mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 20:56:42 +07:00
d4092d76a4
We are planning to share more code between different NAND based devices (SPI NAND, OneNAND and raw NANDs), but before doing that we need to move the existing include/linux/mtd/nand.h file into include/linux/mtd/rawnand.h so we can later create a nand.h header containing all common structure and function prototypes. Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com> Signed-off-by: Peter Pan <peterpandong@micron.com> Acked-by: Vladimir Zapolskiy <vz@mleia.com> Acked-by: Alexander Sverdlin <alexander.sverdlin@gmail.com> Acked-by: Wenyou Yang <wenyou.yang@microchip.com> Acked-by: Krzysztof Kozlowski <krzk@kernel.org> Acked-by: Han Xu <han.xu@nxp.com> Acked-by: H Hartley Sweeten <hsweeten@visionengravers.com> Acked-by: Shawn Guo <shawnguo@kernel.org> Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Acked-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-By: Harvey Hunt <harveyhuntnexus@gmail.com> Acked-by: Tony Lindgren <tony@atomide.com> Acked-by: Krzysztof Halasa <khalasa@piap.pl>
880 lines
25 KiB
C
880 lines
25 KiB
C
/*
|
|
* davinci_nand.c - NAND Flash Driver for DaVinci family chips
|
|
*
|
|
* Copyright © 2006 Texas Instruments.
|
|
*
|
|
* Port to 2.6.23 Copyright © 2008 by:
|
|
* Sander Huijsen <Shuijsen@optelecom-nkf.com>
|
|
* Troy Kisky <troy.kisky@boundarydevices.com>
|
|
* Dirk Behme <Dirk.Behme@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/err.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/platform_data/mtd-davinci.h>
|
|
#include <linux/platform_data/mtd-davinci-aemif.h>
|
|
|
|
/*
|
|
* This is a device driver for the NAND flash controller found on the
|
|
* various DaVinci family chips. It handles up to four SoC chipselects,
|
|
* and some flavors of secondary chipselect (e.g. based on A12) as used
|
|
* with multichip packages.
|
|
*
|
|
* The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
|
|
* available on chips like the DM355 and OMAP-L137 and needed with the
|
|
* more error-prone MLC NAND chips.
|
|
*
|
|
* This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
|
|
* outputs in a "wire-AND" configuration, with no per-chip signals.
|
|
*/
|
|
struct davinci_nand_info {
|
|
struct nand_chip chip;
|
|
|
|
struct device *dev;
|
|
struct clk *clk;
|
|
|
|
bool is_readmode;
|
|
|
|
void __iomem *base;
|
|
void __iomem *vaddr;
|
|
|
|
uint32_t ioaddr;
|
|
uint32_t current_cs;
|
|
|
|
uint32_t mask_chipsel;
|
|
uint32_t mask_ale;
|
|
uint32_t mask_cle;
|
|
|
|
uint32_t core_chipsel;
|
|
|
|
struct davinci_aemif_timing *timing;
|
|
};
|
|
|
|
static DEFINE_SPINLOCK(davinci_nand_lock);
|
|
static bool ecc4_busy;
|
|
|
|
static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
|
|
}
|
|
|
|
static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
|
|
int offset)
|
|
{
|
|
return __raw_readl(info->base + offset);
|
|
}
|
|
|
|
static inline void davinci_nand_writel(struct davinci_nand_info *info,
|
|
int offset, unsigned long value)
|
|
{
|
|
__raw_writel(value, info->base + offset);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Access to hardware control lines: ALE, CLE, secondary chipselect.
|
|
*/
|
|
|
|
static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
|
|
unsigned int ctrl)
|
|
{
|
|
struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
uint32_t addr = info->current_cs;
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
|
|
/* Did the control lines change? */
|
|
if (ctrl & NAND_CTRL_CHANGE) {
|
|
if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
|
|
addr |= info->mask_cle;
|
|
else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
|
|
addr |= info->mask_ale;
|
|
|
|
nand->IO_ADDR_W = (void __iomem __force *)addr;
|
|
}
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
iowrite8(cmd, nand->IO_ADDR_W);
|
|
}
|
|
|
|
static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
uint32_t addr = info->ioaddr;
|
|
|
|
/* maybe kick in a second chipselect */
|
|
if (chip > 0)
|
|
addr |= info->mask_chipsel;
|
|
info->current_cs = addr;
|
|
|
|
info->chip.IO_ADDR_W = (void __iomem __force *)addr;
|
|
info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* 1-bit hardware ECC ... context maintained for each core chipselect
|
|
*/
|
|
|
|
static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
|
|
{
|
|
struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
|
|
return davinci_nand_readl(info, NANDF1ECC_OFFSET
|
|
+ 4 * info->core_chipsel);
|
|
}
|
|
|
|
static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct davinci_nand_info *info;
|
|
uint32_t nandcfr;
|
|
unsigned long flags;
|
|
|
|
info = to_davinci_nand(mtd);
|
|
|
|
/* Reset ECC hardware */
|
|
nand_davinci_readecc_1bit(mtd);
|
|
|
|
spin_lock_irqsave(&davinci_nand_lock, flags);
|
|
|
|
/* Restart ECC hardware */
|
|
nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
|
|
nandcfr |= BIT(8 + info->core_chipsel);
|
|
davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
|
|
|
|
spin_unlock_irqrestore(&davinci_nand_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Read hardware ECC value and pack into three bytes
|
|
*/
|
|
static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
|
|
const u_char *dat, u_char *ecc_code)
|
|
{
|
|
unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
|
|
unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
|
|
|
|
/* invert so that erased block ecc is correct */
|
|
ecc24 = ~ecc24;
|
|
ecc_code[0] = (u_char)(ecc24);
|
|
ecc_code[1] = (u_char)(ecc24 >> 8);
|
|
ecc_code[2] = (u_char)(ecc24 >> 16);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
|
|
(read_ecc[2] << 16);
|
|
uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
|
|
(calc_ecc[2] << 16);
|
|
uint32_t diff = eccCalc ^ eccNand;
|
|
|
|
if (diff) {
|
|
if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
|
|
/* Correctable error */
|
|
if ((diff >> (12 + 3)) < chip->ecc.size) {
|
|
dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
|
|
return 1;
|
|
} else {
|
|
return -EBADMSG;
|
|
}
|
|
} else if (!(diff & (diff - 1))) {
|
|
/* Single bit ECC error in the ECC itself,
|
|
* nothing to fix */
|
|
return 1;
|
|
} else {
|
|
/* Uncorrectable error */
|
|
return -EBADMSG;
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* 4-bit hardware ECC ... context maintained over entire AEMIF
|
|
*
|
|
* This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
|
|
* since that forces use of a problematic "infix OOB" layout.
|
|
* Among other things, it trashes manufacturer bad block markers.
|
|
* Also, and specific to this hardware, it ECC-protects the "prepad"
|
|
* in the OOB ... while having ECC protection for parts of OOB would
|
|
* seem useful, the current MTD stack sometimes wants to update the
|
|
* OOB without recomputing ECC.
|
|
*/
|
|
|
|
static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
unsigned long flags;
|
|
u32 val;
|
|
|
|
/* Reset ECC hardware */
|
|
davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
|
|
|
|
spin_lock_irqsave(&davinci_nand_lock, flags);
|
|
|
|
/* Start 4-bit ECC calculation for read/write */
|
|
val = davinci_nand_readl(info, NANDFCR_OFFSET);
|
|
val &= ~(0x03 << 4);
|
|
val |= (info->core_chipsel << 4) | BIT(12);
|
|
davinci_nand_writel(info, NANDFCR_OFFSET, val);
|
|
|
|
info->is_readmode = (mode == NAND_ECC_READ);
|
|
|
|
spin_unlock_irqrestore(&davinci_nand_lock, flags);
|
|
}
|
|
|
|
/* Read raw ECC code after writing to NAND. */
|
|
static void
|
|
nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
|
|
{
|
|
const u32 mask = 0x03ff03ff;
|
|
|
|
code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
|
|
code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
|
|
code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
|
|
code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
|
|
}
|
|
|
|
/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
|
|
static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
|
|
const u_char *dat, u_char *ecc_code)
|
|
{
|
|
struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
u32 raw_ecc[4], *p;
|
|
unsigned i;
|
|
|
|
/* After a read, terminate ECC calculation by a dummy read
|
|
* of some 4-bit ECC register. ECC covers everything that
|
|
* was read; correct() just uses the hardware state, so
|
|
* ecc_code is not needed.
|
|
*/
|
|
if (info->is_readmode) {
|
|
davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
|
|
return 0;
|
|
}
|
|
|
|
/* Pack eight raw 10-bit ecc values into ten bytes, making
|
|
* two passes which each convert four values (in upper and
|
|
* lower halves of two 32-bit words) into five bytes. The
|
|
* ROM boot loader uses this same packing scheme.
|
|
*/
|
|
nand_davinci_readecc_4bit(info, raw_ecc);
|
|
for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
|
|
*ecc_code++ = p[0] & 0xff;
|
|
*ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
|
|
*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
|
|
*ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
|
|
*ecc_code++ = (p[1] >> 18) & 0xff;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Correct up to 4 bits in data we just read, using state left in the
|
|
* hardware plus the ecc_code computed when it was first written.
|
|
*/
|
|
static int nand_davinci_correct_4bit(struct mtd_info *mtd,
|
|
u_char *data, u_char *ecc_code, u_char *null)
|
|
{
|
|
int i;
|
|
struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
unsigned short ecc10[8];
|
|
unsigned short *ecc16;
|
|
u32 syndrome[4];
|
|
u32 ecc_state;
|
|
unsigned num_errors, corrected;
|
|
unsigned long timeo;
|
|
|
|
/* Unpack ten bytes into eight 10 bit values. We know we're
|
|
* little-endian, and use type punning for less shifting/masking.
|
|
*/
|
|
if (WARN_ON(0x01 & (unsigned) ecc_code))
|
|
return -EINVAL;
|
|
ecc16 = (unsigned short *)ecc_code;
|
|
|
|
ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
|
|
ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
|
|
ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
|
|
ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
|
|
ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
|
|
ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
|
|
ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
|
|
ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
|
|
|
|
/* Tell ECC controller about the expected ECC codes. */
|
|
for (i = 7; i >= 0; i--)
|
|
davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
|
|
|
|
/* Allow time for syndrome calculation ... then read it.
|
|
* A syndrome of all zeroes 0 means no detected errors.
|
|
*/
|
|
davinci_nand_readl(info, NANDFSR_OFFSET);
|
|
nand_davinci_readecc_4bit(info, syndrome);
|
|
if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
|
|
return 0;
|
|
|
|
/*
|
|
* Clear any previous address calculation by doing a dummy read of an
|
|
* error address register.
|
|
*/
|
|
davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
|
|
|
|
/* Start address calculation, and wait for it to complete.
|
|
* We _could_ start reading more data while this is working,
|
|
* to speed up the overall page read.
|
|
*/
|
|
davinci_nand_writel(info, NANDFCR_OFFSET,
|
|
davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
|
|
|
|
/*
|
|
* ECC_STATE field reads 0x3 (Error correction complete) immediately
|
|
* after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
|
|
* begin trying to poll for the state, you may fall right out of your
|
|
* loop without any of the correction calculations having taken place.
|
|
* The recommendation from the hardware team is to initially delay as
|
|
* long as ECC_STATE reads less than 4. After that, ECC HW has entered
|
|
* correction state.
|
|
*/
|
|
timeo = jiffies + usecs_to_jiffies(100);
|
|
do {
|
|
ecc_state = (davinci_nand_readl(info,
|
|
NANDFSR_OFFSET) >> 8) & 0x0f;
|
|
cpu_relax();
|
|
} while ((ecc_state < 4) && time_before(jiffies, timeo));
|
|
|
|
for (;;) {
|
|
u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
|
|
|
|
switch ((fsr >> 8) & 0x0f) {
|
|
case 0: /* no error, should not happen */
|
|
davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
|
|
return 0;
|
|
case 1: /* five or more errors detected */
|
|
davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
|
|
return -EBADMSG;
|
|
case 2: /* error addresses computed */
|
|
case 3:
|
|
num_errors = 1 + ((fsr >> 16) & 0x03);
|
|
goto correct;
|
|
default: /* still working on it */
|
|
cpu_relax();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
correct:
|
|
/* correct each error */
|
|
for (i = 0, corrected = 0; i < num_errors; i++) {
|
|
int error_address, error_value;
|
|
|
|
if (i > 1) {
|
|
error_address = davinci_nand_readl(info,
|
|
NAND_ERR_ADD2_OFFSET);
|
|
error_value = davinci_nand_readl(info,
|
|
NAND_ERR_ERRVAL2_OFFSET);
|
|
} else {
|
|
error_address = davinci_nand_readl(info,
|
|
NAND_ERR_ADD1_OFFSET);
|
|
error_value = davinci_nand_readl(info,
|
|
NAND_ERR_ERRVAL1_OFFSET);
|
|
}
|
|
|
|
if (i & 1) {
|
|
error_address >>= 16;
|
|
error_value >>= 16;
|
|
}
|
|
error_address &= 0x3ff;
|
|
error_address = (512 + 7) - error_address;
|
|
|
|
if (error_address < 512) {
|
|
data[error_address] ^= error_value;
|
|
corrected++;
|
|
}
|
|
}
|
|
|
|
return corrected;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
|
|
* how these chips are normally wired. This translates to both 8 and 16
|
|
* bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
|
|
*
|
|
* For now we assume that configuration, or any other one which ignores
|
|
* the two LSBs for NAND access ... so we can issue 32-bit reads/writes
|
|
* and have that transparently morphed into multiple NAND operations.
|
|
*/
|
|
static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
|
|
ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
|
|
else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
|
|
ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
|
|
else
|
|
ioread8_rep(chip->IO_ADDR_R, buf, len);
|
|
}
|
|
|
|
static void nand_davinci_write_buf(struct mtd_info *mtd,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
|
|
iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
|
|
else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
|
|
iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
|
|
else
|
|
iowrite8_rep(chip->IO_ADDR_R, buf, len);
|
|
}
|
|
|
|
/*
|
|
* Check hardware register for wait status. Returns 1 if device is ready,
|
|
* 0 if it is still busy.
|
|
*/
|
|
static int nand_davinci_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
|
|
return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/* An ECC layout for using 4-bit ECC with small-page flash, storing
|
|
* ten ECC bytes plus the manufacturer's bad block marker byte, and
|
|
* and not overlapping the default BBT markers.
|
|
*/
|
|
static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
if (section > 2)
|
|
return -ERANGE;
|
|
|
|
if (!section) {
|
|
oobregion->offset = 0;
|
|
oobregion->length = 5;
|
|
} else if (section == 1) {
|
|
oobregion->offset = 6;
|
|
oobregion->length = 2;
|
|
} else {
|
|
oobregion->offset = 13;
|
|
oobregion->length = 3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
if (section > 1)
|
|
return -ERANGE;
|
|
|
|
if (!section) {
|
|
oobregion->offset = 8;
|
|
oobregion->length = 5;
|
|
} else {
|
|
oobregion->offset = 16;
|
|
oobregion->length = mtd->oobsize - 16;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
|
|
.ecc = hwecc4_ooblayout_small_ecc,
|
|
.free = hwecc4_ooblayout_small_free,
|
|
};
|
|
|
|
#if defined(CONFIG_OF)
|
|
static const struct of_device_id davinci_nand_of_match[] = {
|
|
{.compatible = "ti,davinci-nand", },
|
|
{.compatible = "ti,keystone-nand", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
|
|
|
|
static struct davinci_nand_pdata
|
|
*nand_davinci_get_pdata(struct platform_device *pdev)
|
|
{
|
|
if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
|
|
struct davinci_nand_pdata *pdata;
|
|
const char *mode;
|
|
u32 prop;
|
|
|
|
pdata = devm_kzalloc(&pdev->dev,
|
|
sizeof(struct davinci_nand_pdata),
|
|
GFP_KERNEL);
|
|
pdev->dev.platform_data = pdata;
|
|
if (!pdata)
|
|
return ERR_PTR(-ENOMEM);
|
|
if (!of_property_read_u32(pdev->dev.of_node,
|
|
"ti,davinci-chipselect", &prop))
|
|
pdev->id = prop;
|
|
else
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (!of_property_read_u32(pdev->dev.of_node,
|
|
"ti,davinci-mask-ale", &prop))
|
|
pdata->mask_ale = prop;
|
|
if (!of_property_read_u32(pdev->dev.of_node,
|
|
"ti,davinci-mask-cle", &prop))
|
|
pdata->mask_cle = prop;
|
|
if (!of_property_read_u32(pdev->dev.of_node,
|
|
"ti,davinci-mask-chipsel", &prop))
|
|
pdata->mask_chipsel = prop;
|
|
if (!of_property_read_string(pdev->dev.of_node,
|
|
"ti,davinci-ecc-mode", &mode)) {
|
|
if (!strncmp("none", mode, 4))
|
|
pdata->ecc_mode = NAND_ECC_NONE;
|
|
if (!strncmp("soft", mode, 4))
|
|
pdata->ecc_mode = NAND_ECC_SOFT;
|
|
if (!strncmp("hw", mode, 2))
|
|
pdata->ecc_mode = NAND_ECC_HW;
|
|
}
|
|
if (!of_property_read_u32(pdev->dev.of_node,
|
|
"ti,davinci-ecc-bits", &prop))
|
|
pdata->ecc_bits = prop;
|
|
|
|
if (!of_property_read_u32(pdev->dev.of_node,
|
|
"ti,davinci-nand-buswidth", &prop) && prop == 16)
|
|
pdata->options |= NAND_BUSWIDTH_16;
|
|
|
|
if (of_property_read_bool(pdev->dev.of_node,
|
|
"ti,davinci-nand-use-bbt"))
|
|
pdata->bbt_options = NAND_BBT_USE_FLASH;
|
|
|
|
/*
|
|
* Since kernel v4.8, this driver has been fixed to enable
|
|
* use of 4-bit hardware ECC with subpages and verified on
|
|
* TI's keystone EVMs (K2L, K2HK and K2E).
|
|
* However, in the interest of not breaking systems using
|
|
* existing UBI partitions, sub-page writes are not being
|
|
* (re)enabled. If you want to use subpage writes on Keystone
|
|
* platforms (i.e. do not have any existing UBI partitions),
|
|
* then use "ti,davinci-nand" as the compatible in your
|
|
* device-tree file.
|
|
*/
|
|
if (of_device_is_compatible(pdev->dev.of_node,
|
|
"ti,keystone-nand")) {
|
|
pdata->options |= NAND_NO_SUBPAGE_WRITE;
|
|
}
|
|
}
|
|
|
|
return dev_get_platdata(&pdev->dev);
|
|
}
|
|
#else
|
|
static struct davinci_nand_pdata
|
|
*nand_davinci_get_pdata(struct platform_device *pdev)
|
|
{
|
|
return dev_get_platdata(&pdev->dev);
|
|
}
|
|
#endif
|
|
|
|
static int nand_davinci_probe(struct platform_device *pdev)
|
|
{
|
|
struct davinci_nand_pdata *pdata;
|
|
struct davinci_nand_info *info;
|
|
struct resource *res1;
|
|
struct resource *res2;
|
|
void __iomem *vaddr;
|
|
void __iomem *base;
|
|
int ret;
|
|
uint32_t val;
|
|
struct mtd_info *mtd;
|
|
|
|
pdata = nand_davinci_get_pdata(pdev);
|
|
if (IS_ERR(pdata))
|
|
return PTR_ERR(pdata);
|
|
|
|
/* insist on board-specific configuration */
|
|
if (!pdata)
|
|
return -ENODEV;
|
|
|
|
/* which external chipselect will we be managing? */
|
|
if (pdev->id < 0 || pdev->id > 3)
|
|
return -ENODEV;
|
|
|
|
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, info);
|
|
|
|
res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
|
|
if (!res1 || !res2) {
|
|
dev_err(&pdev->dev, "resource missing\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
vaddr = devm_ioremap_resource(&pdev->dev, res1);
|
|
if (IS_ERR(vaddr))
|
|
return PTR_ERR(vaddr);
|
|
|
|
/*
|
|
* This registers range is used to setup NAND settings. In case with
|
|
* TI AEMIF driver, the same memory address range is requested already
|
|
* by AEMIF, so we cannot request it twice, just ioremap.
|
|
* The AEMIF and NAND drivers not use the same registers in this range.
|
|
*/
|
|
base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
|
|
if (!base) {
|
|
dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
|
|
return -EADDRNOTAVAIL;
|
|
}
|
|
|
|
info->dev = &pdev->dev;
|
|
info->base = base;
|
|
info->vaddr = vaddr;
|
|
|
|
mtd = nand_to_mtd(&info->chip);
|
|
mtd->dev.parent = &pdev->dev;
|
|
nand_set_flash_node(&info->chip, pdev->dev.of_node);
|
|
|
|
info->chip.IO_ADDR_R = vaddr;
|
|
info->chip.IO_ADDR_W = vaddr;
|
|
info->chip.chip_delay = 0;
|
|
info->chip.select_chip = nand_davinci_select_chip;
|
|
|
|
/* options such as NAND_BBT_USE_FLASH */
|
|
info->chip.bbt_options = pdata->bbt_options;
|
|
/* options such as 16-bit widths */
|
|
info->chip.options = pdata->options;
|
|
info->chip.bbt_td = pdata->bbt_td;
|
|
info->chip.bbt_md = pdata->bbt_md;
|
|
info->timing = pdata->timing;
|
|
|
|
info->ioaddr = (uint32_t __force) vaddr;
|
|
|
|
info->current_cs = info->ioaddr;
|
|
info->core_chipsel = pdev->id;
|
|
info->mask_chipsel = pdata->mask_chipsel;
|
|
|
|
/* use nandboot-capable ALE/CLE masks by default */
|
|
info->mask_ale = pdata->mask_ale ? : MASK_ALE;
|
|
info->mask_cle = pdata->mask_cle ? : MASK_CLE;
|
|
|
|
/* Set address of hardware control function */
|
|
info->chip.cmd_ctrl = nand_davinci_hwcontrol;
|
|
info->chip.dev_ready = nand_davinci_dev_ready;
|
|
|
|
/* Speed up buffer I/O */
|
|
info->chip.read_buf = nand_davinci_read_buf;
|
|
info->chip.write_buf = nand_davinci_write_buf;
|
|
|
|
/* Use board-specific ECC config */
|
|
info->chip.ecc.mode = pdata->ecc_mode;
|
|
|
|
ret = -EINVAL;
|
|
|
|
info->clk = devm_clk_get(&pdev->dev, "aemif");
|
|
if (IS_ERR(info->clk)) {
|
|
ret = PTR_ERR(info->clk);
|
|
dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = clk_prepare_enable(info->clk);
|
|
if (ret < 0) {
|
|
dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
|
|
ret);
|
|
goto err_clk_enable;
|
|
}
|
|
|
|
spin_lock_irq(&davinci_nand_lock);
|
|
|
|
/* put CSxNAND into NAND mode */
|
|
val = davinci_nand_readl(info, NANDFCR_OFFSET);
|
|
val |= BIT(info->core_chipsel);
|
|
davinci_nand_writel(info, NANDFCR_OFFSET, val);
|
|
|
|
spin_unlock_irq(&davinci_nand_lock);
|
|
|
|
/* Scan to find existence of the device(s) */
|
|
ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL);
|
|
if (ret < 0) {
|
|
dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
|
|
goto err;
|
|
}
|
|
|
|
switch (info->chip.ecc.mode) {
|
|
case NAND_ECC_NONE:
|
|
pdata->ecc_bits = 0;
|
|
break;
|
|
case NAND_ECC_SOFT:
|
|
pdata->ecc_bits = 0;
|
|
/*
|
|
* This driver expects Hamming based ECC when ecc_mode is set
|
|
* to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
|
|
* avoid adding an extra ->ecc_algo field to
|
|
* davinci_nand_pdata.
|
|
*/
|
|
info->chip.ecc.algo = NAND_ECC_HAMMING;
|
|
break;
|
|
case NAND_ECC_HW:
|
|
if (pdata->ecc_bits == 4) {
|
|
/* No sanity checks: CPUs must support this,
|
|
* and the chips may not use NAND_BUSWIDTH_16.
|
|
*/
|
|
|
|
/* No sharing 4-bit hardware between chipselects yet */
|
|
spin_lock_irq(&davinci_nand_lock);
|
|
if (ecc4_busy)
|
|
ret = -EBUSY;
|
|
else
|
|
ecc4_busy = true;
|
|
spin_unlock_irq(&davinci_nand_lock);
|
|
|
|
if (ret == -EBUSY)
|
|
return ret;
|
|
|
|
info->chip.ecc.calculate = nand_davinci_calculate_4bit;
|
|
info->chip.ecc.correct = nand_davinci_correct_4bit;
|
|
info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
|
|
info->chip.ecc.bytes = 10;
|
|
info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
|
|
info->chip.ecc.algo = NAND_ECC_BCH;
|
|
} else {
|
|
/* 1bit ecc hamming */
|
|
info->chip.ecc.calculate = nand_davinci_calculate_1bit;
|
|
info->chip.ecc.correct = nand_davinci_correct_1bit;
|
|
info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
|
|
info->chip.ecc.bytes = 3;
|
|
info->chip.ecc.algo = NAND_ECC_HAMMING;
|
|
}
|
|
info->chip.ecc.size = 512;
|
|
info->chip.ecc.strength = pdata->ecc_bits;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Update ECC layout if needed ... for 1-bit HW ECC, the default
|
|
* is OK, but it allocates 6 bytes when only 3 are needed (for
|
|
* each 512 bytes). For the 4-bit HW ECC, that default is not
|
|
* usable: 10 bytes are needed, not 6.
|
|
*/
|
|
if (pdata->ecc_bits == 4) {
|
|
int chunks = mtd->writesize / 512;
|
|
|
|
if (!chunks || mtd->oobsize < 16) {
|
|
dev_dbg(&pdev->dev, "too small\n");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* For small page chips, preserve the manufacturer's
|
|
* badblock marking data ... and make sure a flash BBT
|
|
* table marker fits in the free bytes.
|
|
*/
|
|
if (chunks == 1) {
|
|
mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
|
|
} else if (chunks == 4 || chunks == 8) {
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
|
|
info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
|
|
} else {
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
if (pdata->parts)
|
|
ret = mtd_device_parse_register(mtd, NULL, NULL,
|
|
pdata->parts, pdata->nr_parts);
|
|
else
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
val = davinci_nand_readl(info, NRCSR_OFFSET);
|
|
dev_info(&pdev->dev, "controller rev. %d.%d\n",
|
|
(val >> 8) & 0xff, val & 0xff);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
clk_disable_unprepare(info->clk);
|
|
|
|
err_clk_enable:
|
|
spin_lock_irq(&davinci_nand_lock);
|
|
if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
|
|
ecc4_busy = false;
|
|
spin_unlock_irq(&davinci_nand_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int nand_davinci_remove(struct platform_device *pdev)
|
|
{
|
|
struct davinci_nand_info *info = platform_get_drvdata(pdev);
|
|
|
|
spin_lock_irq(&davinci_nand_lock);
|
|
if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
|
|
ecc4_busy = false;
|
|
spin_unlock_irq(&davinci_nand_lock);
|
|
|
|
nand_release(nand_to_mtd(&info->chip));
|
|
|
|
clk_disable_unprepare(info->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver nand_davinci_driver = {
|
|
.probe = nand_davinci_probe,
|
|
.remove = nand_davinci_remove,
|
|
.driver = {
|
|
.name = "davinci_nand",
|
|
.of_match_table = of_match_ptr(davinci_nand_of_match),
|
|
},
|
|
};
|
|
MODULE_ALIAS("platform:davinci_nand");
|
|
|
|
module_platform_driver(nand_davinci_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Texas Instruments");
|
|
MODULE_DESCRIPTION("Davinci NAND flash driver");
|
|
|