mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 13:53:54 +07:00
579ba85552
When PAGE_SIZE > 4k single page can contain 2 RDS fragments. If 'rds_ib_cong_recv' ignore the RDS fragment offset in to the page it then read the data fragment as far congestion map update and lead to corruption of the RDS connection far congestion map. Signed-off-by: Shamir Rabinovitch <shamir.rabinovitch@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1057 lines
30 KiB
C
1057 lines
30 KiB
C
/*
|
|
* Copyright (c) 2006 Oracle. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <rdma/rdma_cm.h>
|
|
|
|
#include "rds.h"
|
|
#include "ib.h"
|
|
|
|
static struct kmem_cache *rds_ib_incoming_slab;
|
|
static struct kmem_cache *rds_ib_frag_slab;
|
|
static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
|
|
|
|
void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
|
|
{
|
|
struct rds_ib_recv_work *recv;
|
|
u32 i;
|
|
|
|
for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
|
|
struct ib_sge *sge;
|
|
|
|
recv->r_ibinc = NULL;
|
|
recv->r_frag = NULL;
|
|
|
|
recv->r_wr.next = NULL;
|
|
recv->r_wr.wr_id = i;
|
|
recv->r_wr.sg_list = recv->r_sge;
|
|
recv->r_wr.num_sge = RDS_IB_RECV_SGE;
|
|
|
|
sge = &recv->r_sge[0];
|
|
sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
|
|
sge->length = sizeof(struct rds_header);
|
|
sge->lkey = ic->i_pd->local_dma_lkey;
|
|
|
|
sge = &recv->r_sge[1];
|
|
sge->addr = 0;
|
|
sge->length = RDS_FRAG_SIZE;
|
|
sge->lkey = ic->i_pd->local_dma_lkey;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The entire 'from' list, including the from element itself, is put on
|
|
* to the tail of the 'to' list.
|
|
*/
|
|
static void list_splice_entire_tail(struct list_head *from,
|
|
struct list_head *to)
|
|
{
|
|
struct list_head *from_last = from->prev;
|
|
|
|
list_splice_tail(from_last, to);
|
|
list_add_tail(from_last, to);
|
|
}
|
|
|
|
static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
|
|
{
|
|
struct list_head *tmp;
|
|
|
|
tmp = xchg(&cache->xfer, NULL);
|
|
if (tmp) {
|
|
if (cache->ready)
|
|
list_splice_entire_tail(tmp, cache->ready);
|
|
else
|
|
cache->ready = tmp;
|
|
}
|
|
}
|
|
|
|
static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
|
|
{
|
|
struct rds_ib_cache_head *head;
|
|
int cpu;
|
|
|
|
cache->percpu = alloc_percpu(struct rds_ib_cache_head);
|
|
if (!cache->percpu)
|
|
return -ENOMEM;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
head = per_cpu_ptr(cache->percpu, cpu);
|
|
head->first = NULL;
|
|
head->count = 0;
|
|
}
|
|
cache->xfer = NULL;
|
|
cache->ready = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
|
|
{
|
|
int ret;
|
|
|
|
ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
|
|
if (!ret) {
|
|
ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
|
|
if (ret)
|
|
free_percpu(ic->i_cache_incs.percpu);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
|
|
struct list_head *caller_list)
|
|
{
|
|
struct rds_ib_cache_head *head;
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
head = per_cpu_ptr(cache->percpu, cpu);
|
|
if (head->first) {
|
|
list_splice_entire_tail(head->first, caller_list);
|
|
head->first = NULL;
|
|
}
|
|
}
|
|
|
|
if (cache->ready) {
|
|
list_splice_entire_tail(cache->ready, caller_list);
|
|
cache->ready = NULL;
|
|
}
|
|
}
|
|
|
|
void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
|
|
{
|
|
struct rds_ib_incoming *inc;
|
|
struct rds_ib_incoming *inc_tmp;
|
|
struct rds_page_frag *frag;
|
|
struct rds_page_frag *frag_tmp;
|
|
LIST_HEAD(list);
|
|
|
|
rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
|
|
rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
|
|
free_percpu(ic->i_cache_incs.percpu);
|
|
|
|
list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
|
|
list_del(&inc->ii_cache_entry);
|
|
WARN_ON(!list_empty(&inc->ii_frags));
|
|
kmem_cache_free(rds_ib_incoming_slab, inc);
|
|
}
|
|
|
|
rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
|
|
rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
|
|
free_percpu(ic->i_cache_frags.percpu);
|
|
|
|
list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
|
|
list_del(&frag->f_cache_entry);
|
|
WARN_ON(!list_empty(&frag->f_item));
|
|
kmem_cache_free(rds_ib_frag_slab, frag);
|
|
}
|
|
}
|
|
|
|
/* fwd decl */
|
|
static void rds_ib_recv_cache_put(struct list_head *new_item,
|
|
struct rds_ib_refill_cache *cache);
|
|
static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
|
|
|
|
|
|
/* Recycle frag and attached recv buffer f_sg */
|
|
static void rds_ib_frag_free(struct rds_ib_connection *ic,
|
|
struct rds_page_frag *frag)
|
|
{
|
|
rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
|
|
|
|
rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
|
|
}
|
|
|
|
/* Recycle inc after freeing attached frags */
|
|
void rds_ib_inc_free(struct rds_incoming *inc)
|
|
{
|
|
struct rds_ib_incoming *ibinc;
|
|
struct rds_page_frag *frag;
|
|
struct rds_page_frag *pos;
|
|
struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
|
|
|
|
ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
|
|
|
|
/* Free attached frags */
|
|
list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
|
|
list_del_init(&frag->f_item);
|
|
rds_ib_frag_free(ic, frag);
|
|
}
|
|
BUG_ON(!list_empty(&ibinc->ii_frags));
|
|
|
|
rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
|
|
rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
|
|
}
|
|
|
|
static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
|
|
struct rds_ib_recv_work *recv)
|
|
{
|
|
if (recv->r_ibinc) {
|
|
rds_inc_put(&recv->r_ibinc->ii_inc);
|
|
recv->r_ibinc = NULL;
|
|
}
|
|
if (recv->r_frag) {
|
|
ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
|
|
rds_ib_frag_free(ic, recv->r_frag);
|
|
recv->r_frag = NULL;
|
|
}
|
|
}
|
|
|
|
void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < ic->i_recv_ring.w_nr; i++)
|
|
rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
|
|
}
|
|
|
|
static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
|
|
gfp_t slab_mask)
|
|
{
|
|
struct rds_ib_incoming *ibinc;
|
|
struct list_head *cache_item;
|
|
int avail_allocs;
|
|
|
|
cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
|
|
if (cache_item) {
|
|
ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
|
|
} else {
|
|
avail_allocs = atomic_add_unless(&rds_ib_allocation,
|
|
1, rds_ib_sysctl_max_recv_allocation);
|
|
if (!avail_allocs) {
|
|
rds_ib_stats_inc(s_ib_rx_alloc_limit);
|
|
return NULL;
|
|
}
|
|
ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
|
|
if (!ibinc) {
|
|
atomic_dec(&rds_ib_allocation);
|
|
return NULL;
|
|
}
|
|
}
|
|
INIT_LIST_HEAD(&ibinc->ii_frags);
|
|
rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
|
|
|
|
return ibinc;
|
|
}
|
|
|
|
static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
|
|
gfp_t slab_mask, gfp_t page_mask)
|
|
{
|
|
struct rds_page_frag *frag;
|
|
struct list_head *cache_item;
|
|
int ret;
|
|
|
|
cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
|
|
if (cache_item) {
|
|
frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
|
|
} else {
|
|
frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
|
|
if (!frag)
|
|
return NULL;
|
|
|
|
sg_init_table(&frag->f_sg, 1);
|
|
ret = rds_page_remainder_alloc(&frag->f_sg,
|
|
RDS_FRAG_SIZE, page_mask);
|
|
if (ret) {
|
|
kmem_cache_free(rds_ib_frag_slab, frag);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
INIT_LIST_HEAD(&frag->f_item);
|
|
|
|
return frag;
|
|
}
|
|
|
|
static int rds_ib_recv_refill_one(struct rds_connection *conn,
|
|
struct rds_ib_recv_work *recv, gfp_t gfp)
|
|
{
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
struct ib_sge *sge;
|
|
int ret = -ENOMEM;
|
|
gfp_t slab_mask = GFP_NOWAIT;
|
|
gfp_t page_mask = GFP_NOWAIT;
|
|
|
|
if (gfp & __GFP_DIRECT_RECLAIM) {
|
|
slab_mask = GFP_KERNEL;
|
|
page_mask = GFP_HIGHUSER;
|
|
}
|
|
|
|
if (!ic->i_cache_incs.ready)
|
|
rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
|
|
if (!ic->i_cache_frags.ready)
|
|
rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
|
|
|
|
/*
|
|
* ibinc was taken from recv if recv contained the start of a message.
|
|
* recvs that were continuations will still have this allocated.
|
|
*/
|
|
if (!recv->r_ibinc) {
|
|
recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
|
|
if (!recv->r_ibinc)
|
|
goto out;
|
|
}
|
|
|
|
WARN_ON(recv->r_frag); /* leak! */
|
|
recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
|
|
if (!recv->r_frag)
|
|
goto out;
|
|
|
|
ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
|
|
1, DMA_FROM_DEVICE);
|
|
WARN_ON(ret != 1);
|
|
|
|
sge = &recv->r_sge[0];
|
|
sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
|
|
sge->length = sizeof(struct rds_header);
|
|
|
|
sge = &recv->r_sge[1];
|
|
sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
|
|
sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int acquire_refill(struct rds_connection *conn)
|
|
{
|
|
return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
|
|
}
|
|
|
|
static void release_refill(struct rds_connection *conn)
|
|
{
|
|
clear_bit(RDS_RECV_REFILL, &conn->c_flags);
|
|
|
|
/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
|
|
* hot path and finding waiters is very rare. We don't want to walk
|
|
* the system-wide hashed waitqueue buckets in the fast path only to
|
|
* almost never find waiters.
|
|
*/
|
|
if (waitqueue_active(&conn->c_waitq))
|
|
wake_up_all(&conn->c_waitq);
|
|
}
|
|
|
|
/*
|
|
* This tries to allocate and post unused work requests after making sure that
|
|
* they have all the allocations they need to queue received fragments into
|
|
* sockets.
|
|
*
|
|
* -1 is returned if posting fails due to temporary resource exhaustion.
|
|
*/
|
|
void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
|
|
{
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
struct rds_ib_recv_work *recv;
|
|
struct ib_recv_wr *failed_wr;
|
|
unsigned int posted = 0;
|
|
int ret = 0;
|
|
bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
|
|
u32 pos;
|
|
|
|
/* the goal here is to just make sure that someone, somewhere
|
|
* is posting buffers. If we can't get the refill lock,
|
|
* let them do their thing
|
|
*/
|
|
if (!acquire_refill(conn))
|
|
return;
|
|
|
|
while ((prefill || rds_conn_up(conn)) &&
|
|
rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
|
|
if (pos >= ic->i_recv_ring.w_nr) {
|
|
printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
|
|
pos);
|
|
break;
|
|
}
|
|
|
|
recv = &ic->i_recvs[pos];
|
|
ret = rds_ib_recv_refill_one(conn, recv, gfp);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
|
|
/* XXX when can this fail? */
|
|
ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
|
|
rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
|
|
recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
|
|
(long) ib_sg_dma_address(
|
|
ic->i_cm_id->device,
|
|
&recv->r_frag->f_sg),
|
|
ret);
|
|
if (ret) {
|
|
rds_ib_conn_error(conn, "recv post on "
|
|
"%pI4 returned %d, disconnecting and "
|
|
"reconnecting\n", &conn->c_faddr,
|
|
ret);
|
|
break;
|
|
}
|
|
|
|
posted++;
|
|
}
|
|
|
|
/* We're doing flow control - update the window. */
|
|
if (ic->i_flowctl && posted)
|
|
rds_ib_advertise_credits(conn, posted);
|
|
|
|
if (ret)
|
|
rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
|
|
|
|
release_refill(conn);
|
|
|
|
/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
|
|
* in this case the ring being low is going to lead to more interrupts
|
|
* and we can safely let the softirq code take care of it unless the
|
|
* ring is completely empty.
|
|
*
|
|
* if we're called from krdsd, we'll be GFP_KERNEL. In this case
|
|
* we might have raced with the softirq code while we had the refill
|
|
* lock held. Use rds_ib_ring_low() instead of ring_empty to decide
|
|
* if we should requeue.
|
|
*/
|
|
if (rds_conn_up(conn) &&
|
|
((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
|
|
rds_ib_ring_empty(&ic->i_recv_ring))) {
|
|
queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We want to recycle several types of recv allocations, like incs and frags.
|
|
* To use this, the *_free() function passes in the ptr to a list_head within
|
|
* the recyclee, as well as the cache to put it on.
|
|
*
|
|
* First, we put the memory on a percpu list. When this reaches a certain size,
|
|
* We move it to an intermediate non-percpu list in a lockless manner, with some
|
|
* xchg/compxchg wizardry.
|
|
*
|
|
* N.B. Instead of a list_head as the anchor, we use a single pointer, which can
|
|
* be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
|
|
* list_empty() will return true with one element is actually present.
|
|
*/
|
|
static void rds_ib_recv_cache_put(struct list_head *new_item,
|
|
struct rds_ib_refill_cache *cache)
|
|
{
|
|
unsigned long flags;
|
|
struct list_head *old, *chpfirst;
|
|
|
|
local_irq_save(flags);
|
|
|
|
chpfirst = __this_cpu_read(cache->percpu->first);
|
|
if (!chpfirst)
|
|
INIT_LIST_HEAD(new_item);
|
|
else /* put on front */
|
|
list_add_tail(new_item, chpfirst);
|
|
|
|
__this_cpu_write(cache->percpu->first, new_item);
|
|
__this_cpu_inc(cache->percpu->count);
|
|
|
|
if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
|
|
goto end;
|
|
|
|
/*
|
|
* Return our per-cpu first list to the cache's xfer by atomically
|
|
* grabbing the current xfer list, appending it to our per-cpu list,
|
|
* and then atomically returning that entire list back to the
|
|
* cache's xfer list as long as it's still empty.
|
|
*/
|
|
do {
|
|
old = xchg(&cache->xfer, NULL);
|
|
if (old)
|
|
list_splice_entire_tail(old, chpfirst);
|
|
old = cmpxchg(&cache->xfer, NULL, chpfirst);
|
|
} while (old);
|
|
|
|
|
|
__this_cpu_write(cache->percpu->first, NULL);
|
|
__this_cpu_write(cache->percpu->count, 0);
|
|
end:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
|
|
{
|
|
struct list_head *head = cache->ready;
|
|
|
|
if (head) {
|
|
if (!list_empty(head)) {
|
|
cache->ready = head->next;
|
|
list_del_init(head);
|
|
} else
|
|
cache->ready = NULL;
|
|
}
|
|
|
|
return head;
|
|
}
|
|
|
|
int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
|
|
{
|
|
struct rds_ib_incoming *ibinc;
|
|
struct rds_page_frag *frag;
|
|
unsigned long to_copy;
|
|
unsigned long frag_off = 0;
|
|
int copied = 0;
|
|
int ret;
|
|
u32 len;
|
|
|
|
ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
|
|
frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
|
|
len = be32_to_cpu(inc->i_hdr.h_len);
|
|
|
|
while (iov_iter_count(to) && copied < len) {
|
|
if (frag_off == RDS_FRAG_SIZE) {
|
|
frag = list_entry(frag->f_item.next,
|
|
struct rds_page_frag, f_item);
|
|
frag_off = 0;
|
|
}
|
|
to_copy = min_t(unsigned long, iov_iter_count(to),
|
|
RDS_FRAG_SIZE - frag_off);
|
|
to_copy = min_t(unsigned long, to_copy, len - copied);
|
|
|
|
/* XXX needs + offset for multiple recvs per page */
|
|
rds_stats_add(s_copy_to_user, to_copy);
|
|
ret = copy_page_to_iter(sg_page(&frag->f_sg),
|
|
frag->f_sg.offset + frag_off,
|
|
to_copy,
|
|
to);
|
|
if (ret != to_copy)
|
|
return -EFAULT;
|
|
|
|
frag_off += to_copy;
|
|
copied += to_copy;
|
|
}
|
|
|
|
return copied;
|
|
}
|
|
|
|
/* ic starts out kzalloc()ed */
|
|
void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
|
|
{
|
|
struct ib_send_wr *wr = &ic->i_ack_wr;
|
|
struct ib_sge *sge = &ic->i_ack_sge;
|
|
|
|
sge->addr = ic->i_ack_dma;
|
|
sge->length = sizeof(struct rds_header);
|
|
sge->lkey = ic->i_pd->local_dma_lkey;
|
|
|
|
wr->sg_list = sge;
|
|
wr->num_sge = 1;
|
|
wr->opcode = IB_WR_SEND;
|
|
wr->wr_id = RDS_IB_ACK_WR_ID;
|
|
wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
|
|
}
|
|
|
|
/*
|
|
* You'd think that with reliable IB connections you wouldn't need to ack
|
|
* messages that have been received. The problem is that IB hardware generates
|
|
* an ack message before it has DMAed the message into memory. This creates a
|
|
* potential message loss if the HCA is disabled for any reason between when it
|
|
* sends the ack and before the message is DMAed and processed. This is only a
|
|
* potential issue if another HCA is available for fail-over.
|
|
*
|
|
* When the remote host receives our ack they'll free the sent message from
|
|
* their send queue. To decrease the latency of this we always send an ack
|
|
* immediately after we've received messages.
|
|
*
|
|
* For simplicity, we only have one ack in flight at a time. This puts
|
|
* pressure on senders to have deep enough send queues to absorb the latency of
|
|
* a single ack frame being in flight. This might not be good enough.
|
|
*
|
|
* This is implemented by have a long-lived send_wr and sge which point to a
|
|
* statically allocated ack frame. This ack wr does not fall under the ring
|
|
* accounting that the tx and rx wrs do. The QP attribute specifically makes
|
|
* room for it beyond the ring size. Send completion notices its special
|
|
* wr_id and avoids working with the ring in that case.
|
|
*/
|
|
#ifndef KERNEL_HAS_ATOMIC64
|
|
void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ic->i_ack_lock, flags);
|
|
ic->i_ack_next = seq;
|
|
if (ack_required)
|
|
set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
|
|
spin_unlock_irqrestore(&ic->i_ack_lock, flags);
|
|
}
|
|
|
|
static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
|
|
{
|
|
unsigned long flags;
|
|
u64 seq;
|
|
|
|
clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
|
|
|
|
spin_lock_irqsave(&ic->i_ack_lock, flags);
|
|
seq = ic->i_ack_next;
|
|
spin_unlock_irqrestore(&ic->i_ack_lock, flags);
|
|
|
|
return seq;
|
|
}
|
|
#else
|
|
void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
|
|
{
|
|
atomic64_set(&ic->i_ack_next, seq);
|
|
if (ack_required) {
|
|
smp_mb__before_atomic();
|
|
set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
|
|
}
|
|
}
|
|
|
|
static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
|
|
{
|
|
clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
|
|
smp_mb__after_atomic();
|
|
|
|
return atomic64_read(&ic->i_ack_next);
|
|
}
|
|
#endif
|
|
|
|
|
|
static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
|
|
{
|
|
struct rds_header *hdr = ic->i_ack;
|
|
struct ib_send_wr *failed_wr;
|
|
u64 seq;
|
|
int ret;
|
|
|
|
seq = rds_ib_get_ack(ic);
|
|
|
|
rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
|
|
rds_message_populate_header(hdr, 0, 0, 0);
|
|
hdr->h_ack = cpu_to_be64(seq);
|
|
hdr->h_credit = adv_credits;
|
|
rds_message_make_checksum(hdr);
|
|
ic->i_ack_queued = jiffies;
|
|
|
|
ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
|
|
if (unlikely(ret)) {
|
|
/* Failed to send. Release the WR, and
|
|
* force another ACK.
|
|
*/
|
|
clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
|
|
set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
|
|
|
|
rds_ib_stats_inc(s_ib_ack_send_failure);
|
|
|
|
rds_ib_conn_error(ic->conn, "sending ack failed\n");
|
|
} else
|
|
rds_ib_stats_inc(s_ib_ack_sent);
|
|
}
|
|
|
|
/*
|
|
* There are 3 ways of getting acknowledgements to the peer:
|
|
* 1. We call rds_ib_attempt_ack from the recv completion handler
|
|
* to send an ACK-only frame.
|
|
* However, there can be only one such frame in the send queue
|
|
* at any time, so we may have to postpone it.
|
|
* 2. When another (data) packet is transmitted while there's
|
|
* an ACK in the queue, we piggyback the ACK sequence number
|
|
* on the data packet.
|
|
* 3. If the ACK WR is done sending, we get called from the
|
|
* send queue completion handler, and check whether there's
|
|
* another ACK pending (postponed because the WR was on the
|
|
* queue). If so, we transmit it.
|
|
*
|
|
* We maintain 2 variables:
|
|
* - i_ack_flags, which keeps track of whether the ACK WR
|
|
* is currently in the send queue or not (IB_ACK_IN_FLIGHT)
|
|
* - i_ack_next, which is the last sequence number we received
|
|
*
|
|
* Potentially, send queue and receive queue handlers can run concurrently.
|
|
* It would be nice to not have to use a spinlock to synchronize things,
|
|
* but the one problem that rules this out is that 64bit updates are
|
|
* not atomic on all platforms. Things would be a lot simpler if
|
|
* we had atomic64 or maybe cmpxchg64 everywhere.
|
|
*
|
|
* Reconnecting complicates this picture just slightly. When we
|
|
* reconnect, we may be seeing duplicate packets. The peer
|
|
* is retransmitting them, because it hasn't seen an ACK for
|
|
* them. It is important that we ACK these.
|
|
*
|
|
* ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
|
|
* this flag set *MUST* be acknowledged immediately.
|
|
*/
|
|
|
|
/*
|
|
* When we get here, we're called from the recv queue handler.
|
|
* Check whether we ought to transmit an ACK.
|
|
*/
|
|
void rds_ib_attempt_ack(struct rds_ib_connection *ic)
|
|
{
|
|
unsigned int adv_credits;
|
|
|
|
if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
|
|
return;
|
|
|
|
if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
|
|
rds_ib_stats_inc(s_ib_ack_send_delayed);
|
|
return;
|
|
}
|
|
|
|
/* Can we get a send credit? */
|
|
if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
|
|
rds_ib_stats_inc(s_ib_tx_throttle);
|
|
clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
|
|
return;
|
|
}
|
|
|
|
clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
|
|
rds_ib_send_ack(ic, adv_credits);
|
|
}
|
|
|
|
/*
|
|
* We get here from the send completion handler, when the
|
|
* adapter tells us the ACK frame was sent.
|
|
*/
|
|
void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
|
|
{
|
|
clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
|
|
rds_ib_attempt_ack(ic);
|
|
}
|
|
|
|
/*
|
|
* This is called by the regular xmit code when it wants to piggyback
|
|
* an ACK on an outgoing frame.
|
|
*/
|
|
u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
|
|
{
|
|
if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
|
|
rds_ib_stats_inc(s_ib_ack_send_piggybacked);
|
|
return rds_ib_get_ack(ic);
|
|
}
|
|
|
|
/*
|
|
* It's kind of lame that we're copying from the posted receive pages into
|
|
* long-lived bitmaps. We could have posted the bitmaps and rdma written into
|
|
* them. But receiving new congestion bitmaps should be a *rare* event, so
|
|
* hopefully we won't need to invest that complexity in making it more
|
|
* efficient. By copying we can share a simpler core with TCP which has to
|
|
* copy.
|
|
*/
|
|
static void rds_ib_cong_recv(struct rds_connection *conn,
|
|
struct rds_ib_incoming *ibinc)
|
|
{
|
|
struct rds_cong_map *map;
|
|
unsigned int map_off;
|
|
unsigned int map_page;
|
|
struct rds_page_frag *frag;
|
|
unsigned long frag_off;
|
|
unsigned long to_copy;
|
|
unsigned long copied;
|
|
uint64_t uncongested = 0;
|
|
void *addr;
|
|
|
|
/* catch completely corrupt packets */
|
|
if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
|
|
return;
|
|
|
|
map = conn->c_fcong;
|
|
map_page = 0;
|
|
map_off = 0;
|
|
|
|
frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
|
|
frag_off = 0;
|
|
|
|
copied = 0;
|
|
|
|
while (copied < RDS_CONG_MAP_BYTES) {
|
|
uint64_t *src, *dst;
|
|
unsigned int k;
|
|
|
|
to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
|
|
BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
|
|
|
|
addr = kmap_atomic(sg_page(&frag->f_sg));
|
|
|
|
src = addr + frag->f_sg.offset + frag_off;
|
|
dst = (void *)map->m_page_addrs[map_page] + map_off;
|
|
for (k = 0; k < to_copy; k += 8) {
|
|
/* Record ports that became uncongested, ie
|
|
* bits that changed from 0 to 1. */
|
|
uncongested |= ~(*src) & *dst;
|
|
*dst++ = *src++;
|
|
}
|
|
kunmap_atomic(addr);
|
|
|
|
copied += to_copy;
|
|
|
|
map_off += to_copy;
|
|
if (map_off == PAGE_SIZE) {
|
|
map_off = 0;
|
|
map_page++;
|
|
}
|
|
|
|
frag_off += to_copy;
|
|
if (frag_off == RDS_FRAG_SIZE) {
|
|
frag = list_entry(frag->f_item.next,
|
|
struct rds_page_frag, f_item);
|
|
frag_off = 0;
|
|
}
|
|
}
|
|
|
|
/* the congestion map is in little endian order */
|
|
uncongested = le64_to_cpu(uncongested);
|
|
|
|
rds_cong_map_updated(map, uncongested);
|
|
}
|
|
|
|
static void rds_ib_process_recv(struct rds_connection *conn,
|
|
struct rds_ib_recv_work *recv, u32 data_len,
|
|
struct rds_ib_ack_state *state)
|
|
{
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
struct rds_ib_incoming *ibinc = ic->i_ibinc;
|
|
struct rds_header *ihdr, *hdr;
|
|
|
|
/* XXX shut down the connection if port 0,0 are seen? */
|
|
|
|
rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
|
|
data_len);
|
|
|
|
if (data_len < sizeof(struct rds_header)) {
|
|
rds_ib_conn_error(conn, "incoming message "
|
|
"from %pI4 didn't include a "
|
|
"header, disconnecting and "
|
|
"reconnecting\n",
|
|
&conn->c_faddr);
|
|
return;
|
|
}
|
|
data_len -= sizeof(struct rds_header);
|
|
|
|
ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
|
|
|
|
/* Validate the checksum. */
|
|
if (!rds_message_verify_checksum(ihdr)) {
|
|
rds_ib_conn_error(conn, "incoming message "
|
|
"from %pI4 has corrupted header - "
|
|
"forcing a reconnect\n",
|
|
&conn->c_faddr);
|
|
rds_stats_inc(s_recv_drop_bad_checksum);
|
|
return;
|
|
}
|
|
|
|
/* Process the ACK sequence which comes with every packet */
|
|
state->ack_recv = be64_to_cpu(ihdr->h_ack);
|
|
state->ack_recv_valid = 1;
|
|
|
|
/* Process the credits update if there was one */
|
|
if (ihdr->h_credit)
|
|
rds_ib_send_add_credits(conn, ihdr->h_credit);
|
|
|
|
if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
|
|
/* This is an ACK-only packet. The fact that it gets
|
|
* special treatment here is that historically, ACKs
|
|
* were rather special beasts.
|
|
*/
|
|
rds_ib_stats_inc(s_ib_ack_received);
|
|
|
|
/*
|
|
* Usually the frags make their way on to incs and are then freed as
|
|
* the inc is freed. We don't go that route, so we have to drop the
|
|
* page ref ourselves. We can't just leave the page on the recv
|
|
* because that confuses the dma mapping of pages and each recv's use
|
|
* of a partial page.
|
|
*
|
|
* FIXME: Fold this into the code path below.
|
|
*/
|
|
rds_ib_frag_free(ic, recv->r_frag);
|
|
recv->r_frag = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we don't already have an inc on the connection then this
|
|
* fragment has a header and starts a message.. copy its header
|
|
* into the inc and save the inc so we can hang upcoming fragments
|
|
* off its list.
|
|
*/
|
|
if (!ibinc) {
|
|
ibinc = recv->r_ibinc;
|
|
recv->r_ibinc = NULL;
|
|
ic->i_ibinc = ibinc;
|
|
|
|
hdr = &ibinc->ii_inc.i_hdr;
|
|
memcpy(hdr, ihdr, sizeof(*hdr));
|
|
ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
|
|
|
|
rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
|
|
ic->i_recv_data_rem, hdr->h_flags);
|
|
} else {
|
|
hdr = &ibinc->ii_inc.i_hdr;
|
|
/* We can't just use memcmp here; fragments of a
|
|
* single message may carry different ACKs */
|
|
if (hdr->h_sequence != ihdr->h_sequence ||
|
|
hdr->h_len != ihdr->h_len ||
|
|
hdr->h_sport != ihdr->h_sport ||
|
|
hdr->h_dport != ihdr->h_dport) {
|
|
rds_ib_conn_error(conn,
|
|
"fragment header mismatch; forcing reconnect\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
|
|
recv->r_frag = NULL;
|
|
|
|
if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
|
|
ic->i_recv_data_rem -= RDS_FRAG_SIZE;
|
|
else {
|
|
ic->i_recv_data_rem = 0;
|
|
ic->i_ibinc = NULL;
|
|
|
|
if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
|
|
rds_ib_cong_recv(conn, ibinc);
|
|
else {
|
|
rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
|
|
&ibinc->ii_inc, GFP_ATOMIC);
|
|
state->ack_next = be64_to_cpu(hdr->h_sequence);
|
|
state->ack_next_valid = 1;
|
|
}
|
|
|
|
/* Evaluate the ACK_REQUIRED flag *after* we received
|
|
* the complete frame, and after bumping the next_rx
|
|
* sequence. */
|
|
if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
|
|
rds_stats_inc(s_recv_ack_required);
|
|
state->ack_required = 1;
|
|
}
|
|
|
|
rds_inc_put(&ibinc->ii_inc);
|
|
}
|
|
}
|
|
|
|
void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
|
|
struct ib_wc *wc,
|
|
struct rds_ib_ack_state *state)
|
|
{
|
|
struct rds_connection *conn = ic->conn;
|
|
struct rds_ib_recv_work *recv;
|
|
|
|
rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
|
|
(unsigned long long)wc->wr_id, wc->status,
|
|
ib_wc_status_msg(wc->status), wc->byte_len,
|
|
be32_to_cpu(wc->ex.imm_data));
|
|
|
|
rds_ib_stats_inc(s_ib_rx_cq_event);
|
|
recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
|
|
ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* Also process recvs in connecting state because it is possible
|
|
* to get a recv completion _before_ the rdmacm ESTABLISHED
|
|
* event is processed.
|
|
*/
|
|
if (wc->status == IB_WC_SUCCESS) {
|
|
rds_ib_process_recv(conn, recv, wc->byte_len, state);
|
|
} else {
|
|
/* We expect errors as the qp is drained during shutdown */
|
|
if (rds_conn_up(conn) || rds_conn_connecting(conn))
|
|
rds_ib_conn_error(conn, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
|
|
&conn->c_faddr,
|
|
wc->status,
|
|
ib_wc_status_msg(wc->status));
|
|
}
|
|
|
|
/* rds_ib_process_recv() doesn't always consume the frag, and
|
|
* we might not have called it at all if the wc didn't indicate
|
|
* success. We already unmapped the frag's pages, though, and
|
|
* the following rds_ib_ring_free() call tells the refill path
|
|
* that it will not find an allocated frag here. Make sure we
|
|
* keep that promise by freeing a frag that's still on the ring.
|
|
*/
|
|
if (recv->r_frag) {
|
|
rds_ib_frag_free(ic, recv->r_frag);
|
|
recv->r_frag = NULL;
|
|
}
|
|
rds_ib_ring_free(&ic->i_recv_ring, 1);
|
|
|
|
/* If we ever end up with a really empty receive ring, we're
|
|
* in deep trouble, as the sender will definitely see RNR
|
|
* timeouts. */
|
|
if (rds_ib_ring_empty(&ic->i_recv_ring))
|
|
rds_ib_stats_inc(s_ib_rx_ring_empty);
|
|
|
|
if (rds_ib_ring_low(&ic->i_recv_ring))
|
|
rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
|
|
}
|
|
|
|
int rds_ib_recv(struct rds_connection *conn)
|
|
{
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
int ret = 0;
|
|
|
|
rdsdebug("conn %p\n", conn);
|
|
if (rds_conn_up(conn)) {
|
|
rds_ib_attempt_ack(ic);
|
|
rds_ib_recv_refill(conn, 0, GFP_KERNEL);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int rds_ib_recv_init(void)
|
|
{
|
|
struct sysinfo si;
|
|
int ret = -ENOMEM;
|
|
|
|
/* Default to 30% of all available RAM for recv memory */
|
|
si_meminfo(&si);
|
|
rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
|
|
|
|
rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
|
|
sizeof(struct rds_ib_incoming),
|
|
0, SLAB_HWCACHE_ALIGN, NULL);
|
|
if (!rds_ib_incoming_slab)
|
|
goto out;
|
|
|
|
rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
|
|
sizeof(struct rds_page_frag),
|
|
0, SLAB_HWCACHE_ALIGN, NULL);
|
|
if (!rds_ib_frag_slab) {
|
|
kmem_cache_destroy(rds_ib_incoming_slab);
|
|
rds_ib_incoming_slab = NULL;
|
|
} else
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void rds_ib_recv_exit(void)
|
|
{
|
|
kmem_cache_destroy(rds_ib_incoming_slab);
|
|
kmem_cache_destroy(rds_ib_frag_slab);
|
|
}
|