linux_dsm_epyc7002/drivers/media/dvb-frontends/mt352.c
Mauro Carvalho Chehab 7e3e68bcfd [media] dvb_frontend: pass the props cache to get_frontend() as arg
Instead of using the DTV properties cache directly, pass the get
frontend data as an argument. For now, everything should remain
the same, but the next patch will prevent get_frontend to
affect the global cache.

This is needed because several drivers don't care enough to only
change the properties if locked. Due to that, calling
G_PROPERTY before locking on those drivers will make them to
never lock. Ok, those drivers are crap and should never be
merged like that, but the core should not rely that the drivers
would be doing the right thing.

Reviewed-by: Michael Ira Krufky <mkrufky@linuxtv.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2016-02-04 16:27:30 -02:00

611 lines
14 KiB
C

/*
* Driver for Zarlink DVB-T MT352 demodulator
*
* Written by Holger Waechtler <holger@qanu.de>
* and Daniel Mack <daniel@qanu.de>
*
* AVerMedia AVerTV DVB-T 771 support by
* Wolfram Joost <dbox2@frokaschwei.de>
*
* Support for Samsung TDTC9251DH01C(M) tuner
* Copyright (C) 2004 Antonio Mancuso <antonio.mancuso@digitaltelevision.it>
* Amauri Celani <acelani@essegi.net>
*
* DVICO FusionHDTV DVB-T1 and DVICO FusionHDTV DVB-T Lite support by
* Christopher Pascoe <c.pascoe@itee.uq.edu.au>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "mt352_priv.h"
#include "mt352.h"
struct mt352_state {
struct i2c_adapter* i2c;
struct dvb_frontend frontend;
/* configuration settings */
struct mt352_config config;
};
static int debug;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "mt352: " args); \
} while (0)
static int mt352_single_write(struct dvb_frontend *fe, u8 reg, u8 val)
{
struct mt352_state* state = fe->demodulator_priv;
u8 buf[2] = { reg, val };
struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0,
.buf = buf, .len = 2 };
int err = i2c_transfer(state->i2c, &msg, 1);
if (err != 1) {
printk("mt352_write() to reg %x failed (err = %d)!\n", reg, err);
return err;
}
return 0;
}
static int _mt352_write(struct dvb_frontend* fe, const u8 ibuf[], int ilen)
{
int err,i;
for (i=0; i < ilen-1; i++)
if ((err = mt352_single_write(fe,ibuf[0]+i,ibuf[i+1])))
return err;
return 0;
}
static int mt352_read_register(struct mt352_state* state, u8 reg)
{
int ret;
u8 b0 [] = { reg };
u8 b1 [] = { 0 };
struct i2c_msg msg [] = { { .addr = state->config.demod_address,
.flags = 0,
.buf = b0, .len = 1 },
{ .addr = state->config.demod_address,
.flags = I2C_M_RD,
.buf = b1, .len = 1 } };
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
printk("%s: readreg error (reg=%d, ret==%i)\n",
__func__, reg, ret);
return ret;
}
return b1[0];
}
static int mt352_sleep(struct dvb_frontend* fe)
{
static u8 mt352_softdown[] = { CLOCK_CTL, 0x20, 0x08 };
_mt352_write(fe, mt352_softdown, sizeof(mt352_softdown));
return 0;
}
static void mt352_calc_nominal_rate(struct mt352_state* state,
u32 bandwidth,
unsigned char *buf)
{
u32 adc_clock = 20480; /* 20.340 MHz */
u32 bw,value;
switch (bandwidth) {
case 6000000:
bw = 6;
break;
case 7000000:
bw = 7;
break;
case 8000000:
default:
bw = 8;
break;
}
if (state->config.adc_clock)
adc_clock = state->config.adc_clock;
value = 64 * bw * (1<<16) / (7 * 8);
value = value * 1000 / adc_clock;
dprintk("%s: bw %d, adc_clock %d => 0x%x\n",
__func__, bw, adc_clock, value);
buf[0] = msb(value);
buf[1] = lsb(value);
}
static void mt352_calc_input_freq(struct mt352_state* state,
unsigned char *buf)
{
int adc_clock = 20480; /* 20.480000 MHz */
int if2 = 36167; /* 36.166667 MHz */
int ife,value;
if (state->config.adc_clock)
adc_clock = state->config.adc_clock;
if (state->config.if2)
if2 = state->config.if2;
if (adc_clock >= if2 * 2)
ife = if2;
else {
ife = adc_clock - (if2 % adc_clock);
if (ife > adc_clock / 2)
ife = adc_clock - ife;
}
value = -16374 * ife / adc_clock;
dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n",
__func__, if2, ife, adc_clock, value, value & 0x3fff);
buf[0] = msb(value);
buf[1] = lsb(value);
}
static int mt352_set_parameters(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *op = &fe->dtv_property_cache;
struct mt352_state* state = fe->demodulator_priv;
unsigned char buf[13];
static unsigned char tuner_go[] = { 0x5d, 0x01 };
static unsigned char fsm_go[] = { 0x5e, 0x01 };
unsigned int tps = 0;
switch (op->code_rate_HP) {
case FEC_2_3:
tps |= (1 << 7);
break;
case FEC_3_4:
tps |= (2 << 7);
break;
case FEC_5_6:
tps |= (3 << 7);
break;
case FEC_7_8:
tps |= (4 << 7);
break;
case FEC_1_2:
case FEC_AUTO:
break;
default:
return -EINVAL;
}
switch (op->code_rate_LP) {
case FEC_2_3:
tps |= (1 << 4);
break;
case FEC_3_4:
tps |= (2 << 4);
break;
case FEC_5_6:
tps |= (3 << 4);
break;
case FEC_7_8:
tps |= (4 << 4);
break;
case FEC_1_2:
case FEC_AUTO:
break;
case FEC_NONE:
if (op->hierarchy == HIERARCHY_AUTO ||
op->hierarchy == HIERARCHY_NONE)
break;
default:
return -EINVAL;
}
switch (op->modulation) {
case QPSK:
break;
case QAM_AUTO:
case QAM_16:
tps |= (1 << 13);
break;
case QAM_64:
tps |= (2 << 13);
break;
default:
return -EINVAL;
}
switch (op->transmission_mode) {
case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_AUTO:
break;
case TRANSMISSION_MODE_8K:
tps |= (1 << 0);
break;
default:
return -EINVAL;
}
switch (op->guard_interval) {
case GUARD_INTERVAL_1_32:
case GUARD_INTERVAL_AUTO:
break;
case GUARD_INTERVAL_1_16:
tps |= (1 << 2);
break;
case GUARD_INTERVAL_1_8:
tps |= (2 << 2);
break;
case GUARD_INTERVAL_1_4:
tps |= (3 << 2);
break;
default:
return -EINVAL;
}
switch (op->hierarchy) {
case HIERARCHY_AUTO:
case HIERARCHY_NONE:
break;
case HIERARCHY_1:
tps |= (1 << 10);
break;
case HIERARCHY_2:
tps |= (2 << 10);
break;
case HIERARCHY_4:
tps |= (3 << 10);
break;
default:
return -EINVAL;
}
buf[0] = TPS_GIVEN_1; /* TPS_GIVEN_1 and following registers */
buf[1] = msb(tps); /* TPS_GIVEN_(1|0) */
buf[2] = lsb(tps);
buf[3] = 0x50; // old
// buf[3] = 0xf4; // pinnacle
mt352_calc_nominal_rate(state, op->bandwidth_hz, buf+4);
mt352_calc_input_freq(state, buf+6);
if (state->config.no_tuner) {
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
_mt352_write(fe, buf, 8);
_mt352_write(fe, fsm_go, 2);
} else {
if (fe->ops.tuner_ops.calc_regs) {
fe->ops.tuner_ops.calc_regs(fe, buf+8, 5);
buf[8] <<= 1;
_mt352_write(fe, buf, sizeof(buf));
_mt352_write(fe, tuner_go, 2);
}
}
return 0;
}
static int mt352_get_parameters(struct dvb_frontend* fe,
struct dtv_frontend_properties *op)
{
struct mt352_state* state = fe->demodulator_priv;
u16 tps;
u16 div;
u8 trl;
static const u8 tps_fec_to_api[8] =
{
FEC_1_2,
FEC_2_3,
FEC_3_4,
FEC_5_6,
FEC_7_8,
FEC_AUTO,
FEC_AUTO,
FEC_AUTO
};
if ( (mt352_read_register(state,0x00) & 0xC0) != 0xC0 )
return -EINVAL;
/* Use TPS_RECEIVED-registers, not the TPS_CURRENT-registers because
* the mt352 sometimes works with the wrong parameters
*/
tps = (mt352_read_register(state, TPS_RECEIVED_1) << 8) | mt352_read_register(state, TPS_RECEIVED_0);
div = (mt352_read_register(state, CHAN_START_1) << 8) | mt352_read_register(state, CHAN_START_0);
trl = mt352_read_register(state, TRL_NOMINAL_RATE_1);
op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7];
op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7];
switch ( (tps >> 13) & 3)
{
case 0:
op->modulation = QPSK;
break;
case 1:
op->modulation = QAM_16;
break;
case 2:
op->modulation = QAM_64;
break;
default:
op->modulation = QAM_AUTO;
break;
}
op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : TRANSMISSION_MODE_2K;
switch ( (tps >> 2) & 3)
{
case 0:
op->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
op->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
op->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
op->guard_interval = GUARD_INTERVAL_1_4;
break;
default:
op->guard_interval = GUARD_INTERVAL_AUTO;
break;
}
switch ( (tps >> 10) & 7)
{
case 0:
op->hierarchy = HIERARCHY_NONE;
break;
case 1:
op->hierarchy = HIERARCHY_1;
break;
case 2:
op->hierarchy = HIERARCHY_2;
break;
case 3:
op->hierarchy = HIERARCHY_4;
break;
default:
op->hierarchy = HIERARCHY_AUTO;
break;
}
op->frequency = (500 * (div - IF_FREQUENCYx6)) / 3 * 1000;
if (trl == 0x72)
op->bandwidth_hz = 8000000;
else if (trl == 0x64)
op->bandwidth_hz = 7000000;
else
op->bandwidth_hz = 6000000;
if (mt352_read_register(state, STATUS_2) & 0x02)
op->inversion = INVERSION_OFF;
else
op->inversion = INVERSION_ON;
return 0;
}
static int mt352_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct mt352_state* state = fe->demodulator_priv;
int s0, s1, s3;
/* FIXME:
*
* The MT352 design manual from Zarlink states (page 46-47):
*
* Notes about the TUNER_GO register:
*
* If the Read_Tuner_Byte (bit-1) is activated, then the tuner status
* byte is copied from the tuner to the STATUS_3 register and
* completion of the read operation is indicated by bit-5 of the
* INTERRUPT_3 register.
*/
if ((s0 = mt352_read_register(state, STATUS_0)) < 0)
return -EREMOTEIO;
if ((s1 = mt352_read_register(state, STATUS_1)) < 0)
return -EREMOTEIO;
if ((s3 = mt352_read_register(state, STATUS_3)) < 0)
return -EREMOTEIO;
*status = 0;
if (s0 & (1 << 4))
*status |= FE_HAS_CARRIER;
if (s0 & (1 << 1))
*status |= FE_HAS_VITERBI;
if (s0 & (1 << 5))
*status |= FE_HAS_LOCK;
if (s1 & (1 << 1))
*status |= FE_HAS_SYNC;
if (s3 & (1 << 6))
*status |= FE_HAS_SIGNAL;
if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) !=
(FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC))
*status &= ~FE_HAS_LOCK;
return 0;
}
static int mt352_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct mt352_state* state = fe->demodulator_priv;
*ber = (mt352_read_register (state, RS_ERR_CNT_2) << 16) |
(mt352_read_register (state, RS_ERR_CNT_1) << 8) |
(mt352_read_register (state, RS_ERR_CNT_0));
return 0;
}
static int mt352_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
struct mt352_state* state = fe->demodulator_priv;
/* align the 12 bit AGC gain with the most significant bits */
u16 signal = ((mt352_read_register(state, AGC_GAIN_1) & 0x0f) << 12) |
(mt352_read_register(state, AGC_GAIN_0) << 4);
/* inverse of gain is signal strength */
*strength = ~signal;
return 0;
}
static int mt352_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct mt352_state* state = fe->demodulator_priv;
u8 _snr = mt352_read_register (state, SNR);
*snr = (_snr << 8) | _snr;
return 0;
}
static int mt352_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct mt352_state* state = fe->demodulator_priv;
*ucblocks = (mt352_read_register (state, RS_UBC_1) << 8) |
(mt352_read_register (state, RS_UBC_0));
return 0;
}
static int mt352_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fe_tune_settings)
{
fe_tune_settings->min_delay_ms = 800;
fe_tune_settings->step_size = 0;
fe_tune_settings->max_drift = 0;
return 0;
}
static int mt352_init(struct dvb_frontend* fe)
{
struct mt352_state* state = fe->demodulator_priv;
static u8 mt352_reset_attach [] = { RESET, 0xC0 };
dprintk("%s: hello\n",__func__);
if ((mt352_read_register(state, CLOCK_CTL) & 0x10) == 0 ||
(mt352_read_register(state, CONFIG) & 0x20) == 0) {
/* Do a "hard" reset */
_mt352_write(fe, mt352_reset_attach, sizeof(mt352_reset_attach));
return state->config.demod_init(fe);
}
return 0;
}
static void mt352_release(struct dvb_frontend* fe)
{
struct mt352_state* state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops mt352_ops;
struct dvb_frontend* mt352_attach(const struct mt352_config* config,
struct i2c_adapter* i2c)
{
struct mt352_state* state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct mt352_state), GFP_KERNEL);
if (state == NULL) goto error;
/* setup the state */
state->i2c = i2c;
memcpy(&state->config,config,sizeof(struct mt352_config));
/* check if the demod is there */
if (mt352_read_register(state, CHIP_ID) != ID_MT352) goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &mt352_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops mt352_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "Zarlink MT352 DVB-T",
.frequency_min = 174000000,
.frequency_max = 862000000,
.frequency_stepsize = 166667,
.frequency_tolerance = 0,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
FE_CAN_MUTE_TS
},
.release = mt352_release,
.init = mt352_init,
.sleep = mt352_sleep,
.write = _mt352_write,
.set_frontend = mt352_set_parameters,
.get_frontend = mt352_get_parameters,
.get_tune_settings = mt352_get_tune_settings,
.read_status = mt352_read_status,
.read_ber = mt352_read_ber,
.read_signal_strength = mt352_read_signal_strength,
.read_snr = mt352_read_snr,
.read_ucblocks = mt352_read_ucblocks,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("Zarlink MT352 DVB-T Demodulator driver");
MODULE_AUTHOR("Holger Waechtler, Daniel Mack, Antonio Mancuso");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(mt352_attach);