) ||
(sid->port1 == SELFID_PORT_PARENT) ||
(sid->port2 == SELFID_PORT_PARENT)) {
HPSB_INFO("SelfIDs failed root check");
return 0;
}
host->node_count = nodeid + 1;
return 1;
}
static void build_speed_map(struct hpsb_host *host, int nodecount)
{
u8 cldcnt[nodecount];
u8 *map = host->speed_map;
u8 *speedcap = host->speed;
struct selfid *sid;
struct ext_selfid *esid;
int i, j, n;
for (i = 0; i < (nodecount * 64); i += 64) {
for (j = 0; j < nodecount; j++) {
map[i+j] = IEEE1394_SPEED_MAX;
}
}
for (i = 0; i < nodecount; i++) {
cldcnt[i] = 0;
}
/* find direct children count and speed */
for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
n = nodecount - 1;
(void *)sid >= (void *)host->topology_map; sid--) {
if (sid->extended) {
esid = (struct ext_selfid *)sid;
if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++;
} else {
if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++;
if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++;
if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++;
speedcap[n] = sid->speed;
n--;
}
}
/* set self mapping */
for (i = 0; i < nodecount; i++) {
map[64*i + i] = speedcap[i];
}
/* fix up direct children count to total children count;
* also fix up speedcaps for sibling and parent communication */
for (i = 1; i < nodecount; i++) {
for (j = cldcnt[i], n = i - 1; j > 0; j--) {
cldcnt[i] += cldcnt[n];
speedcap[n] = min(speedcap[n], speedcap[i]);
n -= cldcnt[n] + 1;
}
}
for (n = 0; n < nodecount; n++) {
for (i = n - cldcnt[n]; i <= n; i++) {
for (j = 0; j < (n - cldcnt[n]); j++) {
map[j*64 + i] = map[i*64 + j] =
min(map[i*64 + j], speedcap[n]);
}
for (j = n + 1; j < nodecount; j++) {
map[j*64 + i] = map[i*64 + j] =
min(map[i*64 + j], speedcap[n]);
}
}
}
#if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX
/* assume maximum speed for 1394b PHYs, nodemgr will correct it */
for (n = 0; n < nodecount; n++)
if (speedcap[n] == SELFID_SPEED_UNKNOWN)
speedcap[n] = IEEE1394_SPEED_MAX;
#endif
}
void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
{
if (host->in_bus_reset) {
HPSB_VERBOSE("Including SelfID 0x%x", sid);
host->topology_map[host->selfid_count++] = sid;
} else {
HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
sid, NODEID_TO_BUS(host->node_id));
}
}
void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
{
if (!host->in_bus_reset)
HPSB_NOTICE("SelfID completion called outside of bus reset!");
host->node_id = LOCAL_BUS | phyid;
host->is_root = isroot;
if (!check_selfids(host)) {
if (host->reset_retries++ < 20) {
/* selfid stage did not complete without error */
HPSB_NOTICE("Error in SelfID stage, resetting");
host->in_bus_reset = 0;
/* this should work from ohci1394 now... */
hpsb_reset_bus(host, LONG_RESET);
return;
} else {
HPSB_NOTICE("Stopping out-of-control reset loop");
HPSB_NOTICE("Warning - topology map and speed map will not be valid");
host->reset_retries = 0;
}
} else {
host->reset_retries = 0;
build_speed_map(host, host->node_count);
}
HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
"... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);
/* irm_id is kept up to date by check_selfids() */
if (host->irm_id == host->node_id) {
host->is_irm = 1;
} else {
host->is_busmgr = 0;
host->is_irm = 0;
}
if (isroot) {
host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
host->is_cycmst = 1;
}
atomic_inc(&host->generation);
host->in_bus_reset = 0;
highlevel_host_reset(host);
}
void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
int ackcode)
{
unsigned long flags;
spin_lock_irqsave(&host->pending_packet_queue.lock, flags);
packet->ack_code = ackcode;
if (packet->no_waiter || packet->state == hpsb_complete) {
/* if packet->no_waiter, must not have a tlabel allocated */
spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
hpsb_free_packet(packet);
return;
}
atomic_dec(&packet->refcnt); /* drop HC's reference */
/* here the packet must be on the host->pending_packet_queue */
if (ackcode != ACK_PENDING || !packet->expect_response) {
packet->state = hpsb_complete;
__skb_unlink(packet->skb, &host->pending_packet_queue);
spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
queue_packet_complete(packet);
return;
}
packet->state = hpsb_pending;
packet->sendtime = jiffies;
spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
mod_timer(&host->timeout, jiffies + host->timeout_interval);
}
/**
* hpsb_send_phy_config - transmit a PHY configuration packet on the bus
* @host: host that PHY config packet gets sent through
* @rootid: root whose force_root bit should get set (-1 = don't set force_root)
* @gapcnt: gap count value to set (-1 = don't set gap count)
*
* This function sends a PHY config packet on the bus through the specified host.
*
* Return value: 0 for success or error number otherwise.
*/
int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
{
struct hpsb_packet *packet;
quadlet_t d = 0;
int retval = 0;
if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
(rootid == -1 && gapcnt == -1)) {
HPSB_DEBUG("Invalid Parameter: rootid = %d gapcnt = %d",
rootid, gapcnt);
return -EINVAL;
}
if (rootid != -1)
d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT;
if (gapcnt != -1)
d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT;
packet = hpsb_make_phypacket(host, d);
if (!packet)
return -ENOMEM;
packet->generation = get_hpsb_generation(host);
retval = hpsb_send_packet_and_wait(packet);
hpsb_free_packet(packet);
return retval;
}
/**
* hpsb_send_packet - transmit a packet on the bus
* @packet: packet to send
*
* The packet is sent through the host specified in the packet->host field.
* Before sending, the packet's transmit speed is automatically determined
* using the local speed map when it is an async, non-broadcast packet.
*
* Possibilities for failure are that host is either not initialized, in bus
* reset, the packet's generation number doesn't match the current generation
* number or the host reports a transmit error.
*
* Return value: 0 on success, negative errno on failure.
*/
int hpsb_send_packet(struct hpsb_packet *packet)
{
struct hpsb_host *host = packet->host;
if (host->is_shutdown)
return -EINVAL;
if (host->in_bus_reset ||
(packet->generation != get_hpsb_generation(host)))
return -EAGAIN;
packet->state = hpsb_queued;
/* This just seems silly to me */
WARN_ON(packet->no_waiter && packet->expect_response);
if (!packet->no_waiter || packet->expect_response) {
atomic_inc(&packet->refcnt);
/* Set the initial "sendtime" to 10 seconds from now, to
prevent premature expiry. If a packet takes more than
10 seconds to hit the wire, we have bigger problems :) */
packet->sendtime = jiffies + 10 * HZ;
skb_queue_tail(&host->pending_packet_queue, packet->skb);
}
if (packet->node_id == host->node_id) {
/* it is a local request, so handle it locally */
quadlet_t *data;
size_t size = packet->data_size + packet->header_size;
data = kmalloc(size, GFP_ATOMIC);
if (!data) {
HPSB_ERR("unable to allocate memory for concatenating header and data");
return -ENOMEM;
}
memcpy(data, packet->header, packet->header_size);
if (packet->data_size)
memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
dump_packet("send packet local", packet->header, packet->header_size, -1);
hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
hpsb_packet_received(host, data, size, 0);
kfree(data);
return 0;
}
if (packet->type == hpsb_async &&
NODEID_TO_NODE(packet->node_id) != ALL_NODES)
packet->speed_code =
host->speed[NODEID_TO_NODE(packet->node_id)];
dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
return host->driver->transmit_packet(host, packet);
}
/* We could just use complete() directly as the packet complete
* callback, but this is more typesafe, in the sense that we get a
* compiler error if the prototype for complete() changes. */
static void complete_packet(void *data)
{
complete((struct completion *) data);
}
int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
{
struct completion done;
int retval;
init_completion(&done);
hpsb_set_packet_complete_task(packet, complete_packet, &done);
retval = hpsb_send_packet(packet);
if (retval == 0)
wait_for_completion(&done);
return retval;
}
static void send_packet_nocare(struct hpsb_packet *packet)
{
if (hpsb_send_packet(packet) < 0) {
hpsb_free_packet(packet);
}
}
static void handle_packet_response(struct hpsb_host *host, int tcode,
quadlet_t *data, size_t size)
{
struct hpsb_packet *packet = NULL;
struct sk_buff *skb;
int tcode_match = 0;
int tlabel;
unsigned long flags;
tlabel = (data[0] >> 10) & 0x3f;
spin_lock_irqsave(&host->pending_packet_queue.lock, flags);
skb_queue_walk(&host->pending_packet_queue, skb) {
packet = (struct hpsb_packet *)skb->data;
if ((packet->tlabel == tlabel)
&& (packet->node_id == (data[1] >> 16))){
break;
}
packet = NULL;
}
if (packet == NULL) {
HPSB_DEBUG("unsolicited response packet received - no tlabel match");
dump_packet("contents", data, 16, -1);
spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
return;
}
switch (packet->tcode) {
case TCODE_WRITEQ:
case TCODE_WRITEB:
if (tcode != TCODE_WRITE_RESPONSE)
break;
tcode_match = 1;
memcpy(packet->header, data, 12);
break;
case TCODE_READQ:
if (tcode != TCODE_READQ_RESPONSE)
break;
tcode_match = 1;
memcpy(packet->header, data, 16);
break;
case TCODE_READB:
if (tcode != TCODE_READB_RESPONSE)
break;
tcode_match = 1;
BUG_ON(packet->skb->len - sizeof(*packet) < size - 16);
memcpy(packet->header, data, 16);
memcpy(packet->data, data + 4, size - 16);
break;
case TCODE_LOCK_REQUEST:
if (tcode != TCODE_LOCK_RESPONSE)
break;
tcode_match = 1;
size = min((size - 16), (size_t)8);
BUG_ON(packet->skb->len - sizeof(*packet) < size);
memcpy(packet->header, data, 16);
memcpy(packet->data, data + 4, size);
break;
}
if (!tcode_match) {
spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
HPSB_INFO("unsolicited response packet received - tcode mismatch");
dump_packet("contents", data, 16, -1);
return;
}
__skb_unlink(skb, &host->pending_packet_queue);
if (packet->state == hpsb_queued) {
packet->sendtime = jiffies;
packet->ack_code = ACK_PENDING;
}
packet->state = hpsb_complete;
spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
queue_packet_complete(packet);
}
static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
quadlet_t *data, size_t dsize)
{
struct hpsb_packet *p;
p = hpsb_alloc_packet(dsize);
if (unlikely(p == NULL)) {
/* FIXME - send data_error response */
return NULL;
}
p->type = hpsb_async;
p->state = hpsb_unused;
p->host = host;
p->node_id = data[1] >> 16;
p->tlabel = (data[0] >> 10) & 0x3f;
p->no_waiter = 1;
p->generation = get_hpsb_generation(host);
if (dsize % 4)
p->data[dsize / 4] = 0;
return p;
}
#define PREP_ASYNC_HEAD_RCODE(tc) \
packet->tcode = tc; \
packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
| (1 << 8) | (tc << 4); \
packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
packet->header[2] = 0
static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
quadlet_t data)
{
PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
packet->header[3] = data;
packet->header_size = 16;
packet->data_size = 0;
}
static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
int length)
{
if (rcode != RCODE_COMPLETE)
length = 0;
PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
packet->header[3] = length << 16;
packet->header_size = 16;
packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
}
static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
{
PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
packet->header[2] = 0;
packet->header_size = 12;
packet->data_size = 0;
}
static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
int length)
{
if (rcode != RCODE_COMPLETE)
length = 0;
PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
packet->header[3] = (length << 16) | extcode;
packet->header_size = 16;
packet->data_size = length;
}
#define PREP_REPLY_PACKET(length) \
packet = create_reply_packet(host, data, length); \
if (packet == NULL) break
static void handle_incoming_packet(struct hpsb_host *host, int tcode,
quadlet_t *data, size_t size, int write_acked)
{
struct hpsb_packet *packet;
int length, rcode, extcode;
quadlet_t buffer;
nodeid_t source = data[1] >> 16;
nodeid_t dest = data[0] >> 16;
u16 flags = (u16) data[0];
u64 addr;
/* big FIXME - no error checking is done for an out of bounds length */
switch (tcode) {
case TCODE_WRITEQ:
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
rcode = highlevel_write(host, source, dest, data+3,
addr, 4, flags);
if (!write_acked
&& (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK)
&& (rcode >= 0)) {
/* not a broadcast write, reply */
PREP_REPLY_PACKET(0);
fill_async_write_resp(packet, rcode);
send_packet_nocare(packet);
}
break;
case TCODE_WRITEB:
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
rcode = highlevel_write(host, source, dest, data+4,
addr, data[3]>>16, flags);
if (!write_acked
&& (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK)
&& (rcode >= 0)) {
/* not a broadcast write, reply */
PREP_REPLY_PACKET(0);
fill_async_write_resp(packet, rcode);
send_packet_nocare(packet);
}
break;
case TCODE_READQ:
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
if (rcode >= 0) {
PREP_REPLY_PACKET(0);
fill_async_readquad_resp(packet, rcode, buffer);
send_packet_nocare(packet);
}
break;
case TCODE_READB:
length = data[3] >> 16;
PREP_REPLY_PACKET(length);
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
rcode = highlevel_read(host, source, packet->data, addr,
length, flags);
if (rcode >= 0) {
fill_async_readblock_resp(packet, rcode, length);
send_packet_nocare(packet);
} else {
hpsb_free_packet(packet);
}
break;
case TCODE_LOCK_REQUEST:
length = data[3] >> 16;
extcode = data[3] & 0xffff;
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
PREP_REPLY_PACKET(8);
if ((extcode == 0) || (extcode >= 7)) {
/* let switch default handle error */
length = 0;
}
switch (length) {
case 4:
rcode = highlevel_lock(host, source, packet->data, addr,
data[4], 0, extcode,flags);
fill_async_lock_resp(packet, rcode, extcode, 4);
break;
case 8:
if ((extcode != EXTCODE_FETCH_ADD)
&& (extcode != EXTCODE_LITTLE_ADD)) {
rcode = highlevel_lock(host, source,
packet->data, addr,
data[5], data[4],
extcode, flags);
fill_async_lock_resp(packet, rcode, extcode, 4);
} else {
rcode = highlevel_lock64(host, source,
(octlet_t *)packet->data, addr,
*(octlet_t *)(data + 4), 0ULL,
extcode, flags);
fill_async_lock_resp(packet, rcode, extcode, 8);
}
break;
case 16:
rcode = highlevel_lock64(host, source,
(octlet_t *)packet->data, addr,
*(octlet_t *)(data + 6),
*(octlet_t *)(data + 4),
extcode, flags);
fill_async_lock_resp(packet, rcode, extcode, 8);
break;
default:
rcode = RCODE_TYPE_ERROR;
fill_async_lock_resp(packet, rcode,
extcode, 0);
}
if (rcode >= 0) {
send_packet_nocare(packet);
} else {
hpsb_free_packet(packet);
}
break;
}
}
#undef PREP_REPLY_PACKET
void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
int write_acked)
{
int tcode;
if (host->in_bus_reset) {
HPSB_INFO("received packet during reset; ignoring");
return;
}
dump_packet("received packet", data, size, -1);
tcode = (data[0] >> 4) & 0xf;
switch (tcode) {
case TCODE_WRITE_RESPONSE:
case TCODE_READQ_RESPONSE:
case TCODE_READB_RESPONSE:
case TCODE_LOCK_RESPONSE:
handle_packet_response(host, tcode, data, size);
break;
case TCODE_WRITEQ:
case TCODE_WRITEB:
case TCODE_READQ:
case TCODE_READB:
case TCODE_LOCK_REQUEST:
handle_incoming_packet(host, tcode, data, size, write_acked);
break;
case TCODE_ISO_DATA:
highlevel_iso_receive(host, data, size);
break;
case TCODE_CYCLE_START:
/* simply ignore this packet if it is passed on */
break;
default:
HPSB_NOTICE("received packet with bogus transaction code %d",
tcode);
break;
}
}
static void abort_requests(struct hpsb_host *host)
{
struct hpsb_packet *packet;
struct sk_buff *skb;
host->driver->devctl(host, CANCEL_REQUESTS, 0);
while ((skb = skb_dequeue(&host->pending_packet_queue)) != NULL) {
packet = (struct hpsb_packet *)skb->data;
packet->state = hpsb_complete;
packet->ack_code = ACKX_ABORTED;
queue_packet_complete(packet);
}
}
void abort_timedouts(unsigned long __opaque)
{
struct hpsb_host *host = (struct hpsb_host *)__opaque;
unsigned long flags;
struct hpsb_packet *packet;
struct sk_buff *skb;
unsigned long expire;
spin_lock_irqsave(&host->csr.lock, flags);
expire = host->csr.expire;
spin_unlock_irqrestore(&host->csr.lock, flags);
/* Hold the lock around this, since we aren't dequeuing all
* packets, just ones we need. */
spin_lock_irqsave(&host->pending_packet_queue.lock, flags);
while (!skb_queue_empty(&host->pending_packet_queue)) {
skb = skb_peek(&host->pending_packet_queue);
packet = (struct hpsb_packet *)skb->data;
if (time_before(packet->sendtime + expire, jiffies)) {
__skb_unlink(skb, &host->pending_packet_queue);
packet->state = hpsb_complete;
packet->ack_code = ACKX_TIMEOUT;
queue_packet_complete(packet);
} else {
/* Since packets are added to the tail, the oldest
* ones are first, always. When we get to one that
* isn't timed out, the rest aren't either. */
break;
}
}
if (!skb_queue_empty(&host->pending_packet_queue))
mod_timer(&host->timeout, jiffies + host->timeout_interval);
spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
}
/* Kernel thread and vars, which handles packets that are completed. Only
* packets that have a "complete" function are sent here. This way, the
* completion is run out of kernel context, and doesn't block the rest of
* the stack. */
static struct task_struct *khpsbpkt_thread;
static struct sk_buff_head hpsbpkt_queue;
static void queue_packet_complete(struct hpsb_packet *packet)
{
if (packet->no_waiter) {
hpsb_free_packet(packet);
return;
}
if (packet->complete_routine != NULL) {
skb_queue_tail(&hpsbpkt_queue, packet->skb);
wake_up_process(khpsbpkt_thread);
}
return;
}
static int hpsbpkt_thread(void *__hi)
{
struct sk_buff *skb;
struct hpsb_packet *packet;
void (*complete_routine)(void*);
void *complete_data;
current->flags |= PF_NOFREEZE;
while (!kthread_should_stop()) {
while ((skb = skb_dequeue(&hpsbpkt_queue)) != NULL) {
packet = (struct hpsb_packet *)skb->data;
complete_routine = packet->complete_routine;
complete_data = packet->complete_data;
packet->complete_routine = packet->complete_data = NULL;
complete_routine(complete_data);
}
set_current_state(TASK_INTERRUPTIBLE);
if (!skb_peek(&hpsbpkt_queue))
schedule();
__set_current_state(TASK_RUNNING);
}
return 0;
}
static int __init ieee1394_init(void)
{
int i, ret;
skb_queue_head_init(&hpsbpkt_queue);
/* non-fatal error */
if (hpsb_init_config_roms()) {
HPSB_ERR("Failed to initialize some config rom entries.\n");
HPSB_ERR("Some features may not be available\n");
}
khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt");
if (IS_ERR(khpsbpkt_thread)) {
HPSB_ERR("Failed to start hpsbpkt thread!\n");
ret = PTR_ERR(khpsbpkt_thread);
goto exit_cleanup_config_roms;
}
if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
ret = -ENODEV;
goto exit_release_kernel_thread;
}
ret = bus_register(&ieee1394_bus_type);
if (ret < 0) {
HPSB_INFO("bus register failed");
goto release_chrdev;
}
for (i = 0; fw_bus_attrs[i]; i++) {
ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
if (ret < 0) {
while (i >= 0) {
bus_remove_file(&ieee1394_bus_type,
fw_bus_attrs[i--]);
}
bus_unregister(&ieee1394_bus_type);
goto release_chrdev;
}
}
ret = class_register(&hpsb_host_class);
if (ret < 0)
goto release_all_bus;
hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
if (IS_ERR(hpsb_protocol_class)) {
ret = PTR_ERR(hpsb_protocol_class);
goto release_class_host;
}
ret = init_csr();
if (ret) {
HPSB_INFO("init csr failed");
ret = -ENOMEM;
goto release_class_protocol;
}
if (disable_nodemgr) {
HPSB_INFO("nodemgr and IRM functionality disabled");
/* We shouldn't contend for IRM with nodemgr disabled, since
nodemgr implements functionality required of ieee1394a-2000
IRMs */
hpsb_disable_irm = 1;
return 0;
}
if (hpsb_disable_irm) {
HPSB_INFO("IRM functionality disabled");
}
ret = init_ieee1394_nodemgr();
if (ret < 0) {
HPSB_INFO("init nodemgr failed");
goto cleanup_csr;
}
return 0;
cleanup_csr:
cleanup_csr();
release_class_protocol:
class_destroy(hpsb_protocol_class);
release_class_host:
class_unregister(&hpsb_host_class);
release_all_bus:
for (i = 0; fw_bus_attrs[i]; i++)
bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
bus_unregister(&ieee1394_bus_type);
release_chrdev:
unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
exit_release_kernel_thread:
kthread_stop(khpsbpkt_thread);
exit_cleanup_config_roms:
hpsb_cleanup_config_roms();
return ret;
}
static void __exit ieee1394_cleanup(void)
{
int i;
if (!disable_nodemgr)
cleanup_ieee1394_nodemgr();
cleanup_csr();
class_destroy(hpsb_protocol_class);
class_unregister(&hpsb_host_class);
for (i = 0; fw_bus_attrs[i]; i++)
bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
bus_unregister(&ieee1394_bus_type);
kthread_stop(khpsbpkt_thread);
hpsb_cleanup_config_roms();
unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
}
fs_initcall(ieee1394_init); /* same as ohci1394 */
module_exit(ieee1394_cleanup);
/* Exported symbols */
/** hosts.c **/
EXPORT_SYMBOL(hpsb_alloc_host);
EXPORT_SYMBOL(hpsb_add_host);
EXPORT_SYMBOL(hpsb_resume_host);
EXPORT_SYMBOL(hpsb_remove_host);
EXPORT_SYMBOL(hpsb_update_config_rom_image);
/** ieee1394_core.c **/
EXPORT_SYMBOL(hpsb_speedto_str);
EXPORT_SYMBOL(hpsb_protocol_class);
EXPORT_SYMBOL(hpsb_set_packet_complete_task);
EXPORT_SYMBOL(hpsb_alloc_packet);
EXPORT_SYMBOL(hpsb_free_packet);
EXPORT_SYMBOL(hpsb_send_packet);
EXPORT_SYMBOL(hpsb_reset_bus);
EXPORT_SYMBOL(hpsb_read_cycle_timer);
EXPORT_SYMBOL(hpsb_bus_reset);
EXPORT_SYMBOL(hpsb_selfid_received);
EXPORT_SYMBOL(hpsb_selfid_complete);
EXPORT_SYMBOL(hpsb_packet_sent);
EXPORT_SYMBOL(hpsb_packet_received);
EXPORT_SYMBOL_GPL(hpsb_disable_irm);
/** ieee1394_transactions.c **/
EXPORT_SYMBOL(hpsb_get_tlabel);
EXPORT_SYMBOL(hpsb_free_tlabel);
EXPORT_SYMBOL(hpsb_make_readpacket);
EXPORT_SYMBOL(hpsb_make_writepacket);
EXPORT_SYMBOL(hpsb_make_streampacket);
EXPORT_SYMBOL(hpsb_make_lockpacket);
EXPORT_SYMBOL(hpsb_make_lock64packet);
EXPORT_SYMBOL(hpsb_make_phypacket);
EXPORT_SYMBOL(hpsb_make_isopacket);
EXPORT_SYMBOL(hpsb_read);
EXPORT_SYMBOL(hpsb_write);
EXPORT_SYMBOL(hpsb_packet_success);
/** highlevel.c **/
EXPORT_SYMBOL(hpsb_register_highlevel);
EXPORT_SYMBOL(hpsb_unregister_highlevel);
EXPORT_SYMBOL(hpsb_register_addrspace);
EXPORT_SYMBOL(hpsb_unregister_addrspace);
EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
EXPORT_SYMBOL(hpsb_listen_channel);
EXPORT_SYMBOL(hpsb_unlisten_channel);
EXPORT_SYMBOL(hpsb_get_hostinfo);
EXPORT_SYMBOL(hpsb_create_hostinfo);
EXPORT_SYMBOL(hpsb_destroy_hostinfo);
EXPORT_SYMBOL(hpsb_set_hostinfo_key);
EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
EXPORT_SYMBOL(hpsb_set_hostinfo);
EXPORT_SYMBOL(highlevel_host_reset);
/** nodemgr.c **/
EXPORT_SYMBOL(hpsb_node_fill_packet);
EXPORT_SYMBOL(hpsb_node_write);
EXPORT_SYMBOL(__hpsb_register_protocol);
EXPORT_SYMBOL(hpsb_unregister_protocol);
/** csr.c **/
EXPORT_SYMBOL(hpsb_update_config_rom);
/** dma.c **/
EXPORT_SYMBOL(dma_prog_region_init);
EXPORT_SYMBOL(dma_prog_region_alloc);
EXPORT_SYMBOL(dma_prog_region_free);
EXPORT_SYMBOL(dma_region_init);
EXPORT_SYMBOL(dma_region_alloc);
EXPORT_SYMBOL(dma_region_free);
EXPORT_SYMBOL(dma_region_sync_for_cpu);
EXPORT_SYMBOL(dma_region_sync_for_device);
EXPORT_SYMBOL(dma_region_mmap);
EXPORT_SYMBOL(dma_region_offset_to_bus);
/** iso.c **/
EXPORT_SYMBOL(hpsb_iso_xmit_init);
EXPORT_SYMBOL(hpsb_iso_recv_init);
EXPORT_SYMBOL(hpsb_iso_xmit_start);
EXPORT_SYMBOL(hpsb_iso_recv_start);
EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
EXPORT_SYMBOL(hpsb_iso_stop);
EXPORT_SYMBOL(hpsb_iso_shutdown);
EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
EXPORT_SYMBOL(hpsb_iso_xmit_sync);
EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
EXPORT_SYMBOL(hpsb_iso_n_ready);
EXPORT_SYMBOL(hpsb_iso_packet_sent);
EXPORT_SYMBOL(hpsb_iso_packet_received);
EXPORT_SYMBOL(hpsb_iso_wake);
EXPORT_SYMBOL(hpsb_iso_recv_flush);
/** csr1212.c **/
EXPORT_SYMBOL(csr1212_new_directory);
EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
EXPORT_SYMBOL(csr1212_release_keyval);
EXPORT_SYMBOL(csr1212_read);
EXPORT_SYMBOL(csr1212_parse_keyval);
EXPORT_SYMBOL(_csr1212_read_keyval);
EXPORT_SYMBOL(_csr1212_destroy_keyval);