mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 18:36:27 +07:00
ec03d6777a
Commit44c10138fd
("PCI: Change all drivers to use pci_device->revision") already converted this driver to using the revision field of struct pci_dev but commitbb9171448d
("IB/ipath: Misc changes to prepare for IB7220 introduction") later reverted that change for some strange reason. Restore the change. Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com> Acked-by: Mike Marciniszyn <mike.marciniszyn@qlogic.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2789 lines
81 KiB
C
2789 lines
81 KiB
C
/*
|
|
* Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
|
|
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "ipath_kernel.h"
|
|
#include "ipath_verbs.h"
|
|
|
|
static void ipath_update_pio_bufs(struct ipath_devdata *);
|
|
|
|
const char *ipath_get_unit_name(int unit)
|
|
{
|
|
static char iname[16];
|
|
snprintf(iname, sizeof iname, "infinipath%u", unit);
|
|
return iname;
|
|
}
|
|
|
|
#define DRIVER_LOAD_MSG "QLogic " IPATH_DRV_NAME " loaded: "
|
|
#define PFX IPATH_DRV_NAME ": "
|
|
|
|
/*
|
|
* The size has to be longer than this string, so we can append
|
|
* board/chip information to it in the init code.
|
|
*/
|
|
const char ib_ipath_version[] = IPATH_IDSTR "\n";
|
|
|
|
static struct idr unit_table;
|
|
DEFINE_SPINLOCK(ipath_devs_lock);
|
|
LIST_HEAD(ipath_dev_list);
|
|
|
|
wait_queue_head_t ipath_state_wait;
|
|
|
|
unsigned ipath_debug = __IPATH_INFO;
|
|
|
|
module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO);
|
|
MODULE_PARM_DESC(debug, "mask for debug prints");
|
|
EXPORT_SYMBOL_GPL(ipath_debug);
|
|
|
|
unsigned ipath_mtu4096 = 1; /* max 4KB IB mtu by default, if supported */
|
|
module_param_named(mtu4096, ipath_mtu4096, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(mtu4096, "enable MTU of 4096 bytes, if supported");
|
|
|
|
static unsigned ipath_hol_timeout_ms = 13000;
|
|
module_param_named(hol_timeout_ms, ipath_hol_timeout_ms, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(hol_timeout_ms,
|
|
"duration of user app suspension after link failure");
|
|
|
|
unsigned ipath_linkrecovery = 1;
|
|
module_param_named(linkrecovery, ipath_linkrecovery, uint, S_IWUSR | S_IRUGO);
|
|
MODULE_PARM_DESC(linkrecovery, "enable workaround for link recovery issue");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("QLogic <support@qlogic.com>");
|
|
MODULE_DESCRIPTION("QLogic InfiniPath driver");
|
|
|
|
/*
|
|
* Table to translate the LINKTRAININGSTATE portion of
|
|
* IBCStatus to a human-readable form.
|
|
*/
|
|
const char *ipath_ibcstatus_str[] = {
|
|
"Disabled",
|
|
"LinkUp",
|
|
"PollActive",
|
|
"PollQuiet",
|
|
"SleepDelay",
|
|
"SleepQuiet",
|
|
"LState6", /* unused */
|
|
"LState7", /* unused */
|
|
"CfgDebounce",
|
|
"CfgRcvfCfg",
|
|
"CfgWaitRmt",
|
|
"CfgIdle",
|
|
"RecovRetrain",
|
|
"CfgTxRevLane", /* unused before IBA7220 */
|
|
"RecovWaitRmt",
|
|
"RecovIdle",
|
|
/* below were added for IBA7220 */
|
|
"CfgEnhanced",
|
|
"CfgTest",
|
|
"CfgWaitRmtTest",
|
|
"CfgWaitCfgEnhanced",
|
|
"SendTS_T",
|
|
"SendTstIdles",
|
|
"RcvTS_T",
|
|
"SendTst_TS1s",
|
|
"LTState18", "LTState19", "LTState1A", "LTState1B",
|
|
"LTState1C", "LTState1D", "LTState1E", "LTState1F"
|
|
};
|
|
|
|
static void __devexit ipath_remove_one(struct pci_dev *);
|
|
static int __devinit ipath_init_one(struct pci_dev *,
|
|
const struct pci_device_id *);
|
|
|
|
/* Only needed for registration, nothing else needs this info */
|
|
#define PCI_VENDOR_ID_PATHSCALE 0x1fc1
|
|
#define PCI_DEVICE_ID_INFINIPATH_HT 0xd
|
|
|
|
/* Number of seconds before our card status check... */
|
|
#define STATUS_TIMEOUT 60
|
|
|
|
static const struct pci_device_id ipath_pci_tbl[] = {
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) },
|
|
{ 0, }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, ipath_pci_tbl);
|
|
|
|
static struct pci_driver ipath_driver = {
|
|
.name = IPATH_DRV_NAME,
|
|
.probe = ipath_init_one,
|
|
.remove = __devexit_p(ipath_remove_one),
|
|
.id_table = ipath_pci_tbl,
|
|
.driver = {
|
|
.groups = ipath_driver_attr_groups,
|
|
},
|
|
};
|
|
|
|
static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev,
|
|
u32 *bar0, u32 *bar1)
|
|
{
|
|
int ret;
|
|
|
|
ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0);
|
|
if (ret)
|
|
ipath_dev_err(dd, "failed to read bar0 before enable: "
|
|
"error %d\n", -ret);
|
|
|
|
ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1);
|
|
if (ret)
|
|
ipath_dev_err(dd, "failed to read bar1 before enable: "
|
|
"error %d\n", -ret);
|
|
|
|
ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1);
|
|
}
|
|
|
|
static void ipath_free_devdata(struct pci_dev *pdev,
|
|
struct ipath_devdata *dd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
if (dd->ipath_unit != -1) {
|
|
spin_lock_irqsave(&ipath_devs_lock, flags);
|
|
idr_remove(&unit_table, dd->ipath_unit);
|
|
list_del(&dd->ipath_list);
|
|
spin_unlock_irqrestore(&ipath_devs_lock, flags);
|
|
}
|
|
vfree(dd);
|
|
}
|
|
|
|
static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev)
|
|
{
|
|
unsigned long flags;
|
|
struct ipath_devdata *dd;
|
|
int ret;
|
|
|
|
if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
|
|
dd = ERR_PTR(-ENOMEM);
|
|
goto bail;
|
|
}
|
|
|
|
dd = vzalloc(sizeof(*dd));
|
|
if (!dd) {
|
|
dd = ERR_PTR(-ENOMEM);
|
|
goto bail;
|
|
}
|
|
dd->ipath_unit = -1;
|
|
|
|
spin_lock_irqsave(&ipath_devs_lock, flags);
|
|
|
|
ret = idr_get_new(&unit_table, dd, &dd->ipath_unit);
|
|
if (ret < 0) {
|
|
printk(KERN_ERR IPATH_DRV_NAME
|
|
": Could not allocate unit ID: error %d\n", -ret);
|
|
ipath_free_devdata(pdev, dd);
|
|
dd = ERR_PTR(ret);
|
|
goto bail_unlock;
|
|
}
|
|
|
|
dd->pcidev = pdev;
|
|
pci_set_drvdata(pdev, dd);
|
|
|
|
list_add(&dd->ipath_list, &ipath_dev_list);
|
|
|
|
bail_unlock:
|
|
spin_unlock_irqrestore(&ipath_devs_lock, flags);
|
|
|
|
bail:
|
|
return dd;
|
|
}
|
|
|
|
static inline struct ipath_devdata *__ipath_lookup(int unit)
|
|
{
|
|
return idr_find(&unit_table, unit);
|
|
}
|
|
|
|
struct ipath_devdata *ipath_lookup(int unit)
|
|
{
|
|
struct ipath_devdata *dd;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ipath_devs_lock, flags);
|
|
dd = __ipath_lookup(unit);
|
|
spin_unlock_irqrestore(&ipath_devs_lock, flags);
|
|
|
|
return dd;
|
|
}
|
|
|
|
int ipath_count_units(int *npresentp, int *nupp, int *maxportsp)
|
|
{
|
|
int nunits, npresent, nup;
|
|
struct ipath_devdata *dd;
|
|
unsigned long flags;
|
|
int maxports;
|
|
|
|
nunits = npresent = nup = maxports = 0;
|
|
|
|
spin_lock_irqsave(&ipath_devs_lock, flags);
|
|
|
|
list_for_each_entry(dd, &ipath_dev_list, ipath_list) {
|
|
nunits++;
|
|
if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase)
|
|
npresent++;
|
|
if (dd->ipath_lid &&
|
|
!(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN
|
|
| IPATH_LINKUNK)))
|
|
nup++;
|
|
if (dd->ipath_cfgports > maxports)
|
|
maxports = dd->ipath_cfgports;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ipath_devs_lock, flags);
|
|
|
|
if (npresentp)
|
|
*npresentp = npresent;
|
|
if (nupp)
|
|
*nupp = nup;
|
|
if (maxportsp)
|
|
*maxportsp = maxports;
|
|
|
|
return nunits;
|
|
}
|
|
|
|
/*
|
|
* These next two routines are placeholders in case we don't have per-arch
|
|
* code for controlling write combining. If explicit control of write
|
|
* combining is not available, performance will probably be awful.
|
|
*/
|
|
|
|
int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Perform a PIO buffer bandwidth write test, to verify proper system
|
|
* configuration. Even when all the setup calls work, occasionally
|
|
* BIOS or other issues can prevent write combining from working, or
|
|
* can cause other bandwidth problems to the chip.
|
|
*
|
|
* This test simply writes the same buffer over and over again, and
|
|
* measures close to the peak bandwidth to the chip (not testing
|
|
* data bandwidth to the wire). On chips that use an address-based
|
|
* trigger to send packets to the wire, this is easy. On chips that
|
|
* use a count to trigger, we want to make sure that the packet doesn't
|
|
* go out on the wire, or trigger flow control checks.
|
|
*/
|
|
static void ipath_verify_pioperf(struct ipath_devdata *dd)
|
|
{
|
|
u32 pbnum, cnt, lcnt;
|
|
u32 __iomem *piobuf;
|
|
u32 *addr;
|
|
u64 msecs, emsecs;
|
|
|
|
piobuf = ipath_getpiobuf(dd, 0, &pbnum);
|
|
if (!piobuf) {
|
|
dev_info(&dd->pcidev->dev,
|
|
"No PIObufs for checking perf, skipping\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Enough to give us a reasonable test, less than piobuf size, and
|
|
* likely multiple of store buffer length.
|
|
*/
|
|
cnt = 1024;
|
|
|
|
addr = vmalloc(cnt);
|
|
if (!addr) {
|
|
dev_info(&dd->pcidev->dev,
|
|
"Couldn't get memory for checking PIO perf,"
|
|
" skipping\n");
|
|
goto done;
|
|
}
|
|
|
|
preempt_disable(); /* we want reasonably accurate elapsed time */
|
|
msecs = 1 + jiffies_to_msecs(jiffies);
|
|
for (lcnt = 0; lcnt < 10000U; lcnt++) {
|
|
/* wait until we cross msec boundary */
|
|
if (jiffies_to_msecs(jiffies) >= msecs)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
ipath_disable_armlaunch(dd);
|
|
|
|
/*
|
|
* length 0, no dwords actually sent, and mark as VL15
|
|
* on chips where that may matter (due to IB flowcontrol)
|
|
*/
|
|
if ((dd->ipath_flags & IPATH_HAS_PBC_CNT))
|
|
writeq(1UL << 63, piobuf);
|
|
else
|
|
writeq(0, piobuf);
|
|
ipath_flush_wc();
|
|
|
|
/*
|
|
* this is only roughly accurate, since even with preempt we
|
|
* still take interrupts that could take a while. Running for
|
|
* >= 5 msec seems to get us "close enough" to accurate values
|
|
*/
|
|
msecs = jiffies_to_msecs(jiffies);
|
|
for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) {
|
|
__iowrite32_copy(piobuf + 64, addr, cnt >> 2);
|
|
emsecs = jiffies_to_msecs(jiffies) - msecs;
|
|
}
|
|
|
|
/* 1 GiB/sec, slightly over IB SDR line rate */
|
|
if (lcnt < (emsecs * 1024U))
|
|
ipath_dev_err(dd,
|
|
"Performance problem: bandwidth to PIO buffers is "
|
|
"only %u MiB/sec\n",
|
|
lcnt / (u32) emsecs);
|
|
else
|
|
ipath_dbg("PIO buffer bandwidth %u MiB/sec is OK\n",
|
|
lcnt / (u32) emsecs);
|
|
|
|
preempt_enable();
|
|
|
|
vfree(addr);
|
|
|
|
done:
|
|
/* disarm piobuf, so it's available again */
|
|
ipath_disarm_piobufs(dd, pbnum, 1);
|
|
ipath_enable_armlaunch(dd);
|
|
}
|
|
|
|
static void cleanup_device(struct ipath_devdata *dd);
|
|
|
|
static int __devinit ipath_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
int ret, len, j;
|
|
struct ipath_devdata *dd;
|
|
unsigned long long addr;
|
|
u32 bar0 = 0, bar1 = 0;
|
|
|
|
dd = ipath_alloc_devdata(pdev);
|
|
if (IS_ERR(dd)) {
|
|
ret = PTR_ERR(dd);
|
|
printk(KERN_ERR IPATH_DRV_NAME
|
|
": Could not allocate devdata: error %d\n", -ret);
|
|
goto bail;
|
|
}
|
|
|
|
ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit);
|
|
|
|
ret = pci_enable_device(pdev);
|
|
if (ret) {
|
|
/* This can happen iff:
|
|
*
|
|
* We did a chip reset, and then failed to reprogram the
|
|
* BAR, or the chip reset due to an internal error. We then
|
|
* unloaded the driver and reloaded it.
|
|
*
|
|
* Both reset cases set the BAR back to initial state. For
|
|
* the latter case, the AER sticky error bit at offset 0x718
|
|
* should be set, but the Linux kernel doesn't yet know
|
|
* about that, it appears. If the original BAR was retained
|
|
* in the kernel data structures, this may be OK.
|
|
*/
|
|
ipath_dev_err(dd, "enable unit %d failed: error %d\n",
|
|
dd->ipath_unit, -ret);
|
|
goto bail_devdata;
|
|
}
|
|
addr = pci_resource_start(pdev, 0);
|
|
len = pci_resource_len(pdev, 0);
|
|
ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %d, vend %x/%x "
|
|
"driver_data %lx\n", addr, len, pdev->irq, ent->vendor,
|
|
ent->device, ent->driver_data);
|
|
|
|
read_bars(dd, pdev, &bar0, &bar1);
|
|
|
|
if (!bar1 && !(bar0 & ~0xf)) {
|
|
if (addr) {
|
|
dev_info(&pdev->dev, "BAR is 0 (probable RESET), "
|
|
"rewriting as %llx\n", addr);
|
|
ret = pci_write_config_dword(
|
|
pdev, PCI_BASE_ADDRESS_0, addr);
|
|
if (ret) {
|
|
ipath_dev_err(dd, "rewrite of BAR0 "
|
|
"failed: err %d\n", -ret);
|
|
goto bail_disable;
|
|
}
|
|
ret = pci_write_config_dword(
|
|
pdev, PCI_BASE_ADDRESS_1, addr >> 32);
|
|
if (ret) {
|
|
ipath_dev_err(dd, "rewrite of BAR1 "
|
|
"failed: err %d\n", -ret);
|
|
goto bail_disable;
|
|
}
|
|
} else {
|
|
ipath_dev_err(dd, "BAR is 0 (probable RESET), "
|
|
"not usable until reboot\n");
|
|
ret = -ENODEV;
|
|
goto bail_disable;
|
|
}
|
|
}
|
|
|
|
ret = pci_request_regions(pdev, IPATH_DRV_NAME);
|
|
if (ret) {
|
|
dev_info(&pdev->dev, "pci_request_regions unit %u fails: "
|
|
"err %d\n", dd->ipath_unit, -ret);
|
|
goto bail_disable;
|
|
}
|
|
|
|
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
|
|
if (ret) {
|
|
/*
|
|
* if the 64 bit setup fails, try 32 bit. Some systems
|
|
* do not setup 64 bit maps on systems with 2GB or less
|
|
* memory installed.
|
|
*/
|
|
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (ret) {
|
|
dev_info(&pdev->dev,
|
|
"Unable to set DMA mask for unit %u: %d\n",
|
|
dd->ipath_unit, ret);
|
|
goto bail_regions;
|
|
}
|
|
else {
|
|
ipath_dbg("No 64bit DMA mask, used 32 bit mask\n");
|
|
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (ret)
|
|
dev_info(&pdev->dev,
|
|
"Unable to set DMA consistent mask "
|
|
"for unit %u: %d\n",
|
|
dd->ipath_unit, ret);
|
|
|
|
}
|
|
}
|
|
else {
|
|
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
|
|
if (ret)
|
|
dev_info(&pdev->dev,
|
|
"Unable to set DMA consistent mask "
|
|
"for unit %u: %d\n",
|
|
dd->ipath_unit, ret);
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
/*
|
|
* Save BARs to rewrite after device reset. Save all 64 bits of
|
|
* BAR, just in case.
|
|
*/
|
|
dd->ipath_pcibar0 = addr;
|
|
dd->ipath_pcibar1 = addr >> 32;
|
|
dd->ipath_deviceid = ent->device; /* save for later use */
|
|
dd->ipath_vendorid = ent->vendor;
|
|
|
|
/* setup the chip-specific functions, as early as possible. */
|
|
switch (ent->device) {
|
|
case PCI_DEVICE_ID_INFINIPATH_HT:
|
|
ipath_init_iba6110_funcs(dd);
|
|
break;
|
|
|
|
default:
|
|
ipath_dev_err(dd, "Found unknown QLogic deviceid 0x%x, "
|
|
"failing\n", ent->device);
|
|
return -ENODEV;
|
|
}
|
|
|
|
for (j = 0; j < 6; j++) {
|
|
if (!pdev->resource[j].start)
|
|
continue;
|
|
ipath_cdbg(VERBOSE, "BAR %d %pR, len %llx\n",
|
|
j, &pdev->resource[j],
|
|
(unsigned long long)pci_resource_len(pdev, j));
|
|
}
|
|
|
|
if (!addr) {
|
|
ipath_dev_err(dd, "No valid address in BAR 0!\n");
|
|
ret = -ENODEV;
|
|
goto bail_regions;
|
|
}
|
|
|
|
dd->ipath_pcirev = pdev->revision;
|
|
|
|
#if defined(__powerpc__)
|
|
/* There isn't a generic way to specify writethrough mappings */
|
|
dd->ipath_kregbase = __ioremap(addr, len,
|
|
(_PAGE_NO_CACHE|_PAGE_WRITETHRU));
|
|
#else
|
|
dd->ipath_kregbase = ioremap_nocache(addr, len);
|
|
#endif
|
|
|
|
if (!dd->ipath_kregbase) {
|
|
ipath_dbg("Unable to map io addr %llx to kvirt, failing\n",
|
|
addr);
|
|
ret = -ENOMEM;
|
|
goto bail_iounmap;
|
|
}
|
|
dd->ipath_kregend = (u64 __iomem *)
|
|
((void __iomem *)dd->ipath_kregbase + len);
|
|
dd->ipath_physaddr = addr; /* used for io_remap, etc. */
|
|
/* for user mmap */
|
|
ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p\n",
|
|
addr, dd->ipath_kregbase);
|
|
|
|
if (dd->ipath_f_bus(dd, pdev))
|
|
ipath_dev_err(dd, "Failed to setup config space; "
|
|
"continuing anyway\n");
|
|
|
|
/*
|
|
* set up our interrupt handler; IRQF_SHARED probably not needed,
|
|
* since MSI interrupts shouldn't be shared but won't hurt for now.
|
|
* check 0 irq after we return from chip-specific bus setup, since
|
|
* that can affect this due to setup
|
|
*/
|
|
if (!dd->ipath_irq)
|
|
ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't "
|
|
"work\n");
|
|
else {
|
|
ret = request_irq(dd->ipath_irq, ipath_intr, IRQF_SHARED,
|
|
IPATH_DRV_NAME, dd);
|
|
if (ret) {
|
|
ipath_dev_err(dd, "Couldn't setup irq handler, "
|
|
"irq=%d: %d\n", dd->ipath_irq, ret);
|
|
goto bail_iounmap;
|
|
}
|
|
}
|
|
|
|
ret = ipath_init_chip(dd, 0); /* do the chip-specific init */
|
|
if (ret)
|
|
goto bail_irqsetup;
|
|
|
|
ret = ipath_enable_wc(dd);
|
|
|
|
if (ret) {
|
|
ipath_dev_err(dd, "Write combining not enabled "
|
|
"(err %d): performance may be poor\n",
|
|
-ret);
|
|
ret = 0;
|
|
}
|
|
|
|
ipath_verify_pioperf(dd);
|
|
|
|
ipath_device_create_group(&pdev->dev, dd);
|
|
ipathfs_add_device(dd);
|
|
ipath_user_add(dd);
|
|
ipath_diag_add(dd);
|
|
ipath_register_ib_device(dd);
|
|
|
|
goto bail;
|
|
|
|
bail_irqsetup:
|
|
cleanup_device(dd);
|
|
|
|
if (dd->ipath_irq)
|
|
dd->ipath_f_free_irq(dd);
|
|
|
|
if (dd->ipath_f_cleanup)
|
|
dd->ipath_f_cleanup(dd);
|
|
|
|
bail_iounmap:
|
|
iounmap((volatile void __iomem *) dd->ipath_kregbase);
|
|
|
|
bail_regions:
|
|
pci_release_regions(pdev);
|
|
|
|
bail_disable:
|
|
pci_disable_device(pdev);
|
|
|
|
bail_devdata:
|
|
ipath_free_devdata(pdev, dd);
|
|
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
static void cleanup_device(struct ipath_devdata *dd)
|
|
{
|
|
int port;
|
|
struct ipath_portdata **tmp;
|
|
unsigned long flags;
|
|
|
|
if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) {
|
|
/* can't do anything more with chip; needs re-init */
|
|
*dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT;
|
|
if (dd->ipath_kregbase) {
|
|
/*
|
|
* if we haven't already cleaned up before these are
|
|
* to ensure any register reads/writes "fail" until
|
|
* re-init
|
|
*/
|
|
dd->ipath_kregbase = NULL;
|
|
dd->ipath_uregbase = 0;
|
|
dd->ipath_sregbase = 0;
|
|
dd->ipath_cregbase = 0;
|
|
dd->ipath_kregsize = 0;
|
|
}
|
|
ipath_disable_wc(dd);
|
|
}
|
|
|
|
if (dd->ipath_spectriggerhit)
|
|
dev_info(&dd->pcidev->dev, "%lu special trigger hits\n",
|
|
dd->ipath_spectriggerhit);
|
|
|
|
if (dd->ipath_pioavailregs_dma) {
|
|
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
|
|
(void *) dd->ipath_pioavailregs_dma,
|
|
dd->ipath_pioavailregs_phys);
|
|
dd->ipath_pioavailregs_dma = NULL;
|
|
}
|
|
if (dd->ipath_dummy_hdrq) {
|
|
dma_free_coherent(&dd->pcidev->dev,
|
|
dd->ipath_pd[0]->port_rcvhdrq_size,
|
|
dd->ipath_dummy_hdrq, dd->ipath_dummy_hdrq_phys);
|
|
dd->ipath_dummy_hdrq = NULL;
|
|
}
|
|
|
|
if (dd->ipath_pageshadow) {
|
|
struct page **tmpp = dd->ipath_pageshadow;
|
|
dma_addr_t *tmpd = dd->ipath_physshadow;
|
|
int i, cnt = 0;
|
|
|
|
ipath_cdbg(VERBOSE, "Unlocking any expTID pages still "
|
|
"locked\n");
|
|
for (port = 0; port < dd->ipath_cfgports; port++) {
|
|
int port_tidbase = port * dd->ipath_rcvtidcnt;
|
|
int maxtid = port_tidbase + dd->ipath_rcvtidcnt;
|
|
for (i = port_tidbase; i < maxtid; i++) {
|
|
if (!tmpp[i])
|
|
continue;
|
|
pci_unmap_page(dd->pcidev, tmpd[i],
|
|
PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
|
ipath_release_user_pages(&tmpp[i], 1);
|
|
tmpp[i] = NULL;
|
|
cnt++;
|
|
}
|
|
}
|
|
if (cnt) {
|
|
ipath_stats.sps_pageunlocks += cnt;
|
|
ipath_cdbg(VERBOSE, "There were still %u expTID "
|
|
"entries locked\n", cnt);
|
|
}
|
|
if (ipath_stats.sps_pagelocks ||
|
|
ipath_stats.sps_pageunlocks)
|
|
ipath_cdbg(VERBOSE, "%llu pages locked, %llu "
|
|
"unlocked via ipath_m{un}lock\n",
|
|
(unsigned long long)
|
|
ipath_stats.sps_pagelocks,
|
|
(unsigned long long)
|
|
ipath_stats.sps_pageunlocks);
|
|
|
|
ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n",
|
|
dd->ipath_pageshadow);
|
|
tmpp = dd->ipath_pageshadow;
|
|
dd->ipath_pageshadow = NULL;
|
|
vfree(tmpp);
|
|
|
|
dd->ipath_egrtidbase = NULL;
|
|
}
|
|
|
|
/*
|
|
* free any resources still in use (usually just kernel ports)
|
|
* at unload; we do for portcnt, because that's what we allocate.
|
|
* We acquire lock to be really paranoid that ipath_pd isn't being
|
|
* accessed from some interrupt-related code (that should not happen,
|
|
* but best to be sure).
|
|
*/
|
|
spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
|
|
tmp = dd->ipath_pd;
|
|
dd->ipath_pd = NULL;
|
|
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
|
|
for (port = 0; port < dd->ipath_portcnt; port++) {
|
|
struct ipath_portdata *pd = tmp[port];
|
|
tmp[port] = NULL; /* debugging paranoia */
|
|
ipath_free_pddata(dd, pd);
|
|
}
|
|
kfree(tmp);
|
|
}
|
|
|
|
static void __devexit ipath_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct ipath_devdata *dd = pci_get_drvdata(pdev);
|
|
|
|
ipath_cdbg(VERBOSE, "removing, pdev=%p, dd=%p\n", pdev, dd);
|
|
|
|
/*
|
|
* disable the IB link early, to be sure no new packets arrive, which
|
|
* complicates the shutdown process
|
|
*/
|
|
ipath_shutdown_device(dd);
|
|
|
|
flush_workqueue(ib_wq);
|
|
|
|
if (dd->verbs_dev)
|
|
ipath_unregister_ib_device(dd->verbs_dev);
|
|
|
|
ipath_diag_remove(dd);
|
|
ipath_user_remove(dd);
|
|
ipathfs_remove_device(dd);
|
|
ipath_device_remove_group(&pdev->dev, dd);
|
|
|
|
ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, "
|
|
"unit %u\n", dd, (u32) dd->ipath_unit);
|
|
|
|
cleanup_device(dd);
|
|
|
|
/*
|
|
* turn off rcv, send, and interrupts for all ports, all drivers
|
|
* should also hard reset the chip here?
|
|
* free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs
|
|
* for all versions of the driver, if they were allocated
|
|
*/
|
|
if (dd->ipath_irq) {
|
|
ipath_cdbg(VERBOSE, "unit %u free irq %d\n",
|
|
dd->ipath_unit, dd->ipath_irq);
|
|
dd->ipath_f_free_irq(dd);
|
|
} else
|
|
ipath_dbg("irq is 0, not doing free_irq "
|
|
"for unit %u\n", dd->ipath_unit);
|
|
/*
|
|
* we check for NULL here, because it's outside
|
|
* the kregbase check, and we need to call it
|
|
* after the free_irq. Thus it's possible that
|
|
* the function pointers were never initialized.
|
|
*/
|
|
if (dd->ipath_f_cleanup)
|
|
/* clean up chip-specific stuff */
|
|
dd->ipath_f_cleanup(dd);
|
|
|
|
ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase);
|
|
iounmap((volatile void __iomem *) dd->ipath_kregbase);
|
|
pci_release_regions(pdev);
|
|
ipath_cdbg(VERBOSE, "calling pci_disable_device\n");
|
|
pci_disable_device(pdev);
|
|
|
|
ipath_free_devdata(pdev, dd);
|
|
}
|
|
|
|
/* general driver use */
|
|
DEFINE_MUTEX(ipath_mutex);
|
|
|
|
static DEFINE_SPINLOCK(ipath_pioavail_lock);
|
|
|
|
/**
|
|
* ipath_disarm_piobufs - cancel a range of PIO buffers
|
|
* @dd: the infinipath device
|
|
* @first: the first PIO buffer to cancel
|
|
* @cnt: the number of PIO buffers to cancel
|
|
*
|
|
* cancel a range of PIO buffers, used when they might be armed, but
|
|
* not triggered. Used at init to ensure buffer state, and also user
|
|
* process close, in case it died while writing to a PIO buffer
|
|
* Also after errors.
|
|
*/
|
|
void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first,
|
|
unsigned cnt)
|
|
{
|
|
unsigned i, last = first + cnt;
|
|
unsigned long flags;
|
|
|
|
ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first);
|
|
for (i = first; i < last; i++) {
|
|
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
|
|
/*
|
|
* The disarm-related bits are write-only, so it
|
|
* is ok to OR them in with our copy of sendctrl
|
|
* while we hold the lock.
|
|
*/
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
|
|
dd->ipath_sendctrl | INFINIPATH_S_DISARM |
|
|
(i << INFINIPATH_S_DISARMPIOBUF_SHIFT));
|
|
/* can't disarm bufs back-to-back per iba7220 spec */
|
|
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
|
|
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
|
|
}
|
|
/* on some older chips, update may not happen after cancel */
|
|
ipath_force_pio_avail_update(dd);
|
|
}
|
|
|
|
/**
|
|
* ipath_wait_linkstate - wait for an IB link state change to occur
|
|
* @dd: the infinipath device
|
|
* @state: the state to wait for
|
|
* @msecs: the number of milliseconds to wait
|
|
*
|
|
* wait up to msecs milliseconds for IB link state change to occur for
|
|
* now, take the easy polling route. Currently used only by
|
|
* ipath_set_linkstate. Returns 0 if state reached, otherwise
|
|
* -ETIMEDOUT state can have multiple states set, for any of several
|
|
* transitions.
|
|
*/
|
|
int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs)
|
|
{
|
|
dd->ipath_state_wanted = state;
|
|
wait_event_interruptible_timeout(ipath_state_wait,
|
|
(dd->ipath_flags & state),
|
|
msecs_to_jiffies(msecs));
|
|
dd->ipath_state_wanted = 0;
|
|
|
|
if (!(dd->ipath_flags & state)) {
|
|
u64 val;
|
|
ipath_cdbg(VERBOSE, "Didn't reach linkstate %s within %u"
|
|
" ms\n",
|
|
/* test INIT ahead of DOWN, both can be set */
|
|
(state & IPATH_LINKINIT) ? "INIT" :
|
|
((state & IPATH_LINKDOWN) ? "DOWN" :
|
|
((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")),
|
|
msecs);
|
|
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
|
|
ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n",
|
|
(unsigned long long) ipath_read_kreg64(
|
|
dd, dd->ipath_kregs->kr_ibcctrl),
|
|
(unsigned long long) val,
|
|
ipath_ibcstatus_str[val & dd->ibcs_lts_mask]);
|
|
}
|
|
return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT;
|
|
}
|
|
|
|
static void decode_sdma_errs(struct ipath_devdata *dd, ipath_err_t err,
|
|
char *buf, size_t blen)
|
|
{
|
|
static const struct {
|
|
ipath_err_t err;
|
|
const char *msg;
|
|
} errs[] = {
|
|
{ INFINIPATH_E_SDMAGENMISMATCH, "SDmaGenMismatch" },
|
|
{ INFINIPATH_E_SDMAOUTOFBOUND, "SDmaOutOfBound" },
|
|
{ INFINIPATH_E_SDMATAILOUTOFBOUND, "SDmaTailOutOfBound" },
|
|
{ INFINIPATH_E_SDMABASE, "SDmaBase" },
|
|
{ INFINIPATH_E_SDMA1STDESC, "SDma1stDesc" },
|
|
{ INFINIPATH_E_SDMARPYTAG, "SDmaRpyTag" },
|
|
{ INFINIPATH_E_SDMADWEN, "SDmaDwEn" },
|
|
{ INFINIPATH_E_SDMAMISSINGDW, "SDmaMissingDw" },
|
|
{ INFINIPATH_E_SDMAUNEXPDATA, "SDmaUnexpData" },
|
|
{ INFINIPATH_E_SDMADESCADDRMISALIGN, "SDmaDescAddrMisalign" },
|
|
{ INFINIPATH_E_SENDBUFMISUSE, "SendBufMisuse" },
|
|
{ INFINIPATH_E_SDMADISABLED, "SDmaDisabled" },
|
|
};
|
|
int i;
|
|
int expected;
|
|
size_t bidx = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(errs); i++) {
|
|
expected = (errs[i].err != INFINIPATH_E_SDMADISABLED) ? 0 :
|
|
test_bit(IPATH_SDMA_ABORTING, &dd->ipath_sdma_status);
|
|
if ((err & errs[i].err) && !expected)
|
|
bidx += snprintf(buf + bidx, blen - bidx,
|
|
"%s ", errs[i].msg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decode the error status into strings, deciding whether to always
|
|
* print * it or not depending on "normal packet errors" vs everything
|
|
* else. Return 1 if "real" errors, otherwise 0 if only packet
|
|
* errors, so caller can decide what to print with the string.
|
|
*/
|
|
int ipath_decode_err(struct ipath_devdata *dd, char *buf, size_t blen,
|
|
ipath_err_t err)
|
|
{
|
|
int iserr = 1;
|
|
*buf = '\0';
|
|
if (err & INFINIPATH_E_PKTERRS) {
|
|
if (!(err & ~INFINIPATH_E_PKTERRS))
|
|
iserr = 0; // if only packet errors.
|
|
if (ipath_debug & __IPATH_ERRPKTDBG) {
|
|
if (err & INFINIPATH_E_REBP)
|
|
strlcat(buf, "EBP ", blen);
|
|
if (err & INFINIPATH_E_RVCRC)
|
|
strlcat(buf, "VCRC ", blen);
|
|
if (err & INFINIPATH_E_RICRC) {
|
|
strlcat(buf, "CRC ", blen);
|
|
// clear for check below, so only once
|
|
err &= INFINIPATH_E_RICRC;
|
|
}
|
|
if (err & INFINIPATH_E_RSHORTPKTLEN)
|
|
strlcat(buf, "rshortpktlen ", blen);
|
|
if (err & INFINIPATH_E_SDROPPEDDATAPKT)
|
|
strlcat(buf, "sdroppeddatapkt ", blen);
|
|
if (err & INFINIPATH_E_SPKTLEN)
|
|
strlcat(buf, "spktlen ", blen);
|
|
}
|
|
if ((err & INFINIPATH_E_RICRC) &&
|
|
!(err&(INFINIPATH_E_RVCRC|INFINIPATH_E_REBP)))
|
|
strlcat(buf, "CRC ", blen);
|
|
if (!iserr)
|
|
goto done;
|
|
}
|
|
if (err & INFINIPATH_E_RHDRLEN)
|
|
strlcat(buf, "rhdrlen ", blen);
|
|
if (err & INFINIPATH_E_RBADTID)
|
|
strlcat(buf, "rbadtid ", blen);
|
|
if (err & INFINIPATH_E_RBADVERSION)
|
|
strlcat(buf, "rbadversion ", blen);
|
|
if (err & INFINIPATH_E_RHDR)
|
|
strlcat(buf, "rhdr ", blen);
|
|
if (err & INFINIPATH_E_SENDSPECIALTRIGGER)
|
|
strlcat(buf, "sendspecialtrigger ", blen);
|
|
if (err & INFINIPATH_E_RLONGPKTLEN)
|
|
strlcat(buf, "rlongpktlen ", blen);
|
|
if (err & INFINIPATH_E_RMAXPKTLEN)
|
|
strlcat(buf, "rmaxpktlen ", blen);
|
|
if (err & INFINIPATH_E_RMINPKTLEN)
|
|
strlcat(buf, "rminpktlen ", blen);
|
|
if (err & INFINIPATH_E_SMINPKTLEN)
|
|
strlcat(buf, "sminpktlen ", blen);
|
|
if (err & INFINIPATH_E_RFORMATERR)
|
|
strlcat(buf, "rformaterr ", blen);
|
|
if (err & INFINIPATH_E_RUNSUPVL)
|
|
strlcat(buf, "runsupvl ", blen);
|
|
if (err & INFINIPATH_E_RUNEXPCHAR)
|
|
strlcat(buf, "runexpchar ", blen);
|
|
if (err & INFINIPATH_E_RIBFLOW)
|
|
strlcat(buf, "ribflow ", blen);
|
|
if (err & INFINIPATH_E_SUNDERRUN)
|
|
strlcat(buf, "sunderrun ", blen);
|
|
if (err & INFINIPATH_E_SPIOARMLAUNCH)
|
|
strlcat(buf, "spioarmlaunch ", blen);
|
|
if (err & INFINIPATH_E_SUNEXPERRPKTNUM)
|
|
strlcat(buf, "sunexperrpktnum ", blen);
|
|
if (err & INFINIPATH_E_SDROPPEDSMPPKT)
|
|
strlcat(buf, "sdroppedsmppkt ", blen);
|
|
if (err & INFINIPATH_E_SMAXPKTLEN)
|
|
strlcat(buf, "smaxpktlen ", blen);
|
|
if (err & INFINIPATH_E_SUNSUPVL)
|
|
strlcat(buf, "sunsupVL ", blen);
|
|
if (err & INFINIPATH_E_INVALIDADDR)
|
|
strlcat(buf, "invalidaddr ", blen);
|
|
if (err & INFINIPATH_E_RRCVEGRFULL)
|
|
strlcat(buf, "rcvegrfull ", blen);
|
|
if (err & INFINIPATH_E_RRCVHDRFULL)
|
|
strlcat(buf, "rcvhdrfull ", blen);
|
|
if (err & INFINIPATH_E_IBSTATUSCHANGED)
|
|
strlcat(buf, "ibcstatuschg ", blen);
|
|
if (err & INFINIPATH_E_RIBLOSTLINK)
|
|
strlcat(buf, "riblostlink ", blen);
|
|
if (err & INFINIPATH_E_HARDWARE)
|
|
strlcat(buf, "hardware ", blen);
|
|
if (err & INFINIPATH_E_RESET)
|
|
strlcat(buf, "reset ", blen);
|
|
if (err & INFINIPATH_E_SDMAERRS)
|
|
decode_sdma_errs(dd, err, buf, blen);
|
|
if (err & INFINIPATH_E_INVALIDEEPCMD)
|
|
strlcat(buf, "invalideepromcmd ", blen);
|
|
done:
|
|
return iserr;
|
|
}
|
|
|
|
/**
|
|
* get_rhf_errstring - decode RHF errors
|
|
* @err: the err number
|
|
* @msg: the output buffer
|
|
* @len: the length of the output buffer
|
|
*
|
|
* only used one place now, may want more later
|
|
*/
|
|
static void get_rhf_errstring(u32 err, char *msg, size_t len)
|
|
{
|
|
/* if no errors, and so don't need to check what's first */
|
|
*msg = '\0';
|
|
|
|
if (err & INFINIPATH_RHF_H_ICRCERR)
|
|
strlcat(msg, "icrcerr ", len);
|
|
if (err & INFINIPATH_RHF_H_VCRCERR)
|
|
strlcat(msg, "vcrcerr ", len);
|
|
if (err & INFINIPATH_RHF_H_PARITYERR)
|
|
strlcat(msg, "parityerr ", len);
|
|
if (err & INFINIPATH_RHF_H_LENERR)
|
|
strlcat(msg, "lenerr ", len);
|
|
if (err & INFINIPATH_RHF_H_MTUERR)
|
|
strlcat(msg, "mtuerr ", len);
|
|
if (err & INFINIPATH_RHF_H_IHDRERR)
|
|
/* infinipath hdr checksum error */
|
|
strlcat(msg, "ipathhdrerr ", len);
|
|
if (err & INFINIPATH_RHF_H_TIDERR)
|
|
strlcat(msg, "tiderr ", len);
|
|
if (err & INFINIPATH_RHF_H_MKERR)
|
|
/* bad port, offset, etc. */
|
|
strlcat(msg, "invalid ipathhdr ", len);
|
|
if (err & INFINIPATH_RHF_H_IBERR)
|
|
strlcat(msg, "iberr ", len);
|
|
if (err & INFINIPATH_RHF_L_SWA)
|
|
strlcat(msg, "swA ", len);
|
|
if (err & INFINIPATH_RHF_L_SWB)
|
|
strlcat(msg, "swB ", len);
|
|
}
|
|
|
|
/**
|
|
* ipath_get_egrbuf - get an eager buffer
|
|
* @dd: the infinipath device
|
|
* @bufnum: the eager buffer to get
|
|
*
|
|
* must only be called if ipath_pd[port] is known to be allocated
|
|
*/
|
|
static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum)
|
|
{
|
|
return dd->ipath_port0_skbinfo ?
|
|
(void *) dd->ipath_port0_skbinfo[bufnum].skb->data : NULL;
|
|
}
|
|
|
|
/**
|
|
* ipath_alloc_skb - allocate an skb and buffer with possible constraints
|
|
* @dd: the infinipath device
|
|
* @gfp_mask: the sk_buff SFP mask
|
|
*/
|
|
struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct sk_buff *skb;
|
|
u32 len;
|
|
|
|
/*
|
|
* Only fully supported way to handle this is to allocate lots
|
|
* extra, align as needed, and then do skb_reserve(). That wastes
|
|
* a lot of memory... I'll have to hack this into infinipath_copy
|
|
* also.
|
|
*/
|
|
|
|
/*
|
|
* We need 2 extra bytes for ipath_ether data sent in the
|
|
* key header. In order to keep everything dword aligned,
|
|
* we'll reserve 4 bytes.
|
|
*/
|
|
len = dd->ipath_ibmaxlen + 4;
|
|
|
|
if (dd->ipath_flags & IPATH_4BYTE_TID) {
|
|
/* We need a 2KB multiple alignment, and there is no way
|
|
* to do it except to allocate extra and then skb_reserve
|
|
* enough to bring it up to the right alignment.
|
|
*/
|
|
len += 2047;
|
|
}
|
|
|
|
skb = __dev_alloc_skb(len, gfp_mask);
|
|
if (!skb) {
|
|
ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n",
|
|
len);
|
|
goto bail;
|
|
}
|
|
|
|
skb_reserve(skb, 4);
|
|
|
|
if (dd->ipath_flags & IPATH_4BYTE_TID) {
|
|
u32 una = (unsigned long)skb->data & 2047;
|
|
if (una)
|
|
skb_reserve(skb, 2048 - una);
|
|
}
|
|
|
|
bail:
|
|
return skb;
|
|
}
|
|
|
|
static void ipath_rcv_hdrerr(struct ipath_devdata *dd,
|
|
u32 eflags,
|
|
u32 l,
|
|
u32 etail,
|
|
__le32 *rhf_addr,
|
|
struct ipath_message_header *hdr)
|
|
{
|
|
char emsg[128];
|
|
|
|
get_rhf_errstring(eflags, emsg, sizeof emsg);
|
|
ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u "
|
|
"tlen=%x opcode=%x egridx=%x: %s\n",
|
|
eflags, l,
|
|
ipath_hdrget_rcv_type(rhf_addr),
|
|
ipath_hdrget_length_in_bytes(rhf_addr),
|
|
be32_to_cpu(hdr->bth[0]) >> 24,
|
|
etail, emsg);
|
|
|
|
/* Count local link integrity errors. */
|
|
if (eflags & (INFINIPATH_RHF_H_ICRCERR | INFINIPATH_RHF_H_VCRCERR)) {
|
|
u8 n = (dd->ipath_ibcctrl >>
|
|
INFINIPATH_IBCC_PHYERRTHRESHOLD_SHIFT) &
|
|
INFINIPATH_IBCC_PHYERRTHRESHOLD_MASK;
|
|
|
|
if (++dd->ipath_lli_counter > n) {
|
|
dd->ipath_lli_counter = 0;
|
|
dd->ipath_lli_errors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ipath_kreceive - receive a packet
|
|
* @pd: the infinipath port
|
|
*
|
|
* called from interrupt handler for errors or receive interrupt
|
|
*/
|
|
void ipath_kreceive(struct ipath_portdata *pd)
|
|
{
|
|
struct ipath_devdata *dd = pd->port_dd;
|
|
__le32 *rhf_addr;
|
|
void *ebuf;
|
|
const u32 rsize = dd->ipath_rcvhdrentsize; /* words */
|
|
const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */
|
|
u32 etail = -1, l, hdrqtail;
|
|
struct ipath_message_header *hdr;
|
|
u32 eflags, i, etype, tlen, pkttot = 0, updegr = 0, reloop = 0;
|
|
static u64 totcalls; /* stats, may eventually remove */
|
|
int last;
|
|
|
|
l = pd->port_head;
|
|
rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset;
|
|
if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
|
|
u32 seq = ipath_hdrget_seq(rhf_addr);
|
|
|
|
if (seq != pd->port_seq_cnt)
|
|
goto bail;
|
|
hdrqtail = 0;
|
|
} else {
|
|
hdrqtail = ipath_get_rcvhdrtail(pd);
|
|
if (l == hdrqtail)
|
|
goto bail;
|
|
smp_rmb();
|
|
}
|
|
|
|
reloop:
|
|
for (last = 0, i = 1; !last; i += !last) {
|
|
hdr = dd->ipath_f_get_msgheader(dd, rhf_addr);
|
|
eflags = ipath_hdrget_err_flags(rhf_addr);
|
|
etype = ipath_hdrget_rcv_type(rhf_addr);
|
|
/* total length */
|
|
tlen = ipath_hdrget_length_in_bytes(rhf_addr);
|
|
ebuf = NULL;
|
|
if ((dd->ipath_flags & IPATH_NODMA_RTAIL) ?
|
|
ipath_hdrget_use_egr_buf(rhf_addr) :
|
|
(etype != RCVHQ_RCV_TYPE_EXPECTED)) {
|
|
/*
|
|
* It turns out that the chip uses an eager buffer
|
|
* for all non-expected packets, whether it "needs"
|
|
* one or not. So always get the index, but don't
|
|
* set ebuf (so we try to copy data) unless the
|
|
* length requires it.
|
|
*/
|
|
etail = ipath_hdrget_index(rhf_addr);
|
|
updegr = 1;
|
|
if (tlen > sizeof(*hdr) ||
|
|
etype == RCVHQ_RCV_TYPE_NON_KD)
|
|
ebuf = ipath_get_egrbuf(dd, etail);
|
|
}
|
|
|
|
/*
|
|
* both tiderr and ipathhdrerr are set for all plain IB
|
|
* packets; only ipathhdrerr should be set.
|
|
*/
|
|
|
|
if (etype != RCVHQ_RCV_TYPE_NON_KD &&
|
|
etype != RCVHQ_RCV_TYPE_ERROR &&
|
|
ipath_hdrget_ipath_ver(hdr->iph.ver_port_tid_offset) !=
|
|
IPS_PROTO_VERSION)
|
|
ipath_cdbg(PKT, "Bad InfiniPath protocol version "
|
|
"%x\n", etype);
|
|
|
|
if (unlikely(eflags))
|
|
ipath_rcv_hdrerr(dd, eflags, l, etail, rhf_addr, hdr);
|
|
else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
|
|
ipath_ib_rcv(dd->verbs_dev, (u32 *)hdr, ebuf, tlen);
|
|
if (dd->ipath_lli_counter)
|
|
dd->ipath_lli_counter--;
|
|
} else if (etype == RCVHQ_RCV_TYPE_EAGER) {
|
|
u8 opcode = be32_to_cpu(hdr->bth[0]) >> 24;
|
|
u32 qp = be32_to_cpu(hdr->bth[1]) & 0xffffff;
|
|
ipath_cdbg(PKT, "typ %x, opcode %x (eager, "
|
|
"qp=%x), len %x; ignored\n",
|
|
etype, opcode, qp, tlen);
|
|
}
|
|
else if (etype == RCVHQ_RCV_TYPE_EXPECTED)
|
|
ipath_dbg("Bug: Expected TID, opcode %x; ignored\n",
|
|
be32_to_cpu(hdr->bth[0]) >> 24);
|
|
else {
|
|
/*
|
|
* error packet, type of error unknown.
|
|
* Probably type 3, but we don't know, so don't
|
|
* even try to print the opcode, etc.
|
|
* Usually caused by a "bad packet", that has no
|
|
* BTH, when the LRH says it should.
|
|
*/
|
|
ipath_cdbg(ERRPKT, "Error Pkt, but no eflags! egrbuf"
|
|
" %x, len %x hdrq+%x rhf: %Lx\n",
|
|
etail, tlen, l, (unsigned long long)
|
|
le64_to_cpu(*(__le64 *) rhf_addr));
|
|
if (ipath_debug & __IPATH_ERRPKTDBG) {
|
|
u32 j, *d, dw = rsize-2;
|
|
if (rsize > (tlen>>2))
|
|
dw = tlen>>2;
|
|
d = (u32 *)hdr;
|
|
printk(KERN_DEBUG "EPkt rcvhdr(%x dw):\n",
|
|
dw);
|
|
for (j = 0; j < dw; j++)
|
|
printk(KERN_DEBUG "%8x%s", d[j],
|
|
(j%8) == 7 ? "\n" : " ");
|
|
printk(KERN_DEBUG ".\n");
|
|
}
|
|
}
|
|
l += rsize;
|
|
if (l >= maxcnt)
|
|
l = 0;
|
|
rhf_addr = (__le32 *) pd->port_rcvhdrq +
|
|
l + dd->ipath_rhf_offset;
|
|
if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
|
|
u32 seq = ipath_hdrget_seq(rhf_addr);
|
|
|
|
if (++pd->port_seq_cnt > 13)
|
|
pd->port_seq_cnt = 1;
|
|
if (seq != pd->port_seq_cnt)
|
|
last = 1;
|
|
} else if (l == hdrqtail)
|
|
last = 1;
|
|
/*
|
|
* update head regs on last packet, and every 16 packets.
|
|
* Reduce bus traffic, while still trying to prevent
|
|
* rcvhdrq overflows, for when the queue is nearly full
|
|
*/
|
|
if (last || !(i & 0xf)) {
|
|
u64 lval = l;
|
|
|
|
/* request IBA6120 and 7220 interrupt only on last */
|
|
if (last)
|
|
lval |= dd->ipath_rhdrhead_intr_off;
|
|
ipath_write_ureg(dd, ur_rcvhdrhead, lval,
|
|
pd->port_port);
|
|
if (updegr) {
|
|
ipath_write_ureg(dd, ur_rcvegrindexhead,
|
|
etail, pd->port_port);
|
|
updegr = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!dd->ipath_rhdrhead_intr_off && !reloop &&
|
|
!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
|
|
/* IBA6110 workaround; we can have a race clearing chip
|
|
* interrupt with another interrupt about to be delivered,
|
|
* and can clear it before it is delivered on the GPIO
|
|
* workaround. By doing the extra check here for the
|
|
* in-memory tail register updating while we were doing
|
|
* earlier packets, we "almost" guarantee we have covered
|
|
* that case.
|
|
*/
|
|
u32 hqtail = ipath_get_rcvhdrtail(pd);
|
|
if (hqtail != hdrqtail) {
|
|
hdrqtail = hqtail;
|
|
reloop = 1; /* loop 1 extra time at most */
|
|
goto reloop;
|
|
}
|
|
}
|
|
|
|
pkttot += i;
|
|
|
|
pd->port_head = l;
|
|
|
|
if (pkttot > ipath_stats.sps_maxpkts_call)
|
|
ipath_stats.sps_maxpkts_call = pkttot;
|
|
ipath_stats.sps_port0pkts += pkttot;
|
|
ipath_stats.sps_avgpkts_call =
|
|
ipath_stats.sps_port0pkts / ++totcalls;
|
|
|
|
bail:;
|
|
}
|
|
|
|
/**
|
|
* ipath_update_pio_bufs - update shadow copy of the PIO availability map
|
|
* @dd: the infinipath device
|
|
*
|
|
* called whenever our local copy indicates we have run out of send buffers
|
|
* NOTE: This can be called from interrupt context by some code
|
|
* and from non-interrupt context by ipath_getpiobuf().
|
|
*/
|
|
|
|
static void ipath_update_pio_bufs(struct ipath_devdata *dd)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
const unsigned piobregs = (unsigned)dd->ipath_pioavregs;
|
|
|
|
/* If the generation (check) bits have changed, then we update the
|
|
* busy bit for the corresponding PIO buffer. This algorithm will
|
|
* modify positions to the value they already have in some cases
|
|
* (i.e., no change), but it's faster than changing only the bits
|
|
* that have changed.
|
|
*
|
|
* We would like to do this atomicly, to avoid spinlocks in the
|
|
* critical send path, but that's not really possible, given the
|
|
* type of changes, and that this routine could be called on
|
|
* multiple cpu's simultaneously, so we lock in this routine only,
|
|
* to avoid conflicting updates; all we change is the shadow, and
|
|
* it's a single 64 bit memory location, so by definition the update
|
|
* is atomic in terms of what other cpu's can see in testing the
|
|
* bits. The spin_lock overhead isn't too bad, since it only
|
|
* happens when all buffers are in use, so only cpu overhead, not
|
|
* latency or bandwidth is affected.
|
|
*/
|
|
if (!dd->ipath_pioavailregs_dma) {
|
|
ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n");
|
|
return;
|
|
}
|
|
if (ipath_debug & __IPATH_VERBDBG) {
|
|
/* only if packet debug and verbose */
|
|
volatile __le64 *dma = dd->ipath_pioavailregs_dma;
|
|
unsigned long *shadow = dd->ipath_pioavailshadow;
|
|
|
|
ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, "
|
|
"d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx "
|
|
"s3=%lx\n",
|
|
(unsigned long long) le64_to_cpu(dma[0]),
|
|
shadow[0],
|
|
(unsigned long long) le64_to_cpu(dma[1]),
|
|
shadow[1],
|
|
(unsigned long long) le64_to_cpu(dma[2]),
|
|
shadow[2],
|
|
(unsigned long long) le64_to_cpu(dma[3]),
|
|
shadow[3]);
|
|
if (piobregs > 4)
|
|
ipath_cdbg(
|
|
PKT, "2nd group, dma4=%llx shad4=%lx, "
|
|
"d5=%llx s5=%lx, d6=%llx s6=%lx, "
|
|
"d7=%llx s7=%lx\n",
|
|
(unsigned long long) le64_to_cpu(dma[4]),
|
|
shadow[4],
|
|
(unsigned long long) le64_to_cpu(dma[5]),
|
|
shadow[5],
|
|
(unsigned long long) le64_to_cpu(dma[6]),
|
|
shadow[6],
|
|
(unsigned long long) le64_to_cpu(dma[7]),
|
|
shadow[7]);
|
|
}
|
|
spin_lock_irqsave(&ipath_pioavail_lock, flags);
|
|
for (i = 0; i < piobregs; i++) {
|
|
u64 pchbusy, pchg, piov, pnew;
|
|
/*
|
|
* Chip Errata: bug 6641; even and odd qwords>3 are swapped
|
|
*/
|
|
if (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS))
|
|
piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i ^ 1]);
|
|
else
|
|
piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]);
|
|
pchg = dd->ipath_pioavailkernel[i] &
|
|
~(dd->ipath_pioavailshadow[i] ^ piov);
|
|
pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT;
|
|
if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) {
|
|
pnew = dd->ipath_pioavailshadow[i] & ~pchbusy;
|
|
pnew |= piov & pchbusy;
|
|
dd->ipath_pioavailshadow[i] = pnew;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* used to force update of pioavailshadow if we can't get a pio buffer.
|
|
* Needed primarily due to exitting freeze mode after recovering
|
|
* from errors. Done lazily, because it's safer (known to not
|
|
* be writing pio buffers).
|
|
*/
|
|
static void ipath_reset_availshadow(struct ipath_devdata *dd)
|
|
{
|
|
int i, im;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ipath_pioavail_lock, flags);
|
|
for (i = 0; i < dd->ipath_pioavregs; i++) {
|
|
u64 val, oldval;
|
|
/* deal with 6110 chip bug on high register #s */
|
|
im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
|
|
i ^ 1 : i;
|
|
val = le64_to_cpu(dd->ipath_pioavailregs_dma[im]);
|
|
/*
|
|
* busy out the buffers not in the kernel avail list,
|
|
* without changing the generation bits.
|
|
*/
|
|
oldval = dd->ipath_pioavailshadow[i];
|
|
dd->ipath_pioavailshadow[i] = val |
|
|
((~dd->ipath_pioavailkernel[i] <<
|
|
INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT) &
|
|
0xaaaaaaaaaaaaaaaaULL); /* All BUSY bits in qword */
|
|
if (oldval != dd->ipath_pioavailshadow[i])
|
|
ipath_dbg("shadow[%d] was %Lx, now %lx\n",
|
|
i, (unsigned long long) oldval,
|
|
dd->ipath_pioavailshadow[i]);
|
|
}
|
|
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* ipath_setrcvhdrsize - set the receive header size
|
|
* @dd: the infinipath device
|
|
* @rhdrsize: the receive header size
|
|
*
|
|
* called from user init code, and also layered driver init
|
|
*/
|
|
int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) {
|
|
if (dd->ipath_rcvhdrsize != rhdrsize) {
|
|
dev_info(&dd->pcidev->dev,
|
|
"Error: can't set protocol header "
|
|
"size %u, already %u\n",
|
|
rhdrsize, dd->ipath_rcvhdrsize);
|
|
ret = -EAGAIN;
|
|
} else
|
|
ipath_cdbg(VERBOSE, "Reuse same protocol header "
|
|
"size %u\n", dd->ipath_rcvhdrsize);
|
|
} else if (rhdrsize > (dd->ipath_rcvhdrentsize -
|
|
(sizeof(u64) / sizeof(u32)))) {
|
|
ipath_dbg("Error: can't set protocol header size %u "
|
|
"(> max %u)\n", rhdrsize,
|
|
dd->ipath_rcvhdrentsize -
|
|
(u32) (sizeof(u64) / sizeof(u32)));
|
|
ret = -EOVERFLOW;
|
|
} else {
|
|
dd->ipath_flags |= IPATH_RCVHDRSZ_SET;
|
|
dd->ipath_rcvhdrsize = rhdrsize;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize,
|
|
dd->ipath_rcvhdrsize);
|
|
ipath_cdbg(VERBOSE, "Set protocol header size to %u\n",
|
|
dd->ipath_rcvhdrsize);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* debugging code and stats updates if no pio buffers available.
|
|
*/
|
|
static noinline void no_pio_bufs(struct ipath_devdata *dd)
|
|
{
|
|
unsigned long *shadow = dd->ipath_pioavailshadow;
|
|
__le64 *dma = (__le64 *)dd->ipath_pioavailregs_dma;
|
|
|
|
dd->ipath_upd_pio_shadow = 1;
|
|
|
|
/*
|
|
* not atomic, but if we lose a stat count in a while, that's OK
|
|
*/
|
|
ipath_stats.sps_nopiobufs++;
|
|
if (!(++dd->ipath_consec_nopiobuf % 100000)) {
|
|
ipath_force_pio_avail_update(dd); /* at start */
|
|
ipath_dbg("%u tries no piobufavail ts%lx; dmacopy: "
|
|
"%llx %llx %llx %llx\n"
|
|
"ipath shadow: %lx %lx %lx %lx\n",
|
|
dd->ipath_consec_nopiobuf,
|
|
(unsigned long)get_cycles(),
|
|
(unsigned long long) le64_to_cpu(dma[0]),
|
|
(unsigned long long) le64_to_cpu(dma[1]),
|
|
(unsigned long long) le64_to_cpu(dma[2]),
|
|
(unsigned long long) le64_to_cpu(dma[3]),
|
|
shadow[0], shadow[1], shadow[2], shadow[3]);
|
|
/*
|
|
* 4 buffers per byte, 4 registers above, cover rest
|
|
* below
|
|
*/
|
|
if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) >
|
|
(sizeof(shadow[0]) * 4 * 4))
|
|
ipath_dbg("2nd group: dmacopy: "
|
|
"%llx %llx %llx %llx\n"
|
|
"ipath shadow: %lx %lx %lx %lx\n",
|
|
(unsigned long long)le64_to_cpu(dma[4]),
|
|
(unsigned long long)le64_to_cpu(dma[5]),
|
|
(unsigned long long)le64_to_cpu(dma[6]),
|
|
(unsigned long long)le64_to_cpu(dma[7]),
|
|
shadow[4], shadow[5], shadow[6], shadow[7]);
|
|
|
|
/* at end, so update likely happened */
|
|
ipath_reset_availshadow(dd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* common code for normal driver pio buffer allocation, and reserved
|
|
* allocation.
|
|
*
|
|
* do appropriate marking as busy, etc.
|
|
* returns buffer number if one found (>=0), negative number is error.
|
|
*/
|
|
static u32 __iomem *ipath_getpiobuf_range(struct ipath_devdata *dd,
|
|
u32 *pbufnum, u32 first, u32 last, u32 firsti)
|
|
{
|
|
int i, j, updated = 0;
|
|
unsigned piobcnt;
|
|
unsigned long flags;
|
|
unsigned long *shadow = dd->ipath_pioavailshadow;
|
|
u32 __iomem *buf;
|
|
|
|
piobcnt = last - first;
|
|
if (dd->ipath_upd_pio_shadow) {
|
|
/*
|
|
* Minor optimization. If we had no buffers on last call,
|
|
* start out by doing the update; continue and do scan even
|
|
* if no buffers were updated, to be paranoid
|
|
*/
|
|
ipath_update_pio_bufs(dd);
|
|
updated++;
|
|
i = first;
|
|
} else
|
|
i = firsti;
|
|
rescan:
|
|
/*
|
|
* while test_and_set_bit() is atomic, we do that and then the
|
|
* change_bit(), and the pair is not. See if this is the cause
|
|
* of the remaining armlaunch errors.
|
|
*/
|
|
spin_lock_irqsave(&ipath_pioavail_lock, flags);
|
|
for (j = 0; j < piobcnt; j++, i++) {
|
|
if (i >= last)
|
|
i = first;
|
|
if (__test_and_set_bit((2 * i) + 1, shadow))
|
|
continue;
|
|
/* flip generation bit */
|
|
__change_bit(2 * i, shadow);
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
|
|
|
|
if (j == piobcnt) {
|
|
if (!updated) {
|
|
/*
|
|
* first time through; shadow exhausted, but may be
|
|
* buffers available, try an update and then rescan.
|
|
*/
|
|
ipath_update_pio_bufs(dd);
|
|
updated++;
|
|
i = first;
|
|
goto rescan;
|
|
} else if (updated == 1 && piobcnt <=
|
|
((dd->ipath_sendctrl
|
|
>> INFINIPATH_S_UPDTHRESH_SHIFT) &
|
|
INFINIPATH_S_UPDTHRESH_MASK)) {
|
|
/*
|
|
* for chips supporting and using the update
|
|
* threshold we need to force an update of the
|
|
* in-memory copy if the count is less than the
|
|
* thershold, then check one more time.
|
|
*/
|
|
ipath_force_pio_avail_update(dd);
|
|
ipath_update_pio_bufs(dd);
|
|
updated++;
|
|
i = first;
|
|
goto rescan;
|
|
}
|
|
|
|
no_pio_bufs(dd);
|
|
buf = NULL;
|
|
} else {
|
|
if (i < dd->ipath_piobcnt2k)
|
|
buf = (u32 __iomem *) (dd->ipath_pio2kbase +
|
|
i * dd->ipath_palign);
|
|
else
|
|
buf = (u32 __iomem *)
|
|
(dd->ipath_pio4kbase +
|
|
(i - dd->ipath_piobcnt2k) * dd->ipath_4kalign);
|
|
if (pbufnum)
|
|
*pbufnum = i;
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
/**
|
|
* ipath_getpiobuf - find an available pio buffer
|
|
* @dd: the infinipath device
|
|
* @plen: the size of the PIO buffer needed in 32-bit words
|
|
* @pbufnum: the buffer number is placed here
|
|
*/
|
|
u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 plen, u32 *pbufnum)
|
|
{
|
|
u32 __iomem *buf;
|
|
u32 pnum, nbufs;
|
|
u32 first, lasti;
|
|
|
|
if (plen + 1 >= IPATH_SMALLBUF_DWORDS) {
|
|
first = dd->ipath_piobcnt2k;
|
|
lasti = dd->ipath_lastpioindexl;
|
|
} else {
|
|
first = 0;
|
|
lasti = dd->ipath_lastpioindex;
|
|
}
|
|
nbufs = dd->ipath_piobcnt2k + dd->ipath_piobcnt4k;
|
|
buf = ipath_getpiobuf_range(dd, &pnum, first, nbufs, lasti);
|
|
|
|
if (buf) {
|
|
/*
|
|
* Set next starting place. It's just an optimization,
|
|
* it doesn't matter who wins on this, so no locking
|
|
*/
|
|
if (plen + 1 >= IPATH_SMALLBUF_DWORDS)
|
|
dd->ipath_lastpioindexl = pnum + 1;
|
|
else
|
|
dd->ipath_lastpioindex = pnum + 1;
|
|
if (dd->ipath_upd_pio_shadow)
|
|
dd->ipath_upd_pio_shadow = 0;
|
|
if (dd->ipath_consec_nopiobuf)
|
|
dd->ipath_consec_nopiobuf = 0;
|
|
ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n",
|
|
pnum, (pnum < dd->ipath_piobcnt2k) ? 2 : 4, buf);
|
|
if (pbufnum)
|
|
*pbufnum = pnum;
|
|
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/**
|
|
* ipath_chg_pioavailkernel - change which send buffers are available for kernel
|
|
* @dd: the infinipath device
|
|
* @start: the starting send buffer number
|
|
* @len: the number of send buffers
|
|
* @avail: true if the buffers are available for kernel use, false otherwise
|
|
*/
|
|
void ipath_chg_pioavailkernel(struct ipath_devdata *dd, unsigned start,
|
|
unsigned len, int avail)
|
|
{
|
|
unsigned long flags;
|
|
unsigned end, cnt = 0;
|
|
|
|
/* There are two bits per send buffer (busy and generation) */
|
|
start *= 2;
|
|
end = start + len * 2;
|
|
|
|
spin_lock_irqsave(&ipath_pioavail_lock, flags);
|
|
/* Set or clear the busy bit in the shadow. */
|
|
while (start < end) {
|
|
if (avail) {
|
|
unsigned long dma;
|
|
int i, im;
|
|
/*
|
|
* the BUSY bit will never be set, because we disarm
|
|
* the user buffers before we hand them back to the
|
|
* kernel. We do have to make sure the generation
|
|
* bit is set correctly in shadow, since it could
|
|
* have changed many times while allocated to user.
|
|
* We can't use the bitmap functions on the full
|
|
* dma array because it is always little-endian, so
|
|
* we have to flip to host-order first.
|
|
* BITS_PER_LONG is slightly wrong, since it's
|
|
* always 64 bits per register in chip...
|
|
* We only work on 64 bit kernels, so that's OK.
|
|
*/
|
|
/* deal with 6110 chip bug on high register #s */
|
|
i = start / BITS_PER_LONG;
|
|
im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
|
|
i ^ 1 : i;
|
|
__clear_bit(INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT
|
|
+ start, dd->ipath_pioavailshadow);
|
|
dma = (unsigned long) le64_to_cpu(
|
|
dd->ipath_pioavailregs_dma[im]);
|
|
if (test_bit((INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
|
|
+ start) % BITS_PER_LONG, &dma))
|
|
__set_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
|
|
+ start, dd->ipath_pioavailshadow);
|
|
else
|
|
__clear_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
|
|
+ start, dd->ipath_pioavailshadow);
|
|
__set_bit(start, dd->ipath_pioavailkernel);
|
|
} else {
|
|
__set_bit(start + INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT,
|
|
dd->ipath_pioavailshadow);
|
|
__clear_bit(start, dd->ipath_pioavailkernel);
|
|
}
|
|
start += 2;
|
|
}
|
|
|
|
if (dd->ipath_pioupd_thresh) {
|
|
end = 2 * (dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
|
|
cnt = bitmap_weight(dd->ipath_pioavailkernel, end);
|
|
}
|
|
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
|
|
|
|
/*
|
|
* When moving buffers from kernel to user, if number assigned to
|
|
* the user is less than the pio update threshold, and threshold
|
|
* is supported (cnt was computed > 0), drop the update threshold
|
|
* so we update at least once per allocated number of buffers.
|
|
* In any case, if the kernel buffers are less than the threshold,
|
|
* drop the threshold. We don't bother increasing it, having once
|
|
* decreased it, since it would typically just cycle back and forth.
|
|
* If we don't decrease below buffers in use, we can wait a long
|
|
* time for an update, until some other context uses PIO buffers.
|
|
*/
|
|
if (!avail && len < cnt)
|
|
cnt = len;
|
|
if (cnt < dd->ipath_pioupd_thresh) {
|
|
dd->ipath_pioupd_thresh = cnt;
|
|
ipath_dbg("Decreased pio update threshold to %u\n",
|
|
dd->ipath_pioupd_thresh);
|
|
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
|
|
dd->ipath_sendctrl &= ~(INFINIPATH_S_UPDTHRESH_MASK
|
|
<< INFINIPATH_S_UPDTHRESH_SHIFT);
|
|
dd->ipath_sendctrl |= dd->ipath_pioupd_thresh
|
|
<< INFINIPATH_S_UPDTHRESH_SHIFT;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
|
|
dd->ipath_sendctrl);
|
|
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ipath_create_rcvhdrq - create a receive header queue
|
|
* @dd: the infinipath device
|
|
* @pd: the port data
|
|
*
|
|
* this must be contiguous memory (from an i/o perspective), and must be
|
|
* DMA'able (which means for some systems, it will go through an IOMMU,
|
|
* or be forced into a low address range).
|
|
*/
|
|
int ipath_create_rcvhdrq(struct ipath_devdata *dd,
|
|
struct ipath_portdata *pd)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!pd->port_rcvhdrq) {
|
|
dma_addr_t phys_hdrqtail;
|
|
gfp_t gfp_flags = GFP_USER | __GFP_COMP;
|
|
int amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
|
|
sizeof(u32), PAGE_SIZE);
|
|
|
|
pd->port_rcvhdrq = dma_alloc_coherent(
|
|
&dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys,
|
|
gfp_flags);
|
|
|
|
if (!pd->port_rcvhdrq) {
|
|
ipath_dev_err(dd, "attempt to allocate %d bytes "
|
|
"for port %u rcvhdrq failed\n",
|
|
amt, pd->port_port);
|
|
ret = -ENOMEM;
|
|
goto bail;
|
|
}
|
|
|
|
if (!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
|
|
pd->port_rcvhdrtail_kvaddr = dma_alloc_coherent(
|
|
&dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
|
|
GFP_KERNEL);
|
|
if (!pd->port_rcvhdrtail_kvaddr) {
|
|
ipath_dev_err(dd, "attempt to allocate 1 page "
|
|
"for port %u rcvhdrqtailaddr "
|
|
"failed\n", pd->port_port);
|
|
ret = -ENOMEM;
|
|
dma_free_coherent(&dd->pcidev->dev, amt,
|
|
pd->port_rcvhdrq,
|
|
pd->port_rcvhdrq_phys);
|
|
pd->port_rcvhdrq = NULL;
|
|
goto bail;
|
|
}
|
|
pd->port_rcvhdrqtailaddr_phys = phys_hdrqtail;
|
|
ipath_cdbg(VERBOSE, "port %d hdrtailaddr, %llx "
|
|
"physical\n", pd->port_port,
|
|
(unsigned long long) phys_hdrqtail);
|
|
}
|
|
|
|
pd->port_rcvhdrq_size = amt;
|
|
|
|
ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu "
|
|
"for port %u rcvhdr Q\n",
|
|
amt >> PAGE_SHIFT, pd->port_rcvhdrq,
|
|
(unsigned long) pd->port_rcvhdrq_phys,
|
|
(unsigned long) pd->port_rcvhdrq_size,
|
|
pd->port_port);
|
|
}
|
|
else
|
|
ipath_cdbg(VERBOSE, "reuse port %d rcvhdrq @%p %llx phys; "
|
|
"hdrtailaddr@%p %llx physical\n",
|
|
pd->port_port, pd->port_rcvhdrq,
|
|
(unsigned long long) pd->port_rcvhdrq_phys,
|
|
pd->port_rcvhdrtail_kvaddr, (unsigned long long)
|
|
pd->port_rcvhdrqtailaddr_phys);
|
|
|
|
/* clear for security and sanity on each use */
|
|
memset(pd->port_rcvhdrq, 0, pd->port_rcvhdrq_size);
|
|
if (pd->port_rcvhdrtail_kvaddr)
|
|
memset(pd->port_rcvhdrtail_kvaddr, 0, PAGE_SIZE);
|
|
|
|
/*
|
|
* tell chip each time we init it, even if we are re-using previous
|
|
* memory (we zero the register at process close)
|
|
*/
|
|
ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr,
|
|
pd->port_port, pd->port_rcvhdrqtailaddr_phys);
|
|
ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
|
|
pd->port_port, pd->port_rcvhdrq_phys);
|
|
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Flush all sends that might be in the ready to send state, as well as any
|
|
* that are in the process of being sent. Used whenever we need to be
|
|
* sure the send side is idle. Cleans up all buffer state by canceling
|
|
* all pio buffers, and issuing an abort, which cleans up anything in the
|
|
* launch fifo. The cancel is superfluous on some chip versions, but
|
|
* it's safer to always do it.
|
|
* PIOAvail bits are updated by the chip as if normal send had happened.
|
|
*/
|
|
void ipath_cancel_sends(struct ipath_devdata *dd, int restore_sendctrl)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) {
|
|
ipath_cdbg(VERBOSE, "Ignore while in autonegotiation\n");
|
|
goto bail;
|
|
}
|
|
/*
|
|
* If we have SDMA, and it's not disabled, we have to kick off the
|
|
* abort state machine, provided we aren't already aborting.
|
|
* If we are in the process of aborting SDMA (!DISABLED, but ABORTING),
|
|
* we skip the rest of this routine. It is already "in progress"
|
|
*/
|
|
if (dd->ipath_flags & IPATH_HAS_SEND_DMA) {
|
|
int skip_cancel;
|
|
unsigned long *statp = &dd->ipath_sdma_status;
|
|
|
|
spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
|
|
skip_cancel =
|
|
test_and_set_bit(IPATH_SDMA_ABORTING, statp)
|
|
&& !test_bit(IPATH_SDMA_DISABLED, statp);
|
|
spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
|
|
if (skip_cancel)
|
|
goto bail;
|
|
}
|
|
|
|
ipath_dbg("Cancelling all in-progress send buffers\n");
|
|
|
|
/* skip armlaunch errs for a while */
|
|
dd->ipath_lastcancel = jiffies + HZ / 2;
|
|
|
|
/*
|
|
* The abort bit is auto-clearing. We also don't want pioavail
|
|
* update happening during this, and we don't want any other
|
|
* sends going out, so turn those off for the duration. We read
|
|
* the scratch register to be sure that cancels and the abort
|
|
* have taken effect in the chip. Otherwise two parts are same
|
|
* as ipath_force_pio_avail_update()
|
|
*/
|
|
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
|
|
dd->ipath_sendctrl &= ~(INFINIPATH_S_PIOBUFAVAILUPD
|
|
| INFINIPATH_S_PIOENABLE);
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
|
|
dd->ipath_sendctrl | INFINIPATH_S_ABORT);
|
|
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
|
|
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
|
|
|
|
/* disarm all send buffers */
|
|
ipath_disarm_piobufs(dd, 0,
|
|
dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
|
|
|
|
if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
|
|
set_bit(IPATH_SDMA_DISARMED, &dd->ipath_sdma_status);
|
|
|
|
if (restore_sendctrl) {
|
|
/* else done by caller later if needed */
|
|
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
|
|
dd->ipath_sendctrl |= INFINIPATH_S_PIOBUFAVAILUPD |
|
|
INFINIPATH_S_PIOENABLE;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
|
|
dd->ipath_sendctrl);
|
|
/* and again, be sure all have hit the chip */
|
|
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
|
|
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
|
|
}
|
|
|
|
if ((dd->ipath_flags & IPATH_HAS_SEND_DMA) &&
|
|
!test_bit(IPATH_SDMA_DISABLED, &dd->ipath_sdma_status) &&
|
|
test_bit(IPATH_SDMA_RUNNING, &dd->ipath_sdma_status)) {
|
|
spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
|
|
/* only wait so long for intr */
|
|
dd->ipath_sdma_abort_intr_timeout = jiffies + HZ;
|
|
dd->ipath_sdma_reset_wait = 200;
|
|
if (!test_bit(IPATH_SDMA_SHUTDOWN, &dd->ipath_sdma_status))
|
|
tasklet_hi_schedule(&dd->ipath_sdma_abort_task);
|
|
spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
|
|
}
|
|
bail:;
|
|
}
|
|
|
|
/*
|
|
* Force an update of in-memory copy of the pioavail registers, when
|
|
* needed for any of a variety of reasons. We read the scratch register
|
|
* to make it highly likely that the update will have happened by the
|
|
* time we return. If already off (as in cancel_sends above), this
|
|
* routine is a nop, on the assumption that the caller will "do the
|
|
* right thing".
|
|
*/
|
|
void ipath_force_pio_avail_update(struct ipath_devdata *dd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
|
|
if (dd->ipath_sendctrl & INFINIPATH_S_PIOBUFAVAILUPD) {
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
|
|
dd->ipath_sendctrl & ~INFINIPATH_S_PIOBUFAVAILUPD);
|
|
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
|
|
dd->ipath_sendctrl);
|
|
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
|
|
}
|
|
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
|
|
}
|
|
|
|
static void ipath_set_ib_lstate(struct ipath_devdata *dd, int linkcmd,
|
|
int linitcmd)
|
|
{
|
|
u64 mod_wd;
|
|
static const char *what[4] = {
|
|
[0] = "NOP",
|
|
[INFINIPATH_IBCC_LINKCMD_DOWN] = "DOWN",
|
|
[INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED",
|
|
[INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE"
|
|
};
|
|
|
|
if (linitcmd == INFINIPATH_IBCC_LINKINITCMD_DISABLE) {
|
|
/*
|
|
* If we are told to disable, note that so link-recovery
|
|
* code does not attempt to bring us back up.
|
|
*/
|
|
preempt_disable();
|
|
dd->ipath_flags |= IPATH_IB_LINK_DISABLED;
|
|
preempt_enable();
|
|
} else if (linitcmd) {
|
|
/*
|
|
* Any other linkinitcmd will lead to LINKDOWN and then
|
|
* to INIT (if all is well), so clear flag to let
|
|
* link-recovery code attempt to bring us back up.
|
|
*/
|
|
preempt_disable();
|
|
dd->ipath_flags &= ~IPATH_IB_LINK_DISABLED;
|
|
preempt_enable();
|
|
}
|
|
|
|
mod_wd = (linkcmd << dd->ibcc_lc_shift) |
|
|
(linitcmd << INFINIPATH_IBCC_LINKINITCMD_SHIFT);
|
|
ipath_cdbg(VERBOSE,
|
|
"Moving unit %u to %s (initcmd=0x%x), current ltstate is %s\n",
|
|
dd->ipath_unit, what[linkcmd], linitcmd,
|
|
ipath_ibcstatus_str[ipath_ib_linktrstate(dd,
|
|
ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus))]);
|
|
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
|
|
dd->ipath_ibcctrl | mod_wd);
|
|
/* read from chip so write is flushed */
|
|
(void) ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
|
|
}
|
|
|
|
int ipath_set_linkstate(struct ipath_devdata *dd, u8 newstate)
|
|
{
|
|
u32 lstate;
|
|
int ret;
|
|
|
|
switch (newstate) {
|
|
case IPATH_IB_LINKDOWN_ONLY:
|
|
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, 0);
|
|
/* don't wait */
|
|
ret = 0;
|
|
goto bail;
|
|
|
|
case IPATH_IB_LINKDOWN:
|
|
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
|
|
INFINIPATH_IBCC_LINKINITCMD_POLL);
|
|
/* don't wait */
|
|
ret = 0;
|
|
goto bail;
|
|
|
|
case IPATH_IB_LINKDOWN_SLEEP:
|
|
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
|
|
INFINIPATH_IBCC_LINKINITCMD_SLEEP);
|
|
/* don't wait */
|
|
ret = 0;
|
|
goto bail;
|
|
|
|
case IPATH_IB_LINKDOWN_DISABLE:
|
|
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
|
|
INFINIPATH_IBCC_LINKINITCMD_DISABLE);
|
|
/* don't wait */
|
|
ret = 0;
|
|
goto bail;
|
|
|
|
case IPATH_IB_LINKARM:
|
|
if (dd->ipath_flags & IPATH_LINKARMED) {
|
|
ret = 0;
|
|
goto bail;
|
|
}
|
|
if (!(dd->ipath_flags &
|
|
(IPATH_LINKINIT | IPATH_LINKACTIVE))) {
|
|
ret = -EINVAL;
|
|
goto bail;
|
|
}
|
|
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ARMED, 0);
|
|
|
|
/*
|
|
* Since the port can transition to ACTIVE by receiving
|
|
* a non VL 15 packet, wait for either state.
|
|
*/
|
|
lstate = IPATH_LINKARMED | IPATH_LINKACTIVE;
|
|
break;
|
|
|
|
case IPATH_IB_LINKACTIVE:
|
|
if (dd->ipath_flags & IPATH_LINKACTIVE) {
|
|
ret = 0;
|
|
goto bail;
|
|
}
|
|
if (!(dd->ipath_flags & IPATH_LINKARMED)) {
|
|
ret = -EINVAL;
|
|
goto bail;
|
|
}
|
|
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ACTIVE, 0);
|
|
lstate = IPATH_LINKACTIVE;
|
|
break;
|
|
|
|
case IPATH_IB_LINK_LOOPBACK:
|
|
dev_info(&dd->pcidev->dev, "Enabling IB local loopback\n");
|
|
dd->ipath_ibcctrl |= INFINIPATH_IBCC_LOOPBACK;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
|
|
dd->ipath_ibcctrl);
|
|
|
|
/* turn heartbeat off, as it causes loopback to fail */
|
|
dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
|
|
IPATH_IB_HRTBT_OFF);
|
|
/* don't wait */
|
|
ret = 0;
|
|
goto bail;
|
|
|
|
case IPATH_IB_LINK_EXTERNAL:
|
|
dev_info(&dd->pcidev->dev,
|
|
"Disabling IB local loopback (normal)\n");
|
|
dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
|
|
IPATH_IB_HRTBT_ON);
|
|
dd->ipath_ibcctrl &= ~INFINIPATH_IBCC_LOOPBACK;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
|
|
dd->ipath_ibcctrl);
|
|
/* don't wait */
|
|
ret = 0;
|
|
goto bail;
|
|
|
|
/*
|
|
* Heartbeat can be explicitly enabled by the user via
|
|
* "hrtbt_enable" "file", and if disabled, trying to enable here
|
|
* will have no effect. Implicit changes (heartbeat off when
|
|
* loopback on, and vice versa) are included to ease testing.
|
|
*/
|
|
case IPATH_IB_LINK_HRTBT:
|
|
ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
|
|
IPATH_IB_HRTBT_ON);
|
|
goto bail;
|
|
|
|
case IPATH_IB_LINK_NO_HRTBT:
|
|
ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
|
|
IPATH_IB_HRTBT_OFF);
|
|
goto bail;
|
|
|
|
default:
|
|
ipath_dbg("Invalid linkstate 0x%x requested\n", newstate);
|
|
ret = -EINVAL;
|
|
goto bail;
|
|
}
|
|
ret = ipath_wait_linkstate(dd, lstate, 2000);
|
|
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ipath_set_mtu - set the MTU
|
|
* @dd: the infinipath device
|
|
* @arg: the new MTU
|
|
*
|
|
* we can handle "any" incoming size, the issue here is whether we
|
|
* need to restrict our outgoing size. For now, we don't do any
|
|
* sanity checking on this, and we don't deal with what happens to
|
|
* programs that are already running when the size changes.
|
|
* NOTE: changing the MTU will usually cause the IBC to go back to
|
|
* link INIT state...
|
|
*/
|
|
int ipath_set_mtu(struct ipath_devdata *dd, u16 arg)
|
|
{
|
|
u32 piosize;
|
|
int changed = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* mtu is IB data payload max. It's the largest power of 2 less
|
|
* than piosize (or even larger, since it only really controls the
|
|
* largest we can receive; we can send the max of the mtu and
|
|
* piosize). We check that it's one of the valid IB sizes.
|
|
*/
|
|
if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 &&
|
|
(arg != 4096 || !ipath_mtu4096)) {
|
|
ipath_dbg("Trying to set invalid mtu %u, failing\n", arg);
|
|
ret = -EINVAL;
|
|
goto bail;
|
|
}
|
|
if (dd->ipath_ibmtu == arg) {
|
|
ret = 0; /* same as current */
|
|
goto bail;
|
|
}
|
|
|
|
piosize = dd->ipath_ibmaxlen;
|
|
dd->ipath_ibmtu = arg;
|
|
|
|
if (arg >= (piosize - IPATH_PIO_MAXIBHDR)) {
|
|
/* Only if it's not the initial value (or reset to it) */
|
|
if (piosize != dd->ipath_init_ibmaxlen) {
|
|
if (arg > piosize && arg <= dd->ipath_init_ibmaxlen)
|
|
piosize = dd->ipath_init_ibmaxlen;
|
|
dd->ipath_ibmaxlen = piosize;
|
|
changed = 1;
|
|
}
|
|
} else if ((arg + IPATH_PIO_MAXIBHDR) != dd->ipath_ibmaxlen) {
|
|
piosize = arg + IPATH_PIO_MAXIBHDR;
|
|
ipath_cdbg(VERBOSE, "ibmaxlen was 0x%x, setting to 0x%x "
|
|
"(mtu 0x%x)\n", dd->ipath_ibmaxlen, piosize,
|
|
arg);
|
|
dd->ipath_ibmaxlen = piosize;
|
|
changed = 1;
|
|
}
|
|
|
|
if (changed) {
|
|
u64 ibc = dd->ipath_ibcctrl, ibdw;
|
|
/*
|
|
* update our housekeeping variables, and set IBC max
|
|
* size, same as init code; max IBC is max we allow in
|
|
* buffer, less the qword pbc, plus 1 for ICRC, in dwords
|
|
*/
|
|
dd->ipath_ibmaxlen = piosize - 2 * sizeof(u32);
|
|
ibdw = (dd->ipath_ibmaxlen >> 2) + 1;
|
|
ibc &= ~(INFINIPATH_IBCC_MAXPKTLEN_MASK <<
|
|
dd->ibcc_mpl_shift);
|
|
ibc |= ibdw << dd->ibcc_mpl_shift;
|
|
dd->ipath_ibcctrl = ibc;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
|
|
dd->ipath_ibcctrl);
|
|
dd->ipath_f_tidtemplate(dd);
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
int ipath_set_lid(struct ipath_devdata *dd, u32 lid, u8 lmc)
|
|
{
|
|
dd->ipath_lid = lid;
|
|
dd->ipath_lmc = lmc;
|
|
|
|
dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_LIDLMC, lid |
|
|
(~((1U << lmc) - 1)) << 16);
|
|
|
|
dev_info(&dd->pcidev->dev, "We got a lid: 0x%x\n", lid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* ipath_write_kreg_port - write a device's per-port 64-bit kernel register
|
|
* @dd: the infinipath device
|
|
* @regno: the register number to write
|
|
* @port: the port containing the register
|
|
* @value: the value to write
|
|
*
|
|
* Registers that vary with the chip implementation constants (port)
|
|
* use this routine.
|
|
*/
|
|
void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno,
|
|
unsigned port, u64 value)
|
|
{
|
|
u16 where;
|
|
|
|
if (port < dd->ipath_portcnt &&
|
|
(regno == dd->ipath_kregs->kr_rcvhdraddr ||
|
|
regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
|
|
where = regno + port;
|
|
else
|
|
where = -1;
|
|
|
|
ipath_write_kreg(dd, where, value);
|
|
}
|
|
|
|
/*
|
|
* Following deal with the "obviously simple" task of overriding the state
|
|
* of the LEDS, which normally indicate link physical and logical status.
|
|
* The complications arise in dealing with different hardware mappings
|
|
* and the board-dependent routine being called from interrupts.
|
|
* and then there's the requirement to _flash_ them.
|
|
*/
|
|
#define LED_OVER_FREQ_SHIFT 8
|
|
#define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
|
|
/* Below is "non-zero" to force override, but both actual LEDs are off */
|
|
#define LED_OVER_BOTH_OFF (8)
|
|
|
|
static void ipath_run_led_override(unsigned long opaque)
|
|
{
|
|
struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
|
|
int timeoff;
|
|
int pidx;
|
|
u64 lstate, ltstate, val;
|
|
|
|
if (!(dd->ipath_flags & IPATH_INITTED))
|
|
return;
|
|
|
|
pidx = dd->ipath_led_override_phase++ & 1;
|
|
dd->ipath_led_override = dd->ipath_led_override_vals[pidx];
|
|
timeoff = dd->ipath_led_override_timeoff;
|
|
|
|
/*
|
|
* below potentially restores the LED values per current status,
|
|
* should also possibly setup the traffic-blink register,
|
|
* but leave that to per-chip functions.
|
|
*/
|
|
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
|
|
ltstate = ipath_ib_linktrstate(dd, val);
|
|
lstate = ipath_ib_linkstate(dd, val);
|
|
|
|
dd->ipath_f_setextled(dd, lstate, ltstate);
|
|
mod_timer(&dd->ipath_led_override_timer, jiffies + timeoff);
|
|
}
|
|
|
|
void ipath_set_led_override(struct ipath_devdata *dd, unsigned int val)
|
|
{
|
|
int timeoff, freq;
|
|
|
|
if (!(dd->ipath_flags & IPATH_INITTED))
|
|
return;
|
|
|
|
/* First check if we are blinking. If not, use 1HZ polling */
|
|
timeoff = HZ;
|
|
freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
|
|
|
|
if (freq) {
|
|
/* For blink, set each phase from one nybble of val */
|
|
dd->ipath_led_override_vals[0] = val & 0xF;
|
|
dd->ipath_led_override_vals[1] = (val >> 4) & 0xF;
|
|
timeoff = (HZ << 4)/freq;
|
|
} else {
|
|
/* Non-blink set both phases the same. */
|
|
dd->ipath_led_override_vals[0] = val & 0xF;
|
|
dd->ipath_led_override_vals[1] = val & 0xF;
|
|
}
|
|
dd->ipath_led_override_timeoff = timeoff;
|
|
|
|
/*
|
|
* If the timer has not already been started, do so. Use a "quick"
|
|
* timeout so the function will be called soon, to look at our request.
|
|
*/
|
|
if (atomic_inc_return(&dd->ipath_led_override_timer_active) == 1) {
|
|
/* Need to start timer */
|
|
init_timer(&dd->ipath_led_override_timer);
|
|
dd->ipath_led_override_timer.function =
|
|
ipath_run_led_override;
|
|
dd->ipath_led_override_timer.data = (unsigned long) dd;
|
|
dd->ipath_led_override_timer.expires = jiffies + 1;
|
|
add_timer(&dd->ipath_led_override_timer);
|
|
} else
|
|
atomic_dec(&dd->ipath_led_override_timer_active);
|
|
}
|
|
|
|
/**
|
|
* ipath_shutdown_device - shut down a device
|
|
* @dd: the infinipath device
|
|
*
|
|
* This is called to make the device quiet when we are about to
|
|
* unload the driver, and also when the device is administratively
|
|
* disabled. It does not free any data structures.
|
|
* Everything it does has to be setup again by ipath_init_chip(dd,1)
|
|
*/
|
|
void ipath_shutdown_device(struct ipath_devdata *dd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
ipath_dbg("Shutting down the device\n");
|
|
|
|
ipath_hol_up(dd); /* make sure user processes aren't suspended */
|
|
|
|
dd->ipath_flags |= IPATH_LINKUNK;
|
|
dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN |
|
|
IPATH_LINKINIT | IPATH_LINKARMED |
|
|
IPATH_LINKACTIVE);
|
|
*dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF |
|
|
IPATH_STATUS_IB_READY);
|
|
|
|
/* mask interrupts, but not errors */
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
|
|
|
|
dd->ipath_rcvctrl = 0;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
|
|
dd->ipath_rcvctrl);
|
|
|
|
if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
|
|
teardown_sdma(dd);
|
|
|
|
/*
|
|
* gracefully stop all sends allowing any in progress to trickle out
|
|
* first.
|
|
*/
|
|
spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
|
|
dd->ipath_sendctrl = 0;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl);
|
|
/* flush it */
|
|
ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
|
|
spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
|
|
|
|
/*
|
|
* enough for anything that's going to trickle out to have actually
|
|
* done so.
|
|
*/
|
|
udelay(5);
|
|
|
|
dd->ipath_f_setextled(dd, 0, 0); /* make sure LEDs are off */
|
|
|
|
ipath_set_ib_lstate(dd, 0, INFINIPATH_IBCC_LINKINITCMD_DISABLE);
|
|
ipath_cancel_sends(dd, 0);
|
|
|
|
/*
|
|
* we are shutting down, so tell components that care. We don't do
|
|
* this on just a link state change, much like ethernet, a cable
|
|
* unplug, etc. doesn't change driver state
|
|
*/
|
|
signal_ib_event(dd, IB_EVENT_PORT_ERR);
|
|
|
|
/* disable IBC */
|
|
dd->ipath_control &= ~INFINIPATH_C_LINKENABLE;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
|
|
dd->ipath_control | INFINIPATH_C_FREEZEMODE);
|
|
|
|
/*
|
|
* clear SerdesEnable and turn the leds off; do this here because
|
|
* we are unloading, so don't count on interrupts to move along
|
|
* Turn the LEDs off explicitly for the same reason.
|
|
*/
|
|
dd->ipath_f_quiet_serdes(dd);
|
|
|
|
/* stop all the timers that might still be running */
|
|
del_timer_sync(&dd->ipath_hol_timer);
|
|
if (dd->ipath_stats_timer_active) {
|
|
del_timer_sync(&dd->ipath_stats_timer);
|
|
dd->ipath_stats_timer_active = 0;
|
|
}
|
|
if (dd->ipath_intrchk_timer.data) {
|
|
del_timer_sync(&dd->ipath_intrchk_timer);
|
|
dd->ipath_intrchk_timer.data = 0;
|
|
}
|
|
if (atomic_read(&dd->ipath_led_override_timer_active)) {
|
|
del_timer_sync(&dd->ipath_led_override_timer);
|
|
atomic_set(&dd->ipath_led_override_timer_active, 0);
|
|
}
|
|
|
|
/*
|
|
* clear all interrupts and errors, so that the next time the driver
|
|
* is loaded or device is enabled, we know that whatever is set
|
|
* happened while we were unloaded
|
|
*/
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
|
|
~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED);
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL);
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL);
|
|
|
|
ipath_cdbg(VERBOSE, "Flush time and errors to EEPROM\n");
|
|
ipath_update_eeprom_log(dd);
|
|
}
|
|
|
|
/**
|
|
* ipath_free_pddata - free a port's allocated data
|
|
* @dd: the infinipath device
|
|
* @pd: the portdata structure
|
|
*
|
|
* free up any allocated data for a port
|
|
* This should not touch anything that would affect a simultaneous
|
|
* re-allocation of port data, because it is called after ipath_mutex
|
|
* is released (and can be called from reinit as well).
|
|
* It should never change any chip state, or global driver state.
|
|
* (The only exception to global state is freeing the port0 port0_skbs.)
|
|
*/
|
|
void ipath_free_pddata(struct ipath_devdata *dd, struct ipath_portdata *pd)
|
|
{
|
|
if (!pd)
|
|
return;
|
|
|
|
if (pd->port_rcvhdrq) {
|
|
ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p "
|
|
"(size=%lu)\n", pd->port_port, pd->port_rcvhdrq,
|
|
(unsigned long) pd->port_rcvhdrq_size);
|
|
dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size,
|
|
pd->port_rcvhdrq, pd->port_rcvhdrq_phys);
|
|
pd->port_rcvhdrq = NULL;
|
|
if (pd->port_rcvhdrtail_kvaddr) {
|
|
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
|
|
pd->port_rcvhdrtail_kvaddr,
|
|
pd->port_rcvhdrqtailaddr_phys);
|
|
pd->port_rcvhdrtail_kvaddr = NULL;
|
|
}
|
|
}
|
|
if (pd->port_port && pd->port_rcvegrbuf) {
|
|
unsigned e;
|
|
|
|
for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
|
|
void *base = pd->port_rcvegrbuf[e];
|
|
size_t size = pd->port_rcvegrbuf_size;
|
|
|
|
ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), "
|
|
"chunk %u/%u\n", base,
|
|
(unsigned long) size,
|
|
e, pd->port_rcvegrbuf_chunks);
|
|
dma_free_coherent(&dd->pcidev->dev, size,
|
|
base, pd->port_rcvegrbuf_phys[e]);
|
|
}
|
|
kfree(pd->port_rcvegrbuf);
|
|
pd->port_rcvegrbuf = NULL;
|
|
kfree(pd->port_rcvegrbuf_phys);
|
|
pd->port_rcvegrbuf_phys = NULL;
|
|
pd->port_rcvegrbuf_chunks = 0;
|
|
} else if (pd->port_port == 0 && dd->ipath_port0_skbinfo) {
|
|
unsigned e;
|
|
struct ipath_skbinfo *skbinfo = dd->ipath_port0_skbinfo;
|
|
|
|
dd->ipath_port0_skbinfo = NULL;
|
|
ipath_cdbg(VERBOSE, "free closed port %d "
|
|
"ipath_port0_skbinfo @ %p\n", pd->port_port,
|
|
skbinfo);
|
|
for (e = 0; e < dd->ipath_p0_rcvegrcnt; e++)
|
|
if (skbinfo[e].skb) {
|
|
pci_unmap_single(dd->pcidev, skbinfo[e].phys,
|
|
dd->ipath_ibmaxlen,
|
|
PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb(skbinfo[e].skb);
|
|
}
|
|
vfree(skbinfo);
|
|
}
|
|
kfree(pd->port_tid_pg_list);
|
|
vfree(pd->subport_uregbase);
|
|
vfree(pd->subport_rcvegrbuf);
|
|
vfree(pd->subport_rcvhdr_base);
|
|
kfree(pd);
|
|
}
|
|
|
|
static int __init infinipath_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (ipath_debug & __IPATH_DBG)
|
|
printk(KERN_INFO DRIVER_LOAD_MSG "%s", ib_ipath_version);
|
|
|
|
/*
|
|
* These must be called before the driver is registered with
|
|
* the PCI subsystem.
|
|
*/
|
|
idr_init(&unit_table);
|
|
if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
|
|
printk(KERN_ERR IPATH_DRV_NAME ": idr_pre_get() failed\n");
|
|
ret = -ENOMEM;
|
|
goto bail;
|
|
}
|
|
|
|
ret = pci_register_driver(&ipath_driver);
|
|
if (ret < 0) {
|
|
printk(KERN_ERR IPATH_DRV_NAME
|
|
": Unable to register driver: error %d\n", -ret);
|
|
goto bail_unit;
|
|
}
|
|
|
|
ret = ipath_init_ipathfs();
|
|
if (ret < 0) {
|
|
printk(KERN_ERR IPATH_DRV_NAME ": Unable to create "
|
|
"ipathfs: error %d\n", -ret);
|
|
goto bail_pci;
|
|
}
|
|
|
|
goto bail;
|
|
|
|
bail_pci:
|
|
pci_unregister_driver(&ipath_driver);
|
|
|
|
bail_unit:
|
|
idr_destroy(&unit_table);
|
|
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
static void __exit infinipath_cleanup(void)
|
|
{
|
|
ipath_exit_ipathfs();
|
|
|
|
ipath_cdbg(VERBOSE, "Unregistering pci driver\n");
|
|
pci_unregister_driver(&ipath_driver);
|
|
|
|
idr_destroy(&unit_table);
|
|
}
|
|
|
|
/**
|
|
* ipath_reset_device - reset the chip if possible
|
|
* @unit: the device to reset
|
|
*
|
|
* Whether or not reset is successful, we attempt to re-initialize the chip
|
|
* (that is, much like a driver unload/reload). We clear the INITTED flag
|
|
* so that the various entry points will fail until we reinitialize. For
|
|
* now, we only allow this if no user ports are open that use chip resources
|
|
*/
|
|
int ipath_reset_device(int unit)
|
|
{
|
|
int ret, i;
|
|
struct ipath_devdata *dd = ipath_lookup(unit);
|
|
unsigned long flags;
|
|
|
|
if (!dd) {
|
|
ret = -ENODEV;
|
|
goto bail;
|
|
}
|
|
|
|
if (atomic_read(&dd->ipath_led_override_timer_active)) {
|
|
/* Need to stop LED timer, _then_ shut off LEDs */
|
|
del_timer_sync(&dd->ipath_led_override_timer);
|
|
atomic_set(&dd->ipath_led_override_timer_active, 0);
|
|
}
|
|
|
|
/* Shut off LEDs after we are sure timer is not running */
|
|
dd->ipath_led_override = LED_OVER_BOTH_OFF;
|
|
dd->ipath_f_setextled(dd, 0, 0);
|
|
|
|
dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit);
|
|
|
|
if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) {
|
|
dev_info(&dd->pcidev->dev, "Invalid unit number %u or "
|
|
"not initialized or not present\n", unit);
|
|
ret = -ENXIO;
|
|
goto bail;
|
|
}
|
|
|
|
spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
|
|
if (dd->ipath_pd)
|
|
for (i = 1; i < dd->ipath_cfgports; i++) {
|
|
if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
|
|
continue;
|
|
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
|
|
ipath_dbg("unit %u port %d is in use "
|
|
"(PID %u cmd %s), can't reset\n",
|
|
unit, i,
|
|
pid_nr(dd->ipath_pd[i]->port_pid),
|
|
dd->ipath_pd[i]->port_comm);
|
|
ret = -EBUSY;
|
|
goto bail;
|
|
}
|
|
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
|
|
|
|
if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
|
|
teardown_sdma(dd);
|
|
|
|
dd->ipath_flags &= ~IPATH_INITTED;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
|
|
ret = dd->ipath_f_reset(dd);
|
|
if (ret == 1) {
|
|
ipath_dbg("Reinitializing unit %u after reset attempt\n",
|
|
unit);
|
|
ret = ipath_init_chip(dd, 1);
|
|
} else
|
|
ret = -EAGAIN;
|
|
if (ret)
|
|
ipath_dev_err(dd, "Reinitialize unit %u after "
|
|
"reset failed with %d\n", unit, ret);
|
|
else
|
|
dev_info(&dd->pcidev->dev, "Reinitialized unit %u after "
|
|
"resetting\n", unit);
|
|
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* send a signal to all the processes that have the driver open
|
|
* through the normal interfaces (i.e., everything other than diags
|
|
* interface). Returns number of signalled processes.
|
|
*/
|
|
static int ipath_signal_procs(struct ipath_devdata *dd, int sig)
|
|
{
|
|
int i, sub, any = 0;
|
|
struct pid *pid;
|
|
unsigned long flags;
|
|
|
|
if (!dd->ipath_pd)
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
|
|
for (i = 1; i < dd->ipath_cfgports; i++) {
|
|
if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
|
|
continue;
|
|
pid = dd->ipath_pd[i]->port_pid;
|
|
if (!pid)
|
|
continue;
|
|
|
|
dev_info(&dd->pcidev->dev, "context %d in use "
|
|
"(PID %u), sending signal %d\n",
|
|
i, pid_nr(pid), sig);
|
|
kill_pid(pid, sig, 1);
|
|
any++;
|
|
for (sub = 0; sub < INFINIPATH_MAX_SUBPORT; sub++) {
|
|
pid = dd->ipath_pd[i]->port_subpid[sub];
|
|
if (!pid)
|
|
continue;
|
|
dev_info(&dd->pcidev->dev, "sub-context "
|
|
"%d:%d in use (PID %u), sending "
|
|
"signal %d\n", i, sub, pid_nr(pid), sig);
|
|
kill_pid(pid, sig, 1);
|
|
any++;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
|
|
return any;
|
|
}
|
|
|
|
static void ipath_hol_signal_down(struct ipath_devdata *dd)
|
|
{
|
|
if (ipath_signal_procs(dd, SIGSTOP))
|
|
ipath_dbg("Stopped some processes\n");
|
|
ipath_cancel_sends(dd, 1);
|
|
}
|
|
|
|
|
|
static void ipath_hol_signal_up(struct ipath_devdata *dd)
|
|
{
|
|
if (ipath_signal_procs(dd, SIGCONT))
|
|
ipath_dbg("Continued some processes\n");
|
|
}
|
|
|
|
/*
|
|
* link is down, stop any users processes, and flush pending sends
|
|
* to prevent HoL blocking, then start the HoL timer that
|
|
* periodically continues, then stop procs, so they can detect
|
|
* link down if they want, and do something about it.
|
|
* Timer may already be running, so use mod_timer, not add_timer.
|
|
*/
|
|
void ipath_hol_down(struct ipath_devdata *dd)
|
|
{
|
|
dd->ipath_hol_state = IPATH_HOL_DOWN;
|
|
ipath_hol_signal_down(dd);
|
|
dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
|
|
dd->ipath_hol_timer.expires = jiffies +
|
|
msecs_to_jiffies(ipath_hol_timeout_ms);
|
|
mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
|
|
}
|
|
|
|
/*
|
|
* link is up, continue any user processes, and ensure timer
|
|
* is a nop, if running. Let timer keep running, if set; it
|
|
* will nop when it sees the link is up
|
|
*/
|
|
void ipath_hol_up(struct ipath_devdata *dd)
|
|
{
|
|
ipath_hol_signal_up(dd);
|
|
dd->ipath_hol_state = IPATH_HOL_UP;
|
|
}
|
|
|
|
/*
|
|
* toggle the running/not running state of user proceses
|
|
* to prevent HoL blocking on chip resources, but still allow
|
|
* user processes to do link down special case handling.
|
|
* Should only be called via the timer
|
|
*/
|
|
void ipath_hol_event(unsigned long opaque)
|
|
{
|
|
struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
|
|
|
|
if (dd->ipath_hol_next == IPATH_HOL_DOWNSTOP
|
|
&& dd->ipath_hol_state != IPATH_HOL_UP) {
|
|
dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
|
|
ipath_dbg("Stopping processes\n");
|
|
ipath_hol_signal_down(dd);
|
|
} else { /* may do "extra" if also in ipath_hol_up() */
|
|
dd->ipath_hol_next = IPATH_HOL_DOWNSTOP;
|
|
ipath_dbg("Continuing processes\n");
|
|
ipath_hol_signal_up(dd);
|
|
}
|
|
if (dd->ipath_hol_state == IPATH_HOL_UP)
|
|
ipath_dbg("link's up, don't resched timer\n");
|
|
else {
|
|
dd->ipath_hol_timer.expires = jiffies +
|
|
msecs_to_jiffies(ipath_hol_timeout_ms);
|
|
mod_timer(&dd->ipath_hol_timer,
|
|
dd->ipath_hol_timer.expires);
|
|
}
|
|
}
|
|
|
|
int ipath_set_rx_pol_inv(struct ipath_devdata *dd, u8 new_pol_inv)
|
|
{
|
|
u64 val;
|
|
|
|
if (new_pol_inv > INFINIPATH_XGXS_RX_POL_MASK)
|
|
return -1;
|
|
if (dd->ipath_rx_pol_inv != new_pol_inv) {
|
|
dd->ipath_rx_pol_inv = new_pol_inv;
|
|
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig);
|
|
val &= ~(INFINIPATH_XGXS_RX_POL_MASK <<
|
|
INFINIPATH_XGXS_RX_POL_SHIFT);
|
|
val |= ((u64)dd->ipath_rx_pol_inv) <<
|
|
INFINIPATH_XGXS_RX_POL_SHIFT;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Disable and enable the armlaunch error. Used for PIO bandwidth testing on
|
|
* the 7220, which is count-based, rather than trigger-based. Safe for the
|
|
* driver check, since it's at init. Not completely safe when used for
|
|
* user-mode checking, since some error checking can be lost, but not
|
|
* particularly risky, and only has problematic side-effects in the face of
|
|
* very buggy user code. There is no reference counting, but that's also
|
|
* fine, given the intended use.
|
|
*/
|
|
void ipath_enable_armlaunch(struct ipath_devdata *dd)
|
|
{
|
|
dd->ipath_lasterror &= ~INFINIPATH_E_SPIOARMLAUNCH;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear,
|
|
INFINIPATH_E_SPIOARMLAUNCH);
|
|
dd->ipath_errormask |= INFINIPATH_E_SPIOARMLAUNCH;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
|
|
dd->ipath_errormask);
|
|
}
|
|
|
|
void ipath_disable_armlaunch(struct ipath_devdata *dd)
|
|
{
|
|
/* so don't re-enable if already set */
|
|
dd->ipath_maskederrs &= ~INFINIPATH_E_SPIOARMLAUNCH;
|
|
dd->ipath_errormask &= ~INFINIPATH_E_SPIOARMLAUNCH;
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
|
|
dd->ipath_errormask);
|
|
}
|
|
|
|
module_init(infinipath_init);
|
|
module_exit(infinipath_cleanup);
|