linux_dsm_epyc7002/drivers/net/ethernet/sun/sungem.c
Heiner Kallweit 0800d88e2c net: sun: use pci_status_get_and_clear_errors
Use new helper pci_status_get_and_clear_errors() to simplify the code.

Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-04 14:21:00 -08:00

3035 lines
76 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
* sungem.c: Sun GEM ethernet driver.
*
* Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
*
* Support for Apple GMAC and assorted PHYs, WOL, Power Management
* (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
* (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
*
* NAPI and NETPOLL support
* (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/random.h>
#include <linux/workqueue.h>
#include <linux/if_vlan.h>
#include <linux/bitops.h>
#include <linux/mm.h>
#include <linux/gfp.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/uaccess.h>
#include <asm/irq.h>
#ifdef CONFIG_SPARC
#include <asm/idprom.h>
#include <asm/prom.h>
#endif
#ifdef CONFIG_PPC_PMAC
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#endif
#include <linux/sungem_phy.h>
#include "sungem.h"
#define STRIP_FCS
#define DEFAULT_MSG (NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK)
#define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
SUPPORTED_Pause | SUPPORTED_Autoneg)
#define DRV_NAME "sungem"
#define DRV_VERSION "1.0"
#define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
static char version[] =
DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
MODULE_LICENSE("GPL");
#define GEM_MODULE_NAME "gem"
static const struct pci_device_id gem_pci_tbl[] = {
{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
/* These models only differ from the original GEM in
* that their tx/rx fifos are of a different size and
* they only support 10/100 speeds. -DaveM
*
* Apple's GMAC does support gigabit on machines with
* the BCM54xx PHYs. -BenH
*/
{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{0, }
};
MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
{
u32 cmd;
int limit = 10000;
cmd = (1 << 30);
cmd |= (2 << 28);
cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
cmd |= (reg << 18) & MIF_FRAME_REGAD;
cmd |= (MIF_FRAME_TAMSB);
writel(cmd, gp->regs + MIF_FRAME);
while (--limit) {
cmd = readl(gp->regs + MIF_FRAME);
if (cmd & MIF_FRAME_TALSB)
break;
udelay(10);
}
if (!limit)
cmd = 0xffff;
return cmd & MIF_FRAME_DATA;
}
static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
{
struct gem *gp = netdev_priv(dev);
return __sungem_phy_read(gp, mii_id, reg);
}
static inline u16 sungem_phy_read(struct gem *gp, int reg)
{
return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
}
static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
{
u32 cmd;
int limit = 10000;
cmd = (1 << 30);
cmd |= (1 << 28);
cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
cmd |= (reg << 18) & MIF_FRAME_REGAD;
cmd |= (MIF_FRAME_TAMSB);
cmd |= (val & MIF_FRAME_DATA);
writel(cmd, gp->regs + MIF_FRAME);
while (limit--) {
cmd = readl(gp->regs + MIF_FRAME);
if (cmd & MIF_FRAME_TALSB)
break;
udelay(10);
}
}
static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
{
struct gem *gp = netdev_priv(dev);
__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
}
static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
{
__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
}
static inline void gem_enable_ints(struct gem *gp)
{
/* Enable all interrupts but TXDONE */
writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
}
static inline void gem_disable_ints(struct gem *gp)
{
/* Disable all interrupts, including TXDONE */
writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
(void)readl(gp->regs + GREG_IMASK); /* write posting */
}
static void gem_get_cell(struct gem *gp)
{
BUG_ON(gp->cell_enabled < 0);
gp->cell_enabled++;
#ifdef CONFIG_PPC_PMAC
if (gp->cell_enabled == 1) {
mb();
pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
udelay(10);
}
#endif /* CONFIG_PPC_PMAC */
}
/* Turn off the chip's clock */
static void gem_put_cell(struct gem *gp)
{
BUG_ON(gp->cell_enabled <= 0);
gp->cell_enabled--;
#ifdef CONFIG_PPC_PMAC
if (gp->cell_enabled == 0) {
mb();
pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
udelay(10);
}
#endif /* CONFIG_PPC_PMAC */
}
static inline void gem_netif_stop(struct gem *gp)
{
netif_trans_update(gp->dev); /* prevent tx timeout */
napi_disable(&gp->napi);
netif_tx_disable(gp->dev);
}
static inline void gem_netif_start(struct gem *gp)
{
/* NOTE: unconditional netif_wake_queue is only
* appropriate so long as all callers are assured to
* have free tx slots.
*/
netif_wake_queue(gp->dev);
napi_enable(&gp->napi);
}
static void gem_schedule_reset(struct gem *gp)
{
gp->reset_task_pending = 1;
schedule_work(&gp->reset_task);
}
static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
{
if (netif_msg_intr(gp))
printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
}
static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
u32 pcs_miistat;
if (netif_msg_intr(gp))
printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
gp->dev->name, pcs_istat);
if (!(pcs_istat & PCS_ISTAT_LSC)) {
netdev_err(dev, "PCS irq but no link status change???\n");
return 0;
}
/* The link status bit latches on zero, so you must
* read it twice in such a case to see a transition
* to the link being up.
*/
pcs_miistat = readl(gp->regs + PCS_MIISTAT);
if (!(pcs_miistat & PCS_MIISTAT_LS))
pcs_miistat |=
(readl(gp->regs + PCS_MIISTAT) &
PCS_MIISTAT_LS);
if (pcs_miistat & PCS_MIISTAT_ANC) {
/* The remote-fault indication is only valid
* when autoneg has completed.
*/
if (pcs_miistat & PCS_MIISTAT_RF)
netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
else
netdev_info(dev, "PCS AutoNEG complete\n");
}
if (pcs_miistat & PCS_MIISTAT_LS) {
netdev_info(dev, "PCS link is now up\n");
netif_carrier_on(gp->dev);
} else {
netdev_info(dev, "PCS link is now down\n");
netif_carrier_off(gp->dev);
/* If this happens and the link timer is not running,
* reset so we re-negotiate.
*/
if (!timer_pending(&gp->link_timer))
return 1;
}
return 0;
}
static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
if (netif_msg_intr(gp))
printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
gp->dev->name, txmac_stat);
/* Defer timer expiration is quite normal,
* don't even log the event.
*/
if ((txmac_stat & MAC_TXSTAT_DTE) &&
!(txmac_stat & ~MAC_TXSTAT_DTE))
return 0;
if (txmac_stat & MAC_TXSTAT_URUN) {
netdev_err(dev, "TX MAC xmit underrun\n");
dev->stats.tx_fifo_errors++;
}
if (txmac_stat & MAC_TXSTAT_MPE) {
netdev_err(dev, "TX MAC max packet size error\n");
dev->stats.tx_errors++;
}
/* The rest are all cases of one of the 16-bit TX
* counters expiring.
*/
if (txmac_stat & MAC_TXSTAT_NCE)
dev->stats.collisions += 0x10000;
if (txmac_stat & MAC_TXSTAT_ECE) {
dev->stats.tx_aborted_errors += 0x10000;
dev->stats.collisions += 0x10000;
}
if (txmac_stat & MAC_TXSTAT_LCE) {
dev->stats.tx_aborted_errors += 0x10000;
dev->stats.collisions += 0x10000;
}
/* We do not keep track of MAC_TXSTAT_FCE and
* MAC_TXSTAT_PCE events.
*/
return 0;
}
/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
* so we do the following.
*
* If any part of the reset goes wrong, we return 1 and that causes the
* whole chip to be reset.
*/
static int gem_rxmac_reset(struct gem *gp)
{
struct net_device *dev = gp->dev;
int limit, i;
u64 desc_dma;
u32 val;
/* First, reset & disable MAC RX. */
writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
for (limit = 0; limit < 5000; limit++) {
if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
break;
udelay(10);
}
if (limit == 5000) {
netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
return 1;
}
writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
gp->regs + MAC_RXCFG);
for (limit = 0; limit < 5000; limit++) {
if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
break;
udelay(10);
}
if (limit == 5000) {
netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
return 1;
}
/* Second, disable RX DMA. */
writel(0, gp->regs + RXDMA_CFG);
for (limit = 0; limit < 5000; limit++) {
if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
break;
udelay(10);
}
if (limit == 5000) {
netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
return 1;
}
mdelay(5);
/* Execute RX reset command. */
writel(gp->swrst_base | GREG_SWRST_RXRST,
gp->regs + GREG_SWRST);
for (limit = 0; limit < 5000; limit++) {
if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
break;
udelay(10);
}
if (limit == 5000) {
netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
return 1;
}
/* Refresh the RX ring. */
for (i = 0; i < RX_RING_SIZE; i++) {
struct gem_rxd *rxd = &gp->init_block->rxd[i];
if (gp->rx_skbs[i] == NULL) {
netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
return 1;
}
rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
}
gp->rx_new = gp->rx_old = 0;
/* Now we must reprogram the rest of RX unit. */
desc_dma = (u64) gp->gblock_dvma;
desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
(ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
writel(val, gp->regs + RXDMA_CFG);
if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
writel(((5 & RXDMA_BLANK_IPKTS) |
((8 << 12) & RXDMA_BLANK_ITIME)),
gp->regs + RXDMA_BLANK);
else
writel(((5 & RXDMA_BLANK_IPKTS) |
((4 << 12) & RXDMA_BLANK_ITIME)),
gp->regs + RXDMA_BLANK);
val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
writel(val, gp->regs + RXDMA_PTHRESH);
val = readl(gp->regs + RXDMA_CFG);
writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
val = readl(gp->regs + MAC_RXCFG);
writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
return 0;
}
static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
int ret = 0;
if (netif_msg_intr(gp))
printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
gp->dev->name, rxmac_stat);
if (rxmac_stat & MAC_RXSTAT_OFLW) {
u32 smac = readl(gp->regs + MAC_SMACHINE);
netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
dev->stats.rx_over_errors++;
dev->stats.rx_fifo_errors++;
ret = gem_rxmac_reset(gp);
}
if (rxmac_stat & MAC_RXSTAT_ACE)
dev->stats.rx_frame_errors += 0x10000;
if (rxmac_stat & MAC_RXSTAT_CCE)
dev->stats.rx_crc_errors += 0x10000;
if (rxmac_stat & MAC_RXSTAT_LCE)
dev->stats.rx_length_errors += 0x10000;
/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
* events.
*/
return ret;
}
static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
if (netif_msg_intr(gp))
printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
gp->dev->name, mac_cstat);
/* This interrupt is just for pause frame and pause
* tracking. It is useful for diagnostics and debug
* but probably by default we will mask these events.
*/
if (mac_cstat & MAC_CSTAT_PS)
gp->pause_entered++;
if (mac_cstat & MAC_CSTAT_PRCV)
gp->pause_last_time_recvd = (mac_cstat >> 16);
return 0;
}
static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 mif_status = readl(gp->regs + MIF_STATUS);
u32 reg_val, changed_bits;
reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
changed_bits = (mif_status & MIF_STATUS_STAT);
gem_handle_mif_event(gp, reg_val, changed_bits);
return 0;
}
static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
netdev_err(dev, "PCI error [%04x]", pci_estat);
if (pci_estat & GREG_PCIESTAT_BADACK)
pr_cont(" <No ACK64# during ABS64 cycle>");
if (pci_estat & GREG_PCIESTAT_DTRTO)
pr_cont(" <Delayed transaction timeout>");
if (pci_estat & GREG_PCIESTAT_OTHER)
pr_cont(" <other>");
pr_cont("\n");
} else {
pci_estat |= GREG_PCIESTAT_OTHER;
netdev_err(dev, "PCI error\n");
}
if (pci_estat & GREG_PCIESTAT_OTHER) {
int pci_errs;
/* Interrogate PCI config space for the
* true cause.
*/
pci_errs = pci_status_get_and_clear_errors(gp->pdev);
netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
if (pci_errs & PCI_STATUS_PARITY)
netdev_err(dev, "PCI parity error detected\n");
if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
netdev_err(dev, "PCI target abort\n");
if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
netdev_err(dev, "PCI master acks target abort\n");
if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
netdev_err(dev, "PCI master abort\n");
if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
netdev_err(dev, "PCI system error SERR#\n");
if (pci_errs & PCI_STATUS_DETECTED_PARITY)
netdev_err(dev, "PCI parity error\n");
}
/* For all PCI errors, we should reset the chip. */
return 1;
}
/* All non-normal interrupt conditions get serviced here.
* Returns non-zero if we should just exit the interrupt
* handler right now (ie. if we reset the card which invalidates
* all of the other original irq status bits).
*/
static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
{
if (gem_status & GREG_STAT_RXNOBUF) {
/* Frame arrived, no free RX buffers available. */
if (netif_msg_rx_err(gp))
printk(KERN_DEBUG "%s: no buffer for rx frame\n",
gp->dev->name);
dev->stats.rx_dropped++;
}
if (gem_status & GREG_STAT_RXTAGERR) {
/* corrupt RX tag framing */
if (netif_msg_rx_err(gp))
printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
gp->dev->name);
dev->stats.rx_errors++;
return 1;
}
if (gem_status & GREG_STAT_PCS) {
if (gem_pcs_interrupt(dev, gp, gem_status))
return 1;
}
if (gem_status & GREG_STAT_TXMAC) {
if (gem_txmac_interrupt(dev, gp, gem_status))
return 1;
}
if (gem_status & GREG_STAT_RXMAC) {
if (gem_rxmac_interrupt(dev, gp, gem_status))
return 1;
}
if (gem_status & GREG_STAT_MAC) {
if (gem_mac_interrupt(dev, gp, gem_status))
return 1;
}
if (gem_status & GREG_STAT_MIF) {
if (gem_mif_interrupt(dev, gp, gem_status))
return 1;
}
if (gem_status & GREG_STAT_PCIERR) {
if (gem_pci_interrupt(dev, gp, gem_status))
return 1;
}
return 0;
}
static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
{
int entry, limit;
entry = gp->tx_old;
limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
while (entry != limit) {
struct sk_buff *skb;
struct gem_txd *txd;
dma_addr_t dma_addr;
u32 dma_len;
int frag;
if (netif_msg_tx_done(gp))
printk(KERN_DEBUG "%s: tx done, slot %d\n",
gp->dev->name, entry);
skb = gp->tx_skbs[entry];
if (skb_shinfo(skb)->nr_frags) {
int last = entry + skb_shinfo(skb)->nr_frags;
int walk = entry;
int incomplete = 0;
last &= (TX_RING_SIZE - 1);
for (;;) {
walk = NEXT_TX(walk);
if (walk == limit)
incomplete = 1;
if (walk == last)
break;
}
if (incomplete)
break;
}
gp->tx_skbs[entry] = NULL;
dev->stats.tx_bytes += skb->len;
for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
txd = &gp->init_block->txd[entry];
dma_addr = le64_to_cpu(txd->buffer);
dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
entry = NEXT_TX(entry);
}
dev->stats.tx_packets++;
dev_consume_skb_any(skb);
}
gp->tx_old = entry;
/* Need to make the tx_old update visible to gem_start_xmit()
* before checking for netif_queue_stopped(). Without the
* memory barrier, there is a small possibility that gem_start_xmit()
* will miss it and cause the queue to be stopped forever.
*/
smp_mb();
if (unlikely(netif_queue_stopped(dev) &&
TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
__netif_tx_lock(txq, smp_processor_id());
if (netif_queue_stopped(dev) &&
TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
netif_wake_queue(dev);
__netif_tx_unlock(txq);
}
}
static __inline__ void gem_post_rxds(struct gem *gp, int limit)
{
int cluster_start, curr, count, kick;
cluster_start = curr = (gp->rx_new & ~(4 - 1));
count = 0;
kick = -1;
dma_wmb();
while (curr != limit) {
curr = NEXT_RX(curr);
if (++count == 4) {
struct gem_rxd *rxd =
&gp->init_block->rxd[cluster_start];
for (;;) {
rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
rxd++;
cluster_start = NEXT_RX(cluster_start);
if (cluster_start == curr)
break;
}
kick = curr;
count = 0;
}
}
if (kick >= 0) {
mb();
writel(kick, gp->regs + RXDMA_KICK);
}
}
#define ALIGNED_RX_SKB_ADDR(addr) \
((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
gfp_t gfp_flags)
{
struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
if (likely(skb)) {
unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
skb_reserve(skb, offset);
}
return skb;
}
static int gem_rx(struct gem *gp, int work_to_do)
{
struct net_device *dev = gp->dev;
int entry, drops, work_done = 0;
u32 done;
if (netif_msg_rx_status(gp))
printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
entry = gp->rx_new;
drops = 0;
done = readl(gp->regs + RXDMA_DONE);
for (;;) {
struct gem_rxd *rxd = &gp->init_block->rxd[entry];
struct sk_buff *skb;
u64 status = le64_to_cpu(rxd->status_word);
dma_addr_t dma_addr;
int len;
if ((status & RXDCTRL_OWN) != 0)
break;
if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
break;
/* When writing back RX descriptor, GEM writes status
* then buffer address, possibly in separate transactions.
* If we don't wait for the chip to write both, we could
* post a new buffer to this descriptor then have GEM spam
* on the buffer address. We sync on the RX completion
* register to prevent this from happening.
*/
if (entry == done) {
done = readl(gp->regs + RXDMA_DONE);
if (entry == done)
break;
}
/* We can now account for the work we're about to do */
work_done++;
skb = gp->rx_skbs[entry];
len = (status & RXDCTRL_BUFSZ) >> 16;
if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
dev->stats.rx_errors++;
if (len < ETH_ZLEN)
dev->stats.rx_length_errors++;
if (len & RXDCTRL_BAD)
dev->stats.rx_crc_errors++;
/* We'll just return it to GEM. */
drop_it:
dev->stats.rx_dropped++;
goto next;
}
dma_addr = le64_to_cpu(rxd->buffer);
if (len > RX_COPY_THRESHOLD) {
struct sk_buff *new_skb;
new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
if (new_skb == NULL) {
drops++;
goto drop_it;
}
pci_unmap_page(gp->pdev, dma_addr,
RX_BUF_ALLOC_SIZE(gp),
PCI_DMA_FROMDEVICE);
gp->rx_skbs[entry] = new_skb;
skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
virt_to_page(new_skb->data),
offset_in_page(new_skb->data),
RX_BUF_ALLOC_SIZE(gp),
PCI_DMA_FROMDEVICE));
skb_reserve(new_skb, RX_OFFSET);
/* Trim the original skb for the netif. */
skb_trim(skb, len);
} else {
struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
if (copy_skb == NULL) {
drops++;
goto drop_it;
}
skb_reserve(copy_skb, 2);
skb_put(copy_skb, len);
pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
skb_copy_from_linear_data(skb, copy_skb->data, len);
pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
/* We'll reuse the original ring buffer. */
skb = copy_skb;
}
if (likely(dev->features & NETIF_F_RXCSUM)) {
__sum16 csum;
csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
skb->csum = csum_unfold(csum);
skb->ip_summed = CHECKSUM_COMPLETE;
}
skb->protocol = eth_type_trans(skb, gp->dev);
napi_gro_receive(&gp->napi, skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
next:
entry = NEXT_RX(entry);
}
gem_post_rxds(gp, entry);
gp->rx_new = entry;
if (drops)
netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
return work_done;
}
static int gem_poll(struct napi_struct *napi, int budget)
{
struct gem *gp = container_of(napi, struct gem, napi);
struct net_device *dev = gp->dev;
int work_done;
work_done = 0;
do {
/* Handle anomalies */
if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
int reset;
/* We run the abnormal interrupt handling code with
* the Tx lock. It only resets the Rx portion of the
* chip, but we need to guard it against DMA being
* restarted by the link poll timer
*/
__netif_tx_lock(txq, smp_processor_id());
reset = gem_abnormal_irq(dev, gp, gp->status);
__netif_tx_unlock(txq);
if (reset) {
gem_schedule_reset(gp);
napi_complete(napi);
return work_done;
}
}
/* Run TX completion thread */
gem_tx(dev, gp, gp->status);
/* Run RX thread. We don't use any locking here,
* code willing to do bad things - like cleaning the
* rx ring - must call napi_disable(), which
* schedule_timeout()'s if polling is already disabled.
*/
work_done += gem_rx(gp, budget - work_done);
if (work_done >= budget)
return work_done;
gp->status = readl(gp->regs + GREG_STAT);
} while (gp->status & GREG_STAT_NAPI);
napi_complete_done(napi, work_done);
gem_enable_ints(gp);
return work_done;
}
static irqreturn_t gem_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct gem *gp = netdev_priv(dev);
if (napi_schedule_prep(&gp->napi)) {
u32 gem_status = readl(gp->regs + GREG_STAT);
if (unlikely(gem_status == 0)) {
napi_enable(&gp->napi);
return IRQ_NONE;
}
if (netif_msg_intr(gp))
printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
gp->dev->name, gem_status);
gp->status = gem_status;
gem_disable_ints(gp);
__napi_schedule(&gp->napi);
}
/* If polling was disabled at the time we received that
* interrupt, we may return IRQ_HANDLED here while we
* should return IRQ_NONE. No big deal...
*/
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void gem_poll_controller(struct net_device *dev)
{
struct gem *gp = netdev_priv(dev);
disable_irq(gp->pdev->irq);
gem_interrupt(gp->pdev->irq, dev);
enable_irq(gp->pdev->irq);
}
#endif
static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct gem *gp = netdev_priv(dev);
netdev_err(dev, "transmit timed out, resetting\n");
netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
readl(gp->regs + TXDMA_CFG),
readl(gp->regs + MAC_TXSTAT),
readl(gp->regs + MAC_TXCFG));
netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
readl(gp->regs + RXDMA_CFG),
readl(gp->regs + MAC_RXSTAT),
readl(gp->regs + MAC_RXCFG));
gem_schedule_reset(gp);
}
static __inline__ int gem_intme(int entry)
{
/* Algorithm: IRQ every 1/2 of descriptors. */
if (!(entry & ((TX_RING_SIZE>>1)-1)))
return 1;
return 0;
}
static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct gem *gp = netdev_priv(dev);
int entry;
u64 ctrl;
ctrl = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
const u64 csum_start_off = skb_checksum_start_offset(skb);
const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
ctrl = (TXDCTRL_CENAB |
(csum_start_off << 15) |
(csum_stuff_off << 21));
}
if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
/* This is a hard error, log it. */
if (!netif_queue_stopped(dev)) {
netif_stop_queue(dev);
netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
}
return NETDEV_TX_BUSY;
}
entry = gp->tx_new;
gp->tx_skbs[entry] = skb;
if (skb_shinfo(skb)->nr_frags == 0) {
struct gem_txd *txd = &gp->init_block->txd[entry];
dma_addr_t mapping;
u32 len;
len = skb->len;
mapping = pci_map_page(gp->pdev,
virt_to_page(skb->data),
offset_in_page(skb->data),
len, PCI_DMA_TODEVICE);
ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
if (gem_intme(entry))
ctrl |= TXDCTRL_INTME;
txd->buffer = cpu_to_le64(mapping);
dma_wmb();
txd->control_word = cpu_to_le64(ctrl);
entry = NEXT_TX(entry);
} else {
struct gem_txd *txd;
u32 first_len;
u64 intme;
dma_addr_t first_mapping;
int frag, first_entry = entry;
intme = 0;
if (gem_intme(entry))
intme |= TXDCTRL_INTME;
/* We must give this initial chunk to the device last.
* Otherwise we could race with the device.
*/
first_len = skb_headlen(skb);
first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
offset_in_page(skb->data),
first_len, PCI_DMA_TODEVICE);
entry = NEXT_TX(entry);
for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
u32 len;
dma_addr_t mapping;
u64 this_ctrl;
len = skb_frag_size(this_frag);
mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
0, len, DMA_TO_DEVICE);
this_ctrl = ctrl;
if (frag == skb_shinfo(skb)->nr_frags - 1)
this_ctrl |= TXDCTRL_EOF;
txd = &gp->init_block->txd[entry];
txd->buffer = cpu_to_le64(mapping);
dma_wmb();
txd->control_word = cpu_to_le64(this_ctrl | len);
if (gem_intme(entry))
intme |= TXDCTRL_INTME;
entry = NEXT_TX(entry);
}
txd = &gp->init_block->txd[first_entry];
txd->buffer = cpu_to_le64(first_mapping);
dma_wmb();
txd->control_word =
cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
}
gp->tx_new = entry;
if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
netif_stop_queue(dev);
/* netif_stop_queue() must be done before checking
* checking tx index in TX_BUFFS_AVAIL() below, because
* in gem_tx(), we update tx_old before checking for
* netif_queue_stopped().
*/
smp_mb();
if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
netif_wake_queue(dev);
}
if (netif_msg_tx_queued(gp))
printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
dev->name, entry, skb->len);
mb();
writel(gp->tx_new, gp->regs + TXDMA_KICK);
return NETDEV_TX_OK;
}
static void gem_pcs_reset(struct gem *gp)
{
int limit;
u32 val;
/* Reset PCS unit. */
val = readl(gp->regs + PCS_MIICTRL);
val |= PCS_MIICTRL_RST;
writel(val, gp->regs + PCS_MIICTRL);
limit = 32;
while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
udelay(100);
if (limit-- <= 0)
break;
}
if (limit < 0)
netdev_warn(gp->dev, "PCS reset bit would not clear\n");
}
static void gem_pcs_reinit_adv(struct gem *gp)
{
u32 val;
/* Make sure PCS is disabled while changing advertisement
* configuration.
*/
val = readl(gp->regs + PCS_CFG);
val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
writel(val, gp->regs + PCS_CFG);
/* Advertise all capabilities except asymmetric
* pause.
*/
val = readl(gp->regs + PCS_MIIADV);
val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
PCS_MIIADV_SP | PCS_MIIADV_AP);
writel(val, gp->regs + PCS_MIIADV);
/* Enable and restart auto-negotiation, disable wrapback/loopback,
* and re-enable PCS.
*/
val = readl(gp->regs + PCS_MIICTRL);
val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
val &= ~PCS_MIICTRL_WB;
writel(val, gp->regs + PCS_MIICTRL);
val = readl(gp->regs + PCS_CFG);
val |= PCS_CFG_ENABLE;
writel(val, gp->regs + PCS_CFG);
/* Make sure serialink loopback is off. The meaning
* of this bit is logically inverted based upon whether
* you are in Serialink or SERDES mode.
*/
val = readl(gp->regs + PCS_SCTRL);
if (gp->phy_type == phy_serialink)
val &= ~PCS_SCTRL_LOOP;
else
val |= PCS_SCTRL_LOOP;
writel(val, gp->regs + PCS_SCTRL);
}
#define STOP_TRIES 32
static void gem_reset(struct gem *gp)
{
int limit;
u32 val;
/* Make sure we won't get any more interrupts */
writel(0xffffffff, gp->regs + GREG_IMASK);
/* Reset the chip */
writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
gp->regs + GREG_SWRST);
limit = STOP_TRIES;
do {
udelay(20);
val = readl(gp->regs + GREG_SWRST);
if (limit-- <= 0)
break;
} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
if (limit < 0)
netdev_err(gp->dev, "SW reset is ghetto\n");
if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
gem_pcs_reinit_adv(gp);
}
static void gem_start_dma(struct gem *gp)
{
u32 val;
/* We are ready to rock, turn everything on. */
val = readl(gp->regs + TXDMA_CFG);
writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
val = readl(gp->regs + RXDMA_CFG);
writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
val = readl(gp->regs + MAC_TXCFG);
writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
val = readl(gp->regs + MAC_RXCFG);
writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
(void) readl(gp->regs + MAC_RXCFG);
udelay(100);
gem_enable_ints(gp);
writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
}
/* DMA won't be actually stopped before about 4ms tho ...
*/
static void gem_stop_dma(struct gem *gp)
{
u32 val;
/* We are done rocking, turn everything off. */
val = readl(gp->regs + TXDMA_CFG);
writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
val = readl(gp->regs + RXDMA_CFG);
writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
val = readl(gp->regs + MAC_TXCFG);
writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
val = readl(gp->regs + MAC_RXCFG);
writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
(void) readl(gp->regs + MAC_RXCFG);
/* Need to wait a bit ... done by the caller */
}
// XXX dbl check what that function should do when called on PCS PHY
static void gem_begin_auto_negotiation(struct gem *gp,
const struct ethtool_link_ksettings *ep)
{
u32 advertise, features;
int autoneg;
int speed;
int duplex;
u32 advertising;
if (ep)
ethtool_convert_link_mode_to_legacy_u32(
&advertising, ep->link_modes.advertising);
if (gp->phy_type != phy_mii_mdio0 &&
gp->phy_type != phy_mii_mdio1)
goto non_mii;
/* Setup advertise */
if (found_mii_phy(gp))
features = gp->phy_mii.def->features;
else
features = 0;
advertise = features & ADVERTISE_MASK;
if (gp->phy_mii.advertising != 0)
advertise &= gp->phy_mii.advertising;
autoneg = gp->want_autoneg;
speed = gp->phy_mii.speed;
duplex = gp->phy_mii.duplex;
/* Setup link parameters */
if (!ep)
goto start_aneg;
if (ep->base.autoneg == AUTONEG_ENABLE) {
advertise = advertising;
autoneg = 1;
} else {
autoneg = 0;
speed = ep->base.speed;
duplex = ep->base.duplex;
}
start_aneg:
/* Sanitize settings based on PHY capabilities */
if ((features & SUPPORTED_Autoneg) == 0)
autoneg = 0;
if (speed == SPEED_1000 &&
!(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
speed = SPEED_100;
if (speed == SPEED_100 &&
!(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
speed = SPEED_10;
if (duplex == DUPLEX_FULL &&
!(features & (SUPPORTED_1000baseT_Full |
SUPPORTED_100baseT_Full |
SUPPORTED_10baseT_Full)))
duplex = DUPLEX_HALF;
if (speed == 0)
speed = SPEED_10;
/* If we are asleep, we don't try to actually setup the PHY, we
* just store the settings
*/
if (!netif_device_present(gp->dev)) {
gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
gp->phy_mii.speed = speed;
gp->phy_mii.duplex = duplex;
return;
}
/* Configure PHY & start aneg */
gp->want_autoneg = autoneg;
if (autoneg) {
if (found_mii_phy(gp))
gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
gp->lstate = link_aneg;
} else {
if (found_mii_phy(gp))
gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
gp->lstate = link_force_ok;
}
non_mii:
gp->timer_ticks = 0;
mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
}
/* A link-up condition has occurred, initialize and enable the
* rest of the chip.
*/
static int gem_set_link_modes(struct gem *gp)
{
struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
int full_duplex, speed, pause;
u32 val;
full_duplex = 0;
speed = SPEED_10;
pause = 0;
if (found_mii_phy(gp)) {
if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
return 1;
full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
speed = gp->phy_mii.speed;
pause = gp->phy_mii.pause;
} else if (gp->phy_type == phy_serialink ||
gp->phy_type == phy_serdes) {
u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
full_duplex = 1;
speed = SPEED_1000;
}
netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
speed, (full_duplex ? "full" : "half"));
/* We take the tx queue lock to avoid collisions between
* this code, the tx path and the NAPI-driven error path
*/
__netif_tx_lock(txq, smp_processor_id());
val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
if (full_duplex) {
val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
} else {
/* MAC_TXCFG_NBO must be zero. */
}
writel(val, gp->regs + MAC_TXCFG);
val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
if (!full_duplex &&
(gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1)) {
val |= MAC_XIFCFG_DISE;
} else if (full_duplex) {
val |= MAC_XIFCFG_FLED;
}
if (speed == SPEED_1000)
val |= (MAC_XIFCFG_GMII);
writel(val, gp->regs + MAC_XIFCFG);
/* If gigabit and half-duplex, enable carrier extension
* mode. Else, disable it.
*/
if (speed == SPEED_1000 && !full_duplex) {
val = readl(gp->regs + MAC_TXCFG);
writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
val = readl(gp->regs + MAC_RXCFG);
writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
} else {
val = readl(gp->regs + MAC_TXCFG);
writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
val = readl(gp->regs + MAC_RXCFG);
writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
}
if (gp->phy_type == phy_serialink ||
gp->phy_type == phy_serdes) {
u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
pause = 1;
}
if (!full_duplex)
writel(512, gp->regs + MAC_STIME);
else
writel(64, gp->regs + MAC_STIME);
val = readl(gp->regs + MAC_MCCFG);
if (pause)
val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
else
val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
writel(val, gp->regs + MAC_MCCFG);
gem_start_dma(gp);
__netif_tx_unlock(txq);
if (netif_msg_link(gp)) {
if (pause) {
netdev_info(gp->dev,
"Pause is enabled (rxfifo: %d off: %d on: %d)\n",
gp->rx_fifo_sz,
gp->rx_pause_off,
gp->rx_pause_on);
} else {
netdev_info(gp->dev, "Pause is disabled\n");
}
}
return 0;
}
static int gem_mdio_link_not_up(struct gem *gp)
{
switch (gp->lstate) {
case link_force_ret:
netif_info(gp, link, gp->dev,
"Autoneg failed again, keeping forced mode\n");
gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
gp->last_forced_speed, DUPLEX_HALF);
gp->timer_ticks = 5;
gp->lstate = link_force_ok;
return 0;
case link_aneg:
/* We try forced modes after a failed aneg only on PHYs that don't
* have "magic_aneg" bit set, which means they internally do the
* while forced-mode thingy. On these, we just restart aneg
*/
if (gp->phy_mii.def->magic_aneg)
return 1;
netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
/* Try forced modes. */
gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
DUPLEX_HALF);
gp->timer_ticks = 5;
gp->lstate = link_force_try;
return 0;
case link_force_try:
/* Downgrade from 100 to 10 Mbps if necessary.
* If already at 10Mbps, warn user about the
* situation every 10 ticks.
*/
if (gp->phy_mii.speed == SPEED_100) {
gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
DUPLEX_HALF);
gp->timer_ticks = 5;
netif_info(gp, link, gp->dev,
"switching to forced 10bt\n");
return 0;
} else
return 1;
default:
return 0;
}
}
static void gem_link_timer(struct timer_list *t)
{
struct gem *gp = from_timer(gp, t, link_timer);
struct net_device *dev = gp->dev;
int restart_aneg = 0;
/* There's no point doing anything if we're going to be reset */
if (gp->reset_task_pending)
return;
if (gp->phy_type == phy_serialink ||
gp->phy_type == phy_serdes) {
u32 val = readl(gp->regs + PCS_MIISTAT);
if (!(val & PCS_MIISTAT_LS))
val = readl(gp->regs + PCS_MIISTAT);
if ((val & PCS_MIISTAT_LS) != 0) {
if (gp->lstate == link_up)
goto restart;
gp->lstate = link_up;
netif_carrier_on(dev);
(void)gem_set_link_modes(gp);
}
goto restart;
}
if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
/* Ok, here we got a link. If we had it due to a forced
* fallback, and we were configured for autoneg, we do
* retry a short autoneg pass. If you know your hub is
* broken, use ethtool ;)
*/
if (gp->lstate == link_force_try && gp->want_autoneg) {
gp->lstate = link_force_ret;
gp->last_forced_speed = gp->phy_mii.speed;
gp->timer_ticks = 5;
if (netif_msg_link(gp))
netdev_info(dev,
"Got link after fallback, retrying autoneg once...\n");
gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
} else if (gp->lstate != link_up) {
gp->lstate = link_up;
netif_carrier_on(dev);
if (gem_set_link_modes(gp))
restart_aneg = 1;
}
} else {
/* If the link was previously up, we restart the
* whole process
*/
if (gp->lstate == link_up) {
gp->lstate = link_down;
netif_info(gp, link, dev, "Link down\n");
netif_carrier_off(dev);
gem_schedule_reset(gp);
/* The reset task will restart the timer */
return;
} else if (++gp->timer_ticks > 10) {
if (found_mii_phy(gp))
restart_aneg = gem_mdio_link_not_up(gp);
else
restart_aneg = 1;
}
}
if (restart_aneg) {
gem_begin_auto_negotiation(gp, NULL);
return;
}
restart:
mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
}
static void gem_clean_rings(struct gem *gp)
{
struct gem_init_block *gb = gp->init_block;
struct sk_buff *skb;
int i;
dma_addr_t dma_addr;
for (i = 0; i < RX_RING_SIZE; i++) {
struct gem_rxd *rxd;
rxd = &gb->rxd[i];
if (gp->rx_skbs[i] != NULL) {
skb = gp->rx_skbs[i];
dma_addr = le64_to_cpu(rxd->buffer);
pci_unmap_page(gp->pdev, dma_addr,
RX_BUF_ALLOC_SIZE(gp),
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
gp->rx_skbs[i] = NULL;
}
rxd->status_word = 0;
dma_wmb();
rxd->buffer = 0;
}
for (i = 0; i < TX_RING_SIZE; i++) {
if (gp->tx_skbs[i] != NULL) {
struct gem_txd *txd;
int frag;
skb = gp->tx_skbs[i];
gp->tx_skbs[i] = NULL;
for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
int ent = i & (TX_RING_SIZE - 1);
txd = &gb->txd[ent];
dma_addr = le64_to_cpu(txd->buffer);
pci_unmap_page(gp->pdev, dma_addr,
le64_to_cpu(txd->control_word) &
TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
if (frag != skb_shinfo(skb)->nr_frags)
i++;
}
dev_kfree_skb_any(skb);
}
}
}
static void gem_init_rings(struct gem *gp)
{
struct gem_init_block *gb = gp->init_block;
struct net_device *dev = gp->dev;
int i;
dma_addr_t dma_addr;
gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
gem_clean_rings(gp);
gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
(unsigned)VLAN_ETH_FRAME_LEN);
for (i = 0; i < RX_RING_SIZE; i++) {
struct sk_buff *skb;
struct gem_rxd *rxd = &gb->rxd[i];
skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
if (!skb) {
rxd->buffer = 0;
rxd->status_word = 0;
continue;
}
gp->rx_skbs[i] = skb;
skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
dma_addr = pci_map_page(gp->pdev,
virt_to_page(skb->data),
offset_in_page(skb->data),
RX_BUF_ALLOC_SIZE(gp),
PCI_DMA_FROMDEVICE);
rxd->buffer = cpu_to_le64(dma_addr);
dma_wmb();
rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
skb_reserve(skb, RX_OFFSET);
}
for (i = 0; i < TX_RING_SIZE; i++) {
struct gem_txd *txd = &gb->txd[i];
txd->control_word = 0;
dma_wmb();
txd->buffer = 0;
}
wmb();
}
/* Init PHY interface and start link poll state machine */
static void gem_init_phy(struct gem *gp)
{
u32 mifcfg;
/* Revert MIF CFG setting done on stop_phy */
mifcfg = readl(gp->regs + MIF_CFG);
mifcfg &= ~MIF_CFG_BBMODE;
writel(mifcfg, gp->regs + MIF_CFG);
if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
int i;
/* Those delay sucks, the HW seem to love them though, I'll
* serisouly consider breaking some locks here to be able
* to schedule instead
*/
for (i = 0; i < 3; i++) {
#ifdef CONFIG_PPC_PMAC
pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
msleep(20);
#endif
/* Some PHYs used by apple have problem getting back to us,
* we do an additional reset here
*/
sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
msleep(20);
if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
break;
if (i == 2)
netdev_warn(gp->dev, "GMAC PHY not responding !\n");
}
}
if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
u32 val;
/* Init datapath mode register. */
if (gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1) {
val = PCS_DMODE_MGM;
} else if (gp->phy_type == phy_serialink) {
val = PCS_DMODE_SM | PCS_DMODE_GMOE;
} else {
val = PCS_DMODE_ESM;
}
writel(val, gp->regs + PCS_DMODE);
}
if (gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1) {
/* Reset and detect MII PHY */
sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
/* Init PHY */
if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
gp->phy_mii.def->ops->init(&gp->phy_mii);
} else {
gem_pcs_reset(gp);
gem_pcs_reinit_adv(gp);
}
/* Default aneg parameters */
gp->timer_ticks = 0;
gp->lstate = link_down;
netif_carrier_off(gp->dev);
/* Print things out */
if (gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1)
netdev_info(gp->dev, "Found %s PHY\n",
gp->phy_mii.def ? gp->phy_mii.def->name : "no");
gem_begin_auto_negotiation(gp, NULL);
}
static void gem_init_dma(struct gem *gp)
{
u64 desc_dma = (u64) gp->gblock_dvma;
u32 val;
val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
writel(val, gp->regs + TXDMA_CFG);
writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
writel(0, gp->regs + TXDMA_KICK);
val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
(ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
writel(val, gp->regs + RXDMA_CFG);
writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
writel(val, gp->regs + RXDMA_PTHRESH);
if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
writel(((5 & RXDMA_BLANK_IPKTS) |
((8 << 12) & RXDMA_BLANK_ITIME)),
gp->regs + RXDMA_BLANK);
else
writel(((5 & RXDMA_BLANK_IPKTS) |
((4 << 12) & RXDMA_BLANK_ITIME)),
gp->regs + RXDMA_BLANK);
}
static u32 gem_setup_multicast(struct gem *gp)
{
u32 rxcfg = 0;
int i;
if ((gp->dev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(gp->dev) > 256)) {
for (i=0; i<16; i++)
writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
rxcfg |= MAC_RXCFG_HFE;
} else if (gp->dev->flags & IFF_PROMISC) {
rxcfg |= MAC_RXCFG_PROM;
} else {
u16 hash_table[16];
u32 crc;
struct netdev_hw_addr *ha;
int i;
memset(hash_table, 0, sizeof(hash_table));
netdev_for_each_mc_addr(ha, gp->dev) {
crc = ether_crc_le(6, ha->addr);
crc >>= 24;
hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
}
for (i=0; i<16; i++)
writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
rxcfg |= MAC_RXCFG_HFE;
}
return rxcfg;
}
static void gem_init_mac(struct gem *gp)
{
unsigned char *e = &gp->dev->dev_addr[0];
writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
writel(0x00, gp->regs + MAC_IPG0);
writel(0x08, gp->regs + MAC_IPG1);
writel(0x04, gp->regs + MAC_IPG2);
writel(0x40, gp->regs + MAC_STIME);
writel(0x40, gp->regs + MAC_MINFSZ);
/* Ethernet payload + header + FCS + optional VLAN tag. */
writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
writel(0x07, gp->regs + MAC_PASIZE);
writel(0x04, gp->regs + MAC_JAMSIZE);
writel(0x10, gp->regs + MAC_ATTLIM);
writel(0x8808, gp->regs + MAC_MCTYPE);
writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
writel(0, gp->regs + MAC_ADDR3);
writel(0, gp->regs + MAC_ADDR4);
writel(0, gp->regs + MAC_ADDR5);
writel(0x0001, gp->regs + MAC_ADDR6);
writel(0xc200, gp->regs + MAC_ADDR7);
writel(0x0180, gp->regs + MAC_ADDR8);
writel(0, gp->regs + MAC_AFILT0);
writel(0, gp->regs + MAC_AFILT1);
writel(0, gp->regs + MAC_AFILT2);
writel(0, gp->regs + MAC_AF21MSK);
writel(0, gp->regs + MAC_AF0MSK);
gp->mac_rx_cfg = gem_setup_multicast(gp);
#ifdef STRIP_FCS
gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
#endif
writel(0, gp->regs + MAC_NCOLL);
writel(0, gp->regs + MAC_FASUCC);
writel(0, gp->regs + MAC_ECOLL);
writel(0, gp->regs + MAC_LCOLL);
writel(0, gp->regs + MAC_DTIMER);
writel(0, gp->regs + MAC_PATMPS);
writel(0, gp->regs + MAC_RFCTR);
writel(0, gp->regs + MAC_LERR);
writel(0, gp->regs + MAC_AERR);
writel(0, gp->regs + MAC_FCSERR);
writel(0, gp->regs + MAC_RXCVERR);
/* Clear RX/TX/MAC/XIF config, we will set these up and enable
* them once a link is established.
*/
writel(0, gp->regs + MAC_TXCFG);
writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
writel(0, gp->regs + MAC_MCCFG);
writel(0, gp->regs + MAC_XIFCFG);
/* Setup MAC interrupts. We want to get all of the interesting
* counter expiration events, but we do not want to hear about
* normal rx/tx as the DMA engine tells us that.
*/
writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
/* Don't enable even the PAUSE interrupts for now, we
* make no use of those events other than to record them.
*/
writel(0xffffffff, gp->regs + MAC_MCMASK);
/* Don't enable GEM's WOL in normal operations
*/
if (gp->has_wol)
writel(0, gp->regs + WOL_WAKECSR);
}
static void gem_init_pause_thresholds(struct gem *gp)
{
u32 cfg;
/* Calculate pause thresholds. Setting the OFF threshold to the
* full RX fifo size effectively disables PAUSE generation which
* is what we do for 10/100 only GEMs which have FIFOs too small
* to make real gains from PAUSE.
*/
if (gp->rx_fifo_sz <= (2 * 1024)) {
gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
} else {
int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
int off = (gp->rx_fifo_sz - (max_frame * 2));
int on = off - max_frame;
gp->rx_pause_off = off;
gp->rx_pause_on = on;
}
/* Configure the chip "burst" DMA mode & enable some
* HW bug fixes on Apple version
*/
cfg = 0;
if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
cfg |= GREG_CFG_IBURST;
#endif
cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
writel(cfg, gp->regs + GREG_CFG);
/* If Infinite Burst didn't stick, then use different
* thresholds (and Apple bug fixes don't exist)
*/
if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
writel(cfg, gp->regs + GREG_CFG);
}
}
static int gem_check_invariants(struct gem *gp)
{
struct pci_dev *pdev = gp->pdev;
u32 mif_cfg;
/* On Apple's sungem, we can't rely on registers as the chip
* was been powered down by the firmware. The PHY is looked
* up later on.
*/
if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
gp->phy_type = phy_mii_mdio0;
gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
gp->swrst_base = 0;
mif_cfg = readl(gp->regs + MIF_CFG);
mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
mif_cfg |= MIF_CFG_MDI0;
writel(mif_cfg, gp->regs + MIF_CFG);
writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
/* We hard-code the PHY address so we can properly bring it out of
* reset later on, we can't really probe it at this point, though
* that isn't an issue.
*/
if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
gp->mii_phy_addr = 1;
else
gp->mii_phy_addr = 0;
return 0;
}
mif_cfg = readl(gp->regs + MIF_CFG);
if (pdev->vendor == PCI_VENDOR_ID_SUN &&
pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
/* One of the MII PHYs _must_ be present
* as this chip has no gigabit PHY.
*/
if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
mif_cfg);
return -1;
}
}
/* Determine initial PHY interface type guess. MDIO1 is the
* external PHY and thus takes precedence over MDIO0.
*/
if (mif_cfg & MIF_CFG_MDI1) {
gp->phy_type = phy_mii_mdio1;
mif_cfg |= MIF_CFG_PSELECT;
writel(mif_cfg, gp->regs + MIF_CFG);
} else if (mif_cfg & MIF_CFG_MDI0) {
gp->phy_type = phy_mii_mdio0;
mif_cfg &= ~MIF_CFG_PSELECT;
writel(mif_cfg, gp->regs + MIF_CFG);
} else {
#ifdef CONFIG_SPARC
const char *p;
p = of_get_property(gp->of_node, "shared-pins", NULL);
if (p && !strcmp(p, "serdes"))
gp->phy_type = phy_serdes;
else
#endif
gp->phy_type = phy_serialink;
}
if (gp->phy_type == phy_mii_mdio1 ||
gp->phy_type == phy_mii_mdio0) {
int i;
for (i = 0; i < 32; i++) {
gp->mii_phy_addr = i;
if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
break;
}
if (i == 32) {
if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
pr_err("RIO MII phy will not respond\n");
return -1;
}
gp->phy_type = phy_serdes;
}
}
/* Fetch the FIFO configurations now too. */
gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
if (pdev->vendor == PCI_VENDOR_ID_SUN) {
if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
if (gp->tx_fifo_sz != (9 * 1024) ||
gp->rx_fifo_sz != (20 * 1024)) {
pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
gp->tx_fifo_sz, gp->rx_fifo_sz);
return -1;
}
gp->swrst_base = 0;
} else {
if (gp->tx_fifo_sz != (2 * 1024) ||
gp->rx_fifo_sz != (2 * 1024)) {
pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
gp->tx_fifo_sz, gp->rx_fifo_sz);
return -1;
}
gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
}
}
return 0;
}
static void gem_reinit_chip(struct gem *gp)
{
/* Reset the chip */
gem_reset(gp);
/* Make sure ints are disabled */
gem_disable_ints(gp);
/* Allocate & setup ring buffers */
gem_init_rings(gp);
/* Configure pause thresholds */
gem_init_pause_thresholds(gp);
/* Init DMA & MAC engines */
gem_init_dma(gp);
gem_init_mac(gp);
}
static void gem_stop_phy(struct gem *gp, int wol)
{
u32 mifcfg;
/* Let the chip settle down a bit, it seems that helps
* for sleep mode on some models
*/
msleep(10);
/* Make sure we aren't polling PHY status change. We
* don't currently use that feature though
*/
mifcfg = readl(gp->regs + MIF_CFG);
mifcfg &= ~MIF_CFG_POLL;
writel(mifcfg, gp->regs + MIF_CFG);
if (wol && gp->has_wol) {
unsigned char *e = &gp->dev->dev_addr[0];
u32 csr;
/* Setup wake-on-lan for MAGIC packet */
writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
gp->regs + MAC_RXCFG);
writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
csr = WOL_WAKECSR_ENABLE;
if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
csr |= WOL_WAKECSR_MII;
writel(csr, gp->regs + WOL_WAKECSR);
} else {
writel(0, gp->regs + MAC_RXCFG);
(void)readl(gp->regs + MAC_RXCFG);
/* Machine sleep will die in strange ways if we
* dont wait a bit here, looks like the chip takes
* some time to really shut down
*/
msleep(10);
}
writel(0, gp->regs + MAC_TXCFG);
writel(0, gp->regs + MAC_XIFCFG);
writel(0, gp->regs + TXDMA_CFG);
writel(0, gp->regs + RXDMA_CFG);
if (!wol) {
gem_reset(gp);
writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
gp->phy_mii.def->ops->suspend(&gp->phy_mii);
/* According to Apple, we must set the MDIO pins to this begnign
* state or we may 1) eat more current, 2) damage some PHYs
*/
writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
writel(0, gp->regs + MIF_BBCLK);
writel(0, gp->regs + MIF_BBDATA);
writel(0, gp->regs + MIF_BBOENAB);
writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
(void) readl(gp->regs + MAC_XIFCFG);
}
}
static int gem_do_start(struct net_device *dev)
{
struct gem *gp = netdev_priv(dev);
int rc;
/* Enable the cell */
gem_get_cell(gp);
/* Make sure PCI access and bus master are enabled */
rc = pci_enable_device(gp->pdev);
if (rc) {
netdev_err(dev, "Failed to enable chip on PCI bus !\n");
/* Put cell and forget it for now, it will be considered as
* still asleep, a new sleep cycle may bring it back
*/
gem_put_cell(gp);
return -ENXIO;
}
pci_set_master(gp->pdev);
/* Init & setup chip hardware */
gem_reinit_chip(gp);
/* An interrupt might come in handy */
rc = request_irq(gp->pdev->irq, gem_interrupt,
IRQF_SHARED, dev->name, (void *)dev);
if (rc) {
netdev_err(dev, "failed to request irq !\n");
gem_reset(gp);
gem_clean_rings(gp);
gem_put_cell(gp);
return rc;
}
/* Mark us as attached again if we come from resume(), this has
* no effect if we weren't detached and needs to be done now.
*/
netif_device_attach(dev);
/* Restart NAPI & queues */
gem_netif_start(gp);
/* Detect & init PHY, start autoneg etc... this will
* eventually result in starting DMA operations when
* the link is up
*/
gem_init_phy(gp);
return 0;
}
static void gem_do_stop(struct net_device *dev, int wol)
{
struct gem *gp = netdev_priv(dev);
/* Stop NAPI and stop tx queue */
gem_netif_stop(gp);
/* Make sure ints are disabled. We don't care about
* synchronizing as NAPI is disabled, thus a stray
* interrupt will do nothing bad (our irq handler
* just schedules NAPI)
*/
gem_disable_ints(gp);
/* Stop the link timer */
del_timer_sync(&gp->link_timer);
/* We cannot cancel the reset task while holding the
* rtnl lock, we'd get an A->B / B->A deadlock stituation
* if we did. This is not an issue however as the reset
* task is synchronized vs. us (rtnl_lock) and will do
* nothing if the device is down or suspended. We do
* still clear reset_task_pending to avoid a spurrious
* reset later on in case we do resume before it gets
* scheduled.
*/
gp->reset_task_pending = 0;
/* If we are going to sleep with WOL */
gem_stop_dma(gp);
msleep(10);
if (!wol)
gem_reset(gp);
msleep(10);
/* Get rid of rings */
gem_clean_rings(gp);
/* No irq needed anymore */
free_irq(gp->pdev->irq, (void *) dev);
/* Shut the PHY down eventually and setup WOL */
gem_stop_phy(gp, wol);
/* Make sure bus master is disabled */
pci_disable_device(gp->pdev);
/* Cell not needed neither if no WOL */
if (!wol)
gem_put_cell(gp);
}
static void gem_reset_task(struct work_struct *work)
{
struct gem *gp = container_of(work, struct gem, reset_task);
/* Lock out the network stack (essentially shield ourselves
* against a racing open, close, control call, or suspend
*/
rtnl_lock();
/* Skip the reset task if suspended or closed, or if it's
* been cancelled by gem_do_stop (see comment there)
*/
if (!netif_device_present(gp->dev) ||
!netif_running(gp->dev) ||
!gp->reset_task_pending) {
rtnl_unlock();
return;
}
/* Stop the link timer */
del_timer_sync(&gp->link_timer);
/* Stop NAPI and tx */
gem_netif_stop(gp);
/* Reset the chip & rings */
gem_reinit_chip(gp);
if (gp->lstate == link_up)
gem_set_link_modes(gp);
/* Restart NAPI and Tx */
gem_netif_start(gp);
/* We are back ! */
gp->reset_task_pending = 0;
/* If the link is not up, restart autoneg, else restart the
* polling timer
*/
if (gp->lstate != link_up)
gem_begin_auto_negotiation(gp, NULL);
else
mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
rtnl_unlock();
}
static int gem_open(struct net_device *dev)
{
/* We allow open while suspended, we just do nothing,
* the chip will be initialized in resume()
*/
if (netif_device_present(dev))
return gem_do_start(dev);
return 0;
}
static int gem_close(struct net_device *dev)
{
if (netif_device_present(dev))
gem_do_stop(dev, 0);
return 0;
}
#ifdef CONFIG_PM
static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct gem *gp = netdev_priv(dev);
/* Lock the network stack first to avoid racing with open/close,
* reset task and setting calls
*/
rtnl_lock();
/* Not running, mark ourselves non-present, no need for
* a lock here
*/
if (!netif_running(dev)) {
netif_device_detach(dev);
rtnl_unlock();
return 0;
}
netdev_info(dev, "suspending, WakeOnLan %s\n",
(gp->wake_on_lan && netif_running(dev)) ?
"enabled" : "disabled");
/* Tell the network stack we're gone. gem_do_stop() below will
* synchronize with TX, stop NAPI etc...
*/
netif_device_detach(dev);
/* Switch off chip, remember WOL setting */
gp->asleep_wol = !!gp->wake_on_lan;
gem_do_stop(dev, gp->asleep_wol);
/* Unlock the network stack */
rtnl_unlock();
return 0;
}
static int gem_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct gem *gp = netdev_priv(dev);
/* See locking comment in gem_suspend */
rtnl_lock();
/* Not running, mark ourselves present, no need for
* a lock here
*/
if (!netif_running(dev)) {
netif_device_attach(dev);
rtnl_unlock();
return 0;
}
/* Restart chip. If that fails there isn't much we can do, we
* leave things stopped.
*/
gem_do_start(dev);
/* If we had WOL enabled, the cell clock was never turned off during
* sleep, so we end up beeing unbalanced. Fix that here
*/
if (gp->asleep_wol)
gem_put_cell(gp);
/* Unlock the network stack */
rtnl_unlock();
return 0;
}
#endif /* CONFIG_PM */
static struct net_device_stats *gem_get_stats(struct net_device *dev)
{
struct gem *gp = netdev_priv(dev);
/* I have seen this being called while the PM was in progress,
* so we shield against this. Let's also not poke at registers
* while the reset task is going on.
*
* TODO: Move stats collection elsewhere (link timer ?) and
* make this a nop to avoid all those synchro issues
*/
if (!netif_device_present(dev) || !netif_running(dev))
goto bail;
/* Better safe than sorry... */
if (WARN_ON(!gp->cell_enabled))
goto bail;
dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
writel(0, gp->regs + MAC_FCSERR);
dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
writel(0, gp->regs + MAC_AERR);
dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
writel(0, gp->regs + MAC_LERR);
dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
dev->stats.collisions +=
(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
writel(0, gp->regs + MAC_ECOLL);
writel(0, gp->regs + MAC_LCOLL);
bail:
return &dev->stats;
}
static int gem_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *macaddr = (struct sockaddr *) addr;
struct gem *gp = netdev_priv(dev);
unsigned char *e = &dev->dev_addr[0];
if (!is_valid_ether_addr(macaddr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
/* We'll just catch it later when the device is up'd or resumed */
if (!netif_running(dev) || !netif_device_present(dev))
return 0;
/* Better safe than sorry... */
if (WARN_ON(!gp->cell_enabled))
return 0;
writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
return 0;
}
static void gem_set_multicast(struct net_device *dev)
{
struct gem *gp = netdev_priv(dev);
u32 rxcfg, rxcfg_new;
int limit = 10000;
if (!netif_running(dev) || !netif_device_present(dev))
return;
/* Better safe than sorry... */
if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
return;
rxcfg = readl(gp->regs + MAC_RXCFG);
rxcfg_new = gem_setup_multicast(gp);
#ifdef STRIP_FCS
rxcfg_new |= MAC_RXCFG_SFCS;
#endif
gp->mac_rx_cfg = rxcfg_new;
writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
if (!limit--)
break;
udelay(10);
}
rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
rxcfg |= rxcfg_new;
writel(rxcfg, gp->regs + MAC_RXCFG);
}
/* Jumbo-grams don't seem to work :-( */
#define GEM_MIN_MTU ETH_MIN_MTU
#if 1
#define GEM_MAX_MTU ETH_DATA_LEN
#else
#define GEM_MAX_MTU 9000
#endif
static int gem_change_mtu(struct net_device *dev, int new_mtu)
{
struct gem *gp = netdev_priv(dev);
dev->mtu = new_mtu;
/* We'll just catch it later when the device is up'd or resumed */
if (!netif_running(dev) || !netif_device_present(dev))
return 0;
/* Better safe than sorry... */
if (WARN_ON(!gp->cell_enabled))
return 0;
gem_netif_stop(gp);
gem_reinit_chip(gp);
if (gp->lstate == link_up)
gem_set_link_modes(gp);
gem_netif_start(gp);
return 0;
}
static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct gem *gp = netdev_priv(dev);
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
}
static int gem_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct gem *gp = netdev_priv(dev);
u32 supported, advertising;
if (gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1) {
if (gp->phy_mii.def)
supported = gp->phy_mii.def->features;
else
supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full);
/* XXX hardcoded stuff for now */
cmd->base.port = PORT_MII;
cmd->base.phy_address = 0; /* XXX fixed PHYAD */
/* Return current PHY settings */
cmd->base.autoneg = gp->want_autoneg;
cmd->base.speed = gp->phy_mii.speed;
cmd->base.duplex = gp->phy_mii.duplex;
advertising = gp->phy_mii.advertising;
/* If we started with a forced mode, we don't have a default
* advertise set, we need to return something sensible so
* userland can re-enable autoneg properly.
*/
if (advertising == 0)
advertising = supported;
} else { // XXX PCS ?
supported =
(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg);
advertising = supported;
cmd->base.speed = 0;
cmd->base.duplex = 0;
cmd->base.port = 0;
cmd->base.phy_address = 0;
cmd->base.autoneg = 0;
/* serdes means usually a Fibre connector, with most fixed */
if (gp->phy_type == phy_serdes) {
cmd->base.port = PORT_FIBRE;
supported = (SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE | SUPPORTED_Autoneg |
SUPPORTED_Pause | SUPPORTED_Asym_Pause);
advertising = supported;
if (gp->lstate == link_up)
cmd->base.speed = SPEED_1000;
cmd->base.duplex = DUPLEX_FULL;
cmd->base.autoneg = 1;
}
}
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
supported);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
advertising);
return 0;
}
static int gem_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct gem *gp = netdev_priv(dev);
u32 speed = cmd->base.speed;
u32 advertising;
ethtool_convert_link_mode_to_legacy_u32(&advertising,
cmd->link_modes.advertising);
/* Verify the settings we care about. */
if (cmd->base.autoneg != AUTONEG_ENABLE &&
cmd->base.autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->base.autoneg == AUTONEG_ENABLE &&
advertising == 0)
return -EINVAL;
if (cmd->base.autoneg == AUTONEG_DISABLE &&
((speed != SPEED_1000 &&
speed != SPEED_100 &&
speed != SPEED_10) ||
(cmd->base.duplex != DUPLEX_HALF &&
cmd->base.duplex != DUPLEX_FULL)))
return -EINVAL;
/* Apply settings and restart link process. */
if (netif_device_present(gp->dev)) {
del_timer_sync(&gp->link_timer);
gem_begin_auto_negotiation(gp, cmd);
}
return 0;
}
static int gem_nway_reset(struct net_device *dev)
{
struct gem *gp = netdev_priv(dev);
if (!gp->want_autoneg)
return -EINVAL;
/* Restart link process */
if (netif_device_present(gp->dev)) {
del_timer_sync(&gp->link_timer);
gem_begin_auto_negotiation(gp, NULL);
}
return 0;
}
static u32 gem_get_msglevel(struct net_device *dev)
{
struct gem *gp = netdev_priv(dev);
return gp->msg_enable;
}
static void gem_set_msglevel(struct net_device *dev, u32 value)
{
struct gem *gp = netdev_priv(dev);
gp->msg_enable = value;
}
/* Add more when I understand how to program the chip */
/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
#define WOL_SUPPORTED_MASK (WAKE_MAGIC)
static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct gem *gp = netdev_priv(dev);
/* Add more when I understand how to program the chip */
if (gp->has_wol) {
wol->supported = WOL_SUPPORTED_MASK;
wol->wolopts = gp->wake_on_lan;
} else {
wol->supported = 0;
wol->wolopts = 0;
}
}
static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct gem *gp = netdev_priv(dev);
if (!gp->has_wol)
return -EOPNOTSUPP;
gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
return 0;
}
static const struct ethtool_ops gem_ethtool_ops = {
.get_drvinfo = gem_get_drvinfo,
.get_link = ethtool_op_get_link,
.nway_reset = gem_nway_reset,
.get_msglevel = gem_get_msglevel,
.set_msglevel = gem_set_msglevel,
.get_wol = gem_get_wol,
.set_wol = gem_set_wol,
.get_link_ksettings = gem_get_link_ksettings,
.set_link_ksettings = gem_set_link_ksettings,
};
static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct gem *gp = netdev_priv(dev);
struct mii_ioctl_data *data = if_mii(ifr);
int rc = -EOPNOTSUPP;
/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
* netif_device_present() is true and holds rtnl_lock for us
* so we have nothing to worry about
*/
switch (cmd) {
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
data->phy_id = gp->mii_phy_addr;
/* Fallthrough... */
case SIOCGMIIREG: /* Read MII PHY register. */
data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
data->reg_num & 0x1f);
rc = 0;
break;
case SIOCSMIIREG: /* Write MII PHY register. */
__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
data->val_in);
rc = 0;
break;
}
return rc;
}
#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
/* Fetch MAC address from vital product data of PCI ROM. */
static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
{
int this_offset;
for (this_offset = 0x20; this_offset < len; this_offset++) {
void __iomem *p = rom_base + this_offset;
int i;
if (readb(p + 0) != 0x90 ||
readb(p + 1) != 0x00 ||
readb(p + 2) != 0x09 ||
readb(p + 3) != 0x4e ||
readb(p + 4) != 0x41 ||
readb(p + 5) != 0x06)
continue;
this_offset += 6;
p += 6;
for (i = 0; i < 6; i++)
dev_addr[i] = readb(p + i);
return 1;
}
return 0;
}
static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
{
size_t size;
void __iomem *p = pci_map_rom(pdev, &size);
if (p) {
int found;
found = readb(p) == 0x55 &&
readb(p + 1) == 0xaa &&
find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
pci_unmap_rom(pdev, p);
if (found)
return;
}
/* Sun MAC prefix then 3 random bytes. */
dev_addr[0] = 0x08;
dev_addr[1] = 0x00;
dev_addr[2] = 0x20;
get_random_bytes(dev_addr + 3, 3);
}
#endif /* not Sparc and not PPC */
static int gem_get_device_address(struct gem *gp)
{
#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
struct net_device *dev = gp->dev;
const unsigned char *addr;
addr = of_get_property(gp->of_node, "local-mac-address", NULL);
if (addr == NULL) {
#ifdef CONFIG_SPARC
addr = idprom->id_ethaddr;
#else
printk("\n");
pr_err("%s: can't get mac-address\n", dev->name);
return -1;
#endif
}
memcpy(dev->dev_addr, addr, ETH_ALEN);
#else
get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
#endif
return 0;
}
static void gem_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct gem *gp = netdev_priv(dev);
unregister_netdev(dev);
/* Ensure reset task is truly gone */
cancel_work_sync(&gp->reset_task);
/* Free resources */
pci_free_consistent(pdev,
sizeof(struct gem_init_block),
gp->init_block,
gp->gblock_dvma);
iounmap(gp->regs);
pci_release_regions(pdev);
free_netdev(dev);
}
}
static const struct net_device_ops gem_netdev_ops = {
.ndo_open = gem_open,
.ndo_stop = gem_close,
.ndo_start_xmit = gem_start_xmit,
.ndo_get_stats = gem_get_stats,
.ndo_set_rx_mode = gem_set_multicast,
.ndo_do_ioctl = gem_ioctl,
.ndo_tx_timeout = gem_tx_timeout,
.ndo_change_mtu = gem_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = gem_set_mac_address,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = gem_poll_controller,
#endif
};
static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
unsigned long gemreg_base, gemreg_len;
struct net_device *dev;
struct gem *gp;
int err, pci_using_dac;
printk_once(KERN_INFO "%s", version);
/* Apple gmac note: during probe, the chip is powered up by
* the arch code to allow the code below to work (and to let
* the chip be probed on the config space. It won't stay powered
* up until the interface is brought up however, so we can't rely
* on register configuration done at this point.
*/
err = pci_enable_device(pdev);
if (err) {
pr_err("Cannot enable MMIO operation, aborting\n");
return err;
}
pci_set_master(pdev);
/* Configure DMA attributes. */
/* All of the GEM documentation states that 64-bit DMA addressing
* is fully supported and should work just fine. However the
* front end for RIO based GEMs is different and only supports
* 32-bit addressing.
*
* For now we assume the various PPC GEMs are 32-bit only as well.
*/
if (pdev->vendor == PCI_VENDOR_ID_SUN &&
pdev->device == PCI_DEVICE_ID_SUN_GEM &&
!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
pci_using_dac = 1;
} else {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
pr_err("No usable DMA configuration, aborting\n");
goto err_disable_device;
}
pci_using_dac = 0;
}
gemreg_base = pci_resource_start(pdev, 0);
gemreg_len = pci_resource_len(pdev, 0);
if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
pr_err("Cannot find proper PCI device base address, aborting\n");
err = -ENODEV;
goto err_disable_device;
}
dev = alloc_etherdev(sizeof(*gp));
if (!dev) {
err = -ENOMEM;
goto err_disable_device;
}
SET_NETDEV_DEV(dev, &pdev->dev);
gp = netdev_priv(dev);
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
pr_err("Cannot obtain PCI resources, aborting\n");
goto err_out_free_netdev;
}
gp->pdev = pdev;
gp->dev = dev;
gp->msg_enable = DEFAULT_MSG;
timer_setup(&gp->link_timer, gem_link_timer, 0);
INIT_WORK(&gp->reset_task, gem_reset_task);
gp->lstate = link_down;
gp->timer_ticks = 0;
netif_carrier_off(dev);
gp->regs = ioremap(gemreg_base, gemreg_len);
if (!gp->regs) {
pr_err("Cannot map device registers, aborting\n");
err = -EIO;
goto err_out_free_res;
}
/* On Apple, we want a reference to the Open Firmware device-tree
* node. We use it for clock control.
*/
#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
gp->of_node = pci_device_to_OF_node(pdev);
#endif
/* Only Apple version supports WOL afaik */
if (pdev->vendor == PCI_VENDOR_ID_APPLE)
gp->has_wol = 1;
/* Make sure cell is enabled */
gem_get_cell(gp);
/* Make sure everything is stopped and in init state */
gem_reset(gp);
/* Fill up the mii_phy structure (even if we won't use it) */
gp->phy_mii.dev = dev;
gp->phy_mii.mdio_read = _sungem_phy_read;
gp->phy_mii.mdio_write = _sungem_phy_write;
#ifdef CONFIG_PPC_PMAC
gp->phy_mii.platform_data = gp->of_node;
#endif
/* By default, we start with autoneg */
gp->want_autoneg = 1;
/* Check fifo sizes, PHY type, etc... */
if (gem_check_invariants(gp)) {
err = -ENODEV;
goto err_out_iounmap;
}
/* It is guaranteed that the returned buffer will be at least
* PAGE_SIZE aligned.
*/
gp->init_block = (struct gem_init_block *)
pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
&gp->gblock_dvma);
if (!gp->init_block) {
pr_err("Cannot allocate init block, aborting\n");
err = -ENOMEM;
goto err_out_iounmap;
}
err = gem_get_device_address(gp);
if (err)
goto err_out_free_consistent;
dev->netdev_ops = &gem_netdev_ops;
netif_napi_add(dev, &gp->napi, gem_poll, 64);
dev->ethtool_ops = &gem_ethtool_ops;
dev->watchdog_timeo = 5 * HZ;
dev->dma = 0;
/* Set that now, in case PM kicks in now */
pci_set_drvdata(pdev, dev);
/* We can do scatter/gather and HW checksum */
dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
dev->features = dev->hw_features;
if (pci_using_dac)
dev->features |= NETIF_F_HIGHDMA;
/* MTU range: 68 - 1500 (Jumbo mode is broken) */
dev->min_mtu = GEM_MIN_MTU;
dev->max_mtu = GEM_MAX_MTU;
/* Register with kernel */
if (register_netdev(dev)) {
pr_err("Cannot register net device, aborting\n");
err = -ENOMEM;
goto err_out_free_consistent;
}
/* Undo the get_cell with appropriate locking (we could use
* ndo_init/uninit but that would be even more clumsy imho)
*/
rtnl_lock();
gem_put_cell(gp);
rtnl_unlock();
netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
dev->dev_addr);
return 0;
err_out_free_consistent:
gem_remove_one(pdev);
err_out_iounmap:
gem_put_cell(gp);
iounmap(gp->regs);
err_out_free_res:
pci_release_regions(pdev);
err_out_free_netdev:
free_netdev(dev);
err_disable_device:
pci_disable_device(pdev);
return err;
}
static struct pci_driver gem_driver = {
.name = GEM_MODULE_NAME,
.id_table = gem_pci_tbl,
.probe = gem_init_one,
.remove = gem_remove_one,
#ifdef CONFIG_PM
.suspend = gem_suspend,
.resume = gem_resume,
#endif /* CONFIG_PM */
};
module_pci_driver(gem_driver);