linux_dsm_epyc7002/drivers/ieee1394/eth1394.c
Tim Schmielau cd354f1ae7 [PATCH] remove many unneeded #includes of sched.h
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there.  Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.

To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.

Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm.  I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:54 -08:00

1787 lines
48 KiB
C

/*
* eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
*
* Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
* 2000 Bonin Franck <boninf@free.fr>
* 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
*
* Mainly based on work by Emanuel Pirker and Andreas E. Bombe
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* This driver intends to support RFC 2734, which describes a method for
* transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
* will ultimately support that method, but currently falls short in
* several areas.
*
* TODO:
* RFC 2734 related:
* - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
*
* Non-RFC 2734 related:
* - Handle fragmented skb's coming from the networking layer.
* - Move generic GASP reception to core 1394 code
* - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
* - Stability improvements
* - Performance enhancements
* - Consider garbage collecting old partial datagrams after X amount of time
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/bitops.h>
#include <linux/ethtool.h>
#include <asm/uaccess.h>
#include <asm/delay.h>
#include <asm/unaligned.h>
#include <net/arp.h>
#include "config_roms.h"
#include "csr1212.h"
#include "eth1394.h"
#include "highlevel.h"
#include "ieee1394.h"
#include "ieee1394_core.h"
#include "ieee1394_hotplug.h"
#include "ieee1394_transactions.h"
#include "ieee1394_types.h"
#include "iso.h"
#include "nodemgr.h"
#define ETH1394_PRINT_G(level, fmt, args...) \
printk(level "%s: " fmt, driver_name, ## args)
#define ETH1394_PRINT(level, dev_name, fmt, args...) \
printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
#define DEBUG(fmt, args...) \
printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
#define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
struct fragment_info {
struct list_head list;
int offset;
int len;
};
struct partial_datagram {
struct list_head list;
u16 dgl;
u16 dg_size;
u16 ether_type;
struct sk_buff *skb;
char *pbuf;
struct list_head frag_info;
};
struct pdg_list {
struct list_head list; /* partial datagram list per node */
unsigned int sz; /* partial datagram list size per node */
spinlock_t lock; /* partial datagram lock */
};
struct eth1394_host_info {
struct hpsb_host *host;
struct net_device *dev;
};
struct eth1394_node_ref {
struct unit_directory *ud;
struct list_head list;
};
struct eth1394_node_info {
u16 maxpayload; /* Max payload */
u8 sspd; /* Max speed */
u64 fifo; /* FIFO address */
struct pdg_list pdg; /* partial RX datagram lists */
int dgl; /* Outgoing datagram label */
};
/* Our ieee1394 highlevel driver */
#define ETH1394_DRIVER_NAME "eth1394"
static const char driver_name[] = ETH1394_DRIVER_NAME;
static struct kmem_cache *packet_task_cache;
static struct hpsb_highlevel eth1394_highlevel;
/* Use common.lf to determine header len */
static const int hdr_type_len[] = {
sizeof (struct eth1394_uf_hdr),
sizeof (struct eth1394_ff_hdr),
sizeof (struct eth1394_sf_hdr),
sizeof (struct eth1394_sf_hdr)
};
/* Change this to IEEE1394_SPEED_S100 to make testing easier */
#define ETH1394_SPEED_DEF IEEE1394_SPEED_MAX
/* For now, this needs to be 1500, so that XP works with us */
#define ETH1394_DATA_LEN ETH_DATA_LEN
static const u16 eth1394_speedto_maxpayload[] = {
/* S100, S200, S400, S800, S1600, S3200 */
512, 1024, 2048, 4096, 4096, 4096
};
MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
MODULE_LICENSE("GPL");
/* The max_partial_datagrams parameter is the maximum number of fragmented
* datagrams per node that eth1394 will keep in memory. Providing an upper
* bound allows us to limit the amount of memory that partial datagrams
* consume in the event that some partial datagrams are never completed.
*/
static int max_partial_datagrams = 25;
module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_partial_datagrams,
"Maximum number of partially received fragmented datagrams "
"(default = 25).");
static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned len);
static int ether1394_rebuild_header(struct sk_buff *skb);
static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
static void ether1394_header_cache_update(struct hh_cache *hh,
struct net_device *dev,
unsigned char * haddr);
static int ether1394_mac_addr(struct net_device *dev, void *p);
static void purge_partial_datagram(struct list_head *old);
static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
static void ether1394_iso(struct hpsb_iso *iso);
static struct ethtool_ops ethtool_ops;
static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
quadlet_t *data, u64 addr, size_t len, u16 flags);
static void ether1394_add_host (struct hpsb_host *host);
static void ether1394_remove_host (struct hpsb_host *host);
static void ether1394_host_reset (struct hpsb_host *host);
/* Function for incoming 1394 packets */
static struct hpsb_address_ops addr_ops = {
.write = ether1394_write,
};
/* Ieee1394 highlevel driver functions */
static struct hpsb_highlevel eth1394_highlevel = {
.name = driver_name,
.add_host = ether1394_add_host,
.remove_host = ether1394_remove_host,
.host_reset = ether1394_host_reset,
};
/* This is called after an "ifup" */
static int ether1394_open (struct net_device *dev)
{
struct eth1394_priv *priv = netdev_priv(dev);
int ret = 0;
/* Something bad happened, don't even try */
if (priv->bc_state == ETHER1394_BC_ERROR) {
/* we'll try again */
priv->iso = hpsb_iso_recv_init(priv->host,
ETHER1394_ISO_BUF_SIZE,
ETHER1394_GASP_BUFFERS,
priv->broadcast_channel,
HPSB_ISO_DMA_PACKET_PER_BUFFER,
1, ether1394_iso);
if (priv->iso == NULL) {
ETH1394_PRINT(KERN_ERR, dev->name,
"Could not allocate isochronous receive "
"context for the broadcast channel\n");
priv->bc_state = ETHER1394_BC_ERROR;
ret = -EAGAIN;
} else {
if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
priv->bc_state = ETHER1394_BC_STOPPED;
else
priv->bc_state = ETHER1394_BC_RUNNING;
}
}
if (ret)
return ret;
netif_start_queue (dev);
return 0;
}
/* This is called after an "ifdown" */
static int ether1394_stop (struct net_device *dev)
{
netif_stop_queue (dev);
return 0;
}
/* Return statistics to the caller */
static struct net_device_stats *ether1394_stats (struct net_device *dev)
{
return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
}
/* What to do if we timeout. I think a host reset is probably in order, so
* that's what we do. Should we increment the stat counters too? */
static void ether1394_tx_timeout (struct net_device *dev)
{
ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
netif_wake_queue (dev);
}
static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
{
struct eth1394_priv *priv = netdev_priv(dev);
if ((new_mtu < 68) ||
(new_mtu > min(ETH1394_DATA_LEN,
(int)((1 << (priv->host->csr.max_rec + 1)) -
(sizeof(union eth1394_hdr) +
ETHER1394_GASP_OVERHEAD)))))
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static void purge_partial_datagram(struct list_head *old)
{
struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
struct list_head *lh, *n;
list_for_each_safe(lh, n, &pd->frag_info) {
struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
list_del(lh);
kfree(fi);
}
list_del(old);
kfree_skb(pd->skb);
kfree(pd);
}
/******************************************
* 1394 bus activity functions
******************************************/
static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
struct unit_directory *ud)
{
struct eth1394_node_ref *node;
list_for_each_entry(node, inl, list)
if (node->ud == ud)
return node;
return NULL;
}
static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
u64 guid)
{
struct eth1394_node_ref *node;
list_for_each_entry(node, inl, list)
if (node->ud->ne->guid == guid)
return node;
return NULL;
}
static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
nodeid_t nodeid)
{
struct eth1394_node_ref *node;
list_for_each_entry(node, inl, list) {
if (node->ud->ne->nodeid == nodeid)
return node;
}
return NULL;
}
static int eth1394_probe(struct device *dev)
{
struct unit_directory *ud;
struct eth1394_host_info *hi;
struct eth1394_priv *priv;
struct eth1394_node_ref *new_node;
struct eth1394_node_info *node_info;
ud = container_of(dev, struct unit_directory, device);
hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
if (!hi)
return -ENOENT;
new_node = kmalloc(sizeof(*new_node),
in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
if (!new_node)
return -ENOMEM;
node_info = kmalloc(sizeof(*node_info),
in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
if (!node_info) {
kfree(new_node);
return -ENOMEM;
}
spin_lock_init(&node_info->pdg.lock);
INIT_LIST_HEAD(&node_info->pdg.list);
node_info->pdg.sz = 0;
node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
ud->device.driver_data = node_info;
new_node->ud = ud;
priv = netdev_priv(hi->dev);
list_add_tail(&new_node->list, &priv->ip_node_list);
return 0;
}
static int eth1394_remove(struct device *dev)
{
struct unit_directory *ud;
struct eth1394_host_info *hi;
struct eth1394_priv *priv;
struct eth1394_node_ref *old_node;
struct eth1394_node_info *node_info;
struct list_head *lh, *n;
unsigned long flags;
ud = container_of(dev, struct unit_directory, device);
hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
if (!hi)
return -ENOENT;
priv = netdev_priv(hi->dev);
old_node = eth1394_find_node(&priv->ip_node_list, ud);
if (old_node) {
list_del(&old_node->list);
kfree(old_node);
node_info = (struct eth1394_node_info*)ud->device.driver_data;
spin_lock_irqsave(&node_info->pdg.lock, flags);
/* The partial datagram list should be empty, but we'll just
* make sure anyway... */
list_for_each_safe(lh, n, &node_info->pdg.list) {
purge_partial_datagram(lh);
}
spin_unlock_irqrestore(&node_info->pdg.lock, flags);
kfree(node_info);
ud->device.driver_data = NULL;
}
return 0;
}
static int eth1394_update(struct unit_directory *ud)
{
struct eth1394_host_info *hi;
struct eth1394_priv *priv;
struct eth1394_node_ref *node;
struct eth1394_node_info *node_info;
hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
if (!hi)
return -ENOENT;
priv = netdev_priv(hi->dev);
node = eth1394_find_node(&priv->ip_node_list, ud);
if (!node) {
node = kmalloc(sizeof(*node),
in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
if (!node)
return -ENOMEM;
node_info = kmalloc(sizeof(*node_info),
in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
if (!node_info) {
kfree(node);
return -ENOMEM;
}
spin_lock_init(&node_info->pdg.lock);
INIT_LIST_HEAD(&node_info->pdg.list);
node_info->pdg.sz = 0;
ud->device.driver_data = node_info;
node->ud = ud;
priv = netdev_priv(hi->dev);
list_add_tail(&node->list, &priv->ip_node_list);
}
return 0;
}
static struct ieee1394_device_id eth1394_id_table[] = {
{
.match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION),
.specifier_id = ETHER1394_GASP_SPECIFIER_ID,
.version = ETHER1394_GASP_VERSION,
},
{}
};
MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
static struct hpsb_protocol_driver eth1394_proto_driver = {
.name = ETH1394_DRIVER_NAME,
.id_table = eth1394_id_table,
.update = eth1394_update,
.driver = {
.probe = eth1394_probe,
.remove = eth1394_remove,
},
};
static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
{
unsigned long flags;
int i;
struct eth1394_priv *priv = netdev_priv(dev);
struct hpsb_host *host = priv->host;
u64 guid = get_unaligned((u64*)&(host->csr.rom->bus_info_data[3]));
u16 maxpayload = 1 << (host->csr.max_rec + 1);
int max_speed = IEEE1394_SPEED_MAX;
spin_lock_irqsave (&priv->lock, flags);
memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
priv->bc_maxpayload = 512;
/* Determine speed limit */
for (i = 0; i < host->node_count; i++)
if (max_speed > host->speed[i])
max_speed = host->speed[i];
priv->bc_sspd = max_speed;
/* We'll use our maxpayload as the default mtu */
if (set_mtu) {
dev->mtu = min(ETH1394_DATA_LEN,
(int)(maxpayload -
(sizeof(union eth1394_hdr) +
ETHER1394_GASP_OVERHEAD)));
/* Set our hardware address while we're at it */
memcpy(dev->dev_addr, &guid, sizeof(u64));
memset(dev->broadcast, 0xff, sizeof(u64));
}
spin_unlock_irqrestore (&priv->lock, flags);
}
/* This function is called right before register_netdev */
static void ether1394_init_dev (struct net_device *dev)
{
/* Our functions */
dev->open = ether1394_open;
dev->stop = ether1394_stop;
dev->hard_start_xmit = ether1394_tx;
dev->get_stats = ether1394_stats;
dev->tx_timeout = ether1394_tx_timeout;
dev->change_mtu = ether1394_change_mtu;
dev->hard_header = ether1394_header;
dev->rebuild_header = ether1394_rebuild_header;
dev->hard_header_cache = ether1394_header_cache;
dev->header_cache_update= ether1394_header_cache_update;
dev->hard_header_parse = ether1394_header_parse;
dev->set_mac_address = ether1394_mac_addr;
SET_ETHTOOL_OPS(dev, &ethtool_ops);
/* Some constants */
dev->watchdog_timeo = ETHER1394_TIMEOUT;
dev->flags = IFF_BROADCAST | IFF_MULTICAST;
dev->features = NETIF_F_HIGHDMA;
dev->addr_len = ETH1394_ALEN;
dev->hard_header_len = ETH1394_HLEN;
dev->type = ARPHRD_IEEE1394;
ether1394_reset_priv (dev, 1);
}
/*
* This function is called every time a card is found. It is generally called
* when the module is installed. This is where we add all of our ethernet
* devices. One for each host.
*/
static void ether1394_add_host (struct hpsb_host *host)
{
struct eth1394_host_info *hi = NULL;
struct net_device *dev = NULL;
struct eth1394_priv *priv;
u64 fifo_addr;
if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
return;
fifo_addr = hpsb_allocate_and_register_addrspace(
&eth1394_highlevel, host, &addr_ops,
ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
if (fifo_addr == CSR1212_INVALID_ADDR_SPACE)
goto out;
/* We should really have our own alloc_hpsbdev() function in
* net_init.c instead of calling the one for ethernet then hijacking
* it for ourselves. That way we'd be a real networking device. */
dev = alloc_etherdev(sizeof (struct eth1394_priv));
if (dev == NULL) {
ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
"etherdevice for IEEE 1394 device %s-%d\n",
host->driver->name, host->id);
goto out;
}
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &host->device);
priv = netdev_priv(dev);
INIT_LIST_HEAD(&priv->ip_node_list);
spin_lock_init(&priv->lock);
priv->host = host;
priv->local_fifo = fifo_addr;
hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
if (hi == NULL) {
ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
"hostinfo for IEEE 1394 device %s-%d\n",
host->driver->name, host->id);
goto out;
}
ether1394_init_dev(dev);
if (register_netdev (dev)) {
ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
goto out;
}
ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
host->id);
hi->host = host;
hi->dev = dev;
/* Ignore validity in hopes that it will be set in the future. It'll
* be checked when the eth device is opened. */
priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
priv->iso = hpsb_iso_recv_init(host,
ETHER1394_ISO_BUF_SIZE,
ETHER1394_GASP_BUFFERS,
priv->broadcast_channel,
HPSB_ISO_DMA_PACKET_PER_BUFFER,
1, ether1394_iso);
if (priv->iso == NULL) {
ETH1394_PRINT(KERN_ERR, dev->name,
"Could not allocate isochronous receive context "
"for the broadcast channel\n");
priv->bc_state = ETHER1394_BC_ERROR;
} else {
if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
priv->bc_state = ETHER1394_BC_STOPPED;
else
priv->bc_state = ETHER1394_BC_RUNNING;
}
return;
out:
if (dev != NULL)
free_netdev(dev);
if (hi)
hpsb_destroy_hostinfo(&eth1394_highlevel, host);
return;
}
/* Remove a card from our list */
static void ether1394_remove_host (struct hpsb_host *host)
{
struct eth1394_host_info *hi;
hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
if (hi != NULL) {
struct eth1394_priv *priv = netdev_priv(hi->dev);
hpsb_unregister_addrspace(&eth1394_highlevel, host,
priv->local_fifo);
if (priv->iso != NULL)
hpsb_iso_shutdown(priv->iso);
if (hi->dev) {
unregister_netdev (hi->dev);
free_netdev(hi->dev);
}
}
return;
}
/* A reset has just arisen */
static void ether1394_host_reset (struct hpsb_host *host)
{
struct eth1394_host_info *hi;
struct eth1394_priv *priv;
struct net_device *dev;
struct list_head *lh, *n;
struct eth1394_node_ref *node;
struct eth1394_node_info *node_info;
unsigned long flags;
hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
/* This can happen for hosts that we don't use */
if (hi == NULL)
return;
dev = hi->dev;
priv = (struct eth1394_priv *)netdev_priv(dev);
/* Reset our private host data, but not our mtu */
netif_stop_queue (dev);
ether1394_reset_priv (dev, 0);
list_for_each_entry(node, &priv->ip_node_list, list) {
node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
spin_lock_irqsave(&node_info->pdg.lock, flags);
list_for_each_safe(lh, n, &node_info->pdg.list) {
purge_partial_datagram(lh);
}
INIT_LIST_HEAD(&(node_info->pdg.list));
node_info->pdg.sz = 0;
spin_unlock_irqrestore(&node_info->pdg.lock, flags);
}
netif_wake_queue (dev);
}
/******************************************
* HW Header net device functions
******************************************/
/* These functions have been adapted from net/ethernet/eth.c */
/* Create a fake MAC header for an arbitrary protocol layer.
* saddr=NULL means use device source address
* daddr=NULL means leave destination address (eg unresolved arp). */
static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned len)
{
struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
eth->h_proto = htons(type);
if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
memset(eth->h_dest, 0, dev->addr_len);
return(dev->hard_header_len);
}
if (daddr) {
memcpy(eth->h_dest,daddr,dev->addr_len);
return dev->hard_header_len;
}
return -dev->hard_header_len;
}
/* Rebuild the faked MAC header. This is called after an ARP
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
*
* This routine CANNOT use cached dst->neigh!
* Really, it is used only when dst->neigh is wrong.
*/
static int ether1394_rebuild_header(struct sk_buff *skb)
{
struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
struct net_device *dev = skb->dev;
switch (eth->h_proto) {
#ifdef CONFIG_INET
case __constant_htons(ETH_P_IP):
return arp_find((unsigned char*)&eth->h_dest, skb);
#endif
default:
ETH1394_PRINT(KERN_DEBUG, dev->name,
"unable to resolve type %04x addresses.\n",
ntohs(eth->h_proto));
break;
}
return 0;
}
static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
{
struct net_device *dev = skb->dev;
memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
return ETH1394_ALEN;
}
static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
{
unsigned short type = hh->hh_type;
struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
(16 - ETH1394_HLEN));
struct net_device *dev = neigh->dev;
if (type == htons(ETH_P_802_3))
return -1;
eth->h_proto = type;
memcpy(eth->h_dest, neigh->ha, dev->addr_len);
hh->hh_len = ETH1394_HLEN;
return 0;
}
/* Called by Address Resolution module to notify changes in address. */
static void ether1394_header_cache_update(struct hh_cache *hh,
struct net_device *dev,
unsigned char * haddr)
{
memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
}
static int ether1394_mac_addr(struct net_device *dev, void *p)
{
if (netif_running(dev))
return -EBUSY;
/* Not going to allow setting the MAC address, we really need to use
* the real one supplied by the hardware */
return -EINVAL;
}
/******************************************
* Datagram reception code
******************************************/
/* Copied from net/ethernet/eth.c */
static inline u16 ether1394_type_trans(struct sk_buff *skb,
struct net_device *dev)
{
struct eth1394hdr *eth;
unsigned char *rawp;
skb->mac.raw = skb->data;
skb_pull (skb, ETH1394_HLEN);
eth = eth1394_hdr(skb);
if (*eth->h_dest & 1) {
if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
skb->pkt_type = PACKET_BROADCAST;
#if 0
else
skb->pkt_type = PACKET_MULTICAST;
#endif
} else {
if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
skb->pkt_type = PACKET_OTHERHOST;
}
if (ntohs (eth->h_proto) >= 1536)
return eth->h_proto;
rawp = skb->data;
if (*(unsigned short *)rawp == 0xFFFF)
return htons (ETH_P_802_3);
return htons (ETH_P_802_2);
}
/* Parse an encapsulated IP1394 header into an ethernet frame packet.
* We also perform ARP translation here, if need be. */
static inline u16 ether1394_parse_encap(struct sk_buff *skb,
struct net_device *dev,
nodeid_t srcid, nodeid_t destid,
u16 ether_type)
{
struct eth1394_priv *priv = netdev_priv(dev);
u64 dest_hw;
unsigned short ret = 0;
/* Setup our hw addresses. We use these to build the
* ethernet header. */
if (destid == (LOCAL_BUS | ALL_NODES))
dest_hw = ~0ULL; /* broadcast */
else
dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
priv->host->csr.guid_lo);
/* If this is an ARP packet, convert it. First, we want to make
* use of some of the fields, since they tell us a little bit
* about the sending machine. */
if (ether_type == htons(ETH_P_ARP)) {
struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
struct arphdr *arp = (struct arphdr *)skb->data;
unsigned char *arp_ptr = (unsigned char *)(arp + 1);
u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
ntohl(arp1394->fifo_lo);
u8 max_rec = min(priv->host->csr.max_rec,
(u8)(arp1394->max_rec));
int sspd = arp1394->sspd;
u16 maxpayload;
struct eth1394_node_ref *node;
struct eth1394_node_info *node_info;
__be64 guid;
/* Sanity check. MacOSX seems to be sending us 131 in this
* field (atleast on my Panther G5). Not sure why. */
if (sspd > 5 || sspd < 0)
sspd = 0;
maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
guid = get_unaligned(&arp1394->s_uniq_id);
node = eth1394_find_node_guid(&priv->ip_node_list,
be64_to_cpu(guid));
if (!node) {
return 0;
}
node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
/* Update our speed/payload/fifo_offset table */
node_info->maxpayload = maxpayload;
node_info->sspd = sspd;
node_info->fifo = fifo_addr;
/* Now that we're done with the 1394 specific stuff, we'll
* need to alter some of the data. Believe it or not, all
* that needs to be done is sender_IP_address needs to be
* moved, the destination hardware address get stuffed
* in and the hardware address length set to 8.
*
* IMPORTANT: The code below overwrites 1394 specific data
* needed above so keep the munging of the data for the
* higher level IP stack last. */
arp->ar_hln = 8;
arp_ptr += arp->ar_hln; /* skip over sender unique id */
*(u32*)arp_ptr = arp1394->sip; /* move sender IP addr */
arp_ptr += arp->ar_pln; /* skip over sender IP addr */
if (arp->ar_op == htons(ARPOP_REQUEST))
memset(arp_ptr, 0, sizeof(u64));
else
memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
}
/* Now add the ethernet header. */
if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
skb->len) >= 0)
ret = ether1394_type_trans(skb, dev);
return ret;
}
static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
{
struct fragment_info *fi;
list_for_each_entry(fi, frag_list, list) {
if ( ! ((offset > (fi->offset + fi->len - 1)) ||
((offset + len - 1) < fi->offset)))
return 1;
}
return 0;
}
static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
{
struct partial_datagram *pd;
list_for_each_entry(pd, pdgl, list) {
if (pd->dgl == dgl)
return &pd->list;
}
return NULL;
}
/* Assumes that new fragment does not overlap any existing fragments */
static inline int new_fragment(struct list_head *frag_info, int offset, int len)
{
struct list_head *lh;
struct fragment_info *fi, *fi2, *new;
list_for_each(lh, frag_info) {
fi = list_entry(lh, struct fragment_info, list);
if ((fi->offset + fi->len) == offset) {
/* The new fragment can be tacked on to the end */
fi->len += len;
/* Did the new fragment plug a hole? */
fi2 = list_entry(lh->next, struct fragment_info, list);
if ((fi->offset + fi->len) == fi2->offset) {
/* glue fragments together */
fi->len += fi2->len;
list_del(lh->next);
kfree(fi2);
}
return 0;
} else if ((offset + len) == fi->offset) {
/* The new fragment can be tacked on to the beginning */
fi->offset = offset;
fi->len += len;
/* Did the new fragment plug a hole? */
fi2 = list_entry(lh->prev, struct fragment_info, list);
if ((fi2->offset + fi2->len) == fi->offset) {
/* glue fragments together */
fi2->len += fi->len;
list_del(lh);
kfree(fi);
}
return 0;
} else if (offset > (fi->offset + fi->len)) {
break;
} else if ((offset + len) < fi->offset) {
lh = lh->prev;
break;
}
}
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
return -ENOMEM;
new->offset = offset;
new->len = len;
list_add(&new->list, lh);
return 0;
}
static inline int new_partial_datagram(struct net_device *dev,
struct list_head *pdgl, int dgl,
int dg_size, char *frag_buf,
int frag_off, int frag_len)
{
struct partial_datagram *new;
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
return -ENOMEM;
INIT_LIST_HEAD(&new->frag_info);
if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
kfree(new);
return -ENOMEM;
}
new->dgl = dgl;
new->dg_size = dg_size;
new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
if (!new->skb) {
struct fragment_info *fi = list_entry(new->frag_info.next,
struct fragment_info,
list);
kfree(fi);
kfree(new);
return -ENOMEM;
}
skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
new->pbuf = skb_put(new->skb, dg_size);
memcpy(new->pbuf + frag_off, frag_buf, frag_len);
list_add(&new->list, pdgl);
return 0;
}
static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
char *frag_buf, int frag_off, int frag_len)
{
struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
return -ENOMEM;
}
memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
/* Move list entry to beginnig of list so that oldest partial
* datagrams percolate to the end of the list */
list_move(lh, pdgl);
return 0;
}
static inline int is_datagram_complete(struct list_head *lh, int dg_size)
{
struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
struct fragment_info *fi = list_entry(pd->frag_info.next,
struct fragment_info, list);
return (fi->len == dg_size);
}
/* Packet reception. We convert the IP1394 encapsulation header to an
* ethernet header, and fill it with some of our other fields. This is
* an incoming packet from the 1394 bus. */
static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
char *buf, int len)
{
struct sk_buff *skb;
unsigned long flags;
struct eth1394_priv *priv = netdev_priv(dev);
union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
u16 ether_type = 0; /* initialized to clear warning */
int hdr_len;
struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
struct eth1394_node_info *node_info;
if (!ud) {
struct eth1394_node_ref *node;
node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
if (!node) {
HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
"lookup failure: " NODE_BUS_FMT,
NODE_BUS_ARGS(priv->host, srcid));
priv->stats.rx_dropped++;
return -1;
}
ud = node->ud;
priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
}
node_info = (struct eth1394_node_info*)ud->device.driver_data;
/* First, did we receive a fragmented or unfragmented datagram? */
hdr->words.word1 = ntohs(hdr->words.word1);
hdr_len = hdr_type_len[hdr->common.lf];
if (hdr->common.lf == ETH1394_HDR_LF_UF) {
/* An unfragmented datagram has been received by the ieee1394
* bus. Build an skbuff around it so we can pass it to the
* high level network layer. */
skb = dev_alloc_skb(len + dev->hard_header_len + 15);
if (!skb) {
HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
priv->stats.rx_dropped++;
return -1;
}
skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
ether_type = hdr->uf.ether_type;
} else {
/* A datagram fragment has been received, now the fun begins. */
struct list_head *pdgl, *lh;
struct partial_datagram *pd;
int fg_off;
int fg_len = len - hdr_len;
int dg_size;
int dgl;
int retval;
struct pdg_list *pdg = &(node_info->pdg);
hdr->words.word3 = ntohs(hdr->words.word3);
/* The 4th header word is reserved so no need to do ntohs() */
if (hdr->common.lf == ETH1394_HDR_LF_FF) {
ether_type = hdr->ff.ether_type;
dgl = hdr->ff.dgl;
dg_size = hdr->ff.dg_size + 1;
fg_off = 0;
} else {
hdr->words.word2 = ntohs(hdr->words.word2);
dgl = hdr->sf.dgl;
dg_size = hdr->sf.dg_size + 1;
fg_off = hdr->sf.fg_off;
}
spin_lock_irqsave(&pdg->lock, flags);
pdgl = &(pdg->list);
lh = find_partial_datagram(pdgl, dgl);
if (lh == NULL) {
while (pdg->sz >= max_partial_datagrams) {
/* remove the oldest */
purge_partial_datagram(pdgl->prev);
pdg->sz--;
}
retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
buf + hdr_len, fg_off,
fg_len);
if (retval < 0) {
spin_unlock_irqrestore(&pdg->lock, flags);
goto bad_proto;
}
pdg->sz++;
lh = find_partial_datagram(pdgl, dgl);
} else {
struct partial_datagram *pd;
pd = list_entry(lh, struct partial_datagram, list);
if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
/* Overlapping fragments, obliterate old
* datagram and start new one. */
purge_partial_datagram(lh);
retval = new_partial_datagram(dev, pdgl, dgl,
dg_size,
buf + hdr_len,
fg_off, fg_len);
if (retval < 0) {
pdg->sz--;
spin_unlock_irqrestore(&pdg->lock, flags);
goto bad_proto;
}
} else {
retval = update_partial_datagram(pdgl, lh,
buf + hdr_len,
fg_off, fg_len);
if (retval < 0) {
/* Couldn't save off fragment anyway
* so might as well obliterate the
* datagram now. */
purge_partial_datagram(lh);
pdg->sz--;
spin_unlock_irqrestore(&pdg->lock, flags);
goto bad_proto;
}
} /* fragment overlap */
} /* new datagram or add to existing one */
pd = list_entry(lh, struct partial_datagram, list);
if (hdr->common.lf == ETH1394_HDR_LF_FF) {
pd->ether_type = ether_type;
}
if (is_datagram_complete(lh, dg_size)) {
ether_type = pd->ether_type;
pdg->sz--;
skb = skb_get(pd->skb);
purge_partial_datagram(lh);
spin_unlock_irqrestore(&pdg->lock, flags);
} else {
/* Datagram is not complete, we're done for the
* moment. */
spin_unlock_irqrestore(&pdg->lock, flags);
return 0;
}
} /* unframgented datagram or fragmented one */
/* Write metadata, and then pass to the receive level */
skb->dev = dev;
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
/* Parse the encapsulation header. This actually does the job of
* converting to an ethernet frame header, aswell as arp
* conversion if needed. ARP conversion is easier in this
* direction, since we are using ethernet as our backend. */
skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
ether_type);
spin_lock_irqsave(&priv->lock, flags);
if (!skb->protocol) {
priv->stats.rx_errors++;
priv->stats.rx_dropped++;
dev_kfree_skb_any(skb);
goto bad_proto;
}
if (netif_rx(skb) == NET_RX_DROP) {
priv->stats.rx_errors++;
priv->stats.rx_dropped++;
goto bad_proto;
}
/* Statistics */
priv->stats.rx_packets++;
priv->stats.rx_bytes += skb->len;
bad_proto:
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
spin_unlock_irqrestore(&priv->lock, flags);
dev->last_rx = jiffies;
return 0;
}
static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
quadlet_t *data, u64 addr, size_t len, u16 flags)
{
struct eth1394_host_info *hi;
hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
if (hi == NULL) {
ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
host->driver->name);
return RCODE_ADDRESS_ERROR;
}
if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
return RCODE_ADDRESS_ERROR;
else
return RCODE_COMPLETE;
}
static void ether1394_iso(struct hpsb_iso *iso)
{
quadlet_t *data;
char *buf;
struct eth1394_host_info *hi;
struct net_device *dev;
struct eth1394_priv *priv;
unsigned int len;
u32 specifier_id;
u16 source_id;
int i;
int nready;
hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
if (hi == NULL) {
ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
iso->host->driver->name);
return;
}
dev = hi->dev;
nready = hpsb_iso_n_ready(iso);
for (i = 0; i < nready; i++) {
struct hpsb_iso_packet_info *info =
&iso->infos[(iso->first_packet + i) % iso->buf_packets];
data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
/* skip over GASP header */
buf = (char *)data + 8;
len = info->len - 8;
specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
((be32_to_cpu(data[1]) & 0xff000000) >> 24));
source_id = be32_to_cpu(data[0]) >> 16;
priv = netdev_priv(dev);
if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
/* This packet is not for us */
continue;
}
ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
buf, len);
}
hpsb_iso_recv_release_packets(iso, i);
dev->last_rx = jiffies;
}
/******************************************
* Datagram transmission code
******************************************/
/* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
* arphdr) is the same format as the ip1394 header, so they overlap. The rest
* needs to be munged a bit. The remainder of the arphdr is formatted based
* on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
* judge.
*
* Now that the EUI is used for the hardware address all we need to do to make
* this work for 1394 is to insert 2 quadlets that contain max_rec size,
* speed, and unicast FIFO address information between the sender_unique_id
* and the IP addresses.
*/
static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
struct net_device *dev)
{
struct eth1394_priv *priv = netdev_priv(dev);
struct arphdr *arp = (struct arphdr *)skb->data;
unsigned char *arp_ptr = (unsigned char *)(arp + 1);
struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
/* Believe it or not, all that need to happen is sender IP get moved
* and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo. */
arp1394->hw_addr_len = 16;
arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
arp1394->max_rec = priv->host->csr.max_rec;
arp1394->sspd = priv->host->csr.lnk_spd;
arp1394->fifo_hi = htons (priv->local_fifo >> 32);
arp1394->fifo_lo = htonl (priv->local_fifo & ~0x0);
return;
}
/* We need to encapsulate the standard header with our own. We use the
* ethernet header's proto for our own. */
static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
__be16 proto,
union eth1394_hdr *hdr,
u16 dg_size, u16 dgl)
{
unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
/* Does it all fit in one packet? */
if (dg_size <= adj_max_payload) {
hdr->uf.lf = ETH1394_HDR_LF_UF;
hdr->uf.ether_type = proto;
} else {
hdr->ff.lf = ETH1394_HDR_LF_FF;
hdr->ff.ether_type = proto;
hdr->ff.dg_size = dg_size - 1;
hdr->ff.dgl = dgl;
adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
}
return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
}
static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
unsigned int max_payload,
union eth1394_hdr *hdr)
{
union eth1394_hdr *bufhdr;
int ftype = hdr->common.lf;
int hdrsz = hdr_type_len[ftype];
unsigned int adj_max_payload = max_payload - hdrsz;
switch(ftype) {
case ETH1394_HDR_LF_UF:
bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
bufhdr->words.word1 = htons(hdr->words.word1);
bufhdr->words.word2 = hdr->words.word2;
break;
case ETH1394_HDR_LF_FF:
bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
bufhdr->words.word1 = htons(hdr->words.word1);
bufhdr->words.word2 = hdr->words.word2;
bufhdr->words.word3 = htons(hdr->words.word3);
bufhdr->words.word4 = 0;
/* Set frag type here for future interior fragments */
hdr->common.lf = ETH1394_HDR_LF_IF;
hdr->sf.fg_off = 0;
break;
default:
hdr->sf.fg_off += adj_max_payload;
bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
if (max_payload >= skb->len)
hdr->common.lf = ETH1394_HDR_LF_LF;
bufhdr->words.word1 = htons(hdr->words.word1);
bufhdr->words.word2 = htons(hdr->words.word2);
bufhdr->words.word3 = htons(hdr->words.word3);
bufhdr->words.word4 = 0;
}
return min(max_payload, skb->len);
}
static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
{
struct hpsb_packet *p;
p = hpsb_alloc_packet(0);
if (p) {
p->host = host;
p->generation = get_hpsb_generation(host);
p->type = hpsb_async;
}
return p;
}
static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
struct hpsb_host *host,
nodeid_t node, u64 addr,
void * data, int tx_len)
{
p->node_id = node;
p->data = NULL;
p->tcode = TCODE_WRITEB;
p->header[1] = (host->node_id << 16) | (addr >> 32);
p->header[2] = addr & 0xffffffff;
p->header_size = 16;
p->expect_response = 1;
if (hpsb_get_tlabel(p)) {
ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
"to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
return -1;
}
p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
| (1 << 8) | (TCODE_WRITEB << 4);
p->header[3] = tx_len << 16;
p->data_size = (tx_len + 3) & ~3;
p->data = (quadlet_t*)data;
return 0;
}
static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
struct eth1394_priv *priv,
struct sk_buff *skb, int length)
{
p->header_size = 4;
p->tcode = TCODE_STREAM_DATA;
p->header[0] = (length << 16) | (3 << 14)
| ((priv->broadcast_channel) << 8)
| (TCODE_STREAM_DATA << 4);
p->data_size = length;
p->data = ((quadlet_t*)skb->data) - 2;
p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
ETHER1394_GASP_SPECIFIER_ID_HI);
p->data[1] = cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
ETHER1394_GASP_VERSION);
/* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
* prevents hpsb_send_packet() from setting the speed to an arbitrary
* value based on packet->node_id if packet->node_id is not set. */
p->node_id = ALL_NODES;
p->speed_code = priv->bc_sspd;
}
static inline void ether1394_free_packet(struct hpsb_packet *packet)
{
if (packet->tcode != TCODE_STREAM_DATA)
hpsb_free_tlabel(packet);
hpsb_free_packet(packet);
}
static void ether1394_complete_cb(void *__ptask);
static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
{
struct eth1394_priv *priv = ptask->priv;
struct hpsb_packet *packet = NULL;
packet = ether1394_alloc_common_packet(priv->host);
if (!packet)
return -1;
if (ptask->tx_type == ETH1394_GASP) {
int length = tx_len + (2 * sizeof(quadlet_t));
ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
} else if (ether1394_prep_write_packet(packet, priv->host,
ptask->dest_node,
ptask->addr, ptask->skb->data,
tx_len)) {
hpsb_free_packet(packet);
return -1;
}
ptask->packet = packet;
hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
ptask);
if (hpsb_send_packet(packet) < 0) {
ether1394_free_packet(packet);
return -1;
}
return 0;
}
/* Task function to be run when a datagram transmission is completed */
static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
{
struct sk_buff *skb = ptask->skb;
struct net_device *dev = skb->dev;
struct eth1394_priv *priv = netdev_priv(dev);
unsigned long flags;
/* Statistics */
spin_lock_irqsave(&priv->lock, flags);
if (fail) {
priv->stats.tx_dropped++;
priv->stats.tx_errors++;
} else {
priv->stats.tx_bytes += skb->len;
priv->stats.tx_packets++;
}
spin_unlock_irqrestore(&priv->lock, flags);
dev_kfree_skb_any(skb);
kmem_cache_free(packet_task_cache, ptask);
}
/* Callback for when a packet has been sent and the status of that packet is
* known */
static void ether1394_complete_cb(void *__ptask)
{
struct packet_task *ptask = (struct packet_task *)__ptask;
struct hpsb_packet *packet = ptask->packet;
int fail = 0;
if (packet->tcode != TCODE_STREAM_DATA)
fail = hpsb_packet_success(packet);
ether1394_free_packet(packet);
ptask->outstanding_pkts--;
if (ptask->outstanding_pkts > 0 && !fail) {
int tx_len;
/* Add the encapsulation header to the fragment */
tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
&ptask->hdr);
if (ether1394_send_packet(ptask, tx_len))
ether1394_dg_complete(ptask, 1);
} else {
ether1394_dg_complete(ptask, fail);
}
}
/* Transmit a packet (called by kernel) */
static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
{
gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
struct eth1394hdr *eth;
struct eth1394_priv *priv = netdev_priv(dev);
__be16 proto;
unsigned long flags;
nodeid_t dest_node;
eth1394_tx_type tx_type;
int ret = 0;
unsigned int tx_len;
unsigned int max_payload;
u16 dg_size;
u16 dgl;
struct packet_task *ptask;
struct eth1394_node_ref *node;
struct eth1394_node_info *node_info = NULL;
ptask = kmem_cache_alloc(packet_task_cache, kmflags);
if (ptask == NULL) {
ret = -ENOMEM;
goto fail;
}
/* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
* it does not set our validity bit. We need to compensate for
* that somewhere else, but not in eth1394. */
#if 0
if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
ret = -EAGAIN;
goto fail;
}
#endif
if ((skb = skb_share_check (skb, kmflags)) == NULL) {
ret = -ENOMEM;
goto fail;
}
/* Get rid of the fake eth1394 header, but save a pointer */
eth = (struct eth1394hdr*)skb->data;
skb_pull(skb, ETH1394_HLEN);
proto = eth->h_proto;
dg_size = skb->len;
/* Set the transmission type for the packet. ARP packets and IP
* broadcast packets are sent via GASP. */
if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
proto == htons(ETH_P_ARP) ||
(proto == htons(ETH_P_IP) &&
IN_MULTICAST(ntohl(skb->nh.iph->daddr)))) {
tx_type = ETH1394_GASP;
dest_node = LOCAL_BUS | ALL_NODES;
max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
dgl = priv->bc_dgl;
if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
priv->bc_dgl++;
} else {
__be64 guid = get_unaligned((u64 *)eth->h_dest);
node = eth1394_find_node_guid(&priv->ip_node_list,
be64_to_cpu(guid));
if (!node) {
ret = -EAGAIN;
goto fail;
}
node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
ret = -EAGAIN;
goto fail;
}
dest_node = node->ud->ne->nodeid;
max_payload = node_info->maxpayload;
BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
dgl = node_info->dgl;
if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
node_info->dgl++;
tx_type = ETH1394_WRREQ;
}
/* If this is an ARP packet, convert it */
if (proto == htons(ETH_P_ARP))
ether1394_arp_to_1394arp (skb, dev);
ptask->hdr.words.word1 = 0;
ptask->hdr.words.word2 = 0;
ptask->hdr.words.word3 = 0;
ptask->hdr.words.word4 = 0;
ptask->skb = skb;
ptask->priv = priv;
ptask->tx_type = tx_type;
if (tx_type != ETH1394_GASP) {
u64 addr;
spin_lock_irqsave(&priv->lock, flags);
addr = node_info->fifo;
spin_unlock_irqrestore(&priv->lock, flags);
ptask->addr = addr;
ptask->dest_node = dest_node;
}
ptask->tx_type = tx_type;
ptask->max_payload = max_payload;
ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
&ptask->hdr, dg_size,
dgl);
/* Add the encapsulation header to the fragment */
tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
dev->trans_start = jiffies;
if (ether1394_send_packet(ptask, tx_len))
goto fail;
netif_wake_queue(dev);
return 0;
fail:
if (ptask)
kmem_cache_free(packet_task_cache, ptask);
if (skb != NULL)
dev_kfree_skb(skb);
spin_lock_irqsave (&priv->lock, flags);
priv->stats.tx_dropped++;
priv->stats.tx_errors++;
spin_unlock_irqrestore (&priv->lock, flags);
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
return 0; /* returning non-zero causes serious problems */
}
static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strcpy (info->driver, driver_name);
/* FIXME XXX provide sane businfo */
strcpy (info->bus_info, "ieee1394");
}
static struct ethtool_ops ethtool_ops = {
.get_drvinfo = ether1394_get_drvinfo
};
static int __init ether1394_init_module (void)
{
packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
0, 0, NULL, NULL);
/* Register ourselves as a highlevel driver */
hpsb_register_highlevel(&eth1394_highlevel);
return hpsb_register_protocol(&eth1394_proto_driver);
}
static void __exit ether1394_exit_module (void)
{
hpsb_unregister_protocol(&eth1394_proto_driver);
hpsb_unregister_highlevel(&eth1394_highlevel);
kmem_cache_destroy(packet_task_cache);
}
module_init(ether1394_init_module);
module_exit(ether1394_exit_module);