mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-21 19:18:45 +07:00
6ee738610f
This adds a drm/kms staging non-API stable driver for GPUs from NVIDIA. This driver is a KMS-based driver and requires a compatible nouveau userspace libdrm and nouveau X.org driver. This driver requires firmware files not available in this kernel tree, interested parties can find them via the nouveau project git archive. This driver is reverse engineered, and is in no way supported by nVidia. Support for nearly the complete range of nvidia hw from nv04->g80 (nv50) is available, and the kms driver should support driving nearly all output types (displayport is under development still) along with supporting suspend/resume. This work is all from the upstream nouveau project found at nouveau.freedesktop.org. The original authors list from nouveau git tree is: Anssi Hannula <anssi.hannula@iki.fi> Ben Skeggs <bskeggs@redhat.com> Francisco Jerez <currojerez@riseup.net> Maarten Maathuis <madman2003@gmail.com> Marcin Kościelnicki <koriakin@0x04.net> Matthew Garrett <mjg@redhat.com> Matt Parnell <mparnell@gmail.com> Patrice Mandin <patmandin@gmail.com> Pekka Paalanen <pq@iki.fi> Xavier Chantry <shiningxc@gmail.com> along with project founder Stephane Marchesin <marchesin@icps.u-strasbg.fr> Signed-off-by: Ben Skeggs <bskeggs@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
1081 lines
34 KiB
C
1081 lines
34 KiB
C
/*
|
|
* Copyright 2006 Dave Airlie
|
|
* Copyright 2007 Maarten Maathuis
|
|
* Copyright 2007-2009 Stuart Bennett
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
|
|
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "drmP.h"
|
|
#include "nouveau_drv.h"
|
|
#include "nouveau_hw.h"
|
|
|
|
#define CHIPSET_NFORCE 0x01a0
|
|
#define CHIPSET_NFORCE2 0x01f0
|
|
|
|
/*
|
|
* misc hw access wrappers/control functions
|
|
*/
|
|
|
|
void
|
|
NVWriteVgaSeq(struct drm_device *dev, int head, uint8_t index, uint8_t value)
|
|
{
|
|
NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
|
|
NVWritePRMVIO(dev, head, NV_PRMVIO_SR, value);
|
|
}
|
|
|
|
uint8_t
|
|
NVReadVgaSeq(struct drm_device *dev, int head, uint8_t index)
|
|
{
|
|
NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
|
|
return NVReadPRMVIO(dev, head, NV_PRMVIO_SR);
|
|
}
|
|
|
|
void
|
|
NVWriteVgaGr(struct drm_device *dev, int head, uint8_t index, uint8_t value)
|
|
{
|
|
NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
|
|
NVWritePRMVIO(dev, head, NV_PRMVIO_GX, value);
|
|
}
|
|
|
|
uint8_t
|
|
NVReadVgaGr(struct drm_device *dev, int head, uint8_t index)
|
|
{
|
|
NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
|
|
return NVReadPRMVIO(dev, head, NV_PRMVIO_GX);
|
|
}
|
|
|
|
/* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied)
|
|
* it affects only the 8 bit vga io regs, which we access using mmio at
|
|
* 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d*
|
|
* in general, the set value of cr44 does not matter: reg access works as
|
|
* expected and values can be set for the appropriate head by using a 0x2000
|
|
* offset as required
|
|
* however:
|
|
* a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and
|
|
* cr44 must be set to 0 or 3 for accessing values on the correct head
|
|
* through the common 0xc03c* addresses
|
|
* b) in tied mode (4) head B is programmed to the values set on head A, and
|
|
* access using the head B addresses can have strange results, ergo we leave
|
|
* tied mode in init once we know to what cr44 should be restored on exit
|
|
*
|
|
* the owner parameter is slightly abused:
|
|
* 0 and 1 are treated as head values and so the set value is (owner * 3)
|
|
* other values are treated as literal values to set
|
|
*/
|
|
void
|
|
NVSetOwner(struct drm_device *dev, int owner)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
|
|
if (owner == 1)
|
|
owner *= 3;
|
|
|
|
if (dev_priv->chipset == 0x11) {
|
|
/* This might seem stupid, but the blob does it and
|
|
* omitting it often locks the system up.
|
|
*/
|
|
NVReadVgaCrtc(dev, 0, NV_CIO_SR_LOCK_INDEX);
|
|
NVReadVgaCrtc(dev, 1, NV_CIO_SR_LOCK_INDEX);
|
|
}
|
|
|
|
/* CR44 is always changed on CRTC0 */
|
|
NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, owner);
|
|
|
|
if (dev_priv->chipset == 0x11) { /* set me harder */
|
|
NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
|
|
NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
|
|
}
|
|
}
|
|
|
|
void
|
|
NVBlankScreen(struct drm_device *dev, int head, bool blank)
|
|
{
|
|
unsigned char seq1;
|
|
|
|
if (nv_two_heads(dev))
|
|
NVSetOwner(dev, head);
|
|
|
|
seq1 = NVReadVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX);
|
|
|
|
NVVgaSeqReset(dev, head, true);
|
|
if (blank)
|
|
NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 | 0x20);
|
|
else
|
|
NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 & ~0x20);
|
|
NVVgaSeqReset(dev, head, false);
|
|
}
|
|
|
|
/*
|
|
* PLL setting
|
|
*/
|
|
|
|
static int
|
|
powerctrl_1_shift(int chip_version, int reg)
|
|
{
|
|
int shift = -4;
|
|
|
|
if (chip_version < 0x17 || chip_version == 0x1a || chip_version == 0x20)
|
|
return shift;
|
|
|
|
switch (reg) {
|
|
case NV_RAMDAC_VPLL2:
|
|
shift += 4;
|
|
case NV_PRAMDAC_VPLL_COEFF:
|
|
shift += 4;
|
|
case NV_PRAMDAC_MPLL_COEFF:
|
|
shift += 4;
|
|
case NV_PRAMDAC_NVPLL_COEFF:
|
|
shift += 4;
|
|
}
|
|
|
|
/*
|
|
* the shift for vpll regs is only used for nv3x chips with a single
|
|
* stage pll
|
|
*/
|
|
if (shift > 4 && (chip_version < 0x32 || chip_version == 0x35 ||
|
|
chip_version == 0x36 || chip_version >= 0x40))
|
|
shift = -4;
|
|
|
|
return shift;
|
|
}
|
|
|
|
static void
|
|
setPLL_single(struct drm_device *dev, uint32_t reg, struct nouveau_pll_vals *pv)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
int chip_version = dev_priv->vbios->chip_version;
|
|
uint32_t oldpll = NVReadRAMDAC(dev, 0, reg);
|
|
int oldN = (oldpll >> 8) & 0xff, oldM = oldpll & 0xff;
|
|
uint32_t pll = (oldpll & 0xfff80000) | pv->log2P << 16 | pv->NM1;
|
|
uint32_t saved_powerctrl_1 = 0;
|
|
int shift_powerctrl_1 = powerctrl_1_shift(chip_version, reg);
|
|
|
|
if (oldpll == pll)
|
|
return; /* already set */
|
|
|
|
if (shift_powerctrl_1 >= 0) {
|
|
saved_powerctrl_1 = nvReadMC(dev, NV_PBUS_POWERCTRL_1);
|
|
nvWriteMC(dev, NV_PBUS_POWERCTRL_1,
|
|
(saved_powerctrl_1 & ~(0xf << shift_powerctrl_1)) |
|
|
1 << shift_powerctrl_1);
|
|
}
|
|
|
|
if (oldM && pv->M1 && (oldN / oldM < pv->N1 / pv->M1))
|
|
/* upclock -- write new post divider first */
|
|
NVWriteRAMDAC(dev, 0, reg, pv->log2P << 16 | (oldpll & 0xffff));
|
|
else
|
|
/* downclock -- write new NM first */
|
|
NVWriteRAMDAC(dev, 0, reg, (oldpll & 0xffff0000) | pv->NM1);
|
|
|
|
if (chip_version < 0x17 && chip_version != 0x11)
|
|
/* wait a bit on older chips */
|
|
msleep(64);
|
|
NVReadRAMDAC(dev, 0, reg);
|
|
|
|
/* then write the other half as well */
|
|
NVWriteRAMDAC(dev, 0, reg, pll);
|
|
|
|
if (shift_powerctrl_1 >= 0)
|
|
nvWriteMC(dev, NV_PBUS_POWERCTRL_1, saved_powerctrl_1);
|
|
}
|
|
|
|
static uint32_t
|
|
new_ramdac580(uint32_t reg1, bool ss, uint32_t ramdac580)
|
|
{
|
|
bool head_a = (reg1 == NV_PRAMDAC_VPLL_COEFF);
|
|
|
|
if (ss) /* single stage pll mode */
|
|
ramdac580 |= head_a ? NV_RAMDAC_580_VPLL1_ACTIVE :
|
|
NV_RAMDAC_580_VPLL2_ACTIVE;
|
|
else
|
|
ramdac580 &= head_a ? ~NV_RAMDAC_580_VPLL1_ACTIVE :
|
|
~NV_RAMDAC_580_VPLL2_ACTIVE;
|
|
|
|
return ramdac580;
|
|
}
|
|
|
|
static void
|
|
setPLL_double_highregs(struct drm_device *dev, uint32_t reg1,
|
|
struct nouveau_pll_vals *pv)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
int chip_version = dev_priv->vbios->chip_version;
|
|
bool nv3035 = chip_version == 0x30 || chip_version == 0x35;
|
|
uint32_t reg2 = reg1 + ((reg1 == NV_RAMDAC_VPLL2) ? 0x5c : 0x70);
|
|
uint32_t oldpll1 = NVReadRAMDAC(dev, 0, reg1);
|
|
uint32_t oldpll2 = !nv3035 ? NVReadRAMDAC(dev, 0, reg2) : 0;
|
|
uint32_t pll1 = (oldpll1 & 0xfff80000) | pv->log2P << 16 | pv->NM1;
|
|
uint32_t pll2 = (oldpll2 & 0x7fff0000) | 1 << 31 | pv->NM2;
|
|
uint32_t oldramdac580 = 0, ramdac580 = 0;
|
|
bool single_stage = !pv->NM2 || pv->N2 == pv->M2; /* nv41+ only */
|
|
uint32_t saved_powerctrl_1 = 0, savedc040 = 0;
|
|
int shift_powerctrl_1 = powerctrl_1_shift(chip_version, reg1);
|
|
|
|
/* model specific additions to generic pll1 and pll2 set up above */
|
|
if (nv3035) {
|
|
pll1 = (pll1 & 0xfcc7ffff) | (pv->N2 & 0x18) << 21 |
|
|
(pv->N2 & 0x7) << 19 | 8 << 4 | (pv->M2 & 7) << 4;
|
|
pll2 = 0;
|
|
}
|
|
if (chip_version > 0x40 && reg1 >= NV_PRAMDAC_VPLL_COEFF) { /* !nv40 */
|
|
oldramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580);
|
|
ramdac580 = new_ramdac580(reg1, single_stage, oldramdac580);
|
|
if (oldramdac580 != ramdac580)
|
|
oldpll1 = ~0; /* force mismatch */
|
|
if (single_stage)
|
|
/* magic value used by nvidia in single stage mode */
|
|
pll2 |= 0x011f;
|
|
}
|
|
if (chip_version > 0x70)
|
|
/* magic bits set by the blob (but not the bios) on g71-73 */
|
|
pll1 = (pll1 & 0x7fffffff) | (single_stage ? 0x4 : 0xc) << 28;
|
|
|
|
if (oldpll1 == pll1 && oldpll2 == pll2)
|
|
return; /* already set */
|
|
|
|
if (shift_powerctrl_1 >= 0) {
|
|
saved_powerctrl_1 = nvReadMC(dev, NV_PBUS_POWERCTRL_1);
|
|
nvWriteMC(dev, NV_PBUS_POWERCTRL_1,
|
|
(saved_powerctrl_1 & ~(0xf << shift_powerctrl_1)) |
|
|
1 << shift_powerctrl_1);
|
|
}
|
|
|
|
if (chip_version >= 0x40) {
|
|
int shift_c040 = 14;
|
|
|
|
switch (reg1) {
|
|
case NV_PRAMDAC_MPLL_COEFF:
|
|
shift_c040 += 2;
|
|
case NV_PRAMDAC_NVPLL_COEFF:
|
|
shift_c040 += 2;
|
|
case NV_RAMDAC_VPLL2:
|
|
shift_c040 += 2;
|
|
case NV_PRAMDAC_VPLL_COEFF:
|
|
shift_c040 += 2;
|
|
}
|
|
|
|
savedc040 = nvReadMC(dev, 0xc040);
|
|
if (shift_c040 != 14)
|
|
nvWriteMC(dev, 0xc040, savedc040 & ~(3 << shift_c040));
|
|
}
|
|
|
|
if (oldramdac580 != ramdac580)
|
|
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_580, ramdac580);
|
|
|
|
if (!nv3035)
|
|
NVWriteRAMDAC(dev, 0, reg2, pll2);
|
|
NVWriteRAMDAC(dev, 0, reg1, pll1);
|
|
|
|
if (shift_powerctrl_1 >= 0)
|
|
nvWriteMC(dev, NV_PBUS_POWERCTRL_1, saved_powerctrl_1);
|
|
if (chip_version >= 0x40)
|
|
nvWriteMC(dev, 0xc040, savedc040);
|
|
}
|
|
|
|
static void
|
|
setPLL_double_lowregs(struct drm_device *dev, uint32_t NMNMreg,
|
|
struct nouveau_pll_vals *pv)
|
|
{
|
|
/* When setting PLLs, there is a merry game of disabling and enabling
|
|
* various bits of hardware during the process. This function is a
|
|
* synthesis of six nv4x traces, nearly each card doing a subtly
|
|
* different thing. With luck all the necessary bits for each card are
|
|
* combined herein. Without luck it deviates from each card's formula
|
|
* so as to not work on any :)
|
|
*/
|
|
|
|
uint32_t Preg = NMNMreg - 4;
|
|
bool mpll = Preg == 0x4020;
|
|
uint32_t oldPval = nvReadMC(dev, Preg);
|
|
uint32_t NMNM = pv->NM2 << 16 | pv->NM1;
|
|
uint32_t Pval = (oldPval & (mpll ? ~(0x11 << 16) : ~(1 << 16))) |
|
|
0xc << 28 | pv->log2P << 16;
|
|
uint32_t saved4600 = 0;
|
|
/* some cards have different maskc040s */
|
|
uint32_t maskc040 = ~(3 << 14), savedc040;
|
|
bool single_stage = !pv->NM2 || pv->N2 == pv->M2;
|
|
|
|
if (nvReadMC(dev, NMNMreg) == NMNM && (oldPval & 0xc0070000) == Pval)
|
|
return;
|
|
|
|
if (Preg == 0x4000)
|
|
maskc040 = ~0x333;
|
|
if (Preg == 0x4058)
|
|
maskc040 = ~(0xc << 24);
|
|
|
|
if (mpll) {
|
|
struct pll_lims pll_lim;
|
|
uint8_t Pval2;
|
|
|
|
if (get_pll_limits(dev, Preg, &pll_lim))
|
|
return;
|
|
|
|
Pval2 = pv->log2P + pll_lim.log2p_bias;
|
|
if (Pval2 > pll_lim.max_log2p)
|
|
Pval2 = pll_lim.max_log2p;
|
|
Pval |= 1 << 28 | Pval2 << 20;
|
|
|
|
saved4600 = nvReadMC(dev, 0x4600);
|
|
nvWriteMC(dev, 0x4600, saved4600 | 8 << 28);
|
|
}
|
|
if (single_stage)
|
|
Pval |= mpll ? 1 << 12 : 1 << 8;
|
|
|
|
nvWriteMC(dev, Preg, oldPval | 1 << 28);
|
|
nvWriteMC(dev, Preg, Pval & ~(4 << 28));
|
|
if (mpll) {
|
|
Pval |= 8 << 20;
|
|
nvWriteMC(dev, 0x4020, Pval & ~(0xc << 28));
|
|
nvWriteMC(dev, 0x4038, Pval & ~(0xc << 28));
|
|
}
|
|
|
|
savedc040 = nvReadMC(dev, 0xc040);
|
|
nvWriteMC(dev, 0xc040, savedc040 & maskc040);
|
|
|
|
nvWriteMC(dev, NMNMreg, NMNM);
|
|
if (NMNMreg == 0x4024)
|
|
nvWriteMC(dev, 0x403c, NMNM);
|
|
|
|
nvWriteMC(dev, Preg, Pval);
|
|
if (mpll) {
|
|
Pval &= ~(8 << 20);
|
|
nvWriteMC(dev, 0x4020, Pval);
|
|
nvWriteMC(dev, 0x4038, Pval);
|
|
nvWriteMC(dev, 0x4600, saved4600);
|
|
}
|
|
|
|
nvWriteMC(dev, 0xc040, savedc040);
|
|
|
|
if (mpll) {
|
|
nvWriteMC(dev, 0x4020, Pval & ~(1 << 28));
|
|
nvWriteMC(dev, 0x4038, Pval & ~(1 << 28));
|
|
}
|
|
}
|
|
|
|
void
|
|
nouveau_hw_setpll(struct drm_device *dev, uint32_t reg1,
|
|
struct nouveau_pll_vals *pv)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
int cv = dev_priv->vbios->chip_version;
|
|
|
|
if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
|
|
cv >= 0x40) {
|
|
if (reg1 > 0x405c)
|
|
setPLL_double_highregs(dev, reg1, pv);
|
|
else
|
|
setPLL_double_lowregs(dev, reg1, pv);
|
|
} else
|
|
setPLL_single(dev, reg1, pv);
|
|
}
|
|
|
|
/*
|
|
* PLL getting
|
|
*/
|
|
|
|
static void
|
|
nouveau_hw_decode_pll(struct drm_device *dev, uint32_t reg1, uint32_t pll1,
|
|
uint32_t pll2, struct nouveau_pll_vals *pllvals)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
|
|
/* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */
|
|
|
|
/* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */
|
|
pllvals->log2P = (pll1 >> 16) & 0x7;
|
|
pllvals->N2 = pllvals->M2 = 1;
|
|
|
|
if (reg1 <= 0x405c) {
|
|
pllvals->NM1 = pll2 & 0xffff;
|
|
/* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */
|
|
if (!(pll1 & 0x1100))
|
|
pllvals->NM2 = pll2 >> 16;
|
|
} else {
|
|
pllvals->NM1 = pll1 & 0xffff;
|
|
if (nv_two_reg_pll(dev) && pll2 & NV31_RAMDAC_ENABLE_VCO2)
|
|
pllvals->NM2 = pll2 & 0xffff;
|
|
else if (dev_priv->chipset == 0x30 || dev_priv->chipset == 0x35) {
|
|
pllvals->M1 &= 0xf; /* only 4 bits */
|
|
if (pll1 & NV30_RAMDAC_ENABLE_VCO2) {
|
|
pllvals->M2 = (pll1 >> 4) & 0x7;
|
|
pllvals->N2 = ((pll1 >> 21) & 0x18) |
|
|
((pll1 >> 19) & 0x7);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
nouveau_hw_get_pllvals(struct drm_device *dev, enum pll_types plltype,
|
|
struct nouveau_pll_vals *pllvals)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
const uint32_t nv04_regs[MAX_PLL_TYPES] = { NV_PRAMDAC_NVPLL_COEFF,
|
|
NV_PRAMDAC_MPLL_COEFF,
|
|
NV_PRAMDAC_VPLL_COEFF,
|
|
NV_RAMDAC_VPLL2 };
|
|
const uint32_t nv40_regs[MAX_PLL_TYPES] = { 0x4000,
|
|
0x4020,
|
|
NV_PRAMDAC_VPLL_COEFF,
|
|
NV_RAMDAC_VPLL2 };
|
|
uint32_t reg1, pll1, pll2 = 0;
|
|
struct pll_lims pll_lim;
|
|
int ret;
|
|
|
|
if (dev_priv->card_type < NV_40)
|
|
reg1 = nv04_regs[plltype];
|
|
else
|
|
reg1 = nv40_regs[plltype];
|
|
|
|
pll1 = nvReadMC(dev, reg1);
|
|
|
|
if (reg1 <= 0x405c)
|
|
pll2 = nvReadMC(dev, reg1 + 4);
|
|
else if (nv_two_reg_pll(dev)) {
|
|
uint32_t reg2 = reg1 + (reg1 == NV_RAMDAC_VPLL2 ? 0x5c : 0x70);
|
|
|
|
pll2 = nvReadMC(dev, reg2);
|
|
}
|
|
|
|
if (dev_priv->card_type == 0x40 && reg1 >= NV_PRAMDAC_VPLL_COEFF) {
|
|
uint32_t ramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580);
|
|
|
|
/* check whether vpll has been forced into single stage mode */
|
|
if (reg1 == NV_PRAMDAC_VPLL_COEFF) {
|
|
if (ramdac580 & NV_RAMDAC_580_VPLL1_ACTIVE)
|
|
pll2 = 0;
|
|
} else
|
|
if (ramdac580 & NV_RAMDAC_580_VPLL2_ACTIVE)
|
|
pll2 = 0;
|
|
}
|
|
|
|
nouveau_hw_decode_pll(dev, reg1, pll1, pll2, pllvals);
|
|
|
|
ret = get_pll_limits(dev, plltype, &pll_lim);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pllvals->refclk = pll_lim.refclk;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nouveau_hw_pllvals_to_clk(struct nouveau_pll_vals *pv)
|
|
{
|
|
/* Avoid divide by zero if called at an inappropriate time */
|
|
if (!pv->M1 || !pv->M2)
|
|
return 0;
|
|
|
|
return pv->N1 * pv->N2 * pv->refclk / (pv->M1 * pv->M2) >> pv->log2P;
|
|
}
|
|
|
|
int
|
|
nouveau_hw_get_clock(struct drm_device *dev, enum pll_types plltype)
|
|
{
|
|
struct nouveau_pll_vals pllvals;
|
|
|
|
if (plltype == MPLL && (dev->pci_device & 0x0ff0) == CHIPSET_NFORCE) {
|
|
uint32_t mpllP;
|
|
|
|
pci_read_config_dword(pci_get_bus_and_slot(0, 3), 0x6c, &mpllP);
|
|
if (!mpllP)
|
|
mpllP = 4;
|
|
|
|
return 400000 / mpllP;
|
|
} else
|
|
if (plltype == MPLL && (dev->pci_device & 0xff0) == CHIPSET_NFORCE2) {
|
|
uint32_t clock;
|
|
|
|
pci_read_config_dword(pci_get_bus_and_slot(0, 5), 0x4c, &clock);
|
|
return clock;
|
|
}
|
|
|
|
nouveau_hw_get_pllvals(dev, plltype, &pllvals);
|
|
|
|
return nouveau_hw_pllvals_to_clk(&pllvals);
|
|
}
|
|
|
|
static void
|
|
nouveau_hw_fix_bad_vpll(struct drm_device *dev, int head)
|
|
{
|
|
/* the vpll on an unused head can come up with a random value, way
|
|
* beyond the pll limits. for some reason this causes the chip to
|
|
* lock up when reading the dac palette regs, so set a valid pll here
|
|
* when such a condition detected. only seen on nv11 to date
|
|
*/
|
|
|
|
struct pll_lims pll_lim;
|
|
struct nouveau_pll_vals pv;
|
|
uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF;
|
|
|
|
if (get_pll_limits(dev, head ? VPLL2 : VPLL1, &pll_lim))
|
|
return;
|
|
nouveau_hw_get_pllvals(dev, head ? VPLL2 : VPLL1, &pv);
|
|
|
|
if (pv.M1 >= pll_lim.vco1.min_m && pv.M1 <= pll_lim.vco1.max_m &&
|
|
pv.N1 >= pll_lim.vco1.min_n && pv.N1 <= pll_lim.vco1.max_n &&
|
|
pv.log2P <= pll_lim.max_log2p)
|
|
return;
|
|
|
|
NV_WARN(dev, "VPLL %d outwith limits, attempting to fix\n", head + 1);
|
|
|
|
/* set lowest clock within static limits */
|
|
pv.M1 = pll_lim.vco1.max_m;
|
|
pv.N1 = pll_lim.vco1.min_n;
|
|
pv.log2P = pll_lim.max_usable_log2p;
|
|
nouveau_hw_setpll(dev, pllreg, &pv);
|
|
}
|
|
|
|
/*
|
|
* vga font save/restore
|
|
*/
|
|
|
|
static void nouveau_vga_font_io(struct drm_device *dev,
|
|
void __iomem *iovram,
|
|
bool save, unsigned plane)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
unsigned i;
|
|
|
|
NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, 1 << plane);
|
|
NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, plane);
|
|
for (i = 0; i < 16384; i++) {
|
|
if (save) {
|
|
dev_priv->saved_vga_font[plane][i] =
|
|
ioread32_native(iovram + i * 4);
|
|
} else {
|
|
iowrite32_native(dev_priv->saved_vga_font[plane][i],
|
|
iovram + i * 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
nouveau_hw_save_vga_fonts(struct drm_device *dev, bool save)
|
|
{
|
|
uint8_t misc, gr4, gr5, gr6, seq2, seq4;
|
|
bool graphicsmode;
|
|
unsigned plane;
|
|
void __iomem *iovram;
|
|
|
|
if (nv_two_heads(dev))
|
|
NVSetOwner(dev, 0);
|
|
|
|
NVSetEnablePalette(dev, 0, true);
|
|
graphicsmode = NVReadVgaAttr(dev, 0, NV_CIO_AR_MODE_INDEX) & 1;
|
|
NVSetEnablePalette(dev, 0, false);
|
|
|
|
if (graphicsmode) /* graphics mode => framebuffer => no need to save */
|
|
return;
|
|
|
|
NV_INFO(dev, "%sing VGA fonts\n", save ? "Sav" : "Restor");
|
|
|
|
/* map first 64KiB of VRAM, holds VGA fonts etc */
|
|
iovram = ioremap(pci_resource_start(dev->pdev, 1), 65536);
|
|
if (!iovram) {
|
|
NV_ERROR(dev, "Failed to map VRAM, "
|
|
"cannot save/restore VGA fonts.\n");
|
|
return;
|
|
}
|
|
|
|
if (nv_two_heads(dev))
|
|
NVBlankScreen(dev, 1, true);
|
|
NVBlankScreen(dev, 0, true);
|
|
|
|
/* save control regs */
|
|
misc = NVReadPRMVIO(dev, 0, NV_PRMVIO_MISC__READ);
|
|
seq2 = NVReadVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX);
|
|
seq4 = NVReadVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX);
|
|
gr4 = NVReadVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX);
|
|
gr5 = NVReadVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX);
|
|
gr6 = NVReadVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX);
|
|
|
|
NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, 0x67);
|
|
NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, 0x6);
|
|
NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, 0x0);
|
|
NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, 0x5);
|
|
|
|
/* store font in planes 0..3 */
|
|
for (plane = 0; plane < 4; plane++)
|
|
nouveau_vga_font_io(dev, iovram, save, plane);
|
|
|
|
/* restore control regs */
|
|
NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, misc);
|
|
NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, gr4);
|
|
NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, gr5);
|
|
NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, gr6);
|
|
NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, seq2);
|
|
NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, seq4);
|
|
|
|
if (nv_two_heads(dev))
|
|
NVBlankScreen(dev, 1, false);
|
|
NVBlankScreen(dev, 0, false);
|
|
|
|
iounmap(iovram);
|
|
}
|
|
|
|
/*
|
|
* mode state save/load
|
|
*/
|
|
|
|
static void
|
|
rd_cio_state(struct drm_device *dev, int head,
|
|
struct nv04_crtc_reg *crtcstate, int index)
|
|
{
|
|
crtcstate->CRTC[index] = NVReadVgaCrtc(dev, head, index);
|
|
}
|
|
|
|
static void
|
|
wr_cio_state(struct drm_device *dev, int head,
|
|
struct nv04_crtc_reg *crtcstate, int index)
|
|
{
|
|
NVWriteVgaCrtc(dev, head, index, crtcstate->CRTC[index]);
|
|
}
|
|
|
|
static void
|
|
nv_save_state_ramdac(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
|
|
int i;
|
|
|
|
if (dev_priv->card_type >= NV_10)
|
|
regp->nv10_cursync = NVReadRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC);
|
|
|
|
nouveau_hw_get_pllvals(dev, head ? VPLL2 : VPLL1, ®p->pllvals);
|
|
state->pllsel = NVReadRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT);
|
|
if (nv_two_heads(dev))
|
|
state->sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
|
|
if (dev_priv->chipset == 0x11)
|
|
regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11);
|
|
|
|
regp->ramdac_gen_ctrl = NVReadRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL);
|
|
|
|
if (nv_gf4_disp_arch(dev))
|
|
regp->ramdac_630 = NVReadRAMDAC(dev, head, NV_PRAMDAC_630);
|
|
if (dev_priv->chipset >= 0x30)
|
|
regp->ramdac_634 = NVReadRAMDAC(dev, head, NV_PRAMDAC_634);
|
|
|
|
regp->tv_setup = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP);
|
|
regp->tv_vtotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL);
|
|
regp->tv_vskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW);
|
|
regp->tv_vsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY);
|
|
regp->tv_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL);
|
|
regp->tv_hskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW);
|
|
regp->tv_hsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY);
|
|
regp->tv_hsync_delay2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2);
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
|
|
regp->fp_vert_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg);
|
|
regp->fp_horiz_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg + 0x20);
|
|
}
|
|
|
|
if (nv_gf4_disp_arch(dev)) {
|
|
regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_FP_DITHER);
|
|
for (i = 0; i < 3; i++) {
|
|
regp->dither_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4);
|
|
regp->dither_regs[i + 3] = NVReadRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4);
|
|
}
|
|
}
|
|
|
|
regp->fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
|
|
regp->fp_debug_0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0);
|
|
if (!nv_gf4_disp_arch(dev) && head == 0) {
|
|
/* early chips don't allow access to PRAMDAC_TMDS_* without
|
|
* the head A FPCLK on (nv11 even locks up) */
|
|
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0 &
|
|
~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK);
|
|
}
|
|
regp->fp_debug_1 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1);
|
|
regp->fp_debug_2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2);
|
|
|
|
regp->fp_margin_color = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR);
|
|
|
|
if (nv_gf4_disp_arch(dev))
|
|
regp->ramdac_8c0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_8C0);
|
|
|
|
if (dev_priv->card_type == NV_40) {
|
|
regp->ramdac_a20 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A20);
|
|
regp->ramdac_a24 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A24);
|
|
regp->ramdac_a34 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A34);
|
|
|
|
for (i = 0; i < 38; i++)
|
|
regp->ctv_regs[i] = NVReadRAMDAC(dev, head,
|
|
NV_PRAMDAC_CTV + 4*i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nv_load_state_ramdac(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
|
|
uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF;
|
|
int i;
|
|
|
|
if (dev_priv->card_type >= NV_10)
|
|
NVWriteRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync);
|
|
|
|
nouveau_hw_setpll(dev, pllreg, ®p->pllvals);
|
|
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel);
|
|
if (nv_two_heads(dev))
|
|
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, state->sel_clk);
|
|
if (dev_priv->chipset == 0x11)
|
|
NVWriteRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11, regp->dither);
|
|
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl);
|
|
|
|
if (nv_gf4_disp_arch(dev))
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_630, regp->ramdac_630);
|
|
if (dev_priv->chipset >= 0x30)
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_634, regp->ramdac_634);
|
|
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, regp->tv_setup);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL, regp->tv_vtotal);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW, regp->tv_vskew);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY, regp->tv_vsync_delay);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL, regp->tv_htotal);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW, regp->tv_hskew);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY, regp->tv_hsync_delay);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2, regp->tv_hsync_delay2);
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
|
|
|
|
NVWriteRAMDAC(dev, head, ramdac_reg, regp->fp_vert_regs[i]);
|
|
NVWriteRAMDAC(dev, head, ramdac_reg + 0x20, regp->fp_horiz_regs[i]);
|
|
}
|
|
|
|
if (nv_gf4_disp_arch(dev)) {
|
|
NVWriteRAMDAC(dev, head, NV_RAMDAC_FP_DITHER, regp->dither);
|
|
for (i = 0; i < 3; i++) {
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4, regp->dither_regs[i]);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4, regp->dither_regs[i + 3]);
|
|
}
|
|
}
|
|
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, regp->fp_control);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regp->fp_debug_1);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2, regp->fp_debug_2);
|
|
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR, regp->fp_margin_color);
|
|
|
|
if (nv_gf4_disp_arch(dev))
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_8C0, regp->ramdac_8c0);
|
|
|
|
if (dev_priv->card_type == NV_40) {
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_A20, regp->ramdac_a20);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_A24, regp->ramdac_a24);
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_A34, regp->ramdac_a34);
|
|
|
|
for (i = 0; i < 38; i++)
|
|
NVWriteRAMDAC(dev, head,
|
|
NV_PRAMDAC_CTV + 4*i, regp->ctv_regs[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nv_save_state_vga(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
|
|
int i;
|
|
|
|
regp->MiscOutReg = NVReadPRMVIO(dev, head, NV_PRMVIO_MISC__READ);
|
|
|
|
for (i = 0; i < 25; i++)
|
|
rd_cio_state(dev, head, regp, i);
|
|
|
|
NVSetEnablePalette(dev, head, true);
|
|
for (i = 0; i < 21; i++)
|
|
regp->Attribute[i] = NVReadVgaAttr(dev, head, i);
|
|
NVSetEnablePalette(dev, head, false);
|
|
|
|
for (i = 0; i < 9; i++)
|
|
regp->Graphics[i] = NVReadVgaGr(dev, head, i);
|
|
|
|
for (i = 0; i < 5; i++)
|
|
regp->Sequencer[i] = NVReadVgaSeq(dev, head, i);
|
|
}
|
|
|
|
static void
|
|
nv_load_state_vga(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
|
|
int i;
|
|
|
|
NVWritePRMVIO(dev, head, NV_PRMVIO_MISC__WRITE, regp->MiscOutReg);
|
|
|
|
for (i = 0; i < 5; i++)
|
|
NVWriteVgaSeq(dev, head, i, regp->Sequencer[i]);
|
|
|
|
nv_lock_vga_crtc_base(dev, head, false);
|
|
for (i = 0; i < 25; i++)
|
|
wr_cio_state(dev, head, regp, i);
|
|
nv_lock_vga_crtc_base(dev, head, true);
|
|
|
|
for (i = 0; i < 9; i++)
|
|
NVWriteVgaGr(dev, head, i, regp->Graphics[i]);
|
|
|
|
NVSetEnablePalette(dev, head, true);
|
|
for (i = 0; i < 21; i++)
|
|
NVWriteVgaAttr(dev, head, i, regp->Attribute[i]);
|
|
NVSetEnablePalette(dev, head, false);
|
|
}
|
|
|
|
static void
|
|
nv_save_state_ext(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
|
|
int i;
|
|
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
|
|
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_21);
|
|
if (dev_priv->card_type >= NV_30)
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_47);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_49);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
|
|
|
|
if (dev_priv->card_type >= NV_10) {
|
|
regp->crtc_830 = NVReadCRTC(dev, head, NV_PCRTC_830);
|
|
regp->crtc_834 = NVReadCRTC(dev, head, NV_PCRTC_834);
|
|
|
|
if (dev_priv->card_type >= NV_30)
|
|
regp->gpio_ext = NVReadCRTC(dev, head, NV_PCRTC_GPIO_EXT);
|
|
|
|
if (dev_priv->card_type == NV_40)
|
|
regp->crtc_850 = NVReadCRTC(dev, head, NV_PCRTC_850);
|
|
|
|
if (nv_two_heads(dev))
|
|
regp->crtc_eng_ctrl = NVReadCRTC(dev, head, NV_PCRTC_ENGINE_CTRL);
|
|
regp->cursor_cfg = NVReadCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG);
|
|
}
|
|
|
|
regp->crtc_cfg = NVReadCRTC(dev, head, NV_PCRTC_CONFIG);
|
|
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
|
|
if (dev_priv->card_type >= NV_10) {
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_4B);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
|
|
}
|
|
/* NV11 and NV20 don't have this, they stop at 0x52. */
|
|
if (nv_gf4_disp_arch(dev)) {
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_53);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_54);
|
|
|
|
for (i = 0; i < 0x10; i++)
|
|
regp->CR58[i] = NVReadVgaCrtc5758(dev, head, i);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_59);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_5B);
|
|
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_85);
|
|
rd_cio_state(dev, head, regp, NV_CIO_CRE_86);
|
|
}
|
|
|
|
regp->fb_start = NVReadCRTC(dev, head, NV_PCRTC_START);
|
|
}
|
|
|
|
static void
|
|
nv_load_state_ext(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
|
|
uint32_t reg900;
|
|
int i;
|
|
|
|
if (dev_priv->card_type >= NV_10) {
|
|
if (nv_two_heads(dev))
|
|
/* setting ENGINE_CTRL (EC) *must* come before
|
|
* CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in
|
|
* EC that should not be overwritten by writing stale EC
|
|
*/
|
|
NVWriteCRTC(dev, head, NV_PCRTC_ENGINE_CTRL, regp->crtc_eng_ctrl);
|
|
|
|
nvWriteVIDEO(dev, NV_PVIDEO_STOP, 1);
|
|
nvWriteVIDEO(dev, NV_PVIDEO_INTR_EN, 0);
|
|
nvWriteVIDEO(dev, NV_PVIDEO_OFFSET_BUFF(0), 0);
|
|
nvWriteVIDEO(dev, NV_PVIDEO_OFFSET_BUFF(1), 0);
|
|
nvWriteVIDEO(dev, NV_PVIDEO_LIMIT(0), dev_priv->fb_available_size - 1);
|
|
nvWriteVIDEO(dev, NV_PVIDEO_LIMIT(1), dev_priv->fb_available_size - 1);
|
|
nvWriteVIDEO(dev, NV_PVIDEO_UVPLANE_LIMIT(0), dev_priv->fb_available_size - 1);
|
|
nvWriteVIDEO(dev, NV_PVIDEO_UVPLANE_LIMIT(1), dev_priv->fb_available_size - 1);
|
|
nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);
|
|
|
|
NVWriteCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG, regp->cursor_cfg);
|
|
NVWriteCRTC(dev, head, NV_PCRTC_830, regp->crtc_830);
|
|
NVWriteCRTC(dev, head, NV_PCRTC_834, regp->crtc_834);
|
|
|
|
if (dev_priv->card_type >= NV_30)
|
|
NVWriteCRTC(dev, head, NV_PCRTC_GPIO_EXT, regp->gpio_ext);
|
|
|
|
if (dev_priv->card_type == NV_40) {
|
|
NVWriteCRTC(dev, head, NV_PCRTC_850, regp->crtc_850);
|
|
|
|
reg900 = NVReadRAMDAC(dev, head, NV_PRAMDAC_900);
|
|
if (regp->crtc_cfg == NV_PCRTC_CONFIG_START_ADDRESS_HSYNC)
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 | 0x10000);
|
|
else
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 & ~0x10000);
|
|
}
|
|
}
|
|
|
|
NVWriteCRTC(dev, head, NV_PCRTC_CONFIG, regp->crtc_cfg);
|
|
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
|
|
if (dev_priv->card_type >= NV_30)
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_47);
|
|
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_49);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
|
|
if (dev_priv->card_type == NV_40)
|
|
nv_fix_nv40_hw_cursor(dev, head);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
|
|
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
|
|
if (dev_priv->card_type >= NV_10) {
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_4B);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
|
|
}
|
|
/* NV11 and NV20 stop at 0x52. */
|
|
if (nv_gf4_disp_arch(dev)) {
|
|
if (dev_priv->card_type == NV_10) {
|
|
/* Not waiting for vertical retrace before modifying
|
|
CRE_53/CRE_54 causes lockups. */
|
|
nouveau_wait_until(dev, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x8);
|
|
nouveau_wait_until(dev, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x0);
|
|
}
|
|
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_53);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_54);
|
|
|
|
for (i = 0; i < 0x10; i++)
|
|
NVWriteVgaCrtc5758(dev, head, i, regp->CR58[i]);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_59);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_5B);
|
|
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_85);
|
|
wr_cio_state(dev, head, regp, NV_CIO_CRE_86);
|
|
}
|
|
|
|
NVWriteCRTC(dev, head, NV_PCRTC_START, regp->fb_start);
|
|
|
|
/* Setting 1 on this value gives you interrupts for every vblank period. */
|
|
NVWriteCRTC(dev, head, NV_PCRTC_INTR_EN_0, 0);
|
|
NVWriteCRTC(dev, head, NV_PCRTC_INTR_0, NV_PCRTC_INTR_0_VBLANK);
|
|
}
|
|
|
|
static void
|
|
nv_save_state_palette(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
int head_offset = head * NV_PRMDIO_SIZE, i;
|
|
|
|
nv_wr08(dev, NV_PRMDIO_PIXEL_MASK + head_offset,
|
|
NV_PRMDIO_PIXEL_MASK_MASK);
|
|
nv_wr08(dev, NV_PRMDIO_READ_MODE_ADDRESS + head_offset, 0x0);
|
|
|
|
for (i = 0; i < 768; i++) {
|
|
state->crtc_reg[head].DAC[i] = nv_rd08(dev,
|
|
NV_PRMDIO_PALETTE_DATA + head_offset);
|
|
}
|
|
|
|
NVSetEnablePalette(dev, head, false);
|
|
}
|
|
|
|
void
|
|
nouveau_hw_load_state_palette(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
int head_offset = head * NV_PRMDIO_SIZE, i;
|
|
|
|
nv_wr08(dev, NV_PRMDIO_PIXEL_MASK + head_offset,
|
|
NV_PRMDIO_PIXEL_MASK_MASK);
|
|
nv_wr08(dev, NV_PRMDIO_WRITE_MODE_ADDRESS + head_offset, 0x0);
|
|
|
|
for (i = 0; i < 768; i++) {
|
|
nv_wr08(dev, NV_PRMDIO_PALETTE_DATA + head_offset,
|
|
state->crtc_reg[head].DAC[i]);
|
|
}
|
|
|
|
NVSetEnablePalette(dev, head, false);
|
|
}
|
|
|
|
void nouveau_hw_save_state(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
|
|
if (dev_priv->chipset == 0x11)
|
|
/* NB: no attempt is made to restore the bad pll later on */
|
|
nouveau_hw_fix_bad_vpll(dev, head);
|
|
nv_save_state_ramdac(dev, head, state);
|
|
nv_save_state_vga(dev, head, state);
|
|
nv_save_state_palette(dev, head, state);
|
|
nv_save_state_ext(dev, head, state);
|
|
}
|
|
|
|
void nouveau_hw_load_state(struct drm_device *dev, int head,
|
|
struct nv04_mode_state *state)
|
|
{
|
|
NVVgaProtect(dev, head, true);
|
|
nv_load_state_ramdac(dev, head, state);
|
|
nv_load_state_ext(dev, head, state);
|
|
nouveau_hw_load_state_palette(dev, head, state);
|
|
nv_load_state_vga(dev, head, state);
|
|
NVVgaProtect(dev, head, false);
|
|
}
|