mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 14:20:55 +07:00
9907ab3714
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9D5EkACgkQxWXV+ddt WDto+g/6A/2QzxhgOmqqHTiDvn3DkL60XfjB6lmq3NEvinrST+VH20EoX/EuX2Kn u2+gMiWrgBUwlvERkoSasxdJf/6dCCc+9zYDjjKkAxCckENT85Np71o3iEc7Z5z+ LFgS26mt6aYlCCHyIsHutzHtK2MKiUz7/oaUYZMJBHHkKS/5hL1mzIbwiWAqfU2H q0iMz9L2mjp1kZnpwa/yhg/NJ/oGZsKm3UPGDhdc0RlCWHBbDXHFk1wvNRo/yKQW l+yy0dh6PAZ45pRL0/WZwvOzcAglb+uSmwa64UOvwio4Na9P7oAcBzTFmtbBtvP4 WBrOUPCTzkvgQcmoAsWFpD4nrzgW4oS71EICTOIRlPx7A86TP3wYpFEygUlLCoZC Pd4e9mPClmW78hcRT12eJeGcJIzgoKWhR8597jNUEYz3R5T2wKHOcNnq9a1E1PLv zR+5MFShsylUHd7HbMC1O86XnfXe5esegNQMvx36kTS+cR9Dyt5EWMNIAYK4BPM3 /tXWZRqlZPOh3T7DZ4QR5oSSDDNq7ROTdv9jmsleno+woG0MNDYsA7jCbeJnGTmI CtTUP+p41otyM2lFZjV8PG/XyXDKb3UfU5gcsDOZdGP5S0tkyBiKSA6eqhz6DaTi fQOLGZdkNpNN/burbMq7d7YEHr3F6LC17U3L4k5V4MTAm2lp7ZQ= =ONgI -----END PGP SIGNATURE----- Merge tag 'for-5.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix swapfile activation on subvolumes with deleted snapshots - error value mixup when removing directory entries from tree log - fix lzo compression level reset after previous level setting - fix space cache memory leak after transaction abort - fix const function attribute - more error handling improvements * tag 'for-5.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: detect nocow for swap after snapshot delete btrfs: check the right error variable in btrfs_del_dir_entries_in_log btrfs: fix space cache memory leak after transaction abort btrfs: use the correct const function attribute for btrfs_get_num_csums btrfs: reset compression level for lzo on remount btrfs: handle errors from async submission
10352 lines
287 KiB
C
10352 lines
287 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <crypto/hash.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/posix_acl.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/btrfs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/posix_acl_xattr.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/iversion.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <asm/unaligned.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "print-tree.h"
|
|
#include "ordered-data.h"
|
|
#include "xattr.h"
|
|
#include "tree-log.h"
|
|
#include "volumes.h"
|
|
#include "compression.h"
|
|
#include "locking.h"
|
|
#include "free-space-cache.h"
|
|
#include "inode-map.h"
|
|
#include "props.h"
|
|
#include "qgroup.h"
|
|
#include "delalloc-space.h"
|
|
#include "block-group.h"
|
|
#include "space-info.h"
|
|
|
|
struct btrfs_iget_args {
|
|
u64 ino;
|
|
struct btrfs_root *root;
|
|
};
|
|
|
|
struct btrfs_dio_data {
|
|
u64 reserve;
|
|
u64 unsubmitted_oe_range_start;
|
|
u64 unsubmitted_oe_range_end;
|
|
int overwrite;
|
|
};
|
|
|
|
static const struct inode_operations btrfs_dir_inode_operations;
|
|
static const struct inode_operations btrfs_symlink_inode_operations;
|
|
static const struct inode_operations btrfs_special_inode_operations;
|
|
static const struct inode_operations btrfs_file_inode_operations;
|
|
static const struct address_space_operations btrfs_aops;
|
|
static const struct file_operations btrfs_dir_file_operations;
|
|
static const struct extent_io_ops btrfs_extent_io_ops;
|
|
|
|
static struct kmem_cache *btrfs_inode_cachep;
|
|
struct kmem_cache *btrfs_trans_handle_cachep;
|
|
struct kmem_cache *btrfs_path_cachep;
|
|
struct kmem_cache *btrfs_free_space_cachep;
|
|
struct kmem_cache *btrfs_free_space_bitmap_cachep;
|
|
|
|
static int btrfs_setsize(struct inode *inode, struct iattr *attr);
|
|
static int btrfs_truncate(struct inode *inode, bool skip_writeback);
|
|
static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
|
|
static noinline int cow_file_range(struct btrfs_inode *inode,
|
|
struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written, int unlock);
|
|
static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
|
|
u64 len, u64 orig_start, u64 block_start,
|
|
u64 block_len, u64 orig_block_len,
|
|
u64 ram_bytes, int compress_type,
|
|
int type);
|
|
|
|
static void __endio_write_update_ordered(struct btrfs_inode *inode,
|
|
const u64 offset, const u64 bytes,
|
|
const bool uptodate);
|
|
|
|
/*
|
|
* Cleanup all submitted ordered extents in specified range to handle errors
|
|
* from the btrfs_run_delalloc_range() callback.
|
|
*
|
|
* NOTE: caller must ensure that when an error happens, it can not call
|
|
* extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
|
|
* and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
|
|
* to be released, which we want to happen only when finishing the ordered
|
|
* extent (btrfs_finish_ordered_io()).
|
|
*/
|
|
static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
|
|
struct page *locked_page,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
unsigned long index = offset >> PAGE_SHIFT;
|
|
unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
|
|
u64 page_start = page_offset(locked_page);
|
|
u64 page_end = page_start + PAGE_SIZE - 1;
|
|
|
|
struct page *page;
|
|
|
|
while (index <= end_index) {
|
|
page = find_get_page(inode->vfs_inode.i_mapping, index);
|
|
index++;
|
|
if (!page)
|
|
continue;
|
|
ClearPagePrivate2(page);
|
|
put_page(page);
|
|
}
|
|
|
|
/*
|
|
* In case this page belongs to the delalloc range being instantiated
|
|
* then skip it, since the first page of a range is going to be
|
|
* properly cleaned up by the caller of run_delalloc_range
|
|
*/
|
|
if (page_start >= offset && page_end <= (offset + bytes - 1)) {
|
|
offset += PAGE_SIZE;
|
|
bytes -= PAGE_SIZE;
|
|
}
|
|
|
|
return __endio_write_update_ordered(inode, offset, bytes, false);
|
|
}
|
|
|
|
static int btrfs_dirty_inode(struct inode *inode);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
void btrfs_test_inode_set_ops(struct inode *inode)
|
|
{
|
|
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
|
|
}
|
|
#endif
|
|
|
|
static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, struct inode *dir,
|
|
const struct qstr *qstr)
|
|
{
|
|
int err;
|
|
|
|
err = btrfs_init_acl(trans, inode, dir);
|
|
if (!err)
|
|
err = btrfs_xattr_security_init(trans, inode, dir, qstr);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* this does all the hard work for inserting an inline extent into
|
|
* the btree. The caller should have done a btrfs_drop_extents so that
|
|
* no overlapping inline items exist in the btree
|
|
*/
|
|
static int insert_inline_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path, int extent_inserted,
|
|
struct btrfs_root *root, struct inode *inode,
|
|
u64 start, size_t size, size_t compressed_size,
|
|
int compress_type,
|
|
struct page **compressed_pages)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct page *page = NULL;
|
|
char *kaddr;
|
|
unsigned long ptr;
|
|
struct btrfs_file_extent_item *ei;
|
|
int ret;
|
|
size_t cur_size = size;
|
|
unsigned long offset;
|
|
|
|
ASSERT((compressed_size > 0 && compressed_pages) ||
|
|
(compressed_size == 0 && !compressed_pages));
|
|
|
|
if (compressed_size && compressed_pages)
|
|
cur_size = compressed_size;
|
|
|
|
inode_add_bytes(inode, size);
|
|
|
|
if (!extent_inserted) {
|
|
struct btrfs_key key;
|
|
size_t datasize;
|
|
|
|
key.objectid = btrfs_ino(BTRFS_I(inode));
|
|
key.offset = start;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
|
|
datasize = btrfs_file_extent_calc_inline_size(cur_size);
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
datasize);
|
|
if (ret)
|
|
goto fail;
|
|
}
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, ei, trans->transid);
|
|
btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
|
|
btrfs_set_file_extent_encryption(leaf, ei, 0);
|
|
btrfs_set_file_extent_other_encoding(leaf, ei, 0);
|
|
btrfs_set_file_extent_ram_bytes(leaf, ei, size);
|
|
ptr = btrfs_file_extent_inline_start(ei);
|
|
|
|
if (compress_type != BTRFS_COMPRESS_NONE) {
|
|
struct page *cpage;
|
|
int i = 0;
|
|
while (compressed_size > 0) {
|
|
cpage = compressed_pages[i];
|
|
cur_size = min_t(unsigned long, compressed_size,
|
|
PAGE_SIZE);
|
|
|
|
kaddr = kmap_atomic(cpage);
|
|
write_extent_buffer(leaf, kaddr, ptr, cur_size);
|
|
kunmap_atomic(kaddr);
|
|
|
|
i++;
|
|
ptr += cur_size;
|
|
compressed_size -= cur_size;
|
|
}
|
|
btrfs_set_file_extent_compression(leaf, ei,
|
|
compress_type);
|
|
} else {
|
|
page = find_get_page(inode->i_mapping,
|
|
start >> PAGE_SHIFT);
|
|
btrfs_set_file_extent_compression(leaf, ei, 0);
|
|
kaddr = kmap_atomic(page);
|
|
offset = offset_in_page(start);
|
|
write_extent_buffer(leaf, kaddr + offset, ptr, size);
|
|
kunmap_atomic(kaddr);
|
|
put_page(page);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* We align size to sectorsize for inline extents just for simplicity
|
|
* sake.
|
|
*/
|
|
size = ALIGN(size, root->fs_info->sectorsize);
|
|
ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
/*
|
|
* we're an inline extent, so nobody can
|
|
* extend the file past i_size without locking
|
|
* a page we already have locked.
|
|
*
|
|
* We must do any isize and inode updates
|
|
* before we unlock the pages. Otherwise we
|
|
* could end up racing with unlink.
|
|
*/
|
|
BTRFS_I(inode)->disk_i_size = inode->i_size;
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* conditionally insert an inline extent into the file. This
|
|
* does the checks required to make sure the data is small enough
|
|
* to fit as an inline extent.
|
|
*/
|
|
static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
|
|
u64 end, size_t compressed_size,
|
|
int compress_type,
|
|
struct page **compressed_pages)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 isize = i_size_read(&inode->vfs_inode);
|
|
u64 actual_end = min(end + 1, isize);
|
|
u64 inline_len = actual_end - start;
|
|
u64 aligned_end = ALIGN(end, fs_info->sectorsize);
|
|
u64 data_len = inline_len;
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
int extent_inserted = 0;
|
|
u32 extent_item_size;
|
|
|
|
if (compressed_size)
|
|
data_len = compressed_size;
|
|
|
|
if (start > 0 ||
|
|
actual_end > fs_info->sectorsize ||
|
|
data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
|
|
(!compressed_size &&
|
|
(actual_end & (fs_info->sectorsize - 1)) == 0) ||
|
|
end + 1 < isize ||
|
|
data_len > fs_info->max_inline) {
|
|
return 1;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(trans);
|
|
}
|
|
trans->block_rsv = &inode->block_rsv;
|
|
|
|
if (compressed_size && compressed_pages)
|
|
extent_item_size = btrfs_file_extent_calc_inline_size(
|
|
compressed_size);
|
|
else
|
|
extent_item_size = btrfs_file_extent_calc_inline_size(
|
|
inline_len);
|
|
|
|
ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
|
|
NULL, 1, 1, extent_item_size,
|
|
&extent_inserted);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
if (isize > actual_end)
|
|
inline_len = min_t(u64, isize, actual_end);
|
|
ret = insert_inline_extent(trans, path, extent_inserted,
|
|
root, &inode->vfs_inode, start,
|
|
inline_len, compressed_size,
|
|
compress_type, compressed_pages);
|
|
if (ret && ret != -ENOSPC) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
} else if (ret == -ENOSPC) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
|
|
btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
|
|
out:
|
|
/*
|
|
* Don't forget to free the reserved space, as for inlined extent
|
|
* it won't count as data extent, free them directly here.
|
|
* And at reserve time, it's always aligned to page size, so
|
|
* just free one page here.
|
|
*/
|
|
btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
|
|
btrfs_free_path(path);
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
struct async_extent {
|
|
u64 start;
|
|
u64 ram_size;
|
|
u64 compressed_size;
|
|
struct page **pages;
|
|
unsigned long nr_pages;
|
|
int compress_type;
|
|
struct list_head list;
|
|
};
|
|
|
|
struct async_chunk {
|
|
struct inode *inode;
|
|
struct page *locked_page;
|
|
u64 start;
|
|
u64 end;
|
|
unsigned int write_flags;
|
|
struct list_head extents;
|
|
struct cgroup_subsys_state *blkcg_css;
|
|
struct btrfs_work work;
|
|
atomic_t *pending;
|
|
};
|
|
|
|
struct async_cow {
|
|
/* Number of chunks in flight; must be first in the structure */
|
|
atomic_t num_chunks;
|
|
struct async_chunk chunks[];
|
|
};
|
|
|
|
static noinline int add_async_extent(struct async_chunk *cow,
|
|
u64 start, u64 ram_size,
|
|
u64 compressed_size,
|
|
struct page **pages,
|
|
unsigned long nr_pages,
|
|
int compress_type)
|
|
{
|
|
struct async_extent *async_extent;
|
|
|
|
async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
|
|
BUG_ON(!async_extent); /* -ENOMEM */
|
|
async_extent->start = start;
|
|
async_extent->ram_size = ram_size;
|
|
async_extent->compressed_size = compressed_size;
|
|
async_extent->pages = pages;
|
|
async_extent->nr_pages = nr_pages;
|
|
async_extent->compress_type = compress_type;
|
|
list_add_tail(&async_extent->list, &cow->extents);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if the inode has flags compatible with compression
|
|
*/
|
|
static inline bool inode_can_compress(struct btrfs_inode *inode)
|
|
{
|
|
if (inode->flags & BTRFS_INODE_NODATACOW ||
|
|
inode->flags & BTRFS_INODE_NODATASUM)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check if the inode needs to be submitted to compression, based on mount
|
|
* options, defragmentation, properties or heuristics.
|
|
*/
|
|
static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
|
|
u64 end)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
|
|
if (!inode_can_compress(inode)) {
|
|
WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
|
|
KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
|
|
btrfs_ino(inode));
|
|
return 0;
|
|
}
|
|
/* force compress */
|
|
if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
|
|
return 1;
|
|
/* defrag ioctl */
|
|
if (inode->defrag_compress)
|
|
return 1;
|
|
/* bad compression ratios */
|
|
if (inode->flags & BTRFS_INODE_NOCOMPRESS)
|
|
return 0;
|
|
if (btrfs_test_opt(fs_info, COMPRESS) ||
|
|
inode->flags & BTRFS_INODE_COMPRESS ||
|
|
inode->prop_compress)
|
|
return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
|
|
return 0;
|
|
}
|
|
|
|
static inline void inode_should_defrag(struct btrfs_inode *inode,
|
|
u64 start, u64 end, u64 num_bytes, u64 small_write)
|
|
{
|
|
/* If this is a small write inside eof, kick off a defrag */
|
|
if (num_bytes < small_write &&
|
|
(start > 0 || end + 1 < inode->disk_i_size))
|
|
btrfs_add_inode_defrag(NULL, inode);
|
|
}
|
|
|
|
/*
|
|
* we create compressed extents in two phases. The first
|
|
* phase compresses a range of pages that have already been
|
|
* locked (both pages and state bits are locked).
|
|
*
|
|
* This is done inside an ordered work queue, and the compression
|
|
* is spread across many cpus. The actual IO submission is step
|
|
* two, and the ordered work queue takes care of making sure that
|
|
* happens in the same order things were put onto the queue by
|
|
* writepages and friends.
|
|
*
|
|
* If this code finds it can't get good compression, it puts an
|
|
* entry onto the work queue to write the uncompressed bytes. This
|
|
* makes sure that both compressed inodes and uncompressed inodes
|
|
* are written in the same order that the flusher thread sent them
|
|
* down.
|
|
*/
|
|
static noinline int compress_file_range(struct async_chunk *async_chunk)
|
|
{
|
|
struct inode *inode = async_chunk->inode;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
u64 blocksize = fs_info->sectorsize;
|
|
u64 start = async_chunk->start;
|
|
u64 end = async_chunk->end;
|
|
u64 actual_end;
|
|
u64 i_size;
|
|
int ret = 0;
|
|
struct page **pages = NULL;
|
|
unsigned long nr_pages;
|
|
unsigned long total_compressed = 0;
|
|
unsigned long total_in = 0;
|
|
int i;
|
|
int will_compress;
|
|
int compress_type = fs_info->compress_type;
|
|
int compressed_extents = 0;
|
|
int redirty = 0;
|
|
|
|
inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
|
|
SZ_16K);
|
|
|
|
/*
|
|
* We need to save i_size before now because it could change in between
|
|
* us evaluating the size and assigning it. This is because we lock and
|
|
* unlock the page in truncate and fallocate, and then modify the i_size
|
|
* later on.
|
|
*
|
|
* The barriers are to emulate READ_ONCE, remove that once i_size_read
|
|
* does that for us.
|
|
*/
|
|
barrier();
|
|
i_size = i_size_read(inode);
|
|
barrier();
|
|
actual_end = min_t(u64, i_size, end + 1);
|
|
again:
|
|
will_compress = 0;
|
|
nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
|
|
BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
|
|
nr_pages = min_t(unsigned long, nr_pages,
|
|
BTRFS_MAX_COMPRESSED / PAGE_SIZE);
|
|
|
|
/*
|
|
* we don't want to send crud past the end of i_size through
|
|
* compression, that's just a waste of CPU time. So, if the
|
|
* end of the file is before the start of our current
|
|
* requested range of bytes, we bail out to the uncompressed
|
|
* cleanup code that can deal with all of this.
|
|
*
|
|
* It isn't really the fastest way to fix things, but this is a
|
|
* very uncommon corner.
|
|
*/
|
|
if (actual_end <= start)
|
|
goto cleanup_and_bail_uncompressed;
|
|
|
|
total_compressed = actual_end - start;
|
|
|
|
/*
|
|
* skip compression for a small file range(<=blocksize) that
|
|
* isn't an inline extent, since it doesn't save disk space at all.
|
|
*/
|
|
if (total_compressed <= blocksize &&
|
|
(start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
|
|
goto cleanup_and_bail_uncompressed;
|
|
|
|
total_compressed = min_t(unsigned long, total_compressed,
|
|
BTRFS_MAX_UNCOMPRESSED);
|
|
total_in = 0;
|
|
ret = 0;
|
|
|
|
/*
|
|
* we do compression for mount -o compress and when the
|
|
* inode has not been flagged as nocompress. This flag can
|
|
* change at any time if we discover bad compression ratios.
|
|
*/
|
|
if (inode_need_compress(BTRFS_I(inode), start, end)) {
|
|
WARN_ON(pages);
|
|
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
|
|
if (!pages) {
|
|
/* just bail out to the uncompressed code */
|
|
nr_pages = 0;
|
|
goto cont;
|
|
}
|
|
|
|
if (BTRFS_I(inode)->defrag_compress)
|
|
compress_type = BTRFS_I(inode)->defrag_compress;
|
|
else if (BTRFS_I(inode)->prop_compress)
|
|
compress_type = BTRFS_I(inode)->prop_compress;
|
|
|
|
/*
|
|
* we need to call clear_page_dirty_for_io on each
|
|
* page in the range. Otherwise applications with the file
|
|
* mmap'd can wander in and change the page contents while
|
|
* we are compressing them.
|
|
*
|
|
* If the compression fails for any reason, we set the pages
|
|
* dirty again later on.
|
|
*
|
|
* Note that the remaining part is redirtied, the start pointer
|
|
* has moved, the end is the original one.
|
|
*/
|
|
if (!redirty) {
|
|
extent_range_clear_dirty_for_io(inode, start, end);
|
|
redirty = 1;
|
|
}
|
|
|
|
/* Compression level is applied here and only here */
|
|
ret = btrfs_compress_pages(
|
|
compress_type | (fs_info->compress_level << 4),
|
|
inode->i_mapping, start,
|
|
pages,
|
|
&nr_pages,
|
|
&total_in,
|
|
&total_compressed);
|
|
|
|
if (!ret) {
|
|
unsigned long offset = offset_in_page(total_compressed);
|
|
struct page *page = pages[nr_pages - 1];
|
|
char *kaddr;
|
|
|
|
/* zero the tail end of the last page, we might be
|
|
* sending it down to disk
|
|
*/
|
|
if (offset) {
|
|
kaddr = kmap_atomic(page);
|
|
memset(kaddr + offset, 0,
|
|
PAGE_SIZE - offset);
|
|
kunmap_atomic(kaddr);
|
|
}
|
|
will_compress = 1;
|
|
}
|
|
}
|
|
cont:
|
|
if (start == 0) {
|
|
/* lets try to make an inline extent */
|
|
if (ret || total_in < actual_end) {
|
|
/* we didn't compress the entire range, try
|
|
* to make an uncompressed inline extent.
|
|
*/
|
|
ret = cow_file_range_inline(BTRFS_I(inode), start, end,
|
|
0, BTRFS_COMPRESS_NONE,
|
|
NULL);
|
|
} else {
|
|
/* try making a compressed inline extent */
|
|
ret = cow_file_range_inline(BTRFS_I(inode), start, end,
|
|
total_compressed,
|
|
compress_type, pages);
|
|
}
|
|
if (ret <= 0) {
|
|
unsigned long clear_flags = EXTENT_DELALLOC |
|
|
EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
|
|
EXTENT_DO_ACCOUNTING;
|
|
unsigned long page_error_op;
|
|
|
|
page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
|
|
|
|
/*
|
|
* inline extent creation worked or returned error,
|
|
* we don't need to create any more async work items.
|
|
* Unlock and free up our temp pages.
|
|
*
|
|
* We use DO_ACCOUNTING here because we need the
|
|
* delalloc_release_metadata to be done _after_ we drop
|
|
* our outstanding extent for clearing delalloc for this
|
|
* range.
|
|
*/
|
|
extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
|
|
NULL,
|
|
clear_flags,
|
|
PAGE_UNLOCK |
|
|
PAGE_CLEAR_DIRTY |
|
|
PAGE_SET_WRITEBACK |
|
|
page_error_op |
|
|
PAGE_END_WRITEBACK);
|
|
|
|
/*
|
|
* Ensure we only free the compressed pages if we have
|
|
* them allocated, as we can still reach here with
|
|
* inode_need_compress() == false.
|
|
*/
|
|
if (pages) {
|
|
for (i = 0; i < nr_pages; i++) {
|
|
WARN_ON(pages[i]->mapping);
|
|
put_page(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (will_compress) {
|
|
/*
|
|
* we aren't doing an inline extent round the compressed size
|
|
* up to a block size boundary so the allocator does sane
|
|
* things
|
|
*/
|
|
total_compressed = ALIGN(total_compressed, blocksize);
|
|
|
|
/*
|
|
* one last check to make sure the compression is really a
|
|
* win, compare the page count read with the blocks on disk,
|
|
* compression must free at least one sector size
|
|
*/
|
|
total_in = ALIGN(total_in, PAGE_SIZE);
|
|
if (total_compressed + blocksize <= total_in) {
|
|
compressed_extents++;
|
|
|
|
/*
|
|
* The async work queues will take care of doing actual
|
|
* allocation on disk for these compressed pages, and
|
|
* will submit them to the elevator.
|
|
*/
|
|
add_async_extent(async_chunk, start, total_in,
|
|
total_compressed, pages, nr_pages,
|
|
compress_type);
|
|
|
|
if (start + total_in < end) {
|
|
start += total_in;
|
|
pages = NULL;
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
return compressed_extents;
|
|
}
|
|
}
|
|
if (pages) {
|
|
/*
|
|
* the compression code ran but failed to make things smaller,
|
|
* free any pages it allocated and our page pointer array
|
|
*/
|
|
for (i = 0; i < nr_pages; i++) {
|
|
WARN_ON(pages[i]->mapping);
|
|
put_page(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
pages = NULL;
|
|
total_compressed = 0;
|
|
nr_pages = 0;
|
|
|
|
/* flag the file so we don't compress in the future */
|
|
if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
|
|
!(BTRFS_I(inode)->prop_compress)) {
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
|
|
}
|
|
}
|
|
cleanup_and_bail_uncompressed:
|
|
/*
|
|
* No compression, but we still need to write the pages in the file
|
|
* we've been given so far. redirty the locked page if it corresponds
|
|
* to our extent and set things up for the async work queue to run
|
|
* cow_file_range to do the normal delalloc dance.
|
|
*/
|
|
if (async_chunk->locked_page &&
|
|
(page_offset(async_chunk->locked_page) >= start &&
|
|
page_offset(async_chunk->locked_page)) <= end) {
|
|
__set_page_dirty_nobuffers(async_chunk->locked_page);
|
|
/* unlocked later on in the async handlers */
|
|
}
|
|
|
|
if (redirty)
|
|
extent_range_redirty_for_io(inode, start, end);
|
|
add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
|
|
BTRFS_COMPRESS_NONE);
|
|
compressed_extents++;
|
|
|
|
return compressed_extents;
|
|
}
|
|
|
|
static void free_async_extent_pages(struct async_extent *async_extent)
|
|
{
|
|
int i;
|
|
|
|
if (!async_extent->pages)
|
|
return;
|
|
|
|
for (i = 0; i < async_extent->nr_pages; i++) {
|
|
WARN_ON(async_extent->pages[i]->mapping);
|
|
put_page(async_extent->pages[i]);
|
|
}
|
|
kfree(async_extent->pages);
|
|
async_extent->nr_pages = 0;
|
|
async_extent->pages = NULL;
|
|
}
|
|
|
|
/*
|
|
* phase two of compressed writeback. This is the ordered portion
|
|
* of the code, which only gets called in the order the work was
|
|
* queued. We walk all the async extents created by compress_file_range
|
|
* and send them down to the disk.
|
|
*/
|
|
static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct async_extent *async_extent;
|
|
u64 alloc_hint = 0;
|
|
struct btrfs_key ins;
|
|
struct extent_map *em;
|
|
struct btrfs_root *root = inode->root;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
int ret = 0;
|
|
|
|
again:
|
|
while (!list_empty(&async_chunk->extents)) {
|
|
async_extent = list_entry(async_chunk->extents.next,
|
|
struct async_extent, list);
|
|
list_del(&async_extent->list);
|
|
|
|
retry:
|
|
lock_extent(io_tree, async_extent->start,
|
|
async_extent->start + async_extent->ram_size - 1);
|
|
/* did the compression code fall back to uncompressed IO? */
|
|
if (!async_extent->pages) {
|
|
int page_started = 0;
|
|
unsigned long nr_written = 0;
|
|
|
|
/* allocate blocks */
|
|
ret = cow_file_range(inode, async_chunk->locked_page,
|
|
async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1,
|
|
&page_started, &nr_written, 0);
|
|
|
|
/* JDM XXX */
|
|
|
|
/*
|
|
* if page_started, cow_file_range inserted an
|
|
* inline extent and took care of all the unlocking
|
|
* and IO for us. Otherwise, we need to submit
|
|
* all those pages down to the drive.
|
|
*/
|
|
if (!page_started && !ret)
|
|
extent_write_locked_range(&inode->vfs_inode,
|
|
async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1,
|
|
WB_SYNC_ALL);
|
|
else if (ret && async_chunk->locked_page)
|
|
unlock_page(async_chunk->locked_page);
|
|
kfree(async_extent);
|
|
cond_resched();
|
|
continue;
|
|
}
|
|
|
|
ret = btrfs_reserve_extent(root, async_extent->ram_size,
|
|
async_extent->compressed_size,
|
|
async_extent->compressed_size,
|
|
0, alloc_hint, &ins, 1, 1);
|
|
if (ret) {
|
|
free_async_extent_pages(async_extent);
|
|
|
|
if (ret == -ENOSPC) {
|
|
unlock_extent(io_tree, async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1);
|
|
|
|
/*
|
|
* we need to redirty the pages if we decide to
|
|
* fallback to uncompressed IO, otherwise we
|
|
* will not submit these pages down to lower
|
|
* layers.
|
|
*/
|
|
extent_range_redirty_for_io(&inode->vfs_inode,
|
|
async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1);
|
|
|
|
goto retry;
|
|
}
|
|
goto out_free;
|
|
}
|
|
/*
|
|
* here we're doing allocation and writeback of the
|
|
* compressed pages
|
|
*/
|
|
em = create_io_em(inode, async_extent->start,
|
|
async_extent->ram_size, /* len */
|
|
async_extent->start, /* orig_start */
|
|
ins.objectid, /* block_start */
|
|
ins.offset, /* block_len */
|
|
ins.offset, /* orig_block_len */
|
|
async_extent->ram_size, /* ram_bytes */
|
|
async_extent->compress_type,
|
|
BTRFS_ORDERED_COMPRESSED);
|
|
if (IS_ERR(em))
|
|
/* ret value is not necessary due to void function */
|
|
goto out_free_reserve;
|
|
free_extent_map(em);
|
|
|
|
ret = btrfs_add_ordered_extent_compress(inode,
|
|
async_extent->start,
|
|
ins.objectid,
|
|
async_extent->ram_size,
|
|
ins.offset,
|
|
BTRFS_ORDERED_COMPRESSED,
|
|
async_extent->compress_type);
|
|
if (ret) {
|
|
btrfs_drop_extent_cache(inode, async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1, 0);
|
|
goto out_free_reserve;
|
|
}
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
|
|
/*
|
|
* clear dirty, set writeback and unlock the pages.
|
|
*/
|
|
extent_clear_unlock_delalloc(inode, async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1,
|
|
NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
|
|
PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
|
|
PAGE_SET_WRITEBACK);
|
|
if (btrfs_submit_compressed_write(inode, async_extent->start,
|
|
async_extent->ram_size,
|
|
ins.objectid,
|
|
ins.offset, async_extent->pages,
|
|
async_extent->nr_pages,
|
|
async_chunk->write_flags,
|
|
async_chunk->blkcg_css)) {
|
|
struct page *p = async_extent->pages[0];
|
|
const u64 start = async_extent->start;
|
|
const u64 end = start + async_extent->ram_size - 1;
|
|
|
|
p->mapping = inode->vfs_inode.i_mapping;
|
|
btrfs_writepage_endio_finish_ordered(p, start, end, 0);
|
|
|
|
p->mapping = NULL;
|
|
extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
|
|
PAGE_END_WRITEBACK |
|
|
PAGE_SET_ERROR);
|
|
free_async_extent_pages(async_extent);
|
|
}
|
|
alloc_hint = ins.objectid + ins.offset;
|
|
kfree(async_extent);
|
|
cond_resched();
|
|
}
|
|
return;
|
|
out_free_reserve:
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
|
|
out_free:
|
|
extent_clear_unlock_delalloc(inode, async_extent->start,
|
|
async_extent->start +
|
|
async_extent->ram_size - 1,
|
|
NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DELALLOC_NEW |
|
|
EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
|
|
PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
|
|
PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
|
|
PAGE_SET_ERROR);
|
|
free_async_extent_pages(async_extent);
|
|
kfree(async_extent);
|
|
goto again;
|
|
}
|
|
|
|
static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
|
|
u64 num_bytes)
|
|
{
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
struct extent_map *em;
|
|
u64 alloc_hint = 0;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = search_extent_mapping(em_tree, start, num_bytes);
|
|
if (em) {
|
|
/*
|
|
* if block start isn't an actual block number then find the
|
|
* first block in this inode and use that as a hint. If that
|
|
* block is also bogus then just don't worry about it.
|
|
*/
|
|
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
|
|
free_extent_map(em);
|
|
em = search_extent_mapping(em_tree, 0, 0);
|
|
if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
|
|
alloc_hint = em->block_start;
|
|
if (em)
|
|
free_extent_map(em);
|
|
} else {
|
|
alloc_hint = em->block_start;
|
|
free_extent_map(em);
|
|
}
|
|
}
|
|
read_unlock(&em_tree->lock);
|
|
|
|
return alloc_hint;
|
|
}
|
|
|
|
/*
|
|
* when extent_io.c finds a delayed allocation range in the file,
|
|
* the call backs end up in this code. The basic idea is to
|
|
* allocate extents on disk for the range, and create ordered data structs
|
|
* in ram to track those extents.
|
|
*
|
|
* locked_page is the page that writepage had locked already. We use
|
|
* it to make sure we don't do extra locks or unlocks.
|
|
*
|
|
* *page_started is set to one if we unlock locked_page and do everything
|
|
* required to start IO on it. It may be clean and already done with
|
|
* IO when we return.
|
|
*/
|
|
static noinline int cow_file_range(struct btrfs_inode *inode,
|
|
struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written, int unlock)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 alloc_hint = 0;
|
|
u64 num_bytes;
|
|
unsigned long ram_size;
|
|
u64 cur_alloc_size = 0;
|
|
u64 min_alloc_size;
|
|
u64 blocksize = fs_info->sectorsize;
|
|
struct btrfs_key ins;
|
|
struct extent_map *em;
|
|
unsigned clear_bits;
|
|
unsigned long page_ops;
|
|
bool extent_reserved = false;
|
|
int ret = 0;
|
|
|
|
if (btrfs_is_free_space_inode(inode)) {
|
|
WARN_ON_ONCE(1);
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
num_bytes = ALIGN(end - start + 1, blocksize);
|
|
num_bytes = max(blocksize, num_bytes);
|
|
ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
|
|
|
|
inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
|
|
|
|
if (start == 0) {
|
|
/* lets try to make an inline extent */
|
|
ret = cow_file_range_inline(inode, start, end, 0,
|
|
BTRFS_COMPRESS_NONE, NULL);
|
|
if (ret == 0) {
|
|
/*
|
|
* We use DO_ACCOUNTING here because we need the
|
|
* delalloc_release_metadata to be run _after_ we drop
|
|
* our outstanding extent for clearing delalloc for this
|
|
* range.
|
|
*/
|
|
extent_clear_unlock_delalloc(inode, start, end, NULL,
|
|
EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
|
|
EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
|
|
PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
|
|
PAGE_END_WRITEBACK);
|
|
*nr_written = *nr_written +
|
|
(end - start + PAGE_SIZE) / PAGE_SIZE;
|
|
*page_started = 1;
|
|
goto out;
|
|
} else if (ret < 0) {
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
|
|
btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
|
|
|
|
/*
|
|
* Relocation relies on the relocated extents to have exactly the same
|
|
* size as the original extents. Normally writeback for relocation data
|
|
* extents follows a NOCOW path because relocation preallocates the
|
|
* extents. However, due to an operation such as scrub turning a block
|
|
* group to RO mode, it may fallback to COW mode, so we must make sure
|
|
* an extent allocated during COW has exactly the requested size and can
|
|
* not be split into smaller extents, otherwise relocation breaks and
|
|
* fails during the stage where it updates the bytenr of file extent
|
|
* items.
|
|
*/
|
|
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
|
|
min_alloc_size = num_bytes;
|
|
else
|
|
min_alloc_size = fs_info->sectorsize;
|
|
|
|
while (num_bytes > 0) {
|
|
cur_alloc_size = num_bytes;
|
|
ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
|
|
min_alloc_size, 0, alloc_hint,
|
|
&ins, 1, 1);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
cur_alloc_size = ins.offset;
|
|
extent_reserved = true;
|
|
|
|
ram_size = ins.offset;
|
|
em = create_io_em(inode, start, ins.offset, /* len */
|
|
start, /* orig_start */
|
|
ins.objectid, /* block_start */
|
|
ins.offset, /* block_len */
|
|
ins.offset, /* orig_block_len */
|
|
ram_size, /* ram_bytes */
|
|
BTRFS_COMPRESS_NONE, /* compress_type */
|
|
BTRFS_ORDERED_REGULAR /* type */);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out_reserve;
|
|
}
|
|
free_extent_map(em);
|
|
|
|
ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
|
|
ram_size, cur_alloc_size, 0);
|
|
if (ret)
|
|
goto out_drop_extent_cache;
|
|
|
|
if (root->root_key.objectid ==
|
|
BTRFS_DATA_RELOC_TREE_OBJECTID) {
|
|
ret = btrfs_reloc_clone_csums(inode, start,
|
|
cur_alloc_size);
|
|
/*
|
|
* Only drop cache here, and process as normal.
|
|
*
|
|
* We must not allow extent_clear_unlock_delalloc()
|
|
* at out_unlock label to free meta of this ordered
|
|
* extent, as its meta should be freed by
|
|
* btrfs_finish_ordered_io().
|
|
*
|
|
* So we must continue until @start is increased to
|
|
* skip current ordered extent.
|
|
*/
|
|
if (ret)
|
|
btrfs_drop_extent_cache(inode, start,
|
|
start + ram_size - 1, 0);
|
|
}
|
|
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
|
|
/* we're not doing compressed IO, don't unlock the first
|
|
* page (which the caller expects to stay locked), don't
|
|
* clear any dirty bits and don't set any writeback bits
|
|
*
|
|
* Do set the Private2 bit so we know this page was properly
|
|
* setup for writepage
|
|
*/
|
|
page_ops = unlock ? PAGE_UNLOCK : 0;
|
|
page_ops |= PAGE_SET_PRIVATE2;
|
|
|
|
extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
|
|
locked_page,
|
|
EXTENT_LOCKED | EXTENT_DELALLOC,
|
|
page_ops);
|
|
if (num_bytes < cur_alloc_size)
|
|
num_bytes = 0;
|
|
else
|
|
num_bytes -= cur_alloc_size;
|
|
alloc_hint = ins.objectid + ins.offset;
|
|
start += cur_alloc_size;
|
|
extent_reserved = false;
|
|
|
|
/*
|
|
* btrfs_reloc_clone_csums() error, since start is increased
|
|
* extent_clear_unlock_delalloc() at out_unlock label won't
|
|
* free metadata of current ordered extent, we're OK to exit.
|
|
*/
|
|
if (ret)
|
|
goto out_unlock;
|
|
}
|
|
out:
|
|
return ret;
|
|
|
|
out_drop_extent_cache:
|
|
btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
|
|
out_reserve:
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
|
|
out_unlock:
|
|
clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
|
|
EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
|
|
page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
|
|
PAGE_END_WRITEBACK;
|
|
/*
|
|
* If we reserved an extent for our delalloc range (or a subrange) and
|
|
* failed to create the respective ordered extent, then it means that
|
|
* when we reserved the extent we decremented the extent's size from
|
|
* the data space_info's bytes_may_use counter and incremented the
|
|
* space_info's bytes_reserved counter by the same amount. We must make
|
|
* sure extent_clear_unlock_delalloc() does not try to decrement again
|
|
* the data space_info's bytes_may_use counter, therefore we do not pass
|
|
* it the flag EXTENT_CLEAR_DATA_RESV.
|
|
*/
|
|
if (extent_reserved) {
|
|
extent_clear_unlock_delalloc(inode, start,
|
|
start + cur_alloc_size - 1,
|
|
locked_page,
|
|
clear_bits,
|
|
page_ops);
|
|
start += cur_alloc_size;
|
|
if (start >= end)
|
|
goto out;
|
|
}
|
|
extent_clear_unlock_delalloc(inode, start, end, locked_page,
|
|
clear_bits | EXTENT_CLEAR_DATA_RESV,
|
|
page_ops);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* work queue call back to started compression on a file and pages
|
|
*/
|
|
static noinline void async_cow_start(struct btrfs_work *work)
|
|
{
|
|
struct async_chunk *async_chunk;
|
|
int compressed_extents;
|
|
|
|
async_chunk = container_of(work, struct async_chunk, work);
|
|
|
|
compressed_extents = compress_file_range(async_chunk);
|
|
if (compressed_extents == 0) {
|
|
btrfs_add_delayed_iput(async_chunk->inode);
|
|
async_chunk->inode = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* work queue call back to submit previously compressed pages
|
|
*/
|
|
static noinline void async_cow_submit(struct btrfs_work *work)
|
|
{
|
|
struct async_chunk *async_chunk = container_of(work, struct async_chunk,
|
|
work);
|
|
struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
|
|
unsigned long nr_pages;
|
|
|
|
nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
|
|
PAGE_SHIFT;
|
|
|
|
/* atomic_sub_return implies a barrier */
|
|
if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
|
|
5 * SZ_1M)
|
|
cond_wake_up_nomb(&fs_info->async_submit_wait);
|
|
|
|
/*
|
|
* ->inode could be NULL if async_chunk_start has failed to compress,
|
|
* in which case we don't have anything to submit, yet we need to
|
|
* always adjust ->async_delalloc_pages as its paired with the init
|
|
* happening in cow_file_range_async
|
|
*/
|
|
if (async_chunk->inode)
|
|
submit_compressed_extents(async_chunk);
|
|
}
|
|
|
|
static noinline void async_cow_free(struct btrfs_work *work)
|
|
{
|
|
struct async_chunk *async_chunk;
|
|
|
|
async_chunk = container_of(work, struct async_chunk, work);
|
|
if (async_chunk->inode)
|
|
btrfs_add_delayed_iput(async_chunk->inode);
|
|
if (async_chunk->blkcg_css)
|
|
css_put(async_chunk->blkcg_css);
|
|
/*
|
|
* Since the pointer to 'pending' is at the beginning of the array of
|
|
* async_chunk's, freeing it ensures the whole array has been freed.
|
|
*/
|
|
if (atomic_dec_and_test(async_chunk->pending))
|
|
kvfree(async_chunk->pending);
|
|
}
|
|
|
|
static int cow_file_range_async(struct btrfs_inode *inode,
|
|
struct writeback_control *wbc,
|
|
struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
|
|
struct async_cow *ctx;
|
|
struct async_chunk *async_chunk;
|
|
unsigned long nr_pages;
|
|
u64 cur_end;
|
|
u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
|
|
int i;
|
|
bool should_compress;
|
|
unsigned nofs_flag;
|
|
const unsigned int write_flags = wbc_to_write_flags(wbc);
|
|
|
|
unlock_extent(&inode->io_tree, start, end);
|
|
|
|
if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
|
|
!btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
|
|
num_chunks = 1;
|
|
should_compress = false;
|
|
} else {
|
|
should_compress = true;
|
|
}
|
|
|
|
nofs_flag = memalloc_nofs_save();
|
|
ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
|
|
if (!ctx) {
|
|
unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
|
|
EXTENT_DO_ACCOUNTING;
|
|
unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
|
|
PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
|
|
PAGE_SET_ERROR;
|
|
|
|
extent_clear_unlock_delalloc(inode, start, end, locked_page,
|
|
clear_bits, page_ops);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
async_chunk = ctx->chunks;
|
|
atomic_set(&ctx->num_chunks, num_chunks);
|
|
|
|
for (i = 0; i < num_chunks; i++) {
|
|
if (should_compress)
|
|
cur_end = min(end, start + SZ_512K - 1);
|
|
else
|
|
cur_end = end;
|
|
|
|
/*
|
|
* igrab is called higher up in the call chain, take only the
|
|
* lightweight reference for the callback lifetime
|
|
*/
|
|
ihold(&inode->vfs_inode);
|
|
async_chunk[i].pending = &ctx->num_chunks;
|
|
async_chunk[i].inode = &inode->vfs_inode;
|
|
async_chunk[i].start = start;
|
|
async_chunk[i].end = cur_end;
|
|
async_chunk[i].write_flags = write_flags;
|
|
INIT_LIST_HEAD(&async_chunk[i].extents);
|
|
|
|
/*
|
|
* The locked_page comes all the way from writepage and its
|
|
* the original page we were actually given. As we spread
|
|
* this large delalloc region across multiple async_chunk
|
|
* structs, only the first struct needs a pointer to locked_page
|
|
*
|
|
* This way we don't need racey decisions about who is supposed
|
|
* to unlock it.
|
|
*/
|
|
if (locked_page) {
|
|
/*
|
|
* Depending on the compressibility, the pages might or
|
|
* might not go through async. We want all of them to
|
|
* be accounted against wbc once. Let's do it here
|
|
* before the paths diverge. wbc accounting is used
|
|
* only for foreign writeback detection and doesn't
|
|
* need full accuracy. Just account the whole thing
|
|
* against the first page.
|
|
*/
|
|
wbc_account_cgroup_owner(wbc, locked_page,
|
|
cur_end - start);
|
|
async_chunk[i].locked_page = locked_page;
|
|
locked_page = NULL;
|
|
} else {
|
|
async_chunk[i].locked_page = NULL;
|
|
}
|
|
|
|
if (blkcg_css != blkcg_root_css) {
|
|
css_get(blkcg_css);
|
|
async_chunk[i].blkcg_css = blkcg_css;
|
|
} else {
|
|
async_chunk[i].blkcg_css = NULL;
|
|
}
|
|
|
|
btrfs_init_work(&async_chunk[i].work, async_cow_start,
|
|
async_cow_submit, async_cow_free);
|
|
|
|
nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
|
|
atomic_add(nr_pages, &fs_info->async_delalloc_pages);
|
|
|
|
btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
|
|
|
|
*nr_written += nr_pages;
|
|
start = cur_end + 1;
|
|
}
|
|
*page_started = 1;
|
|
return 0;
|
|
}
|
|
|
|
static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
|
|
u64 bytenr, u64 num_bytes)
|
|
{
|
|
int ret;
|
|
struct btrfs_ordered_sum *sums;
|
|
LIST_HEAD(list);
|
|
|
|
ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
|
|
bytenr + num_bytes - 1, &list, 0);
|
|
if (ret == 0 && list_empty(&list))
|
|
return 0;
|
|
|
|
while (!list_empty(&list)) {
|
|
sums = list_entry(list.next, struct btrfs_ordered_sum, list);
|
|
list_del(&sums->list);
|
|
kfree(sums);
|
|
}
|
|
if (ret < 0)
|
|
return ret;
|
|
return 1;
|
|
}
|
|
|
|
static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
|
|
const u64 start, const u64 end,
|
|
int *page_started, unsigned long *nr_written)
|
|
{
|
|
const bool is_space_ino = btrfs_is_free_space_inode(inode);
|
|
const bool is_reloc_ino = (inode->root->root_key.objectid ==
|
|
BTRFS_DATA_RELOC_TREE_OBJECTID);
|
|
const u64 range_bytes = end + 1 - start;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
u64 range_start = start;
|
|
u64 count;
|
|
|
|
/*
|
|
* If EXTENT_NORESERVE is set it means that when the buffered write was
|
|
* made we had not enough available data space and therefore we did not
|
|
* reserve data space for it, since we though we could do NOCOW for the
|
|
* respective file range (either there is prealloc extent or the inode
|
|
* has the NOCOW bit set).
|
|
*
|
|
* However when we need to fallback to COW mode (because for example the
|
|
* block group for the corresponding extent was turned to RO mode by a
|
|
* scrub or relocation) we need to do the following:
|
|
*
|
|
* 1) We increment the bytes_may_use counter of the data space info.
|
|
* If COW succeeds, it allocates a new data extent and after doing
|
|
* that it decrements the space info's bytes_may_use counter and
|
|
* increments its bytes_reserved counter by the same amount (we do
|
|
* this at btrfs_add_reserved_bytes()). So we need to increment the
|
|
* bytes_may_use counter to compensate (when space is reserved at
|
|
* buffered write time, the bytes_may_use counter is incremented);
|
|
*
|
|
* 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
|
|
* that if the COW path fails for any reason, it decrements (through
|
|
* extent_clear_unlock_delalloc()) the bytes_may_use counter of the
|
|
* data space info, which we incremented in the step above.
|
|
*
|
|
* If we need to fallback to cow and the inode corresponds to a free
|
|
* space cache inode or an inode of the data relocation tree, we must
|
|
* also increment bytes_may_use of the data space_info for the same
|
|
* reason. Space caches and relocated data extents always get a prealloc
|
|
* extent for them, however scrub or balance may have set the block
|
|
* group that contains that extent to RO mode and therefore force COW
|
|
* when starting writeback.
|
|
*/
|
|
count = count_range_bits(io_tree, &range_start, end, range_bytes,
|
|
EXTENT_NORESERVE, 0);
|
|
if (count > 0 || is_space_ino || is_reloc_ino) {
|
|
u64 bytes = count;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_space_info *sinfo = fs_info->data_sinfo;
|
|
|
|
if (is_space_ino || is_reloc_ino)
|
|
bytes = range_bytes;
|
|
|
|
spin_lock(&sinfo->lock);
|
|
btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
|
|
spin_unlock(&sinfo->lock);
|
|
|
|
if (count > 0)
|
|
clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
|
|
0, 0, NULL);
|
|
}
|
|
|
|
return cow_file_range(inode, locked_page, start, end, page_started,
|
|
nr_written, 1);
|
|
}
|
|
|
|
/*
|
|
* when nowcow writeback call back. This checks for snapshots or COW copies
|
|
* of the extents that exist in the file, and COWs the file as required.
|
|
*
|
|
* If no cow copies or snapshots exist, we write directly to the existing
|
|
* blocks on disk
|
|
*/
|
|
static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
|
|
struct page *locked_page,
|
|
const u64 start, const u64 end,
|
|
int *page_started, int force,
|
|
unsigned long *nr_written)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_path *path;
|
|
u64 cow_start = (u64)-1;
|
|
u64 cur_offset = start;
|
|
int ret;
|
|
bool check_prev = true;
|
|
const bool freespace_inode = btrfs_is_free_space_inode(inode);
|
|
u64 ino = btrfs_ino(inode);
|
|
bool nocow = false;
|
|
u64 disk_bytenr = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
extent_clear_unlock_delalloc(inode, start, end, locked_page,
|
|
EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, PAGE_UNLOCK |
|
|
PAGE_CLEAR_DIRTY |
|
|
PAGE_SET_WRITEBACK |
|
|
PAGE_END_WRITEBACK);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
while (1) {
|
|
struct btrfs_key found_key;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct extent_buffer *leaf;
|
|
u64 extent_end;
|
|
u64 extent_offset;
|
|
u64 num_bytes = 0;
|
|
u64 disk_num_bytes;
|
|
u64 ram_bytes;
|
|
int extent_type;
|
|
|
|
nocow = false;
|
|
|
|
ret = btrfs_lookup_file_extent(NULL, root, path, ino,
|
|
cur_offset, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/*
|
|
* If there is no extent for our range when doing the initial
|
|
* search, then go back to the previous slot as it will be the
|
|
* one containing the search offset
|
|
*/
|
|
if (ret > 0 && path->slots[0] > 0 && check_prev) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key,
|
|
path->slots[0] - 1);
|
|
if (found_key.objectid == ino &&
|
|
found_key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path->slots[0]--;
|
|
}
|
|
check_prev = false;
|
|
next_slot:
|
|
/* Go to next leaf if we have exhausted the current one */
|
|
leaf = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
if (cow_start != (u64)-1)
|
|
cur_offset = cow_start;
|
|
goto error;
|
|
}
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
/* Didn't find anything for our INO */
|
|
if (found_key.objectid > ino)
|
|
break;
|
|
/*
|
|
* Keep searching until we find an EXTENT_ITEM or there are no
|
|
* more extents for this inode
|
|
*/
|
|
if (WARN_ON_ONCE(found_key.objectid < ino) ||
|
|
found_key.type < BTRFS_EXTENT_DATA_KEY) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
/* Found key is not EXTENT_DATA_KEY or starts after req range */
|
|
if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
|
|
found_key.offset > end)
|
|
break;
|
|
|
|
/*
|
|
* If the found extent starts after requested offset, then
|
|
* adjust extent_end to be right before this extent begins
|
|
*/
|
|
if (found_key.offset > cur_offset) {
|
|
extent_end = found_key.offset;
|
|
extent_type = 0;
|
|
goto out_check;
|
|
}
|
|
|
|
/*
|
|
* Found extent which begins before our range and potentially
|
|
* intersect it
|
|
*/
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
|
|
ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG ||
|
|
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
extent_offset = btrfs_file_extent_offset(leaf, fi);
|
|
extent_end = found_key.offset +
|
|
btrfs_file_extent_num_bytes(leaf, fi);
|
|
disk_num_bytes =
|
|
btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
/*
|
|
* If the extent we got ends before our current offset,
|
|
* skip to the next extent.
|
|
*/
|
|
if (extent_end <= cur_offset) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
/* Skip holes */
|
|
if (disk_bytenr == 0)
|
|
goto out_check;
|
|
/* Skip compressed/encrypted/encoded extents */
|
|
if (btrfs_file_extent_compression(leaf, fi) ||
|
|
btrfs_file_extent_encryption(leaf, fi) ||
|
|
btrfs_file_extent_other_encoding(leaf, fi))
|
|
goto out_check;
|
|
/*
|
|
* If extent is created before the last volume's snapshot
|
|
* this implies the extent is shared, hence we can't do
|
|
* nocow. This is the same check as in
|
|
* btrfs_cross_ref_exist but without calling
|
|
* btrfs_search_slot.
|
|
*/
|
|
if (!freespace_inode &&
|
|
btrfs_file_extent_generation(leaf, fi) <=
|
|
btrfs_root_last_snapshot(&root->root_item))
|
|
goto out_check;
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
|
|
goto out_check;
|
|
/* If extent is RO, we must COW it */
|
|
if (btrfs_extent_readonly(fs_info, disk_bytenr))
|
|
goto out_check;
|
|
ret = btrfs_cross_ref_exist(root, ino,
|
|
found_key.offset -
|
|
extent_offset, disk_bytenr, false);
|
|
if (ret) {
|
|
/*
|
|
* ret could be -EIO if the above fails to read
|
|
* metadata.
|
|
*/
|
|
if (ret < 0) {
|
|
if (cow_start != (u64)-1)
|
|
cur_offset = cow_start;
|
|
goto error;
|
|
}
|
|
|
|
WARN_ON_ONCE(freespace_inode);
|
|
goto out_check;
|
|
}
|
|
disk_bytenr += extent_offset;
|
|
disk_bytenr += cur_offset - found_key.offset;
|
|
num_bytes = min(end + 1, extent_end) - cur_offset;
|
|
/*
|
|
* If there are pending snapshots for this root, we
|
|
* fall into common COW way
|
|
*/
|
|
if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
|
|
goto out_check;
|
|
/*
|
|
* force cow if csum exists in the range.
|
|
* this ensure that csum for a given extent are
|
|
* either valid or do not exist.
|
|
*/
|
|
ret = csum_exist_in_range(fs_info, disk_bytenr,
|
|
num_bytes);
|
|
if (ret) {
|
|
/*
|
|
* ret could be -EIO if the above fails to read
|
|
* metadata.
|
|
*/
|
|
if (ret < 0) {
|
|
if (cow_start != (u64)-1)
|
|
cur_offset = cow_start;
|
|
goto error;
|
|
}
|
|
WARN_ON_ONCE(freespace_inode);
|
|
goto out_check;
|
|
}
|
|
if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
|
|
goto out_check;
|
|
nocow = true;
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
extent_end = found_key.offset + ram_bytes;
|
|
extent_end = ALIGN(extent_end, fs_info->sectorsize);
|
|
/* Skip extents outside of our requested range */
|
|
if (extent_end <= start) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
} else {
|
|
/* If this triggers then we have a memory corruption */
|
|
BUG();
|
|
}
|
|
out_check:
|
|
/*
|
|
* If nocow is false then record the beginning of the range
|
|
* that needs to be COWed
|
|
*/
|
|
if (!nocow) {
|
|
if (cow_start == (u64)-1)
|
|
cow_start = cur_offset;
|
|
cur_offset = extent_end;
|
|
if (cur_offset > end)
|
|
break;
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* COW range from cow_start to found_key.offset - 1. As the key
|
|
* will contain the beginning of the first extent that can be
|
|
* NOCOW, following one which needs to be COW'ed
|
|
*/
|
|
if (cow_start != (u64)-1) {
|
|
ret = fallback_to_cow(inode, locked_page,
|
|
cow_start, found_key.offset - 1,
|
|
page_started, nr_written);
|
|
if (ret)
|
|
goto error;
|
|
cow_start = (u64)-1;
|
|
}
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
u64 orig_start = found_key.offset - extent_offset;
|
|
struct extent_map *em;
|
|
|
|
em = create_io_em(inode, cur_offset, num_bytes,
|
|
orig_start,
|
|
disk_bytenr, /* block_start */
|
|
num_bytes, /* block_len */
|
|
disk_num_bytes, /* orig_block_len */
|
|
ram_bytes, BTRFS_COMPRESS_NONE,
|
|
BTRFS_ORDERED_PREALLOC);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto error;
|
|
}
|
|
free_extent_map(em);
|
|
ret = btrfs_add_ordered_extent(inode, cur_offset,
|
|
disk_bytenr, num_bytes,
|
|
num_bytes,
|
|
BTRFS_ORDERED_PREALLOC);
|
|
if (ret) {
|
|
btrfs_drop_extent_cache(inode, cur_offset,
|
|
cur_offset + num_bytes - 1,
|
|
0);
|
|
goto error;
|
|
}
|
|
} else {
|
|
ret = btrfs_add_ordered_extent(inode, cur_offset,
|
|
disk_bytenr, num_bytes,
|
|
num_bytes,
|
|
BTRFS_ORDERED_NOCOW);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
if (nocow)
|
|
btrfs_dec_nocow_writers(fs_info, disk_bytenr);
|
|
nocow = false;
|
|
|
|
if (root->root_key.objectid ==
|
|
BTRFS_DATA_RELOC_TREE_OBJECTID)
|
|
/*
|
|
* Error handled later, as we must prevent
|
|
* extent_clear_unlock_delalloc() in error handler
|
|
* from freeing metadata of created ordered extent.
|
|
*/
|
|
ret = btrfs_reloc_clone_csums(inode, cur_offset,
|
|
num_bytes);
|
|
|
|
extent_clear_unlock_delalloc(inode, cur_offset,
|
|
cur_offset + num_bytes - 1,
|
|
locked_page, EXTENT_LOCKED |
|
|
EXTENT_DELALLOC |
|
|
EXTENT_CLEAR_DATA_RESV,
|
|
PAGE_UNLOCK | PAGE_SET_PRIVATE2);
|
|
|
|
cur_offset = extent_end;
|
|
|
|
/*
|
|
* btrfs_reloc_clone_csums() error, now we're OK to call error
|
|
* handler, as metadata for created ordered extent will only
|
|
* be freed by btrfs_finish_ordered_io().
|
|
*/
|
|
if (ret)
|
|
goto error;
|
|
if (cur_offset > end)
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
if (cur_offset <= end && cow_start == (u64)-1)
|
|
cow_start = cur_offset;
|
|
|
|
if (cow_start != (u64)-1) {
|
|
cur_offset = end;
|
|
ret = fallback_to_cow(inode, locked_page, cow_start, end,
|
|
page_started, nr_written);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
error:
|
|
if (nocow)
|
|
btrfs_dec_nocow_writers(fs_info, disk_bytenr);
|
|
|
|
if (ret && cur_offset < end)
|
|
extent_clear_unlock_delalloc(inode, cur_offset, end,
|
|
locked_page, EXTENT_LOCKED |
|
|
EXTENT_DELALLOC | EXTENT_DEFRAG |
|
|
EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
|
|
PAGE_CLEAR_DIRTY |
|
|
PAGE_SET_WRITEBACK |
|
|
PAGE_END_WRITEBACK);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
|
|
{
|
|
|
|
if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
|
|
!(inode->flags & BTRFS_INODE_PREALLOC))
|
|
return 0;
|
|
|
|
/*
|
|
* @defrag_bytes is a hint value, no spinlock held here,
|
|
* if is not zero, it means the file is defragging.
|
|
* Force cow if given extent needs to be defragged.
|
|
*/
|
|
if (inode->defrag_bytes &&
|
|
test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function to process delayed allocation (create CoW) for ranges which are
|
|
* being touched for the first time.
|
|
*/
|
|
int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
|
|
u64 start, u64 end, int *page_started, unsigned long *nr_written,
|
|
struct writeback_control *wbc)
|
|
{
|
|
int ret;
|
|
int force_cow = need_force_cow(inode, start, end);
|
|
|
|
if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
|
|
ret = run_delalloc_nocow(inode, locked_page, start, end,
|
|
page_started, 1, nr_written);
|
|
} else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
|
|
ret = run_delalloc_nocow(inode, locked_page, start, end,
|
|
page_started, 0, nr_written);
|
|
} else if (!inode_can_compress(inode) ||
|
|
!inode_need_compress(inode, start, end)) {
|
|
ret = cow_file_range(inode, locked_page, start, end,
|
|
page_started, nr_written, 1);
|
|
} else {
|
|
set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
|
|
ret = cow_file_range_async(inode, wbc, locked_page, start, end,
|
|
page_started, nr_written);
|
|
}
|
|
if (ret)
|
|
btrfs_cleanup_ordered_extents(inode, locked_page, start,
|
|
end - start + 1);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_split_delalloc_extent(struct inode *inode,
|
|
struct extent_state *orig, u64 split)
|
|
{
|
|
u64 size;
|
|
|
|
/* not delalloc, ignore it */
|
|
if (!(orig->state & EXTENT_DELALLOC))
|
|
return;
|
|
|
|
size = orig->end - orig->start + 1;
|
|
if (size > BTRFS_MAX_EXTENT_SIZE) {
|
|
u32 num_extents;
|
|
u64 new_size;
|
|
|
|
/*
|
|
* See the explanation in btrfs_merge_delalloc_extent, the same
|
|
* applies here, just in reverse.
|
|
*/
|
|
new_size = orig->end - split + 1;
|
|
num_extents = count_max_extents(new_size);
|
|
new_size = split - orig->start;
|
|
num_extents += count_max_extents(new_size);
|
|
if (count_max_extents(size) >= num_extents)
|
|
return;
|
|
}
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
|
|
/*
|
|
* Handle merged delayed allocation extents so we can keep track of new extents
|
|
* that are just merged onto old extents, such as when we are doing sequential
|
|
* writes, so we can properly account for the metadata space we'll need.
|
|
*/
|
|
void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
|
|
struct extent_state *other)
|
|
{
|
|
u64 new_size, old_size;
|
|
u32 num_extents;
|
|
|
|
/* not delalloc, ignore it */
|
|
if (!(other->state & EXTENT_DELALLOC))
|
|
return;
|
|
|
|
if (new->start > other->start)
|
|
new_size = new->end - other->start + 1;
|
|
else
|
|
new_size = other->end - new->start + 1;
|
|
|
|
/* we're not bigger than the max, unreserve the space and go */
|
|
if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We have to add up either side to figure out how many extents were
|
|
* accounted for before we merged into one big extent. If the number of
|
|
* extents we accounted for is <= the amount we need for the new range
|
|
* then we can return, otherwise drop. Think of it like this
|
|
*
|
|
* [ 4k][MAX_SIZE]
|
|
*
|
|
* So we've grown the extent by a MAX_SIZE extent, this would mean we
|
|
* need 2 outstanding extents, on one side we have 1 and the other side
|
|
* we have 1 so they are == and we can return. But in this case
|
|
*
|
|
* [MAX_SIZE+4k][MAX_SIZE+4k]
|
|
*
|
|
* Each range on their own accounts for 2 extents, but merged together
|
|
* they are only 3 extents worth of accounting, so we need to drop in
|
|
* this case.
|
|
*/
|
|
old_size = other->end - other->start + 1;
|
|
num_extents = count_max_extents(old_size);
|
|
old_size = new->end - new->start + 1;
|
|
num_extents += count_max_extents(old_size);
|
|
if (count_max_extents(new_size) >= num_extents)
|
|
return;
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
|
|
static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
|
|
spin_lock(&root->delalloc_lock);
|
|
if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
|
|
list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
|
|
&root->delalloc_inodes);
|
|
set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
root->nr_delalloc_inodes++;
|
|
if (root->nr_delalloc_inodes == 1) {
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
BUG_ON(!list_empty(&root->delalloc_root));
|
|
list_add_tail(&root->delalloc_root,
|
|
&fs_info->delalloc_roots);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
}
|
|
}
|
|
spin_unlock(&root->delalloc_lock);
|
|
}
|
|
|
|
|
|
void __btrfs_del_delalloc_inode(struct btrfs_root *root,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
if (!list_empty(&inode->delalloc_inodes)) {
|
|
list_del_init(&inode->delalloc_inodes);
|
|
clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
|
|
&inode->runtime_flags);
|
|
root->nr_delalloc_inodes--;
|
|
if (!root->nr_delalloc_inodes) {
|
|
ASSERT(list_empty(&root->delalloc_inodes));
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
BUG_ON(list_empty(&root->delalloc_root));
|
|
list_del_init(&root->delalloc_root);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void btrfs_del_delalloc_inode(struct btrfs_root *root,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
spin_lock(&root->delalloc_lock);
|
|
__btrfs_del_delalloc_inode(root, inode);
|
|
spin_unlock(&root->delalloc_lock);
|
|
}
|
|
|
|
/*
|
|
* Properly track delayed allocation bytes in the inode and to maintain the
|
|
* list of inodes that have pending delalloc work to be done.
|
|
*/
|
|
void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
|
|
unsigned *bits)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
|
|
if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
|
|
WARN_ON(1);
|
|
/*
|
|
* set_bit and clear bit hooks normally require _irqsave/restore
|
|
* but in this case, we are only testing for the DELALLOC
|
|
* bit, which is only set or cleared with irqs on
|
|
*/
|
|
if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
u64 len = state->end + 1 - state->start;
|
|
u32 num_extents = count_max_extents(len);
|
|
bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
|
|
/* For sanity tests */
|
|
if (btrfs_is_testing(fs_info))
|
|
return;
|
|
|
|
percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
|
|
fs_info->delalloc_batch);
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
BTRFS_I(inode)->delalloc_bytes += len;
|
|
if (*bits & EXTENT_DEFRAG)
|
|
BTRFS_I(inode)->defrag_bytes += len;
|
|
if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
btrfs_add_delalloc_inodes(root, inode);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
|
|
if (!(state->state & EXTENT_DELALLOC_NEW) &&
|
|
(*bits & EXTENT_DELALLOC_NEW)) {
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
|
|
state->start;
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Once a range is no longer delalloc this function ensures that proper
|
|
* accounting happens.
|
|
*/
|
|
void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
|
|
struct extent_state *state, unsigned *bits)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(vfs_inode);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
|
|
u64 len = state->end + 1 - state->start;
|
|
u32 num_extents = count_max_extents(len);
|
|
|
|
if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
|
|
spin_lock(&inode->lock);
|
|
inode->defrag_bytes -= len;
|
|
spin_unlock(&inode->lock);
|
|
}
|
|
|
|
/*
|
|
* set_bit and clear bit hooks normally require _irqsave/restore
|
|
* but in this case, we are only testing for the DELALLOC
|
|
* bit, which is only set or cleared with irqs on
|
|
*/
|
|
if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
|
|
struct btrfs_root *root = inode->root;
|
|
bool do_list = !btrfs_is_free_space_inode(inode);
|
|
|
|
spin_lock(&inode->lock);
|
|
btrfs_mod_outstanding_extents(inode, -num_extents);
|
|
spin_unlock(&inode->lock);
|
|
|
|
/*
|
|
* We don't reserve metadata space for space cache inodes so we
|
|
* don't need to call delalloc_release_metadata if there is an
|
|
* error.
|
|
*/
|
|
if (*bits & EXTENT_CLEAR_META_RESV &&
|
|
root != fs_info->tree_root)
|
|
btrfs_delalloc_release_metadata(inode, len, false);
|
|
|
|
/* For sanity tests. */
|
|
if (btrfs_is_testing(fs_info))
|
|
return;
|
|
|
|
if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
|
|
do_list && !(state->state & EXTENT_NORESERVE) &&
|
|
(*bits & EXTENT_CLEAR_DATA_RESV))
|
|
btrfs_free_reserved_data_space_noquota(fs_info, len);
|
|
|
|
percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
|
|
fs_info->delalloc_batch);
|
|
spin_lock(&inode->lock);
|
|
inode->delalloc_bytes -= len;
|
|
if (do_list && inode->delalloc_bytes == 0 &&
|
|
test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
|
|
&inode->runtime_flags))
|
|
btrfs_del_delalloc_inode(root, inode);
|
|
spin_unlock(&inode->lock);
|
|
}
|
|
|
|
if ((state->state & EXTENT_DELALLOC_NEW) &&
|
|
(*bits & EXTENT_DELALLOC_NEW)) {
|
|
spin_lock(&inode->lock);
|
|
ASSERT(inode->new_delalloc_bytes >= len);
|
|
inode->new_delalloc_bytes -= len;
|
|
spin_unlock(&inode->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
|
|
* in a chunk's stripe. This function ensures that bios do not span a
|
|
* stripe/chunk
|
|
*
|
|
* @page - The page we are about to add to the bio
|
|
* @size - size we want to add to the bio
|
|
* @bio - bio we want to ensure is smaller than a stripe
|
|
* @bio_flags - flags of the bio
|
|
*
|
|
* return 1 if page cannot be added to the bio
|
|
* return 0 if page can be added to the bio
|
|
* return error otherwise
|
|
*/
|
|
int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
|
|
unsigned long bio_flags)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
u64 logical = (u64)bio->bi_iter.bi_sector << 9;
|
|
u64 length = 0;
|
|
u64 map_length;
|
|
int ret;
|
|
struct btrfs_io_geometry geom;
|
|
|
|
if (bio_flags & EXTENT_BIO_COMPRESSED)
|
|
return 0;
|
|
|
|
length = bio->bi_iter.bi_size;
|
|
map_length = length;
|
|
ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
|
|
&geom);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (geom.len < length + size)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* in order to insert checksums into the metadata in large chunks,
|
|
* we wait until bio submission time. All the pages in the bio are
|
|
* checksummed and sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the cums attached on the ordered extent record
|
|
* are inserted into the btree
|
|
*/
|
|
static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
|
|
u64 bio_offset)
|
|
{
|
|
struct inode *inode = private_data;
|
|
|
|
return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* extent_io.c submission hook. This does the right thing for csum calculation
|
|
* on write, or reading the csums from the tree before a read.
|
|
*
|
|
* Rules about async/sync submit,
|
|
* a) read: sync submit
|
|
*
|
|
* b) write without checksum: sync submit
|
|
*
|
|
* c) write with checksum:
|
|
* c-1) if bio is issued by fsync: sync submit
|
|
* (sync_writers != 0)
|
|
*
|
|
* c-2) if root is reloc root: sync submit
|
|
* (only in case of buffered IO)
|
|
*
|
|
* c-3) otherwise: async submit
|
|
*/
|
|
static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
|
|
int mirror_num,
|
|
unsigned long bio_flags)
|
|
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
|
|
blk_status_t ret = 0;
|
|
int skip_sum;
|
|
int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
|
|
|
|
skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
|
|
|
|
if (btrfs_is_free_space_inode(BTRFS_I(inode)))
|
|
metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
|
|
|
|
if (bio_op(bio) != REQ_OP_WRITE) {
|
|
ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (bio_flags & EXTENT_BIO_COMPRESSED) {
|
|
ret = btrfs_submit_compressed_read(inode, bio,
|
|
mirror_num,
|
|
bio_flags);
|
|
goto out;
|
|
} else if (!skip_sum) {
|
|
ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
goto mapit;
|
|
} else if (async && !skip_sum) {
|
|
/* csum items have already been cloned */
|
|
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
|
|
goto mapit;
|
|
/* we're doing a write, do the async checksumming */
|
|
ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
|
|
0, inode, btrfs_submit_bio_start);
|
|
goto out;
|
|
} else if (!skip_sum) {
|
|
ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
mapit:
|
|
ret = btrfs_map_bio(fs_info, bio, mirror_num);
|
|
|
|
out:
|
|
if (ret) {
|
|
bio->bi_status = ret;
|
|
bio_endio(bio);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a list of ordered sums record them in the inode. This happens
|
|
* at IO completion time based on sums calculated at bio submission time.
|
|
*/
|
|
static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, struct list_head *list)
|
|
{
|
|
struct btrfs_ordered_sum *sum;
|
|
int ret;
|
|
|
|
list_for_each_entry(sum, list, list) {
|
|
trans->adding_csums = true;
|
|
ret = btrfs_csum_file_blocks(trans,
|
|
BTRFS_I(inode)->root->fs_info->csum_root, sum);
|
|
trans->adding_csums = false;
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
|
|
unsigned int extra_bits,
|
|
struct extent_state **cached_state)
|
|
{
|
|
WARN_ON(PAGE_ALIGNED(end));
|
|
return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
|
|
cached_state);
|
|
}
|
|
|
|
/* see btrfs_writepage_start_hook for details on why this is required */
|
|
struct btrfs_writepage_fixup {
|
|
struct page *page;
|
|
struct inode *inode;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_writepage_fixup *fixup;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
struct page *page;
|
|
struct btrfs_inode *inode;
|
|
u64 page_start;
|
|
u64 page_end;
|
|
int ret = 0;
|
|
bool free_delalloc_space = true;
|
|
|
|
fixup = container_of(work, struct btrfs_writepage_fixup, work);
|
|
page = fixup->page;
|
|
inode = BTRFS_I(fixup->inode);
|
|
page_start = page_offset(page);
|
|
page_end = page_offset(page) + PAGE_SIZE - 1;
|
|
|
|
/*
|
|
* This is similar to page_mkwrite, we need to reserve the space before
|
|
* we take the page lock.
|
|
*/
|
|
ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
|
|
PAGE_SIZE);
|
|
again:
|
|
lock_page(page);
|
|
|
|
/*
|
|
* Before we queued this fixup, we took a reference on the page.
|
|
* page->mapping may go NULL, but it shouldn't be moved to a different
|
|
* address space.
|
|
*/
|
|
if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
|
|
/*
|
|
* Unfortunately this is a little tricky, either
|
|
*
|
|
* 1) We got here and our page had already been dealt with and
|
|
* we reserved our space, thus ret == 0, so we need to just
|
|
* drop our space reservation and bail. This can happen the
|
|
* first time we come into the fixup worker, or could happen
|
|
* while waiting for the ordered extent.
|
|
* 2) Our page was already dealt with, but we happened to get an
|
|
* ENOSPC above from the btrfs_delalloc_reserve_space. In
|
|
* this case we obviously don't have anything to release, but
|
|
* because the page was already dealt with we don't want to
|
|
* mark the page with an error, so make sure we're resetting
|
|
* ret to 0. This is why we have this check _before_ the ret
|
|
* check, because we do not want to have a surprise ENOSPC
|
|
* when the page was already properly dealt with.
|
|
*/
|
|
if (!ret) {
|
|
btrfs_delalloc_release_extents(inode, PAGE_SIZE);
|
|
btrfs_delalloc_release_space(inode, data_reserved,
|
|
page_start, PAGE_SIZE,
|
|
true);
|
|
}
|
|
ret = 0;
|
|
goto out_page;
|
|
}
|
|
|
|
/*
|
|
* We can't mess with the page state unless it is locked, so now that
|
|
* it is locked bail if we failed to make our space reservation.
|
|
*/
|
|
if (ret)
|
|
goto out_page;
|
|
|
|
lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
|
|
|
|
/* already ordered? We're done */
|
|
if (PagePrivate2(page))
|
|
goto out_reserved;
|
|
|
|
ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
|
|
if (ordered) {
|
|
unlock_extent_cached(&inode->io_tree, page_start, page_end,
|
|
&cached_state);
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
|
|
ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
|
|
&cached_state);
|
|
if (ret)
|
|
goto out_reserved;
|
|
|
|
/*
|
|
* Everything went as planned, we're now the owner of a dirty page with
|
|
* delayed allocation bits set and space reserved for our COW
|
|
* destination.
|
|
*
|
|
* The page was dirty when we started, nothing should have cleaned it.
|
|
*/
|
|
BUG_ON(!PageDirty(page));
|
|
free_delalloc_space = false;
|
|
out_reserved:
|
|
btrfs_delalloc_release_extents(inode, PAGE_SIZE);
|
|
if (free_delalloc_space)
|
|
btrfs_delalloc_release_space(inode, data_reserved, page_start,
|
|
PAGE_SIZE, true);
|
|
unlock_extent_cached(&inode->io_tree, page_start, page_end,
|
|
&cached_state);
|
|
out_page:
|
|
if (ret) {
|
|
/*
|
|
* We hit ENOSPC or other errors. Update the mapping and page
|
|
* to reflect the errors and clean the page.
|
|
*/
|
|
mapping_set_error(page->mapping, ret);
|
|
end_extent_writepage(page, ret, page_start, page_end);
|
|
clear_page_dirty_for_io(page);
|
|
SetPageError(page);
|
|
}
|
|
ClearPageChecked(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
kfree(fixup);
|
|
extent_changeset_free(data_reserved);
|
|
/*
|
|
* As a precaution, do a delayed iput in case it would be the last iput
|
|
* that could need flushing space. Recursing back to fixup worker would
|
|
* deadlock.
|
|
*/
|
|
btrfs_add_delayed_iput(&inode->vfs_inode);
|
|
}
|
|
|
|
/*
|
|
* There are a few paths in the higher layers of the kernel that directly
|
|
* set the page dirty bit without asking the filesystem if it is a
|
|
* good idea. This causes problems because we want to make sure COW
|
|
* properly happens and the data=ordered rules are followed.
|
|
*
|
|
* In our case any range that doesn't have the ORDERED bit set
|
|
* hasn't been properly setup for IO. We kick off an async process
|
|
* to fix it up. The async helper will wait for ordered extents, set
|
|
* the delalloc bit and make it safe to write the page.
|
|
*/
|
|
int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_writepage_fixup *fixup;
|
|
|
|
/* this page is properly in the ordered list */
|
|
if (TestClearPagePrivate2(page))
|
|
return 0;
|
|
|
|
/*
|
|
* PageChecked is set below when we create a fixup worker for this page,
|
|
* don't try to create another one if we're already PageChecked()
|
|
*
|
|
* The extent_io writepage code will redirty the page if we send back
|
|
* EAGAIN.
|
|
*/
|
|
if (PageChecked(page))
|
|
return -EAGAIN;
|
|
|
|
fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
|
|
if (!fixup)
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* We are already holding a reference to this inode from
|
|
* write_cache_pages. We need to hold it because the space reservation
|
|
* takes place outside of the page lock, and we can't trust
|
|
* page->mapping outside of the page lock.
|
|
*/
|
|
ihold(inode);
|
|
SetPageChecked(page);
|
|
get_page(page);
|
|
btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
|
|
fixup->page = page;
|
|
fixup->inode = inode;
|
|
btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *inode, u64 file_pos,
|
|
struct btrfs_file_extent_item *stack_fi,
|
|
u64 qgroup_reserved)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key ins;
|
|
u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
|
|
u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
|
|
u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
|
|
u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
|
|
int extent_inserted = 0;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* we may be replacing one extent in the tree with another.
|
|
* The new extent is pinned in the extent map, and we don't want
|
|
* to drop it from the cache until it is completely in the btree.
|
|
*
|
|
* So, tell btrfs_drop_extents to leave this extent in the cache.
|
|
* the caller is expected to unpin it and allow it to be merged
|
|
* with the others.
|
|
*/
|
|
ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
|
|
file_pos + num_bytes, NULL, 0,
|
|
1, sizeof(*stack_fi), &extent_inserted);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!extent_inserted) {
|
|
ins.objectid = btrfs_ino(inode);
|
|
ins.offset = file_pos;
|
|
ins.type = BTRFS_EXTENT_DATA_KEY;
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &ins,
|
|
sizeof(*stack_fi));
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
leaf = path->nodes[0];
|
|
btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
|
|
write_extent_buffer(leaf, stack_fi,
|
|
btrfs_item_ptr_offset(leaf, path->slots[0]),
|
|
sizeof(struct btrfs_file_extent_item));
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
inode_add_bytes(&inode->vfs_inode, num_bytes);
|
|
|
|
ins.objectid = disk_bytenr;
|
|
ins.offset = disk_num_bytes;
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
|
|
file_pos, qgroup_reserved, &ins);
|
|
out:
|
|
btrfs_free_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 len)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, start);
|
|
ASSERT(cache);
|
|
|
|
spin_lock(&cache->lock);
|
|
cache->delalloc_bytes -= len;
|
|
spin_unlock(&cache->lock);
|
|
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
|
|
struct inode *inode,
|
|
struct btrfs_ordered_extent *oe)
|
|
{
|
|
struct btrfs_file_extent_item stack_fi;
|
|
u64 logical_len;
|
|
|
|
memset(&stack_fi, 0, sizeof(stack_fi));
|
|
btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
|
|
btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
|
|
btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
|
|
oe->disk_num_bytes);
|
|
if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
|
|
logical_len = oe->truncated_len;
|
|
else
|
|
logical_len = oe->num_bytes;
|
|
btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
|
|
btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
|
|
btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
|
|
/* Encryption and other encoding is reserved and all 0 */
|
|
|
|
return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
|
|
&stack_fi, oe->qgroup_rsv);
|
|
}
|
|
|
|
/*
|
|
* As ordered data IO finishes, this gets called so we can finish
|
|
* an ordered extent if the range of bytes in the file it covers are
|
|
* fully written.
|
|
*/
|
|
static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
|
|
{
|
|
struct inode *inode = ordered_extent->inode;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start, end;
|
|
int compress_type = 0;
|
|
int ret = 0;
|
|
u64 logical_len = ordered_extent->num_bytes;
|
|
bool freespace_inode;
|
|
bool truncated = false;
|
|
bool range_locked = false;
|
|
bool clear_new_delalloc_bytes = false;
|
|
bool clear_reserved_extent = true;
|
|
unsigned int clear_bits;
|
|
|
|
start = ordered_extent->file_offset;
|
|
end = start + ordered_extent->num_bytes - 1;
|
|
|
|
if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
|
|
!test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
|
|
!test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
|
|
clear_new_delalloc_bytes = true;
|
|
|
|
freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
|
|
|
|
if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
|
|
|
|
if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
|
|
truncated = true;
|
|
logical_len = ordered_extent->truncated_len;
|
|
/* Truncated the entire extent, don't bother adding */
|
|
if (!logical_len)
|
|
goto out;
|
|
}
|
|
|
|
if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
|
|
BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
|
|
|
|
btrfs_inode_safe_disk_i_size_write(inode, 0);
|
|
if (freespace_inode)
|
|
trans = btrfs_join_transaction_spacecache(root);
|
|
else
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto out;
|
|
}
|
|
trans->block_rsv = &BTRFS_I(inode)->block_rsv;
|
|
ret = btrfs_update_inode_fallback(trans, root, inode);
|
|
if (ret) /* -ENOMEM or corruption */
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
range_locked = true;
|
|
lock_extent_bits(io_tree, start, end, &cached_state);
|
|
|
|
if (freespace_inode)
|
|
trans = btrfs_join_transaction_spacecache(root);
|
|
else
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto out;
|
|
}
|
|
|
|
trans->block_rsv = &BTRFS_I(inode)->block_rsv;
|
|
|
|
if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
|
|
compress_type = ordered_extent->compress_type;
|
|
if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
|
|
BUG_ON(compress_type);
|
|
ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
|
|
ordered_extent->file_offset,
|
|
ordered_extent->file_offset +
|
|
logical_len);
|
|
} else {
|
|
BUG_ON(root == fs_info->tree_root);
|
|
ret = insert_ordered_extent_file_extent(trans, inode,
|
|
ordered_extent);
|
|
if (!ret) {
|
|
clear_reserved_extent = false;
|
|
btrfs_release_delalloc_bytes(fs_info,
|
|
ordered_extent->disk_bytenr,
|
|
ordered_extent->disk_num_bytes);
|
|
}
|
|
}
|
|
unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
|
|
ordered_extent->file_offset,
|
|
ordered_extent->num_bytes, trans->transid);
|
|
if (ret < 0) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = add_pending_csums(trans, inode, &ordered_extent->list);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
btrfs_inode_safe_disk_i_size_write(inode, 0);
|
|
ret = btrfs_update_inode_fallback(trans, root, inode);
|
|
if (ret) { /* -ENOMEM or corruption */
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
clear_bits = EXTENT_DEFRAG;
|
|
if (range_locked)
|
|
clear_bits |= EXTENT_LOCKED;
|
|
if (clear_new_delalloc_bytes)
|
|
clear_bits |= EXTENT_DELALLOC_NEW;
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
|
|
(clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
|
|
&cached_state);
|
|
|
|
if (trans)
|
|
btrfs_end_transaction(trans);
|
|
|
|
if (ret || truncated) {
|
|
u64 unwritten_start = start;
|
|
|
|
if (truncated)
|
|
unwritten_start += logical_len;
|
|
clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
|
|
|
|
/* Drop the cache for the part of the extent we didn't write. */
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
|
|
|
|
/*
|
|
* If the ordered extent had an IOERR or something else went
|
|
* wrong we need to return the space for this ordered extent
|
|
* back to the allocator. We only free the extent in the
|
|
* truncated case if we didn't write out the extent at all.
|
|
*
|
|
* If we made it past insert_reserved_file_extent before we
|
|
* errored out then we don't need to do this as the accounting
|
|
* has already been done.
|
|
*/
|
|
if ((ret || !logical_len) &&
|
|
clear_reserved_extent &&
|
|
!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
|
|
!test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
|
|
/*
|
|
* Discard the range before returning it back to the
|
|
* free space pool
|
|
*/
|
|
if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
|
|
btrfs_discard_extent(fs_info,
|
|
ordered_extent->disk_bytenr,
|
|
ordered_extent->disk_num_bytes,
|
|
NULL);
|
|
btrfs_free_reserved_extent(fs_info,
|
|
ordered_extent->disk_bytenr,
|
|
ordered_extent->disk_num_bytes, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This needs to be done to make sure anybody waiting knows we are done
|
|
* updating everything for this ordered extent.
|
|
*/
|
|
btrfs_remove_ordered_extent(inode, ordered_extent);
|
|
|
|
/* once for us */
|
|
btrfs_put_ordered_extent(ordered_extent);
|
|
/* once for the tree */
|
|
btrfs_put_ordered_extent(ordered_extent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void finish_ordered_fn(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_ordered_extent *ordered_extent;
|
|
ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
|
|
btrfs_finish_ordered_io(ordered_extent);
|
|
}
|
|
|
|
void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
|
|
u64 end, int uptodate)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ordered_extent *ordered_extent = NULL;
|
|
struct btrfs_workqueue *wq;
|
|
|
|
trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
|
|
|
|
ClearPagePrivate2(page);
|
|
if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
|
|
end - start + 1, uptodate))
|
|
return;
|
|
|
|
if (btrfs_is_free_space_inode(BTRFS_I(inode)))
|
|
wq = fs_info->endio_freespace_worker;
|
|
else
|
|
wq = fs_info->endio_write_workers;
|
|
|
|
btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
|
|
btrfs_queue_work(wq, &ordered_extent->work);
|
|
}
|
|
|
|
static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
|
|
int icsum, struct page *page, int pgoff, u64 start,
|
|
size_t len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
|
|
char *kaddr;
|
|
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
u8 *csum_expected;
|
|
u8 csum[BTRFS_CSUM_SIZE];
|
|
|
|
csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
|
|
|
|
kaddr = kmap_atomic(page);
|
|
shash->tfm = fs_info->csum_shash;
|
|
|
|
crypto_shash_digest(shash, kaddr + pgoff, len, csum);
|
|
|
|
if (memcmp(csum, csum_expected, csum_size))
|
|
goto zeroit;
|
|
|
|
kunmap_atomic(kaddr);
|
|
return 0;
|
|
zeroit:
|
|
btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
|
|
io_bio->mirror_num);
|
|
if (io_bio->device)
|
|
btrfs_dev_stat_inc_and_print(io_bio->device,
|
|
BTRFS_DEV_STAT_CORRUPTION_ERRS);
|
|
memset(kaddr + pgoff, 1, len);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* when reads are done, we need to check csums to verify the data is correct
|
|
* if there's a match, we allow the bio to finish. If not, the code in
|
|
* extent_io.c will try to find good copies for us.
|
|
*/
|
|
static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
|
|
u64 phy_offset, struct page *page,
|
|
u64 start, u64 end, int mirror)
|
|
{
|
|
size_t offset = start - page_offset(page);
|
|
struct inode *inode = page->mapping->host;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
|
|
if (PageChecked(page)) {
|
|
ClearPageChecked(page);
|
|
return 0;
|
|
}
|
|
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
|
|
return 0;
|
|
|
|
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
|
|
test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
|
|
clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
|
|
return 0;
|
|
}
|
|
|
|
phy_offset >>= inode->i_sb->s_blocksize_bits;
|
|
return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
|
|
(size_t)(end - start + 1));
|
|
}
|
|
|
|
/*
|
|
* btrfs_add_delayed_iput - perform a delayed iput on @inode
|
|
*
|
|
* @inode: The inode we want to perform iput on
|
|
*
|
|
* This function uses the generic vfs_inode::i_count to track whether we should
|
|
* just decrement it (in case it's > 1) or if this is the last iput then link
|
|
* the inode to the delayed iput machinery. Delayed iputs are processed at
|
|
* transaction commit time/superblock commit/cleaner kthread.
|
|
*/
|
|
void btrfs_add_delayed_iput(struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
|
|
if (atomic_add_unless(&inode->i_count, -1, 1))
|
|
return;
|
|
|
|
atomic_inc(&fs_info->nr_delayed_iputs);
|
|
spin_lock(&fs_info->delayed_iput_lock);
|
|
ASSERT(list_empty(&binode->delayed_iput));
|
|
list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
|
|
spin_unlock(&fs_info->delayed_iput_lock);
|
|
if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
|
|
wake_up_process(fs_info->cleaner_kthread);
|
|
}
|
|
|
|
static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
list_del_init(&inode->delayed_iput);
|
|
spin_unlock(&fs_info->delayed_iput_lock);
|
|
iput(&inode->vfs_inode);
|
|
if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
|
|
wake_up(&fs_info->delayed_iputs_wait);
|
|
spin_lock(&fs_info->delayed_iput_lock);
|
|
}
|
|
|
|
static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
if (!list_empty(&inode->delayed_iput)) {
|
|
spin_lock(&fs_info->delayed_iput_lock);
|
|
if (!list_empty(&inode->delayed_iput))
|
|
run_delayed_iput_locked(fs_info, inode);
|
|
spin_unlock(&fs_info->delayed_iput_lock);
|
|
}
|
|
}
|
|
|
|
void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
|
|
{
|
|
|
|
spin_lock(&fs_info->delayed_iput_lock);
|
|
while (!list_empty(&fs_info->delayed_iputs)) {
|
|
struct btrfs_inode *inode;
|
|
|
|
inode = list_first_entry(&fs_info->delayed_iputs,
|
|
struct btrfs_inode, delayed_iput);
|
|
run_delayed_iput_locked(fs_info, inode);
|
|
}
|
|
spin_unlock(&fs_info->delayed_iput_lock);
|
|
}
|
|
|
|
/**
|
|
* btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
|
|
* @fs_info - the fs_info for this fs
|
|
* @return - EINTR if we were killed, 0 if nothing's pending
|
|
*
|
|
* This will wait on any delayed iputs that are currently running with KILLABLE
|
|
* set. Once they are all done running we will return, unless we are killed in
|
|
* which case we return EINTR. This helps in user operations like fallocate etc
|
|
* that might get blocked on the iputs.
|
|
*/
|
|
int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret = wait_event_killable(fs_info->delayed_iputs_wait,
|
|
atomic_read(&fs_info->nr_delayed_iputs) == 0);
|
|
if (ret)
|
|
return -EINTR;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This creates an orphan entry for the given inode in case something goes wrong
|
|
* in the middle of an unlink.
|
|
*/
|
|
int btrfs_orphan_add(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
|
|
if (ret && ret != -EEXIST) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We have done the delete so we can go ahead and remove the orphan item for
|
|
* this particular inode.
|
|
*/
|
|
static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
|
|
}
|
|
|
|
/*
|
|
* this cleans up any orphans that may be left on the list from the last use
|
|
* of this root.
|
|
*/
|
|
int btrfs_orphan_cleanup(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key, found_key;
|
|
struct btrfs_trans_handle *trans;
|
|
struct inode *inode;
|
|
u64 last_objectid = 0;
|
|
int ret = 0, nr_unlink = 0;
|
|
|
|
if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
path->reada = READA_BACK;
|
|
|
|
key.objectid = BTRFS_ORPHAN_OBJECTID;
|
|
key.type = BTRFS_ORPHAN_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* if ret == 0 means we found what we were searching for, which
|
|
* is weird, but possible, so only screw with path if we didn't
|
|
* find the key and see if we have stuff that matches
|
|
*/
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
/* pull out the item */
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
/* make sure the item matches what we want */
|
|
if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
|
|
break;
|
|
if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
|
|
break;
|
|
|
|
/* release the path since we're done with it */
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* this is where we are basically btrfs_lookup, without the
|
|
* crossing root thing. we store the inode number in the
|
|
* offset of the orphan item.
|
|
*/
|
|
|
|
if (found_key.offset == last_objectid) {
|
|
btrfs_err(fs_info,
|
|
"Error removing orphan entry, stopping orphan cleanup");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
last_objectid = found_key.offset;
|
|
|
|
found_key.objectid = found_key.offset;
|
|
found_key.type = BTRFS_INODE_ITEM_KEY;
|
|
found_key.offset = 0;
|
|
inode = btrfs_iget(fs_info->sb, last_objectid, root);
|
|
ret = PTR_ERR_OR_ZERO(inode);
|
|
if (ret && ret != -ENOENT)
|
|
goto out;
|
|
|
|
if (ret == -ENOENT && root == fs_info->tree_root) {
|
|
struct btrfs_root *dead_root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int is_dead_root = 0;
|
|
|
|
/*
|
|
* this is an orphan in the tree root. Currently these
|
|
* could come from 2 sources:
|
|
* a) a snapshot deletion in progress
|
|
* b) a free space cache inode
|
|
* We need to distinguish those two, as the snapshot
|
|
* orphan must not get deleted.
|
|
* find_dead_roots already ran before us, so if this
|
|
* is a snapshot deletion, we should find the root
|
|
* in the fs_roots radix tree.
|
|
*/
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
|
|
(unsigned long)found_key.objectid);
|
|
if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
|
|
is_dead_root = 1;
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
if (is_dead_root) {
|
|
/* prevent this orphan from being found again */
|
|
key.offset = found_key.objectid - 1;
|
|
continue;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* If we have an inode with links, there are a couple of
|
|
* possibilities. Old kernels (before v3.12) used to create an
|
|
* orphan item for truncate indicating that there were possibly
|
|
* extent items past i_size that needed to be deleted. In v3.12,
|
|
* truncate was changed to update i_size in sync with the extent
|
|
* items, but the (useless) orphan item was still created. Since
|
|
* v4.18, we don't create the orphan item for truncate at all.
|
|
*
|
|
* So, this item could mean that we need to do a truncate, but
|
|
* only if this filesystem was last used on a pre-v3.12 kernel
|
|
* and was not cleanly unmounted. The odds of that are quite
|
|
* slim, and it's a pain to do the truncate now, so just delete
|
|
* the orphan item.
|
|
*
|
|
* It's also possible that this orphan item was supposed to be
|
|
* deleted but wasn't. The inode number may have been reused,
|
|
* but either way, we can delete the orphan item.
|
|
*/
|
|
if (ret == -ENOENT || inode->i_nlink) {
|
|
if (!ret)
|
|
iput(inode);
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
btrfs_debug(fs_info, "auto deleting %Lu",
|
|
found_key.objectid);
|
|
ret = btrfs_del_orphan_item(trans, root,
|
|
found_key.objectid);
|
|
btrfs_end_transaction(trans);
|
|
if (ret)
|
|
goto out;
|
|
continue;
|
|
}
|
|
|
|
nr_unlink++;
|
|
|
|
/* this will do delete_inode and everything for us */
|
|
iput(inode);
|
|
}
|
|
/* release the path since we're done with it */
|
|
btrfs_release_path(path);
|
|
|
|
root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
|
|
|
|
if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
|
|
trans = btrfs_join_transaction(root);
|
|
if (!IS_ERR(trans))
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
|
|
if (nr_unlink)
|
|
btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
|
|
|
|
out:
|
|
if (ret)
|
|
btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* very simple check to peek ahead in the leaf looking for xattrs. If we
|
|
* don't find any xattrs, we know there can't be any acls.
|
|
*
|
|
* slot is the slot the inode is in, objectid is the objectid of the inode
|
|
*/
|
|
static noinline int acls_after_inode_item(struct extent_buffer *leaf,
|
|
int slot, u64 objectid,
|
|
int *first_xattr_slot)
|
|
{
|
|
u32 nritems = btrfs_header_nritems(leaf);
|
|
struct btrfs_key found_key;
|
|
static u64 xattr_access = 0;
|
|
static u64 xattr_default = 0;
|
|
int scanned = 0;
|
|
|
|
if (!xattr_access) {
|
|
xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
|
|
strlen(XATTR_NAME_POSIX_ACL_ACCESS));
|
|
xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
|
|
strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
|
|
}
|
|
|
|
slot++;
|
|
*first_xattr_slot = -1;
|
|
while (slot < nritems) {
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
/* we found a different objectid, there must not be acls */
|
|
if (found_key.objectid != objectid)
|
|
return 0;
|
|
|
|
/* we found an xattr, assume we've got an acl */
|
|
if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
|
|
if (*first_xattr_slot == -1)
|
|
*first_xattr_slot = slot;
|
|
if (found_key.offset == xattr_access ||
|
|
found_key.offset == xattr_default)
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* we found a key greater than an xattr key, there can't
|
|
* be any acls later on
|
|
*/
|
|
if (found_key.type > BTRFS_XATTR_ITEM_KEY)
|
|
return 0;
|
|
|
|
slot++;
|
|
scanned++;
|
|
|
|
/*
|
|
* it goes inode, inode backrefs, xattrs, extents,
|
|
* so if there are a ton of hard links to an inode there can
|
|
* be a lot of backrefs. Don't waste time searching too hard,
|
|
* this is just an optimization
|
|
*/
|
|
if (scanned >= 8)
|
|
break;
|
|
}
|
|
/* we hit the end of the leaf before we found an xattr or
|
|
* something larger than an xattr. We have to assume the inode
|
|
* has acls
|
|
*/
|
|
if (*first_xattr_slot == -1)
|
|
*first_xattr_slot = slot;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* read an inode from the btree into the in-memory inode
|
|
*/
|
|
static int btrfs_read_locked_inode(struct inode *inode,
|
|
struct btrfs_path *in_path)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_path *path = in_path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_key location;
|
|
unsigned long ptr;
|
|
int maybe_acls;
|
|
u32 rdev;
|
|
int ret;
|
|
bool filled = false;
|
|
int first_xattr_slot;
|
|
|
|
ret = btrfs_fill_inode(inode, &rdev);
|
|
if (!ret)
|
|
filled = true;
|
|
|
|
if (!path) {
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
|
|
|
|
ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
|
|
if (ret) {
|
|
if (path != in_path)
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
if (filled)
|
|
goto cache_index;
|
|
|
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_inode_item);
|
|
inode->i_mode = btrfs_inode_mode(leaf, inode_item);
|
|
set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
|
|
i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
|
|
i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
|
|
btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
|
|
btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
|
|
round_up(i_size_read(inode), fs_info->sectorsize));
|
|
|
|
inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
|
|
inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
|
|
|
|
inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
|
|
inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
|
|
|
|
inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
|
|
inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
|
|
|
|
BTRFS_I(inode)->i_otime.tv_sec =
|
|
btrfs_timespec_sec(leaf, &inode_item->otime);
|
|
BTRFS_I(inode)->i_otime.tv_nsec =
|
|
btrfs_timespec_nsec(leaf, &inode_item->otime);
|
|
|
|
inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
|
|
BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
|
|
BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
|
|
|
|
inode_set_iversion_queried(inode,
|
|
btrfs_inode_sequence(leaf, inode_item));
|
|
inode->i_generation = BTRFS_I(inode)->generation;
|
|
inode->i_rdev = 0;
|
|
rdev = btrfs_inode_rdev(leaf, inode_item);
|
|
|
|
BTRFS_I(inode)->index_cnt = (u64)-1;
|
|
BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
|
|
|
|
cache_index:
|
|
/*
|
|
* If we were modified in the current generation and evicted from memory
|
|
* and then re-read we need to do a full sync since we don't have any
|
|
* idea about which extents were modified before we were evicted from
|
|
* cache.
|
|
*
|
|
* This is required for both inode re-read from disk and delayed inode
|
|
* in delayed_nodes_tree.
|
|
*/
|
|
if (BTRFS_I(inode)->last_trans == fs_info->generation)
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
|
|
/*
|
|
* We don't persist the id of the transaction where an unlink operation
|
|
* against the inode was last made. So here we assume the inode might
|
|
* have been evicted, and therefore the exact value of last_unlink_trans
|
|
* lost, and set it to last_trans to avoid metadata inconsistencies
|
|
* between the inode and its parent if the inode is fsync'ed and the log
|
|
* replayed. For example, in the scenario:
|
|
*
|
|
* touch mydir/foo
|
|
* ln mydir/foo mydir/bar
|
|
* sync
|
|
* unlink mydir/bar
|
|
* echo 2 > /proc/sys/vm/drop_caches # evicts inode
|
|
* xfs_io -c fsync mydir/foo
|
|
* <power failure>
|
|
* mount fs, triggers fsync log replay
|
|
*
|
|
* We must make sure that when we fsync our inode foo we also log its
|
|
* parent inode, otherwise after log replay the parent still has the
|
|
* dentry with the "bar" name but our inode foo has a link count of 1
|
|
* and doesn't have an inode ref with the name "bar" anymore.
|
|
*
|
|
* Setting last_unlink_trans to last_trans is a pessimistic approach,
|
|
* but it guarantees correctness at the expense of occasional full
|
|
* transaction commits on fsync if our inode is a directory, or if our
|
|
* inode is not a directory, logging its parent unnecessarily.
|
|
*/
|
|
BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
|
|
|
|
/*
|
|
* Same logic as for last_unlink_trans. We don't persist the generation
|
|
* of the last transaction where this inode was used for a reflink
|
|
* operation, so after eviction and reloading the inode we must be
|
|
* pessimistic and assume the last transaction that modified the inode.
|
|
*/
|
|
BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
|
|
|
|
path->slots[0]++;
|
|
if (inode->i_nlink != 1 ||
|
|
path->slots[0] >= btrfs_header_nritems(leaf))
|
|
goto cache_acl;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
|
|
if (location.objectid != btrfs_ino(BTRFS_I(inode)))
|
|
goto cache_acl;
|
|
|
|
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
if (location.type == BTRFS_INODE_REF_KEY) {
|
|
struct btrfs_inode_ref *ref;
|
|
|
|
ref = (struct btrfs_inode_ref *)ptr;
|
|
BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
|
|
} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
|
|
struct btrfs_inode_extref *extref;
|
|
|
|
extref = (struct btrfs_inode_extref *)ptr;
|
|
BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
|
|
extref);
|
|
}
|
|
cache_acl:
|
|
/*
|
|
* try to precache a NULL acl entry for files that don't have
|
|
* any xattrs or acls
|
|
*/
|
|
maybe_acls = acls_after_inode_item(leaf, path->slots[0],
|
|
btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
|
|
if (first_xattr_slot != -1) {
|
|
path->slots[0] = first_xattr_slot;
|
|
ret = btrfs_load_inode_props(inode, path);
|
|
if (ret)
|
|
btrfs_err(fs_info,
|
|
"error loading props for ino %llu (root %llu): %d",
|
|
btrfs_ino(BTRFS_I(inode)),
|
|
root->root_key.objectid, ret);
|
|
}
|
|
if (path != in_path)
|
|
btrfs_free_path(path);
|
|
|
|
if (!maybe_acls)
|
|
cache_no_acl(inode);
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
break;
|
|
case S_IFDIR:
|
|
inode->i_fop = &btrfs_dir_file_operations;
|
|
inode->i_op = &btrfs_dir_inode_operations;
|
|
break;
|
|
case S_IFLNK:
|
|
inode->i_op = &btrfs_symlink_inode_operations;
|
|
inode_nohighmem(inode);
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
break;
|
|
default:
|
|
inode->i_op = &btrfs_special_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
break;
|
|
}
|
|
|
|
btrfs_sync_inode_flags_to_i_flags(inode);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* given a leaf and an inode, copy the inode fields into the leaf
|
|
*/
|
|
static void fill_inode_item(struct btrfs_trans_handle *trans,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_inode_item *item,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_map_token token;
|
|
|
|
btrfs_init_map_token(&token, leaf);
|
|
|
|
btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
|
|
btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
|
|
btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
|
|
btrfs_set_token_inode_mode(&token, item, inode->i_mode);
|
|
btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
|
|
|
|
btrfs_set_token_timespec_sec(&token, &item->atime,
|
|
inode->i_atime.tv_sec);
|
|
btrfs_set_token_timespec_nsec(&token, &item->atime,
|
|
inode->i_atime.tv_nsec);
|
|
|
|
btrfs_set_token_timespec_sec(&token, &item->mtime,
|
|
inode->i_mtime.tv_sec);
|
|
btrfs_set_token_timespec_nsec(&token, &item->mtime,
|
|
inode->i_mtime.tv_nsec);
|
|
|
|
btrfs_set_token_timespec_sec(&token, &item->ctime,
|
|
inode->i_ctime.tv_sec);
|
|
btrfs_set_token_timespec_nsec(&token, &item->ctime,
|
|
inode->i_ctime.tv_nsec);
|
|
|
|
btrfs_set_token_timespec_sec(&token, &item->otime,
|
|
BTRFS_I(inode)->i_otime.tv_sec);
|
|
btrfs_set_token_timespec_nsec(&token, &item->otime,
|
|
BTRFS_I(inode)->i_otime.tv_nsec);
|
|
|
|
btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
|
|
btrfs_set_token_inode_generation(&token, item,
|
|
BTRFS_I(inode)->generation);
|
|
btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
|
|
btrfs_set_token_inode_transid(&token, item, trans->transid);
|
|
btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
|
|
btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
|
|
btrfs_set_token_inode_block_group(&token, item, 0);
|
|
}
|
|
|
|
/*
|
|
* copy everything in the in-memory inode into the btree.
|
|
*/
|
|
static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode)
|
|
{
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
|
|
1);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto failed;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_inode_item);
|
|
|
|
fill_inode_item(trans, leaf, inode_item, inode);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
|
|
ret = 0;
|
|
failed:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* copy everything in the in-memory inode into the btree.
|
|
*/
|
|
noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
|
|
/*
|
|
* If the inode is a free space inode, we can deadlock during commit
|
|
* if we put it into the delayed code.
|
|
*
|
|
* The data relocation inode should also be directly updated
|
|
* without delay
|
|
*/
|
|
if (!btrfs_is_free_space_inode(BTRFS_I(inode))
|
|
&& root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
|
|
&& !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
|
|
btrfs_update_root_times(trans, root);
|
|
|
|
ret = btrfs_delayed_update_inode(trans, root, inode);
|
|
if (!ret)
|
|
btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
|
|
return ret;
|
|
}
|
|
|
|
return btrfs_update_inode_item(trans, root, inode);
|
|
}
|
|
|
|
noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *inode)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret == -ENOSPC)
|
|
return btrfs_update_inode_item(trans, root, inode);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* unlink helper that gets used here in inode.c and in the tree logging
|
|
* recovery code. It remove a link in a directory with a given name, and
|
|
* also drops the back refs in the inode to the directory
|
|
*/
|
|
static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_inode *dir,
|
|
struct btrfs_inode *inode,
|
|
const char *name, int name_len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_path *path;
|
|
int ret = 0;
|
|
struct btrfs_dir_item *di;
|
|
u64 index;
|
|
u64 ino = btrfs_ino(inode);
|
|
u64 dir_ino = btrfs_ino(dir);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
path->leave_spinning = 1;
|
|
di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
|
|
name, name_len, -1);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
ret = di ? PTR_ERR(di) : -ENOENT;
|
|
goto err;
|
|
}
|
|
ret = btrfs_delete_one_dir_name(trans, root, path, di);
|
|
if (ret)
|
|
goto err;
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* If we don't have dir index, we have to get it by looking up
|
|
* the inode ref, since we get the inode ref, remove it directly,
|
|
* it is unnecessary to do delayed deletion.
|
|
*
|
|
* But if we have dir index, needn't search inode ref to get it.
|
|
* Since the inode ref is close to the inode item, it is better
|
|
* that we delay to delete it, and just do this deletion when
|
|
* we update the inode item.
|
|
*/
|
|
if (inode->dir_index) {
|
|
ret = btrfs_delayed_delete_inode_ref(inode);
|
|
if (!ret) {
|
|
index = inode->dir_index;
|
|
goto skip_backref;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
|
|
dir_ino, &index);
|
|
if (ret) {
|
|
btrfs_info(fs_info,
|
|
"failed to delete reference to %.*s, inode %llu parent %llu",
|
|
name_len, name, ino, dir_ino);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto err;
|
|
}
|
|
skip_backref:
|
|
ret = btrfs_delete_delayed_dir_index(trans, dir, index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto err;
|
|
}
|
|
|
|
ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
|
|
dir_ino);
|
|
if (ret != 0 && ret != -ENOENT) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto err;
|
|
}
|
|
|
|
ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
|
|
index);
|
|
if (ret == -ENOENT)
|
|
ret = 0;
|
|
else if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
|
|
/*
|
|
* If we have a pending delayed iput we could end up with the final iput
|
|
* being run in btrfs-cleaner context. If we have enough of these built
|
|
* up we can end up burning a lot of time in btrfs-cleaner without any
|
|
* way to throttle the unlinks. Since we're currently holding a ref on
|
|
* the inode we can run the delayed iput here without any issues as the
|
|
* final iput won't be done until after we drop the ref we're currently
|
|
* holding.
|
|
*/
|
|
btrfs_run_delayed_iput(fs_info, inode);
|
|
err:
|
|
btrfs_free_path(path);
|
|
if (ret)
|
|
goto out;
|
|
|
|
btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
|
|
inode_inc_iversion(&inode->vfs_inode);
|
|
inode_inc_iversion(&dir->vfs_inode);
|
|
inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
|
|
dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
|
|
ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_inode *dir, struct btrfs_inode *inode,
|
|
const char *name, int name_len)
|
|
{
|
|
int ret;
|
|
ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
|
|
if (!ret) {
|
|
drop_nlink(&inode->vfs_inode);
|
|
ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to start transaction for unlink and rmdir.
|
|
*
|
|
* unlink and rmdir are special in btrfs, they do not always free space, so
|
|
* if we cannot make our reservations the normal way try and see if there is
|
|
* plenty of slack room in the global reserve to migrate, otherwise we cannot
|
|
* allow the unlink to occur.
|
|
*/
|
|
static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
|
|
/*
|
|
* 1 for the possible orphan item
|
|
* 1 for the dir item
|
|
* 1 for the dir index
|
|
* 1 for the inode ref
|
|
* 1 for the inode
|
|
*/
|
|
return btrfs_start_transaction_fallback_global_rsv(root, 5);
|
|
}
|
|
|
|
static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct inode *inode = d_inode(dentry);
|
|
int ret;
|
|
|
|
trans = __unlink_start_trans(dir);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
|
|
0);
|
|
|
|
ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
|
|
BTRFS_I(d_inode(dentry)), dentry->d_name.name,
|
|
dentry->d_name.len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (inode->i_nlink == 0) {
|
|
ret = btrfs_orphan_add(trans, BTRFS_I(inode));
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(root->fs_info);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
|
|
struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key key;
|
|
const char *name = dentry->d_name.name;
|
|
int name_len = dentry->d_name.len;
|
|
u64 index;
|
|
int ret;
|
|
u64 objectid;
|
|
u64 dir_ino = btrfs_ino(BTRFS_I(dir));
|
|
|
|
if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
|
|
objectid = inode->root->root_key.objectid;
|
|
} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
|
|
objectid = inode->location.objectid;
|
|
} else {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
|
|
name, name_len, -1);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
ret = di ? PTR_ERR(di) : -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_dir_item_key_to_cpu(leaf, di, &key);
|
|
WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
|
|
ret = btrfs_delete_one_dir_name(trans, root, path, di);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* This is a placeholder inode for a subvolume we didn't have a
|
|
* reference to at the time of the snapshot creation. In the meantime
|
|
* we could have renamed the real subvol link into our snapshot, so
|
|
* depending on btrfs_del_root_ref to return -ENOENT here is incorret.
|
|
* Instead simply lookup the dir_index_item for this entry so we can
|
|
* remove it. Otherwise we know we have a ref to the root and we can
|
|
* call btrfs_del_root_ref, and it _shouldn't_ fail.
|
|
*/
|
|
if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
|
|
di = btrfs_search_dir_index_item(root, path, dir_ino,
|
|
name, name_len);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
if (!di)
|
|
ret = -ENOENT;
|
|
else
|
|
ret = PTR_ERR(di);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
index = key.offset;
|
|
btrfs_release_path(path);
|
|
} else {
|
|
ret = btrfs_del_root_ref(trans, objectid,
|
|
root->root_key.objectid, dir_ino,
|
|
&index, name, name_len);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
|
|
inode_inc_iversion(dir);
|
|
dir->i_mtime = dir->i_ctime = current_time(dir);
|
|
ret = btrfs_update_inode_fallback(trans, root, dir);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Helper to check if the subvolume references other subvolumes or if it's
|
|
* default.
|
|
*/
|
|
static noinline int may_destroy_subvol(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key key;
|
|
u64 dir_id;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/* Make sure this root isn't set as the default subvol */
|
|
dir_id = btrfs_super_root_dir(fs_info->super_copy);
|
|
di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
|
|
dir_id, "default", 7, 0);
|
|
if (di && !IS_ERR(di)) {
|
|
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
|
|
if (key.objectid == root->root_key.objectid) {
|
|
ret = -EPERM;
|
|
btrfs_err(fs_info,
|
|
"deleting default subvolume %llu is not allowed",
|
|
key.objectid);
|
|
goto out;
|
|
}
|
|
btrfs_release_path(path);
|
|
}
|
|
|
|
key.objectid = root->root_key.objectid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
ret = 0;
|
|
if (path->slots[0] > 0) {
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
if (key.objectid == root->root_key.objectid &&
|
|
key.type == BTRFS_ROOT_REF_KEY)
|
|
ret = -ENOTEMPTY;
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/* Delete all dentries for inodes belonging to the root */
|
|
static void btrfs_prune_dentries(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct rb_node *node;
|
|
struct rb_node *prev;
|
|
struct btrfs_inode *entry;
|
|
struct inode *inode;
|
|
u64 objectid = 0;
|
|
|
|
if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
|
|
WARN_ON(btrfs_root_refs(&root->root_item) != 0);
|
|
|
|
spin_lock(&root->inode_lock);
|
|
again:
|
|
node = root->inode_tree.rb_node;
|
|
prev = NULL;
|
|
while (node) {
|
|
prev = node;
|
|
entry = rb_entry(node, struct btrfs_inode, rb_node);
|
|
|
|
if (objectid < btrfs_ino(entry))
|
|
node = node->rb_left;
|
|
else if (objectid > btrfs_ino(entry))
|
|
node = node->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
if (!node) {
|
|
while (prev) {
|
|
entry = rb_entry(prev, struct btrfs_inode, rb_node);
|
|
if (objectid <= btrfs_ino(entry)) {
|
|
node = prev;
|
|
break;
|
|
}
|
|
prev = rb_next(prev);
|
|
}
|
|
}
|
|
while (node) {
|
|
entry = rb_entry(node, struct btrfs_inode, rb_node);
|
|
objectid = btrfs_ino(entry) + 1;
|
|
inode = igrab(&entry->vfs_inode);
|
|
if (inode) {
|
|
spin_unlock(&root->inode_lock);
|
|
if (atomic_read(&inode->i_count) > 1)
|
|
d_prune_aliases(inode);
|
|
/*
|
|
* btrfs_drop_inode will have it removed from the inode
|
|
* cache when its usage count hits zero.
|
|
*/
|
|
iput(inode);
|
|
cond_resched();
|
|
spin_lock(&root->inode_lock);
|
|
goto again;
|
|
}
|
|
|
|
if (cond_resched_lock(&root->inode_lock))
|
|
goto again;
|
|
|
|
node = rb_next(node);
|
|
}
|
|
spin_unlock(&root->inode_lock);
|
|
}
|
|
|
|
int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = d_inode(dentry);
|
|
struct btrfs_root *dest = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_block_rsv block_rsv;
|
|
u64 root_flags;
|
|
int ret;
|
|
int err;
|
|
|
|
/*
|
|
* Don't allow to delete a subvolume with send in progress. This is
|
|
* inside the inode lock so the error handling that has to drop the bit
|
|
* again is not run concurrently.
|
|
*/
|
|
spin_lock(&dest->root_item_lock);
|
|
if (dest->send_in_progress) {
|
|
spin_unlock(&dest->root_item_lock);
|
|
btrfs_warn(fs_info,
|
|
"attempt to delete subvolume %llu during send",
|
|
dest->root_key.objectid);
|
|
return -EPERM;
|
|
}
|
|
root_flags = btrfs_root_flags(&dest->root_item);
|
|
btrfs_set_root_flags(&dest->root_item,
|
|
root_flags | BTRFS_ROOT_SUBVOL_DEAD);
|
|
spin_unlock(&dest->root_item_lock);
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
err = may_destroy_subvol(dest);
|
|
if (err)
|
|
goto out_up_write;
|
|
|
|
btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
|
|
/*
|
|
* One for dir inode,
|
|
* two for dir entries,
|
|
* two for root ref/backref.
|
|
*/
|
|
err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
|
|
if (err)
|
|
goto out_up_write;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
err = PTR_ERR(trans);
|
|
goto out_release;
|
|
}
|
|
trans->block_rsv = &block_rsv;
|
|
trans->bytes_reserved = block_rsv.size;
|
|
|
|
btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
|
|
|
|
ret = btrfs_unlink_subvol(trans, dir, dentry);
|
|
if (ret) {
|
|
err = ret;
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
|
|
btrfs_record_root_in_trans(trans, dest);
|
|
|
|
memset(&dest->root_item.drop_progress, 0,
|
|
sizeof(dest->root_item.drop_progress));
|
|
dest->root_item.drop_level = 0;
|
|
btrfs_set_root_refs(&dest->root_item, 0);
|
|
|
|
if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
|
|
ret = btrfs_insert_orphan_item(trans,
|
|
fs_info->tree_root,
|
|
dest->root_key.objectid);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
err = ret;
|
|
goto out_end_trans;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
|
|
BTRFS_UUID_KEY_SUBVOL,
|
|
dest->root_key.objectid);
|
|
if (ret && ret != -ENOENT) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
err = ret;
|
|
goto out_end_trans;
|
|
}
|
|
if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
|
|
ret = btrfs_uuid_tree_remove(trans,
|
|
dest->root_item.received_uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
dest->root_key.objectid);
|
|
if (ret && ret != -ENOENT) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
err = ret;
|
|
goto out_end_trans;
|
|
}
|
|
}
|
|
|
|
free_anon_bdev(dest->anon_dev);
|
|
dest->anon_dev = 0;
|
|
out_end_trans:
|
|
trans->block_rsv = NULL;
|
|
trans->bytes_reserved = 0;
|
|
ret = btrfs_end_transaction(trans);
|
|
if (ret && !err)
|
|
err = ret;
|
|
inode->i_flags |= S_DEAD;
|
|
out_release:
|
|
btrfs_subvolume_release_metadata(fs_info, &block_rsv);
|
|
out_up_write:
|
|
up_write(&fs_info->subvol_sem);
|
|
if (err) {
|
|
spin_lock(&dest->root_item_lock);
|
|
root_flags = btrfs_root_flags(&dest->root_item);
|
|
btrfs_set_root_flags(&dest->root_item,
|
|
root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
|
|
spin_unlock(&dest->root_item_lock);
|
|
} else {
|
|
d_invalidate(dentry);
|
|
btrfs_prune_dentries(dest);
|
|
ASSERT(dest->send_in_progress == 0);
|
|
|
|
/* the last ref */
|
|
if (dest->ino_cache_inode) {
|
|
iput(dest->ino_cache_inode);
|
|
dest->ino_cache_inode = NULL;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
int err = 0;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 last_unlink_trans;
|
|
|
|
if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
|
|
return -ENOTEMPTY;
|
|
if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
|
|
return btrfs_delete_subvolume(dir, dentry);
|
|
|
|
trans = __unlink_start_trans(dir);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
|
|
err = btrfs_unlink_subvol(trans, dir, dentry);
|
|
goto out;
|
|
}
|
|
|
|
err = btrfs_orphan_add(trans, BTRFS_I(inode));
|
|
if (err)
|
|
goto out;
|
|
|
|
last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
|
|
|
|
/* now the directory is empty */
|
|
err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
|
|
BTRFS_I(d_inode(dentry)), dentry->d_name.name,
|
|
dentry->d_name.len);
|
|
if (!err) {
|
|
btrfs_i_size_write(BTRFS_I(inode), 0);
|
|
/*
|
|
* Propagate the last_unlink_trans value of the deleted dir to
|
|
* its parent directory. This is to prevent an unrecoverable
|
|
* log tree in the case we do something like this:
|
|
* 1) create dir foo
|
|
* 2) create snapshot under dir foo
|
|
* 3) delete the snapshot
|
|
* 4) rmdir foo
|
|
* 5) mkdir foo
|
|
* 6) fsync foo or some file inside foo
|
|
*/
|
|
if (last_unlink_trans >= trans->transid)
|
|
BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
|
|
}
|
|
out:
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(root->fs_info);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Return this if we need to call truncate_block for the last bit of the
|
|
* truncate.
|
|
*/
|
|
#define NEED_TRUNCATE_BLOCK 1
|
|
|
|
/*
|
|
* this can truncate away extent items, csum items and directory items.
|
|
* It starts at a high offset and removes keys until it can't find
|
|
* any higher than new_size
|
|
*
|
|
* csum items that cross the new i_size are truncated to the new size
|
|
* as well.
|
|
*
|
|
* min_type is the minimum key type to truncate down to. If set to 0, this
|
|
* will kill all the items on this inode, including the INODE_ITEM_KEY.
|
|
*/
|
|
int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *inode,
|
|
u64 new_size, u32 min_type)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
u64 extent_start = 0;
|
|
u64 extent_num_bytes = 0;
|
|
u64 extent_offset = 0;
|
|
u64 item_end = 0;
|
|
u64 last_size = new_size;
|
|
u32 found_type = (u8)-1;
|
|
int found_extent;
|
|
int del_item;
|
|
int pending_del_nr = 0;
|
|
int pending_del_slot = 0;
|
|
int extent_type = -1;
|
|
int ret;
|
|
u64 ino = btrfs_ino(BTRFS_I(inode));
|
|
u64 bytes_deleted = 0;
|
|
bool be_nice = false;
|
|
bool should_throttle = false;
|
|
const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
|
|
struct extent_state *cached_state = NULL;
|
|
|
|
BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
|
|
|
|
/*
|
|
* For non-free space inodes and non-shareable roots, we want to back
|
|
* off from time to time. This means all inodes in subvolume roots,
|
|
* reloc roots, and data reloc roots.
|
|
*/
|
|
if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
|
|
test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
be_nice = true;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
path->reada = READA_BACK;
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
|
|
&cached_state);
|
|
|
|
/*
|
|
* We want to drop from the next block forward in case this
|
|
* new size is not block aligned since we will be keeping the
|
|
* last block of the extent just the way it is.
|
|
*/
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
|
|
fs_info->sectorsize),
|
|
(u64)-1, 0);
|
|
}
|
|
|
|
/*
|
|
* This function is also used to drop the items in the log tree before
|
|
* we relog the inode, so if root != BTRFS_I(inode)->root, it means
|
|
* it is used to drop the logged items. So we shouldn't kill the delayed
|
|
* items.
|
|
*/
|
|
if (min_type == 0 && root == BTRFS_I(inode)->root)
|
|
btrfs_kill_delayed_inode_items(BTRFS_I(inode));
|
|
|
|
key.objectid = ino;
|
|
key.offset = (u64)-1;
|
|
key.type = (u8)-1;
|
|
|
|
search_again:
|
|
/*
|
|
* with a 16K leaf size and 128MB extents, you can actually queue
|
|
* up a huge file in a single leaf. Most of the time that
|
|
* bytes_deleted is > 0, it will be huge by the time we get here
|
|
*/
|
|
if (be_nice && bytes_deleted > SZ_32M &&
|
|
btrfs_should_end_transaction(trans)) {
|
|
ret = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
/* there are no items in the tree for us to truncate, we're
|
|
* done
|
|
*/
|
|
if (path->slots[0] == 0)
|
|
goto out;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
while (1) {
|
|
u64 clear_start = 0, clear_len = 0;
|
|
|
|
fi = NULL;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
found_type = found_key.type;
|
|
|
|
if (found_key.objectid != ino)
|
|
break;
|
|
|
|
if (found_type < min_type)
|
|
break;
|
|
|
|
item_end = found_key.offset;
|
|
if (found_type == BTRFS_EXTENT_DATA_KEY) {
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
|
|
item_end +=
|
|
btrfs_file_extent_num_bytes(leaf, fi);
|
|
|
|
trace_btrfs_truncate_show_fi_regular(
|
|
BTRFS_I(inode), leaf, fi,
|
|
found_key.offset);
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
item_end += btrfs_file_extent_ram_bytes(leaf,
|
|
fi);
|
|
|
|
trace_btrfs_truncate_show_fi_inline(
|
|
BTRFS_I(inode), leaf, fi, path->slots[0],
|
|
found_key.offset);
|
|
}
|
|
item_end--;
|
|
}
|
|
if (found_type > min_type) {
|
|
del_item = 1;
|
|
} else {
|
|
if (item_end < new_size)
|
|
break;
|
|
if (found_key.offset >= new_size)
|
|
del_item = 1;
|
|
else
|
|
del_item = 0;
|
|
}
|
|
found_extent = 0;
|
|
/* FIXME, shrink the extent if the ref count is only 1 */
|
|
if (found_type != BTRFS_EXTENT_DATA_KEY)
|
|
goto delete;
|
|
|
|
if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
|
|
u64 num_dec;
|
|
|
|
clear_start = found_key.offset;
|
|
extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
if (!del_item) {
|
|
u64 orig_num_bytes =
|
|
btrfs_file_extent_num_bytes(leaf, fi);
|
|
extent_num_bytes = ALIGN(new_size -
|
|
found_key.offset,
|
|
fs_info->sectorsize);
|
|
clear_start = ALIGN(new_size, fs_info->sectorsize);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_num_bytes);
|
|
num_dec = (orig_num_bytes -
|
|
extent_num_bytes);
|
|
if (test_bit(BTRFS_ROOT_SHAREABLE,
|
|
&root->state) &&
|
|
extent_start != 0)
|
|
inode_sub_bytes(inode, num_dec);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
} else {
|
|
extent_num_bytes =
|
|
btrfs_file_extent_disk_num_bytes(leaf,
|
|
fi);
|
|
extent_offset = found_key.offset -
|
|
btrfs_file_extent_offset(leaf, fi);
|
|
|
|
/* FIXME blocksize != 4096 */
|
|
num_dec = btrfs_file_extent_num_bytes(leaf, fi);
|
|
if (extent_start != 0) {
|
|
found_extent = 1;
|
|
if (test_bit(BTRFS_ROOT_SHAREABLE,
|
|
&root->state))
|
|
inode_sub_bytes(inode, num_dec);
|
|
}
|
|
}
|
|
clear_len = num_dec;
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
/*
|
|
* we can't truncate inline items that have had
|
|
* special encodings
|
|
*/
|
|
if (!del_item &&
|
|
btrfs_file_extent_encryption(leaf, fi) == 0 &&
|
|
btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
|
|
btrfs_file_extent_compression(leaf, fi) == 0) {
|
|
u32 size = (u32)(new_size - found_key.offset);
|
|
|
|
btrfs_set_file_extent_ram_bytes(leaf, fi, size);
|
|
size = btrfs_file_extent_calc_inline_size(size);
|
|
btrfs_truncate_item(path, size, 1);
|
|
} else if (!del_item) {
|
|
/*
|
|
* We have to bail so the last_size is set to
|
|
* just before this extent.
|
|
*/
|
|
ret = NEED_TRUNCATE_BLOCK;
|
|
break;
|
|
} else {
|
|
/*
|
|
* Inline extents are special, we just treat
|
|
* them as a full sector worth in the file
|
|
* extent tree just for simplicity sake.
|
|
*/
|
|
clear_len = fs_info->sectorsize;
|
|
}
|
|
|
|
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
inode_sub_bytes(inode, item_end + 1 - new_size);
|
|
}
|
|
delete:
|
|
/*
|
|
* We use btrfs_truncate_inode_items() to clean up log trees for
|
|
* multiple fsyncs, and in this case we don't want to clear the
|
|
* file extent range because it's just the log.
|
|
*/
|
|
if (root == BTRFS_I(inode)->root) {
|
|
ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
|
|
clear_start, clear_len);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (del_item)
|
|
last_size = found_key.offset;
|
|
else
|
|
last_size = new_size;
|
|
if (del_item) {
|
|
if (!pending_del_nr) {
|
|
/* no pending yet, add ourselves */
|
|
pending_del_slot = path->slots[0];
|
|
pending_del_nr = 1;
|
|
} else if (pending_del_nr &&
|
|
path->slots[0] + 1 == pending_del_slot) {
|
|
/* hop on the pending chunk */
|
|
pending_del_nr++;
|
|
pending_del_slot = path->slots[0];
|
|
} else {
|
|
BUG();
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
should_throttle = false;
|
|
|
|
if (found_extent &&
|
|
root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
struct btrfs_ref ref = { 0 };
|
|
|
|
bytes_deleted += extent_num_bytes;
|
|
|
|
btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
|
|
extent_start, extent_num_bytes, 0);
|
|
ref.real_root = root->root_key.objectid;
|
|
btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
|
|
ino, extent_offset);
|
|
ret = btrfs_free_extent(trans, &ref);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
break;
|
|
}
|
|
if (be_nice) {
|
|
if (btrfs_should_throttle_delayed_refs(trans))
|
|
should_throttle = true;
|
|
}
|
|
}
|
|
|
|
if (found_type == BTRFS_INODE_ITEM_KEY)
|
|
break;
|
|
|
|
if (path->slots[0] == 0 ||
|
|
path->slots[0] != pending_del_slot ||
|
|
should_throttle) {
|
|
if (pending_del_nr) {
|
|
ret = btrfs_del_items(trans, root, path,
|
|
pending_del_slot,
|
|
pending_del_nr);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
break;
|
|
}
|
|
pending_del_nr = 0;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* We can generate a lot of delayed refs, so we need to
|
|
* throttle every once and a while and make sure we're
|
|
* adding enough space to keep up with the work we are
|
|
* generating. Since we hold a transaction here we
|
|
* can't flush, and we don't want to FLUSH_LIMIT because
|
|
* we could have generated too many delayed refs to
|
|
* actually allocate, so just bail if we're short and
|
|
* let the normal reservation dance happen higher up.
|
|
*/
|
|
if (should_throttle) {
|
|
ret = btrfs_delayed_refs_rsv_refill(fs_info,
|
|
BTRFS_RESERVE_NO_FLUSH);
|
|
if (ret) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
}
|
|
goto search_again;
|
|
} else {
|
|
path->slots[0]--;
|
|
}
|
|
}
|
|
out:
|
|
if (ret >= 0 && pending_del_nr) {
|
|
int err;
|
|
|
|
err = btrfs_del_items(trans, root, path, pending_del_slot,
|
|
pending_del_nr);
|
|
if (err) {
|
|
btrfs_abort_transaction(trans, err);
|
|
ret = err;
|
|
}
|
|
}
|
|
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
ASSERT(last_size >= new_size);
|
|
if (!ret && last_size > new_size)
|
|
last_size = new_size;
|
|
btrfs_inode_safe_disk_i_size_write(inode, last_size);
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
|
|
(u64)-1, &cached_state);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* btrfs_truncate_block - read, zero a chunk and write a block
|
|
* @inode - inode that we're zeroing
|
|
* @from - the offset to start zeroing
|
|
* @len - the length to zero, 0 to zero the entire range respective to the
|
|
* offset
|
|
* @front - zero up to the offset instead of from the offset on
|
|
*
|
|
* This will find the block for the "from" offset and cow the block and zero the
|
|
* part we want to zero. This is used with truncate and hole punching.
|
|
*/
|
|
int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
|
|
int front)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
char *kaddr;
|
|
bool only_release_metadata = false;
|
|
u32 blocksize = fs_info->sectorsize;
|
|
pgoff_t index = from >> PAGE_SHIFT;
|
|
unsigned offset = from & (blocksize - 1);
|
|
struct page *page;
|
|
gfp_t mask = btrfs_alloc_write_mask(mapping);
|
|
size_t write_bytes = blocksize;
|
|
int ret = 0;
|
|
u64 block_start;
|
|
u64 block_end;
|
|
|
|
if (IS_ALIGNED(offset, blocksize) &&
|
|
(!len || IS_ALIGNED(len, blocksize)))
|
|
goto out;
|
|
|
|
block_start = round_down(from, blocksize);
|
|
block_end = block_start + blocksize - 1;
|
|
|
|
ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
|
|
block_start, blocksize);
|
|
if (ret < 0) {
|
|
if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
|
|
&write_bytes) > 0) {
|
|
/* For nocow case, no need to reserve data space */
|
|
only_release_metadata = true;
|
|
} else {
|
|
goto out;
|
|
}
|
|
}
|
|
ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
|
|
if (ret < 0) {
|
|
if (!only_release_metadata)
|
|
btrfs_free_reserved_data_space(BTRFS_I(inode),
|
|
data_reserved, block_start, blocksize);
|
|
goto out;
|
|
}
|
|
again:
|
|
page = find_or_create_page(mapping, index, mask);
|
|
if (!page) {
|
|
btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
|
|
block_start, blocksize, true);
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (!PageUptodate(page)) {
|
|
ret = btrfs_readpage(NULL, page);
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
if (!PageUptodate(page)) {
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
wait_on_page_writeback(page);
|
|
|
|
lock_extent_bits(io_tree, block_start, block_end, &cached_state);
|
|
set_page_extent_mapped(page);
|
|
|
|
ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
|
|
if (ordered) {
|
|
unlock_extent_cached(io_tree, block_start, block_end,
|
|
&cached_state);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
|
|
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
|
|
0, 0, &cached_state);
|
|
|
|
ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
|
|
&cached_state);
|
|
if (ret) {
|
|
unlock_extent_cached(io_tree, block_start, block_end,
|
|
&cached_state);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (offset != blocksize) {
|
|
if (!len)
|
|
len = blocksize - offset;
|
|
kaddr = kmap(page);
|
|
if (front)
|
|
memset(kaddr + (block_start - page_offset(page)),
|
|
0, offset);
|
|
else
|
|
memset(kaddr + (block_start - page_offset(page)) + offset,
|
|
0, len);
|
|
flush_dcache_page(page);
|
|
kunmap(page);
|
|
}
|
|
ClearPageChecked(page);
|
|
set_page_dirty(page);
|
|
unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
|
|
|
|
if (only_release_metadata)
|
|
set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
|
|
block_end, EXTENT_NORESERVE, NULL, NULL,
|
|
GFP_NOFS);
|
|
|
|
out_unlock:
|
|
if (ret) {
|
|
if (only_release_metadata)
|
|
btrfs_delalloc_release_metadata(BTRFS_I(inode),
|
|
blocksize, true);
|
|
else
|
|
btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
|
|
block_start, blocksize, true);
|
|
}
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
out:
|
|
if (only_release_metadata)
|
|
btrfs_check_nocow_unlock(BTRFS_I(inode));
|
|
extent_changeset_free(data_reserved);
|
|
return ret;
|
|
}
|
|
|
|
static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
|
|
u64 offset, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
/*
|
|
* Still need to make sure the inode looks like it's been updated so
|
|
* that any holes get logged if we fsync.
|
|
*/
|
|
if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
|
|
BTRFS_I(inode)->last_trans = fs_info->generation;
|
|
BTRFS_I(inode)->last_sub_trans = root->log_transid;
|
|
BTRFS_I(inode)->last_log_commit = root->last_log_commit;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 1 - for the one we're dropping
|
|
* 1 - for the one we're adding
|
|
* 1 - for updating the inode.
|
|
*/
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
|
|
offset, 0, 0, len, 0, len, 0, 0, 0);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
else
|
|
btrfs_update_inode(trans, root, inode);
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function puts in dummy file extents for the area we're creating a hole
|
|
* for. So if we are truncating this file to a larger size we need to insert
|
|
* these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
|
|
* the range between oldsize and size
|
|
*/
|
|
int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map *em = NULL;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
|
|
u64 block_end = ALIGN(size, fs_info->sectorsize);
|
|
u64 last_byte;
|
|
u64 cur_offset;
|
|
u64 hole_size;
|
|
int err = 0;
|
|
|
|
/*
|
|
* If our size started in the middle of a block we need to zero out the
|
|
* rest of the block before we expand the i_size, otherwise we could
|
|
* expose stale data.
|
|
*/
|
|
err = btrfs_truncate_block(inode, oldsize, 0, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
if (size <= hole_start)
|
|
return 0;
|
|
|
|
btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
|
|
block_end - 1, &cached_state);
|
|
cur_offset = hole_start;
|
|
while (1) {
|
|
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
|
|
block_end - cur_offset);
|
|
if (IS_ERR(em)) {
|
|
err = PTR_ERR(em);
|
|
em = NULL;
|
|
break;
|
|
}
|
|
last_byte = min(extent_map_end(em), block_end);
|
|
last_byte = ALIGN(last_byte, fs_info->sectorsize);
|
|
hole_size = last_byte - cur_offset;
|
|
|
|
if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
|
|
struct extent_map *hole_em;
|
|
|
|
err = maybe_insert_hole(root, inode, cur_offset,
|
|
hole_size);
|
|
if (err)
|
|
break;
|
|
|
|
err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
|
|
cur_offset, hole_size);
|
|
if (err)
|
|
break;
|
|
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
|
|
cur_offset + hole_size - 1, 0);
|
|
hole_em = alloc_extent_map();
|
|
if (!hole_em) {
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
goto next;
|
|
}
|
|
hole_em->start = cur_offset;
|
|
hole_em->len = hole_size;
|
|
hole_em->orig_start = cur_offset;
|
|
|
|
hole_em->block_start = EXTENT_MAP_HOLE;
|
|
hole_em->block_len = 0;
|
|
hole_em->orig_block_len = 0;
|
|
hole_em->ram_bytes = hole_size;
|
|
hole_em->compress_type = BTRFS_COMPRESS_NONE;
|
|
hole_em->generation = fs_info->generation;
|
|
|
|
while (1) {
|
|
write_lock(&em_tree->lock);
|
|
err = add_extent_mapping(em_tree, hole_em, 1);
|
|
write_unlock(&em_tree->lock);
|
|
if (err != -EEXIST)
|
|
break;
|
|
btrfs_drop_extent_cache(BTRFS_I(inode),
|
|
cur_offset,
|
|
cur_offset +
|
|
hole_size - 1, 0);
|
|
}
|
|
free_extent_map(hole_em);
|
|
} else {
|
|
err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
|
|
cur_offset, hole_size);
|
|
if (err)
|
|
break;
|
|
}
|
|
next:
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
cur_offset = last_byte;
|
|
if (cur_offset >= block_end)
|
|
break;
|
|
}
|
|
free_extent_map(em);
|
|
unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_setsize(struct inode *inode, struct iattr *attr)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
loff_t oldsize = i_size_read(inode);
|
|
loff_t newsize = attr->ia_size;
|
|
int mask = attr->ia_valid;
|
|
int ret;
|
|
|
|
/*
|
|
* The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
|
|
* special case where we need to update the times despite not having
|
|
* these flags set. For all other operations the VFS set these flags
|
|
* explicitly if it wants a timestamp update.
|
|
*/
|
|
if (newsize != oldsize) {
|
|
inode_inc_iversion(inode);
|
|
if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
|
|
inode->i_ctime = inode->i_mtime =
|
|
current_time(inode);
|
|
}
|
|
|
|
if (newsize > oldsize) {
|
|
/*
|
|
* Don't do an expanding truncate while snapshotting is ongoing.
|
|
* This is to ensure the snapshot captures a fully consistent
|
|
* state of this file - if the snapshot captures this expanding
|
|
* truncation, it must capture all writes that happened before
|
|
* this truncation.
|
|
*/
|
|
btrfs_drew_write_lock(&root->snapshot_lock);
|
|
ret = btrfs_cont_expand(inode, oldsize, newsize);
|
|
if (ret) {
|
|
btrfs_drew_write_unlock(&root->snapshot_lock);
|
|
return ret;
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_drew_write_unlock(&root->snapshot_lock);
|
|
return PTR_ERR(trans);
|
|
}
|
|
|
|
i_size_write(inode, newsize);
|
|
btrfs_inode_safe_disk_i_size_write(inode, 0);
|
|
pagecache_isize_extended(inode, oldsize, newsize);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
btrfs_drew_write_unlock(&root->snapshot_lock);
|
|
btrfs_end_transaction(trans);
|
|
} else {
|
|
|
|
/*
|
|
* We're truncating a file that used to have good data down to
|
|
* zero. Make sure it gets into the ordered flush list so that
|
|
* any new writes get down to disk quickly.
|
|
*/
|
|
if (newsize == 0)
|
|
set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
|
|
truncate_setsize(inode, newsize);
|
|
|
|
/* Disable nonlocked read DIO to avoid the endless truncate */
|
|
btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
|
|
inode_dio_wait(inode);
|
|
btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
|
|
|
|
ret = btrfs_truncate(inode, newsize == oldsize);
|
|
if (ret && inode->i_nlink) {
|
|
int err;
|
|
|
|
/*
|
|
* Truncate failed, so fix up the in-memory size. We
|
|
* adjusted disk_i_size down as we removed extents, so
|
|
* wait for disk_i_size to be stable and then update the
|
|
* in-memory size to match.
|
|
*/
|
|
err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
if (err)
|
|
return err;
|
|
i_size_write(inode, BTRFS_I(inode)->disk_i_size);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int err;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
err = setattr_prepare(dentry, attr);
|
|
if (err)
|
|
return err;
|
|
|
|
if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
|
|
err = btrfs_setsize(inode, attr);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (attr->ia_valid) {
|
|
setattr_copy(inode, attr);
|
|
inode_inc_iversion(inode);
|
|
err = btrfs_dirty_inode(inode);
|
|
|
|
if (!err && attr->ia_valid & ATTR_MODE)
|
|
err = posix_acl_chmod(inode, inode->i_mode);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* While truncating the inode pages during eviction, we get the VFS calling
|
|
* btrfs_invalidatepage() against each page of the inode. This is slow because
|
|
* the calls to btrfs_invalidatepage() result in a huge amount of calls to
|
|
* lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
|
|
* extent_state structures over and over, wasting lots of time.
|
|
*
|
|
* Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
|
|
* those expensive operations on a per page basis and do only the ordered io
|
|
* finishing, while we release here the extent_map and extent_state structures,
|
|
* without the excessive merging and splitting.
|
|
*/
|
|
static void evict_inode_truncate_pages(struct inode *inode)
|
|
{
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct rb_node *node;
|
|
|
|
ASSERT(inode->i_state & I_FREEING);
|
|
truncate_inode_pages_final(&inode->i_data);
|
|
|
|
write_lock(&map_tree->lock);
|
|
while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
|
|
struct extent_map *em;
|
|
|
|
node = rb_first_cached(&map_tree->map);
|
|
em = rb_entry(node, struct extent_map, rb_node);
|
|
clear_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
|
|
remove_extent_mapping(map_tree, em);
|
|
free_extent_map(em);
|
|
if (need_resched()) {
|
|
write_unlock(&map_tree->lock);
|
|
cond_resched();
|
|
write_lock(&map_tree->lock);
|
|
}
|
|
}
|
|
write_unlock(&map_tree->lock);
|
|
|
|
/*
|
|
* Keep looping until we have no more ranges in the io tree.
|
|
* We can have ongoing bios started by readahead that have
|
|
* their endio callback (extent_io.c:end_bio_extent_readpage)
|
|
* still in progress (unlocked the pages in the bio but did not yet
|
|
* unlocked the ranges in the io tree). Therefore this means some
|
|
* ranges can still be locked and eviction started because before
|
|
* submitting those bios, which are executed by a separate task (work
|
|
* queue kthread), inode references (inode->i_count) were not taken
|
|
* (which would be dropped in the end io callback of each bio).
|
|
* Therefore here we effectively end up waiting for those bios and
|
|
* anyone else holding locked ranges without having bumped the inode's
|
|
* reference count - if we don't do it, when they access the inode's
|
|
* io_tree to unlock a range it may be too late, leading to an
|
|
* use-after-free issue.
|
|
*/
|
|
spin_lock(&io_tree->lock);
|
|
while (!RB_EMPTY_ROOT(&io_tree->state)) {
|
|
struct extent_state *state;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start;
|
|
u64 end;
|
|
unsigned state_flags;
|
|
|
|
node = rb_first(&io_tree->state);
|
|
state = rb_entry(node, struct extent_state, rb_node);
|
|
start = state->start;
|
|
end = state->end;
|
|
state_flags = state->state;
|
|
spin_unlock(&io_tree->lock);
|
|
|
|
lock_extent_bits(io_tree, start, end, &cached_state);
|
|
|
|
/*
|
|
* If still has DELALLOC flag, the extent didn't reach disk,
|
|
* and its reserved space won't be freed by delayed_ref.
|
|
* So we need to free its reserved space here.
|
|
* (Refer to comment in btrfs_invalidatepage, case 2)
|
|
*
|
|
* Note, end is the bytenr of last byte, so we need + 1 here.
|
|
*/
|
|
if (state_flags & EXTENT_DELALLOC)
|
|
btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
|
|
end - start + 1);
|
|
|
|
clear_extent_bit(io_tree, start, end,
|
|
EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
|
|
&cached_state);
|
|
|
|
cond_resched();
|
|
spin_lock(&io_tree->lock);
|
|
}
|
|
spin_unlock(&io_tree->lock);
|
|
}
|
|
|
|
static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *rsv)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
|
|
int ret;
|
|
|
|
/*
|
|
* Eviction should be taking place at some place safe because of our
|
|
* delayed iputs. However the normal flushing code will run delayed
|
|
* iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
|
|
*
|
|
* We reserve the delayed_refs_extra here again because we can't use
|
|
* btrfs_start_transaction(root, 0) for the same deadlocky reason as
|
|
* above. We reserve our extra bit here because we generate a ton of
|
|
* delayed refs activity by truncating.
|
|
*
|
|
* If we cannot make our reservation we'll attempt to steal from the
|
|
* global reserve, because we really want to be able to free up space.
|
|
*/
|
|
ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
|
|
BTRFS_RESERVE_FLUSH_EVICT);
|
|
if (ret) {
|
|
/*
|
|
* Try to steal from the global reserve if there is space for
|
|
* it.
|
|
*/
|
|
if (btrfs_check_space_for_delayed_refs(fs_info) ||
|
|
btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
|
|
btrfs_warn(fs_info,
|
|
"could not allocate space for delete; will truncate on mount");
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
delayed_refs_extra = 0;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return trans;
|
|
|
|
if (delayed_refs_extra) {
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
trans->bytes_reserved = delayed_refs_extra;
|
|
btrfs_block_rsv_migrate(rsv, trans->block_rsv,
|
|
delayed_refs_extra, 1);
|
|
}
|
|
return trans;
|
|
}
|
|
|
|
void btrfs_evict_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_block_rsv *rsv;
|
|
int ret;
|
|
|
|
trace_btrfs_inode_evict(inode);
|
|
|
|
if (!root) {
|
|
clear_inode(inode);
|
|
return;
|
|
}
|
|
|
|
evict_inode_truncate_pages(inode);
|
|
|
|
if (inode->i_nlink &&
|
|
((btrfs_root_refs(&root->root_item) != 0 &&
|
|
root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
|
|
btrfs_is_free_space_inode(BTRFS_I(inode))))
|
|
goto no_delete;
|
|
|
|
if (is_bad_inode(inode))
|
|
goto no_delete;
|
|
|
|
btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
|
|
|
|
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
|
|
goto no_delete;
|
|
|
|
if (inode->i_nlink > 0) {
|
|
BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
|
|
root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
|
|
goto no_delete;
|
|
}
|
|
|
|
ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
|
|
if (ret)
|
|
goto no_delete;
|
|
|
|
rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
|
|
if (!rsv)
|
|
goto no_delete;
|
|
rsv->size = btrfs_calc_metadata_size(fs_info, 1);
|
|
rsv->failfast = 1;
|
|
|
|
btrfs_i_size_write(BTRFS_I(inode), 0);
|
|
|
|
while (1) {
|
|
trans = evict_refill_and_join(root, rsv);
|
|
if (IS_ERR(trans))
|
|
goto free_rsv;
|
|
|
|
trans->block_rsv = rsv;
|
|
|
|
ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
if (ret && ret != -ENOSPC && ret != -EAGAIN)
|
|
goto free_rsv;
|
|
else if (!ret)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Errors here aren't a big deal, it just means we leave orphan items in
|
|
* the tree. They will be cleaned up on the next mount. If the inode
|
|
* number gets reused, cleanup deletes the orphan item without doing
|
|
* anything, and unlink reuses the existing orphan item.
|
|
*
|
|
* If it turns out that we are dropping too many of these, we might want
|
|
* to add a mechanism for retrying these after a commit.
|
|
*/
|
|
trans = evict_refill_and_join(root, rsv);
|
|
if (!IS_ERR(trans)) {
|
|
trans->block_rsv = rsv;
|
|
btrfs_orphan_del(trans, BTRFS_I(inode));
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
|
|
if (!(root == fs_info->tree_root ||
|
|
root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
|
|
btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
|
|
|
|
free_rsv:
|
|
btrfs_free_block_rsv(fs_info, rsv);
|
|
no_delete:
|
|
/*
|
|
* If we didn't successfully delete, the orphan item will still be in
|
|
* the tree and we'll retry on the next mount. Again, we might also want
|
|
* to retry these periodically in the future.
|
|
*/
|
|
btrfs_remove_delayed_node(BTRFS_I(inode));
|
|
clear_inode(inode);
|
|
}
|
|
|
|
/*
|
|
* Return the key found in the dir entry in the location pointer, fill @type
|
|
* with BTRFS_FT_*, and return 0.
|
|
*
|
|
* If no dir entries were found, returns -ENOENT.
|
|
* If found a corrupted location in dir entry, returns -EUCLEAN.
|
|
*/
|
|
static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
|
|
struct btrfs_key *location, u8 *type)
|
|
{
|
|
const char *name = dentry->d_name.name;
|
|
int namelen = dentry->d_name.len;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
|
|
name, namelen, 0);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
ret = di ? PTR_ERR(di) : -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
|
|
if (location->type != BTRFS_INODE_ITEM_KEY &&
|
|
location->type != BTRFS_ROOT_ITEM_KEY) {
|
|
ret = -EUCLEAN;
|
|
btrfs_warn(root->fs_info,
|
|
"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
|
|
__func__, name, btrfs_ino(BTRFS_I(dir)),
|
|
location->objectid, location->type, location->offset);
|
|
}
|
|
if (!ret)
|
|
*type = btrfs_dir_type(path->nodes[0], di);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* when we hit a tree root in a directory, the btrfs part of the inode
|
|
* needs to be changed to reflect the root directory of the tree root. This
|
|
* is kind of like crossing a mount point.
|
|
*/
|
|
static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
|
|
struct inode *dir,
|
|
struct dentry *dentry,
|
|
struct btrfs_key *location,
|
|
struct btrfs_root **sub_root)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_root_ref *ref;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = -ENOENT;
|
|
key.objectid = BTRFS_I(dir)->root->root_key.objectid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = location->objectid;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret) {
|
|
if (ret < 0)
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
|
|
if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
|
|
btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
|
|
goto out;
|
|
|
|
ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
|
|
(unsigned long)(ref + 1),
|
|
dentry->d_name.len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
btrfs_release_path(path);
|
|
|
|
new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
|
|
if (IS_ERR(new_root)) {
|
|
err = PTR_ERR(new_root);
|
|
goto out;
|
|
}
|
|
|
|
*sub_root = new_root;
|
|
location->objectid = btrfs_root_dirid(&new_root->root_item);
|
|
location->type = BTRFS_INODE_ITEM_KEY;
|
|
location->offset = 0;
|
|
err = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return err;
|
|
}
|
|
|
|
static void inode_tree_add(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_inode *entry;
|
|
struct rb_node **p;
|
|
struct rb_node *parent;
|
|
struct rb_node *new = &BTRFS_I(inode)->rb_node;
|
|
u64 ino = btrfs_ino(BTRFS_I(inode));
|
|
|
|
if (inode_unhashed(inode))
|
|
return;
|
|
parent = NULL;
|
|
spin_lock(&root->inode_lock);
|
|
p = &root->inode_tree.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_inode, rb_node);
|
|
|
|
if (ino < btrfs_ino(entry))
|
|
p = &parent->rb_left;
|
|
else if (ino > btrfs_ino(entry))
|
|
p = &parent->rb_right;
|
|
else {
|
|
WARN_ON(!(entry->vfs_inode.i_state &
|
|
(I_WILL_FREE | I_FREEING)));
|
|
rb_replace_node(parent, new, &root->inode_tree);
|
|
RB_CLEAR_NODE(parent);
|
|
spin_unlock(&root->inode_lock);
|
|
return;
|
|
}
|
|
}
|
|
rb_link_node(new, parent, p);
|
|
rb_insert_color(new, &root->inode_tree);
|
|
spin_unlock(&root->inode_lock);
|
|
}
|
|
|
|
static void inode_tree_del(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int empty = 0;
|
|
|
|
spin_lock(&root->inode_lock);
|
|
if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
|
|
rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
|
|
RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
|
|
empty = RB_EMPTY_ROOT(&root->inode_tree);
|
|
}
|
|
spin_unlock(&root->inode_lock);
|
|
|
|
if (empty && btrfs_root_refs(&root->root_item) == 0) {
|
|
spin_lock(&root->inode_lock);
|
|
empty = RB_EMPTY_ROOT(&root->inode_tree);
|
|
spin_unlock(&root->inode_lock);
|
|
if (empty)
|
|
btrfs_add_dead_root(root);
|
|
}
|
|
}
|
|
|
|
|
|
static int btrfs_init_locked_inode(struct inode *inode, void *p)
|
|
{
|
|
struct btrfs_iget_args *args = p;
|
|
|
|
inode->i_ino = args->ino;
|
|
BTRFS_I(inode)->location.objectid = args->ino;
|
|
BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
|
|
BTRFS_I(inode)->location.offset = 0;
|
|
BTRFS_I(inode)->root = btrfs_grab_root(args->root);
|
|
BUG_ON(args->root && !BTRFS_I(inode)->root);
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_find_actor(struct inode *inode, void *opaque)
|
|
{
|
|
struct btrfs_iget_args *args = opaque;
|
|
|
|
return args->ino == BTRFS_I(inode)->location.objectid &&
|
|
args->root == BTRFS_I(inode)->root;
|
|
}
|
|
|
|
static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct inode *inode;
|
|
struct btrfs_iget_args args;
|
|
unsigned long hashval = btrfs_inode_hash(ino, root);
|
|
|
|
args.ino = ino;
|
|
args.root = root;
|
|
|
|
inode = iget5_locked(s, hashval, btrfs_find_actor,
|
|
btrfs_init_locked_inode,
|
|
(void *)&args);
|
|
return inode;
|
|
}
|
|
|
|
/*
|
|
* Get an inode object given its inode number and corresponding root.
|
|
* Path can be preallocated to prevent recursing back to iget through
|
|
* allocator. NULL is also valid but may require an additional allocation
|
|
* later.
|
|
*/
|
|
struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
|
|
struct btrfs_root *root, struct btrfs_path *path)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = btrfs_iget_locked(s, ino, root);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (inode->i_state & I_NEW) {
|
|
int ret;
|
|
|
|
ret = btrfs_read_locked_inode(inode, path);
|
|
if (!ret) {
|
|
inode_tree_add(inode);
|
|
unlock_new_inode(inode);
|
|
} else {
|
|
iget_failed(inode);
|
|
/*
|
|
* ret > 0 can come from btrfs_search_slot called by
|
|
* btrfs_read_locked_inode, this means the inode item
|
|
* was not found.
|
|
*/
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
inode = ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
return inode;
|
|
}
|
|
|
|
struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
|
|
{
|
|
return btrfs_iget_path(s, ino, root, NULL);
|
|
}
|
|
|
|
static struct inode *new_simple_dir(struct super_block *s,
|
|
struct btrfs_key *key,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct inode *inode = new_inode(s);
|
|
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
BTRFS_I(inode)->root = btrfs_grab_root(root);
|
|
memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
|
|
set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
|
|
|
|
inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
|
|
/*
|
|
* We only need lookup, the rest is read-only and there's no inode
|
|
* associated with the dentry
|
|
*/
|
|
inode->i_op = &simple_dir_inode_operations;
|
|
inode->i_opflags &= ~IOP_XATTR;
|
|
inode->i_fop = &simple_dir_operations;
|
|
inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
|
|
inode->i_mtime = current_time(inode);
|
|
inode->i_atime = inode->i_mtime;
|
|
inode->i_ctime = inode->i_mtime;
|
|
BTRFS_I(inode)->i_otime = inode->i_mtime;
|
|
|
|
return inode;
|
|
}
|
|
|
|
static inline u8 btrfs_inode_type(struct inode *inode)
|
|
{
|
|
/*
|
|
* Compile-time asserts that generic FT_* types still match
|
|
* BTRFS_FT_* types
|
|
*/
|
|
BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
|
|
BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
|
|
BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
|
|
BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
|
|
BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
|
|
BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
|
|
BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
|
|
BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
|
|
|
|
return fs_umode_to_ftype(inode->i_mode);
|
|
}
|
|
|
|
struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct inode *inode;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_root *sub_root = root;
|
|
struct btrfs_key location;
|
|
u8 di_type = 0;
|
|
int ret = 0;
|
|
|
|
if (dentry->d_name.len > BTRFS_NAME_LEN)
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
|
|
ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
if (location.type == BTRFS_INODE_ITEM_KEY) {
|
|
inode = btrfs_iget(dir->i_sb, location.objectid, root);
|
|
if (IS_ERR(inode))
|
|
return inode;
|
|
|
|
/* Do extra check against inode mode with di_type */
|
|
if (btrfs_inode_type(inode) != di_type) {
|
|
btrfs_crit(fs_info,
|
|
"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
|
|
inode->i_mode, btrfs_inode_type(inode),
|
|
di_type);
|
|
iput(inode);
|
|
return ERR_PTR(-EUCLEAN);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
ret = fixup_tree_root_location(fs_info, dir, dentry,
|
|
&location, &sub_root);
|
|
if (ret < 0) {
|
|
if (ret != -ENOENT)
|
|
inode = ERR_PTR(ret);
|
|
else
|
|
inode = new_simple_dir(dir->i_sb, &location, sub_root);
|
|
} else {
|
|
inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
|
|
}
|
|
if (root != sub_root)
|
|
btrfs_put_root(sub_root);
|
|
|
|
if (!IS_ERR(inode) && root != sub_root) {
|
|
down_read(&fs_info->cleanup_work_sem);
|
|
if (!sb_rdonly(inode->i_sb))
|
|
ret = btrfs_orphan_cleanup(sub_root);
|
|
up_read(&fs_info->cleanup_work_sem);
|
|
if (ret) {
|
|
iput(inode);
|
|
inode = ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
return inode;
|
|
}
|
|
|
|
static int btrfs_dentry_delete(const struct dentry *dentry)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct inode *inode = d_inode(dentry);
|
|
|
|
if (!inode && !IS_ROOT(dentry))
|
|
inode = d_inode(dentry->d_parent);
|
|
|
|
if (inode) {
|
|
root = BTRFS_I(inode)->root;
|
|
if (btrfs_root_refs(&root->root_item) == 0)
|
|
return 1;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
|
|
unsigned int flags)
|
|
{
|
|
struct inode *inode = btrfs_lookup_dentry(dir, dentry);
|
|
|
|
if (inode == ERR_PTR(-ENOENT))
|
|
inode = NULL;
|
|
return d_splice_alias(inode, dentry);
|
|
}
|
|
|
|
/*
|
|
* All this infrastructure exists because dir_emit can fault, and we are holding
|
|
* the tree lock when doing readdir. For now just allocate a buffer and copy
|
|
* our information into that, and then dir_emit from the buffer. This is
|
|
* similar to what NFS does, only we don't keep the buffer around in pagecache
|
|
* because I'm afraid I'll mess that up. Long term we need to make filldir do
|
|
* copy_to_user_inatomic so we don't have to worry about page faulting under the
|
|
* tree lock.
|
|
*/
|
|
static int btrfs_opendir(struct inode *inode, struct file *file)
|
|
{
|
|
struct btrfs_file_private *private;
|
|
|
|
private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
|
|
if (!private)
|
|
return -ENOMEM;
|
|
private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!private->filldir_buf) {
|
|
kfree(private);
|
|
return -ENOMEM;
|
|
}
|
|
file->private_data = private;
|
|
return 0;
|
|
}
|
|
|
|
struct dir_entry {
|
|
u64 ino;
|
|
u64 offset;
|
|
unsigned type;
|
|
int name_len;
|
|
};
|
|
|
|
static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
|
|
{
|
|
while (entries--) {
|
|
struct dir_entry *entry = addr;
|
|
char *name = (char *)(entry + 1);
|
|
|
|
ctx->pos = get_unaligned(&entry->offset);
|
|
if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
|
|
get_unaligned(&entry->ino),
|
|
get_unaligned(&entry->type)))
|
|
return 1;
|
|
addr += sizeof(struct dir_entry) +
|
|
get_unaligned(&entry->name_len);
|
|
ctx->pos++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_file_private *private = file->private_data;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_path *path;
|
|
void *addr;
|
|
struct list_head ins_list;
|
|
struct list_head del_list;
|
|
int ret;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
char *name_ptr;
|
|
int name_len;
|
|
int entries = 0;
|
|
int total_len = 0;
|
|
bool put = false;
|
|
struct btrfs_key location;
|
|
|
|
if (!dir_emit_dots(file, ctx))
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
addr = private->filldir_buf;
|
|
path->reada = READA_FORWARD;
|
|
|
|
INIT_LIST_HEAD(&ins_list);
|
|
INIT_LIST_HEAD(&del_list);
|
|
put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
|
|
|
|
again:
|
|
key.type = BTRFS_DIR_INDEX_KEY;
|
|
key.offset = ctx->pos;
|
|
key.objectid = btrfs_ino(BTRFS_I(inode));
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
while (1) {
|
|
struct dir_entry *entry;
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto err;
|
|
else if (ret > 0)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
if (found_key.objectid != key.objectid)
|
|
break;
|
|
if (found_key.type != BTRFS_DIR_INDEX_KEY)
|
|
break;
|
|
if (found_key.offset < ctx->pos)
|
|
goto next;
|
|
if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
|
|
goto next;
|
|
di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
|
|
name_len = btrfs_dir_name_len(leaf, di);
|
|
if ((total_len + sizeof(struct dir_entry) + name_len) >=
|
|
PAGE_SIZE) {
|
|
btrfs_release_path(path);
|
|
ret = btrfs_filldir(private->filldir_buf, entries, ctx);
|
|
if (ret)
|
|
goto nopos;
|
|
addr = private->filldir_buf;
|
|
entries = 0;
|
|
total_len = 0;
|
|
goto again;
|
|
}
|
|
|
|
entry = addr;
|
|
put_unaligned(name_len, &entry->name_len);
|
|
name_ptr = (char *)(entry + 1);
|
|
read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
|
|
name_len);
|
|
put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
|
|
&entry->type);
|
|
btrfs_dir_item_key_to_cpu(leaf, di, &location);
|
|
put_unaligned(location.objectid, &entry->ino);
|
|
put_unaligned(found_key.offset, &entry->offset);
|
|
entries++;
|
|
addr += sizeof(struct dir_entry) + name_len;
|
|
total_len += sizeof(struct dir_entry) + name_len;
|
|
next:
|
|
path->slots[0]++;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
ret = btrfs_filldir(private->filldir_buf, entries, ctx);
|
|
if (ret)
|
|
goto nopos;
|
|
|
|
ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
|
|
if (ret)
|
|
goto nopos;
|
|
|
|
/*
|
|
* Stop new entries from being returned after we return the last
|
|
* entry.
|
|
*
|
|
* New directory entries are assigned a strictly increasing
|
|
* offset. This means that new entries created during readdir
|
|
* are *guaranteed* to be seen in the future by that readdir.
|
|
* This has broken buggy programs which operate on names as
|
|
* they're returned by readdir. Until we re-use freed offsets
|
|
* we have this hack to stop new entries from being returned
|
|
* under the assumption that they'll never reach this huge
|
|
* offset.
|
|
*
|
|
* This is being careful not to overflow 32bit loff_t unless the
|
|
* last entry requires it because doing so has broken 32bit apps
|
|
* in the past.
|
|
*/
|
|
if (ctx->pos >= INT_MAX)
|
|
ctx->pos = LLONG_MAX;
|
|
else
|
|
ctx->pos = INT_MAX;
|
|
nopos:
|
|
ret = 0;
|
|
err:
|
|
if (put)
|
|
btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is somewhat expensive, updating the tree every time the
|
|
* inode changes. But, it is most likely to find the inode in cache.
|
|
* FIXME, needs more benchmarking...there are no reasons other than performance
|
|
* to keep or drop this code.
|
|
*/
|
|
static int btrfs_dirty_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
|
|
return 0;
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret && ret == -ENOSPC) {
|
|
/* whoops, lets try again with the full transaction */
|
|
btrfs_end_transaction(trans);
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
}
|
|
btrfs_end_transaction(trans);
|
|
if (BTRFS_I(inode)->delayed_node)
|
|
btrfs_balance_delayed_items(fs_info);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is a copy of file_update_time. We need this so we can return error on
|
|
* ENOSPC for updating the inode in the case of file write and mmap writes.
|
|
*/
|
|
static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
|
|
int flags)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
bool dirty = flags & ~S_VERSION;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
if (flags & S_VERSION)
|
|
dirty |= inode_maybe_inc_iversion(inode, dirty);
|
|
if (flags & S_CTIME)
|
|
inode->i_ctime = *now;
|
|
if (flags & S_MTIME)
|
|
inode->i_mtime = *now;
|
|
if (flags & S_ATIME)
|
|
inode->i_atime = *now;
|
|
return dirty ? btrfs_dirty_inode(inode) : 0;
|
|
}
|
|
|
|
/*
|
|
* find the highest existing sequence number in a directory
|
|
* and then set the in-memory index_cnt variable to reflect
|
|
* free sequence numbers
|
|
*/
|
|
static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_key key, found_key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
key.objectid = btrfs_ino(inode);
|
|
key.type = BTRFS_DIR_INDEX_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
/* FIXME: we should be able to handle this */
|
|
if (ret == 0)
|
|
goto out;
|
|
ret = 0;
|
|
|
|
/*
|
|
* MAGIC NUMBER EXPLANATION:
|
|
* since we search a directory based on f_pos we have to start at 2
|
|
* since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
|
|
* else has to start at 2
|
|
*/
|
|
if (path->slots[0] == 0) {
|
|
inode->index_cnt = 2;
|
|
goto out;
|
|
}
|
|
|
|
path->slots[0]--;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
if (found_key.objectid != btrfs_ino(inode) ||
|
|
found_key.type != BTRFS_DIR_INDEX_KEY) {
|
|
inode->index_cnt = 2;
|
|
goto out;
|
|
}
|
|
|
|
inode->index_cnt = found_key.offset + 1;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to find a free sequence number in a given directory. This current
|
|
* code is very simple, later versions will do smarter things in the btree
|
|
*/
|
|
int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (dir->index_cnt == (u64)-1) {
|
|
ret = btrfs_inode_delayed_dir_index_count(dir);
|
|
if (ret) {
|
|
ret = btrfs_set_inode_index_count(dir);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
*index = dir->index_cnt;
|
|
dir->index_cnt++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_insert_inode_locked(struct inode *inode)
|
|
{
|
|
struct btrfs_iget_args args;
|
|
|
|
args.ino = BTRFS_I(inode)->location.objectid;
|
|
args.root = BTRFS_I(inode)->root;
|
|
|
|
return insert_inode_locked4(inode,
|
|
btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
|
|
btrfs_find_actor, &args);
|
|
}
|
|
|
|
/*
|
|
* Inherit flags from the parent inode.
|
|
*
|
|
* Currently only the compression flags and the cow flags are inherited.
|
|
*/
|
|
static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
|
|
{
|
|
unsigned int flags;
|
|
|
|
if (!dir)
|
|
return;
|
|
|
|
flags = BTRFS_I(dir)->flags;
|
|
|
|
if (flags & BTRFS_INODE_NOCOMPRESS) {
|
|
BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
|
|
} else if (flags & BTRFS_INODE_COMPRESS) {
|
|
BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
|
|
}
|
|
|
|
if (flags & BTRFS_INODE_NODATACOW) {
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
|
|
if (S_ISREG(inode->i_mode))
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
|
|
}
|
|
|
|
btrfs_sync_inode_flags_to_i_flags(inode);
|
|
}
|
|
|
|
static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *dir,
|
|
const char *name, int name_len,
|
|
u64 ref_objectid, u64 objectid,
|
|
umode_t mode, u64 *index)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct inode *inode;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_key *location;
|
|
struct btrfs_path *path;
|
|
struct btrfs_inode_ref *ref;
|
|
struct btrfs_key key[2];
|
|
u32 sizes[2];
|
|
int nitems = name ? 2 : 1;
|
|
unsigned long ptr;
|
|
unsigned int nofs_flag;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
nofs_flag = memalloc_nofs_save();
|
|
inode = new_inode(fs_info->sb);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
if (!inode) {
|
|
btrfs_free_path(path);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* O_TMPFILE, set link count to 0, so that after this point,
|
|
* we fill in an inode item with the correct link count.
|
|
*/
|
|
if (!name)
|
|
set_nlink(inode, 0);
|
|
|
|
/*
|
|
* we have to initialize this early, so we can reclaim the inode
|
|
* number if we fail afterwards in this function.
|
|
*/
|
|
inode->i_ino = objectid;
|
|
|
|
if (dir && name) {
|
|
trace_btrfs_inode_request(dir);
|
|
|
|
ret = btrfs_set_inode_index(BTRFS_I(dir), index);
|
|
if (ret) {
|
|
btrfs_free_path(path);
|
|
iput(inode);
|
|
return ERR_PTR(ret);
|
|
}
|
|
} else if (dir) {
|
|
*index = 0;
|
|
}
|
|
/*
|
|
* index_cnt is ignored for everything but a dir,
|
|
* btrfs_set_inode_index_count has an explanation for the magic
|
|
* number
|
|
*/
|
|
BTRFS_I(inode)->index_cnt = 2;
|
|
BTRFS_I(inode)->dir_index = *index;
|
|
BTRFS_I(inode)->root = btrfs_grab_root(root);
|
|
BTRFS_I(inode)->generation = trans->transid;
|
|
inode->i_generation = BTRFS_I(inode)->generation;
|
|
|
|
/*
|
|
* We could have gotten an inode number from somebody who was fsynced
|
|
* and then removed in this same transaction, so let's just set full
|
|
* sync since it will be a full sync anyway and this will blow away the
|
|
* old info in the log.
|
|
*/
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
|
|
|
|
key[0].objectid = objectid;
|
|
key[0].type = BTRFS_INODE_ITEM_KEY;
|
|
key[0].offset = 0;
|
|
|
|
sizes[0] = sizeof(struct btrfs_inode_item);
|
|
|
|
if (name) {
|
|
/*
|
|
* Start new inodes with an inode_ref. This is slightly more
|
|
* efficient for small numbers of hard links since they will
|
|
* be packed into one item. Extended refs will kick in if we
|
|
* add more hard links than can fit in the ref item.
|
|
*/
|
|
key[1].objectid = objectid;
|
|
key[1].type = BTRFS_INODE_REF_KEY;
|
|
key[1].offset = ref_objectid;
|
|
|
|
sizes[1] = name_len + sizeof(*ref);
|
|
}
|
|
|
|
location = &BTRFS_I(inode)->location;
|
|
location->objectid = objectid;
|
|
location->offset = 0;
|
|
location->type = BTRFS_INODE_ITEM_KEY;
|
|
|
|
ret = btrfs_insert_inode_locked(inode);
|
|
if (ret < 0) {
|
|
iput(inode);
|
|
goto fail;
|
|
}
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
|
|
if (ret != 0)
|
|
goto fail_unlock;
|
|
|
|
inode_init_owner(inode, dir, mode);
|
|
inode_set_bytes(inode, 0);
|
|
|
|
inode->i_mtime = current_time(inode);
|
|
inode->i_atime = inode->i_mtime;
|
|
inode->i_ctime = inode->i_mtime;
|
|
BTRFS_I(inode)->i_otime = inode->i_mtime;
|
|
|
|
inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_inode_item);
|
|
memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
|
|
sizeof(*inode_item));
|
|
fill_inode_item(trans, path->nodes[0], inode_item, inode);
|
|
|
|
if (name) {
|
|
ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
|
|
struct btrfs_inode_ref);
|
|
btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
|
|
btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
|
|
ptr = (unsigned long)(ref + 1);
|
|
write_extent_buffer(path->nodes[0], name, ptr, name_len);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_free_path(path);
|
|
|
|
btrfs_inherit_iflags(inode, dir);
|
|
|
|
if (S_ISREG(mode)) {
|
|
if (btrfs_test_opt(fs_info, NODATASUM))
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
|
|
if (btrfs_test_opt(fs_info, NODATACOW))
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
|
|
BTRFS_INODE_NODATASUM;
|
|
}
|
|
|
|
inode_tree_add(inode);
|
|
|
|
trace_btrfs_inode_new(inode);
|
|
btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
|
|
|
|
btrfs_update_root_times(trans, root);
|
|
|
|
ret = btrfs_inode_inherit_props(trans, inode, dir);
|
|
if (ret)
|
|
btrfs_err(fs_info,
|
|
"error inheriting props for ino %llu (root %llu): %d",
|
|
btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
|
|
|
|
return inode;
|
|
|
|
fail_unlock:
|
|
discard_new_inode(inode);
|
|
fail:
|
|
if (dir && name)
|
|
BTRFS_I(dir)->index_cnt--;
|
|
btrfs_free_path(path);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/*
|
|
* utility function to add 'inode' into 'parent_inode' with
|
|
* a give name and a given sequence number.
|
|
* if 'add_backref' is true, also insert a backref from the
|
|
* inode to the parent directory.
|
|
*/
|
|
int btrfs_add_link(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
|
|
const char *name, int name_len, int add_backref, u64 index)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_key key;
|
|
struct btrfs_root *root = parent_inode->root;
|
|
u64 ino = btrfs_ino(inode);
|
|
u64 parent_ino = btrfs_ino(parent_inode);
|
|
|
|
if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
memcpy(&key, &inode->root->root_key, sizeof(key));
|
|
} else {
|
|
key.objectid = ino;
|
|
key.type = BTRFS_INODE_ITEM_KEY;
|
|
key.offset = 0;
|
|
}
|
|
|
|
if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
ret = btrfs_add_root_ref(trans, key.objectid,
|
|
root->root_key.objectid, parent_ino,
|
|
index, name, name_len);
|
|
} else if (add_backref) {
|
|
ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
|
|
parent_ino, index);
|
|
}
|
|
|
|
/* Nothing to clean up yet */
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
|
|
btrfs_inode_type(&inode->vfs_inode), index);
|
|
if (ret == -EEXIST || ret == -EOVERFLOW)
|
|
goto fail_dir_item;
|
|
else if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
|
|
name_len * 2);
|
|
inode_inc_iversion(&parent_inode->vfs_inode);
|
|
/*
|
|
* If we are replaying a log tree, we do not want to update the mtime
|
|
* and ctime of the parent directory with the current time, since the
|
|
* log replay procedure is responsible for setting them to their correct
|
|
* values (the ones it had when the fsync was done).
|
|
*/
|
|
if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
|
|
struct timespec64 now = current_time(&parent_inode->vfs_inode);
|
|
|
|
parent_inode->vfs_inode.i_mtime = now;
|
|
parent_inode->vfs_inode.i_ctime = now;
|
|
}
|
|
ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
|
|
fail_dir_item:
|
|
if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
u64 local_index;
|
|
int err;
|
|
err = btrfs_del_root_ref(trans, key.objectid,
|
|
root->root_key.objectid, parent_ino,
|
|
&local_index, name, name_len);
|
|
if (err)
|
|
btrfs_abort_transaction(trans, err);
|
|
} else if (add_backref) {
|
|
u64 local_index;
|
|
int err;
|
|
|
|
err = btrfs_del_inode_ref(trans, root, name, name_len,
|
|
ino, parent_ino, &local_index);
|
|
if (err)
|
|
btrfs_abort_transaction(trans, err);
|
|
}
|
|
|
|
/* Return the original error code */
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *dir, struct dentry *dentry,
|
|
struct btrfs_inode *inode, int backref, u64 index)
|
|
{
|
|
int err = btrfs_add_link(trans, dir, inode,
|
|
dentry->d_name.name, dentry->d_name.len,
|
|
backref, index);
|
|
if (err > 0)
|
|
err = -EEXIST;
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
|
|
umode_t mode, dev_t rdev)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = NULL;
|
|
int err;
|
|
u64 objectid;
|
|
u64 index = 0;
|
|
|
|
/*
|
|
* 2 for inode item and ref
|
|
* 2 for dir items
|
|
* 1 for xattr if selinux is on
|
|
*/
|
|
trans = btrfs_start_transaction(root, 5);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
err = btrfs_find_free_ino(root, &objectid);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
|
|
dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
|
|
mode, &index);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If the active LSM wants to access the inode during
|
|
* d_instantiate it needs these. Smack checks to see
|
|
* if the filesystem supports xattrs by looking at the
|
|
* ops vector.
|
|
*/
|
|
inode->i_op = &btrfs_special_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
|
|
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
|
|
0, index);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
btrfs_update_inode(trans, root, inode);
|
|
d_instantiate_new(dentry, inode);
|
|
|
|
out_unlock:
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
if (err && inode) {
|
|
inode_dec_link_count(inode);
|
|
discard_new_inode(inode);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_create(struct inode *dir, struct dentry *dentry,
|
|
umode_t mode, bool excl)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = NULL;
|
|
int err;
|
|
u64 objectid;
|
|
u64 index = 0;
|
|
|
|
/*
|
|
* 2 for inode item and ref
|
|
* 2 for dir items
|
|
* 1 for xattr if selinux is on
|
|
*/
|
|
trans = btrfs_start_transaction(root, 5);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
err = btrfs_find_free_ino(root, &objectid);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
|
|
dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
|
|
mode, &index);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* If the active LSM wants to access the inode during
|
|
* d_instantiate it needs these. Smack checks to see
|
|
* if the filesystem supports xattrs by looking at the
|
|
* ops vector.
|
|
*/
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
|
|
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
err = btrfs_update_inode(trans, root, inode);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
|
|
0, index);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
|
|
d_instantiate_new(dentry, inode);
|
|
|
|
out_unlock:
|
|
btrfs_end_transaction(trans);
|
|
if (err && inode) {
|
|
inode_dec_link_count(inode);
|
|
discard_new_inode(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = d_inode(old_dentry);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
u64 index;
|
|
int err;
|
|
int drop_inode = 0;
|
|
|
|
/* do not allow sys_link's with other subvols of the same device */
|
|
if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
|
|
return -EXDEV;
|
|
|
|
if (inode->i_nlink >= BTRFS_LINK_MAX)
|
|
return -EMLINK;
|
|
|
|
err = btrfs_set_inode_index(BTRFS_I(dir), &index);
|
|
if (err)
|
|
goto fail;
|
|
|
|
/*
|
|
* 2 items for inode and inode ref
|
|
* 2 items for dir items
|
|
* 1 item for parent inode
|
|
* 1 item for orphan item deletion if O_TMPFILE
|
|
*/
|
|
trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
|
|
if (IS_ERR(trans)) {
|
|
err = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
/* There are several dir indexes for this inode, clear the cache. */
|
|
BTRFS_I(inode)->dir_index = 0ULL;
|
|
inc_nlink(inode);
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
ihold(inode);
|
|
set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
|
|
|
|
err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
|
|
1, index);
|
|
|
|
if (err) {
|
|
drop_inode = 1;
|
|
} else {
|
|
struct dentry *parent = dentry->d_parent;
|
|
int ret;
|
|
|
|
err = btrfs_update_inode(trans, root, inode);
|
|
if (err)
|
|
goto fail;
|
|
if (inode->i_nlink == 1) {
|
|
/*
|
|
* If new hard link count is 1, it's a file created
|
|
* with open(2) O_TMPFILE flag.
|
|
*/
|
|
err = btrfs_orphan_del(trans, BTRFS_I(inode));
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
d_instantiate(dentry, inode);
|
|
ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
|
|
true, NULL);
|
|
if (ret == BTRFS_NEED_TRANS_COMMIT) {
|
|
err = btrfs_commit_transaction(trans);
|
|
trans = NULL;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
if (trans)
|
|
btrfs_end_transaction(trans);
|
|
if (drop_inode) {
|
|
inode_dec_link_count(inode);
|
|
iput(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct inode *inode = NULL;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
int err = 0;
|
|
u64 objectid = 0;
|
|
u64 index = 0;
|
|
|
|
/*
|
|
* 2 items for inode and ref
|
|
* 2 items for dir items
|
|
* 1 for xattr if selinux is on
|
|
*/
|
|
trans = btrfs_start_transaction(root, 5);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
err = btrfs_find_free_ino(root, &objectid);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
|
|
dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
|
|
S_IFDIR | mode, &index);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out_fail;
|
|
}
|
|
|
|
/* these must be set before we unlock the inode */
|
|
inode->i_op = &btrfs_dir_inode_operations;
|
|
inode->i_fop = &btrfs_dir_file_operations;
|
|
|
|
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
btrfs_i_size_write(BTRFS_I(inode), 0);
|
|
err = btrfs_update_inode(trans, root, inode);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
|
|
dentry->d_name.name,
|
|
dentry->d_name.len, 0, index);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
d_instantiate_new(dentry, inode);
|
|
|
|
out_fail:
|
|
btrfs_end_transaction(trans);
|
|
if (err && inode) {
|
|
inode_dec_link_count(inode);
|
|
discard_new_inode(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return err;
|
|
}
|
|
|
|
static noinline int uncompress_inline(struct btrfs_path *path,
|
|
struct page *page,
|
|
size_t pg_offset, u64 extent_offset,
|
|
struct btrfs_file_extent_item *item)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *leaf = path->nodes[0];
|
|
char *tmp;
|
|
size_t max_size;
|
|
unsigned long inline_size;
|
|
unsigned long ptr;
|
|
int compress_type;
|
|
|
|
WARN_ON(pg_offset != 0);
|
|
compress_type = btrfs_file_extent_compression(leaf, item);
|
|
max_size = btrfs_file_extent_ram_bytes(leaf, item);
|
|
inline_size = btrfs_file_extent_inline_item_len(leaf,
|
|
btrfs_item_nr(path->slots[0]));
|
|
tmp = kmalloc(inline_size, GFP_NOFS);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
ptr = btrfs_file_extent_inline_start(item);
|
|
|
|
read_extent_buffer(leaf, tmp, ptr, inline_size);
|
|
|
|
max_size = min_t(unsigned long, PAGE_SIZE, max_size);
|
|
ret = btrfs_decompress(compress_type, tmp, page,
|
|
extent_offset, inline_size, max_size);
|
|
|
|
/*
|
|
* decompression code contains a memset to fill in any space between the end
|
|
* of the uncompressed data and the end of max_size in case the decompressed
|
|
* data ends up shorter than ram_bytes. That doesn't cover the hole between
|
|
* the end of an inline extent and the beginning of the next block, so we
|
|
* cover that region here.
|
|
*/
|
|
|
|
if (max_size + pg_offset < PAGE_SIZE) {
|
|
char *map = kmap(page);
|
|
memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
|
|
kunmap(page);
|
|
}
|
|
kfree(tmp);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* btrfs_get_extent - Lookup the first extent overlapping a range in a file.
|
|
* @inode: file to search in
|
|
* @page: page to read extent data into if the extent is inline
|
|
* @pg_offset: offset into @page to copy to
|
|
* @start: file offset
|
|
* @len: length of range starting at @start
|
|
*
|
|
* This returns the first &struct extent_map which overlaps with the given
|
|
* range, reading it from the B-tree and caching it if necessary. Note that
|
|
* there may be more extents which overlap the given range after the returned
|
|
* extent_map.
|
|
*
|
|
* If @page is not NULL and the extent is inline, this also reads the extent
|
|
* data directly into the page and marks the extent up to date in the io_tree.
|
|
*
|
|
* Return: ERR_PTR on error, non-NULL extent_map on success.
|
|
*/
|
|
struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
|
|
struct page *page, size_t pg_offset,
|
|
u64 start, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
int ret;
|
|
int err = 0;
|
|
u64 extent_start = 0;
|
|
u64 extent_end = 0;
|
|
u64 objectid = btrfs_ino(inode);
|
|
int extent_type = -1;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_file_extent_item *item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key found_key;
|
|
struct extent_map *em = NULL;
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (em) {
|
|
if (em->start > start || em->start + em->len <= start)
|
|
free_extent_map(em);
|
|
else if (em->block_start == EXTENT_MAP_INLINE && page)
|
|
free_extent_map(em);
|
|
else
|
|
goto out;
|
|
}
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
em->start = EXTENT_MAP_HOLE;
|
|
em->orig_start = EXTENT_MAP_HOLE;
|
|
em->len = (u64)-1;
|
|
em->block_len = (u64)-1;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Chances are we'll be called again, so go ahead and do readahead */
|
|
path->reada = READA_FORWARD;
|
|
|
|
/*
|
|
* Unless we're going to uncompress the inline extent, no sleep would
|
|
* happen.
|
|
*/
|
|
path->leave_spinning = 1;
|
|
|
|
ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
if (path->slots[0] == 0)
|
|
goto not_found;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != objectid ||
|
|
found_key.type != BTRFS_EXTENT_DATA_KEY) {
|
|
/*
|
|
* If we backup past the first extent we want to move forward
|
|
* and see if there is an extent in front of us, otherwise we'll
|
|
* say there is a hole for our whole search range which can
|
|
* cause problems.
|
|
*/
|
|
extent_end = start;
|
|
goto next;
|
|
}
|
|
|
|
extent_type = btrfs_file_extent_type(leaf, item);
|
|
extent_start = found_key.offset;
|
|
extent_end = btrfs_file_extent_end(path);
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG ||
|
|
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
/* Only regular file could have regular/prealloc extent */
|
|
if (!S_ISREG(inode->vfs_inode.i_mode)) {
|
|
err = -EUCLEAN;
|
|
btrfs_crit(fs_info,
|
|
"regular/prealloc extent found for non-regular inode %llu",
|
|
btrfs_ino(inode));
|
|
goto out;
|
|
}
|
|
trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
|
|
extent_start);
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
|
|
path->slots[0],
|
|
extent_start);
|
|
}
|
|
next:
|
|
if (start >= extent_end) {
|
|
path->slots[0]++;
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
goto not_found;
|
|
}
|
|
leaf = path->nodes[0];
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != objectid ||
|
|
found_key.type != BTRFS_EXTENT_DATA_KEY)
|
|
goto not_found;
|
|
if (start + len <= found_key.offset)
|
|
goto not_found;
|
|
if (start > found_key.offset)
|
|
goto next;
|
|
|
|
/* New extent overlaps with existing one */
|
|
em->start = start;
|
|
em->orig_start = start;
|
|
em->len = found_key.offset - start;
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
goto insert;
|
|
}
|
|
|
|
btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG ||
|
|
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
goto insert;
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
unsigned long ptr;
|
|
char *map;
|
|
size_t size;
|
|
size_t extent_offset;
|
|
size_t copy_size;
|
|
|
|
if (!page)
|
|
goto out;
|
|
|
|
size = btrfs_file_extent_ram_bytes(leaf, item);
|
|
extent_offset = page_offset(page) + pg_offset - extent_start;
|
|
copy_size = min_t(u64, PAGE_SIZE - pg_offset,
|
|
size - extent_offset);
|
|
em->start = extent_start + extent_offset;
|
|
em->len = ALIGN(copy_size, fs_info->sectorsize);
|
|
em->orig_block_len = em->len;
|
|
em->orig_start = em->start;
|
|
ptr = btrfs_file_extent_inline_start(item) + extent_offset;
|
|
|
|
btrfs_set_path_blocking(path);
|
|
if (!PageUptodate(page)) {
|
|
if (btrfs_file_extent_compression(leaf, item) !=
|
|
BTRFS_COMPRESS_NONE) {
|
|
ret = uncompress_inline(path, page, pg_offset,
|
|
extent_offset, item);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
} else {
|
|
map = kmap(page);
|
|
read_extent_buffer(leaf, map + pg_offset, ptr,
|
|
copy_size);
|
|
if (pg_offset + copy_size < PAGE_SIZE) {
|
|
memset(map + pg_offset + copy_size, 0,
|
|
PAGE_SIZE - pg_offset -
|
|
copy_size);
|
|
}
|
|
kunmap(page);
|
|
}
|
|
flush_dcache_page(page);
|
|
}
|
|
set_extent_uptodate(io_tree, em->start,
|
|
extent_map_end(em) - 1, NULL, GFP_NOFS);
|
|
goto insert;
|
|
}
|
|
not_found:
|
|
em->start = start;
|
|
em->orig_start = start;
|
|
em->len = len;
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
insert:
|
|
btrfs_release_path(path);
|
|
if (em->start > start || extent_map_end(em) <= start) {
|
|
btrfs_err(fs_info,
|
|
"bad extent! em: [%llu %llu] passed [%llu %llu]",
|
|
em->start, em->len, start, len);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
err = 0;
|
|
write_lock(&em_tree->lock);
|
|
err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
|
|
write_unlock(&em_tree->lock);
|
|
out:
|
|
btrfs_free_path(path);
|
|
|
|
trace_btrfs_get_extent(root, inode, em);
|
|
|
|
if (err) {
|
|
free_extent_map(em);
|
|
return ERR_PTR(err);
|
|
}
|
|
BUG_ON(!em); /* Error is always set */
|
|
return em;
|
|
}
|
|
|
|
struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
|
|
u64 start, u64 len)
|
|
{
|
|
struct extent_map *em;
|
|
struct extent_map *hole_em = NULL;
|
|
u64 delalloc_start = start;
|
|
u64 end;
|
|
u64 delalloc_len;
|
|
u64 delalloc_end;
|
|
int err = 0;
|
|
|
|
em = btrfs_get_extent(inode, NULL, 0, start, len);
|
|
if (IS_ERR(em))
|
|
return em;
|
|
/*
|
|
* If our em maps to:
|
|
* - a hole or
|
|
* - a pre-alloc extent,
|
|
* there might actually be delalloc bytes behind it.
|
|
*/
|
|
if (em->block_start != EXTENT_MAP_HOLE &&
|
|
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
|
|
return em;
|
|
else
|
|
hole_em = em;
|
|
|
|
/* check to see if we've wrapped (len == -1 or similar) */
|
|
end = start + len;
|
|
if (end < start)
|
|
end = (u64)-1;
|
|
else
|
|
end -= 1;
|
|
|
|
em = NULL;
|
|
|
|
/* ok, we didn't find anything, lets look for delalloc */
|
|
delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
|
|
end, len, EXTENT_DELALLOC, 1);
|
|
delalloc_end = delalloc_start + delalloc_len;
|
|
if (delalloc_end < delalloc_start)
|
|
delalloc_end = (u64)-1;
|
|
|
|
/*
|
|
* We didn't find anything useful, return the original results from
|
|
* get_extent()
|
|
*/
|
|
if (delalloc_start > end || delalloc_end <= start) {
|
|
em = hole_em;
|
|
hole_em = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Adjust the delalloc_start to make sure it doesn't go backwards from
|
|
* the start they passed in
|
|
*/
|
|
delalloc_start = max(start, delalloc_start);
|
|
delalloc_len = delalloc_end - delalloc_start;
|
|
|
|
if (delalloc_len > 0) {
|
|
u64 hole_start;
|
|
u64 hole_len;
|
|
const u64 hole_end = extent_map_end(hole_em);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(hole_em);
|
|
/*
|
|
* When btrfs_get_extent can't find anything it returns one
|
|
* huge hole
|
|
*
|
|
* Make sure what it found really fits our range, and adjust to
|
|
* make sure it is based on the start from the caller
|
|
*/
|
|
if (hole_end <= start || hole_em->start > end) {
|
|
free_extent_map(hole_em);
|
|
hole_em = NULL;
|
|
} else {
|
|
hole_start = max(hole_em->start, start);
|
|
hole_len = hole_end - hole_start;
|
|
}
|
|
|
|
if (hole_em && delalloc_start > hole_start) {
|
|
/*
|
|
* Our hole starts before our delalloc, so we have to
|
|
* return just the parts of the hole that go until the
|
|
* delalloc starts
|
|
*/
|
|
em->len = min(hole_len, delalloc_start - hole_start);
|
|
em->start = hole_start;
|
|
em->orig_start = hole_start;
|
|
/*
|
|
* Don't adjust block start at all, it is fixed at
|
|
* EXTENT_MAP_HOLE
|
|
*/
|
|
em->block_start = hole_em->block_start;
|
|
em->block_len = hole_len;
|
|
if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
|
|
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
|
|
} else {
|
|
/*
|
|
* Hole is out of passed range or it starts after
|
|
* delalloc range
|
|
*/
|
|
em->start = delalloc_start;
|
|
em->len = delalloc_len;
|
|
em->orig_start = delalloc_start;
|
|
em->block_start = EXTENT_MAP_DELALLOC;
|
|
em->block_len = delalloc_len;
|
|
}
|
|
} else {
|
|
return hole_em;
|
|
}
|
|
out:
|
|
|
|
free_extent_map(hole_em);
|
|
if (err) {
|
|
free_extent_map(em);
|
|
return ERR_PTR(err);
|
|
}
|
|
return em;
|
|
}
|
|
|
|
static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
|
|
const u64 start,
|
|
const u64 len,
|
|
const u64 orig_start,
|
|
const u64 block_start,
|
|
const u64 block_len,
|
|
const u64 orig_block_len,
|
|
const u64 ram_bytes,
|
|
const int type)
|
|
{
|
|
struct extent_map *em = NULL;
|
|
int ret;
|
|
|
|
if (type != BTRFS_ORDERED_NOCOW) {
|
|
em = create_io_em(inode, start, len, orig_start, block_start,
|
|
block_len, orig_block_len, ram_bytes,
|
|
BTRFS_COMPRESS_NONE, /* compress_type */
|
|
type);
|
|
if (IS_ERR(em))
|
|
goto out;
|
|
}
|
|
ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
|
|
block_len, type);
|
|
if (ret) {
|
|
if (em) {
|
|
free_extent_map(em);
|
|
btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
|
|
}
|
|
em = ERR_PTR(ret);
|
|
}
|
|
out:
|
|
|
|
return em;
|
|
}
|
|
|
|
static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
|
|
u64 start, u64 len)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_map *em;
|
|
struct btrfs_key ins;
|
|
u64 alloc_hint;
|
|
int ret;
|
|
|
|
alloc_hint = get_extent_allocation_hint(inode, start, len);
|
|
ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
|
|
0, alloc_hint, &ins, 1, 1);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
em = btrfs_create_dio_extent(inode, start, ins.offset, start,
|
|
ins.objectid, ins.offset, ins.offset,
|
|
ins.offset, BTRFS_ORDERED_REGULAR);
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
if (IS_ERR(em))
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
|
|
1);
|
|
|
|
return em;
|
|
}
|
|
|
|
/*
|
|
* Check if we can do nocow write into the range [@offset, @offset + @len)
|
|
*
|
|
* @offset: File offset
|
|
* @len: The length to write, will be updated to the nocow writeable
|
|
* range
|
|
* @orig_start: (optional) Return the original file offset of the file extent
|
|
* @orig_len: (optional) Return the original on-disk length of the file extent
|
|
* @ram_bytes: (optional) Return the ram_bytes of the file extent
|
|
* @strict: if true, omit optimizations that might force us into unnecessary
|
|
* cow. e.g., don't trust generation number.
|
|
*
|
|
* This function will flush ordered extents in the range to ensure proper
|
|
* nocow checks for (nowait == false) case.
|
|
*
|
|
* Return:
|
|
* >0 and update @len if we can do nocow write
|
|
* 0 if we can't do nocow write
|
|
* <0 if error happened
|
|
*
|
|
* NOTE: This only checks the file extents, caller is responsible to wait for
|
|
* any ordered extents.
|
|
*/
|
|
noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
|
|
u64 *orig_start, u64 *orig_block_len,
|
|
u64 *ram_bytes, bool strict)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
u64 disk_bytenr;
|
|
u64 backref_offset;
|
|
u64 extent_end;
|
|
u64 num_bytes;
|
|
int slot;
|
|
int found_type;
|
|
bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_lookup_file_extent(NULL, root, path,
|
|
btrfs_ino(BTRFS_I(inode)), offset, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
slot = path->slots[0];
|
|
if (ret == 1) {
|
|
if (slot == 0) {
|
|
/* can't find the item, must cow */
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
slot--;
|
|
}
|
|
ret = 0;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
|
|
key.type != BTRFS_EXTENT_DATA_KEY) {
|
|
/* not our file or wrong item type, must cow */
|
|
goto out;
|
|
}
|
|
|
|
if (key.offset > offset) {
|
|
/* Wrong offset, must cow */
|
|
goto out;
|
|
}
|
|
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
found_type = btrfs_file_extent_type(leaf, fi);
|
|
if (found_type != BTRFS_FILE_EXTENT_REG &&
|
|
found_type != BTRFS_FILE_EXTENT_PREALLOC) {
|
|
/* not a regular extent, must cow */
|
|
goto out;
|
|
}
|
|
|
|
if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
|
|
goto out;
|
|
|
|
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
|
|
if (extent_end <= offset)
|
|
goto out;
|
|
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
if (disk_bytenr == 0)
|
|
goto out;
|
|
|
|
if (btrfs_file_extent_compression(leaf, fi) ||
|
|
btrfs_file_extent_encryption(leaf, fi) ||
|
|
btrfs_file_extent_other_encoding(leaf, fi))
|
|
goto out;
|
|
|
|
/*
|
|
* Do the same check as in btrfs_cross_ref_exist but without the
|
|
* unnecessary search.
|
|
*/
|
|
if (!strict &&
|
|
(btrfs_file_extent_generation(leaf, fi) <=
|
|
btrfs_root_last_snapshot(&root->root_item)))
|
|
goto out;
|
|
|
|
backref_offset = btrfs_file_extent_offset(leaf, fi);
|
|
|
|
if (orig_start) {
|
|
*orig_start = key.offset - backref_offset;
|
|
*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
}
|
|
|
|
if (btrfs_extent_readonly(fs_info, disk_bytenr))
|
|
goto out;
|
|
|
|
num_bytes = min(offset + *len, extent_end) - offset;
|
|
if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
u64 range_end;
|
|
|
|
range_end = round_up(offset + num_bytes,
|
|
root->fs_info->sectorsize) - 1;
|
|
ret = test_range_bit(io_tree, offset, range_end,
|
|
EXTENT_DELALLOC, 0, NULL);
|
|
if (ret) {
|
|
ret = -EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* look for other files referencing this extent, if we
|
|
* find any we must cow
|
|
*/
|
|
|
|
ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
|
|
key.offset - backref_offset, disk_bytenr,
|
|
strict);
|
|
if (ret) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* adjust disk_bytenr and num_bytes to cover just the bytes
|
|
* in this extent we are about to write. If there
|
|
* are any csums in that range we have to cow in order
|
|
* to keep the csums correct
|
|
*/
|
|
disk_bytenr += backref_offset;
|
|
disk_bytenr += offset - key.offset;
|
|
if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
|
|
goto out;
|
|
/*
|
|
* all of the above have passed, it is safe to overwrite this extent
|
|
* without cow
|
|
*/
|
|
*len = num_bytes;
|
|
ret = 1;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
|
|
struct extent_state **cached_state, int writing)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
int ret = 0;
|
|
|
|
while (1) {
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
cached_state);
|
|
/*
|
|
* We're concerned with the entire range that we're going to be
|
|
* doing DIO to, so we need to make sure there's no ordered
|
|
* extents in this range.
|
|
*/
|
|
ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
|
|
lockend - lockstart + 1);
|
|
|
|
/*
|
|
* We need to make sure there are no buffered pages in this
|
|
* range either, we could have raced between the invalidate in
|
|
* generic_file_direct_write and locking the extent. The
|
|
* invalidate needs to happen so that reads after a write do not
|
|
* get stale data.
|
|
*/
|
|
if (!ordered &&
|
|
(!writing || !filemap_range_has_page(inode->i_mapping,
|
|
lockstart, lockend)))
|
|
break;
|
|
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
cached_state);
|
|
|
|
if (ordered) {
|
|
/*
|
|
* If we are doing a DIO read and the ordered extent we
|
|
* found is for a buffered write, we can not wait for it
|
|
* to complete and retry, because if we do so we can
|
|
* deadlock with concurrent buffered writes on page
|
|
* locks. This happens only if our DIO read covers more
|
|
* than one extent map, if at this point has already
|
|
* created an ordered extent for a previous extent map
|
|
* and locked its range in the inode's io tree, and a
|
|
* concurrent write against that previous extent map's
|
|
* range and this range started (we unlock the ranges
|
|
* in the io tree only when the bios complete and
|
|
* buffered writes always lock pages before attempting
|
|
* to lock range in the io tree).
|
|
*/
|
|
if (writing ||
|
|
test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
else
|
|
ret = -ENOTBLK;
|
|
btrfs_put_ordered_extent(ordered);
|
|
} else {
|
|
/*
|
|
* We could trigger writeback for this range (and wait
|
|
* for it to complete) and then invalidate the pages for
|
|
* this range (through invalidate_inode_pages2_range()),
|
|
* but that can lead us to a deadlock with a concurrent
|
|
* call to readahead (a buffered read or a defrag call
|
|
* triggered a readahead) on a page lock due to an
|
|
* ordered dio extent we created before but did not have
|
|
* yet a corresponding bio submitted (whence it can not
|
|
* complete), which makes readahead wait for that
|
|
* ordered extent to complete while holding a lock on
|
|
* that page.
|
|
*/
|
|
ret = -ENOTBLK;
|
|
}
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* The callers of this must take lock_extent() */
|
|
static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
|
|
u64 len, u64 orig_start, u64 block_start,
|
|
u64 block_len, u64 orig_block_len,
|
|
u64 ram_bytes, int compress_type,
|
|
int type)
|
|
{
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
int ret;
|
|
|
|
ASSERT(type == BTRFS_ORDERED_PREALLOC ||
|
|
type == BTRFS_ORDERED_COMPRESSED ||
|
|
type == BTRFS_ORDERED_NOCOW ||
|
|
type == BTRFS_ORDERED_REGULAR);
|
|
|
|
em_tree = &inode->extent_tree;
|
|
em = alloc_extent_map();
|
|
if (!em)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
em->start = start;
|
|
em->orig_start = orig_start;
|
|
em->len = len;
|
|
em->block_len = block_len;
|
|
em->block_start = block_start;
|
|
em->orig_block_len = orig_block_len;
|
|
em->ram_bytes = ram_bytes;
|
|
em->generation = -1;
|
|
set_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
if (type == BTRFS_ORDERED_PREALLOC) {
|
|
set_bit(EXTENT_FLAG_FILLING, &em->flags);
|
|
} else if (type == BTRFS_ORDERED_COMPRESSED) {
|
|
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
em->compress_type = compress_type;
|
|
}
|
|
|
|
do {
|
|
btrfs_drop_extent_cache(inode, em->start,
|
|
em->start + em->len - 1, 0);
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 1);
|
|
write_unlock(&em_tree->lock);
|
|
/*
|
|
* The caller has taken lock_extent(), who could race with us
|
|
* to add em?
|
|
*/
|
|
} while (ret == -EEXIST);
|
|
|
|
if (ret) {
|
|
free_extent_map(em);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/* em got 2 refs now, callers needs to do free_extent_map once. */
|
|
return em;
|
|
}
|
|
|
|
|
|
static int btrfs_get_blocks_direct_read(struct extent_map *em,
|
|
struct buffer_head *bh_result,
|
|
struct inode *inode,
|
|
u64 start, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
|
|
if (em->block_start == EXTENT_MAP_HOLE ||
|
|
test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
|
|
return -ENOENT;
|
|
|
|
len = min(len, em->len - (start - em->start));
|
|
|
|
bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
|
|
inode->i_blkbits;
|
|
bh_result->b_size = len;
|
|
bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
|
|
set_buffer_mapped(bh_result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_get_blocks_direct_write(struct extent_map **map,
|
|
struct buffer_head *bh_result,
|
|
struct inode *inode,
|
|
struct btrfs_dio_data *dio_data,
|
|
u64 start, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_map *em = *map;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We don't allocate a new extent in the following cases
|
|
*
|
|
* 1) The inode is marked as NODATACOW. In this case we'll just use the
|
|
* existing extent.
|
|
* 2) The extent is marked as PREALLOC. We're good to go here and can
|
|
* just use the extent.
|
|
*
|
|
*/
|
|
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
|
|
((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
|
|
em->block_start != EXTENT_MAP_HOLE)) {
|
|
int type;
|
|
u64 block_start, orig_start, orig_block_len, ram_bytes;
|
|
|
|
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
|
|
type = BTRFS_ORDERED_PREALLOC;
|
|
else
|
|
type = BTRFS_ORDERED_NOCOW;
|
|
len = min(len, em->len - (start - em->start));
|
|
block_start = em->block_start + (start - em->start);
|
|
|
|
if (can_nocow_extent(inode, start, &len, &orig_start,
|
|
&orig_block_len, &ram_bytes, false) == 1 &&
|
|
btrfs_inc_nocow_writers(fs_info, block_start)) {
|
|
struct extent_map *em2;
|
|
|
|
em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
|
|
orig_start, block_start,
|
|
len, orig_block_len,
|
|
ram_bytes, type);
|
|
btrfs_dec_nocow_writers(fs_info, block_start);
|
|
if (type == BTRFS_ORDERED_PREALLOC) {
|
|
free_extent_map(em);
|
|
*map = em = em2;
|
|
}
|
|
|
|
if (em2 && IS_ERR(em2)) {
|
|
ret = PTR_ERR(em2);
|
|
goto out;
|
|
}
|
|
/*
|
|
* For inode marked NODATACOW or extent marked PREALLOC,
|
|
* use the existing or preallocated extent, so does not
|
|
* need to adjust btrfs_space_info's bytes_may_use.
|
|
*/
|
|
btrfs_free_reserved_data_space_noquota(fs_info, len);
|
|
goto skip_cow;
|
|
}
|
|
}
|
|
|
|
/* this will cow the extent */
|
|
len = bh_result->b_size;
|
|
free_extent_map(em);
|
|
*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out;
|
|
}
|
|
|
|
len = min(len, em->len - (start - em->start));
|
|
|
|
skip_cow:
|
|
bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
|
|
inode->i_blkbits;
|
|
bh_result->b_size = len;
|
|
bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
|
|
set_buffer_mapped(bh_result);
|
|
|
|
if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
|
|
set_buffer_new(bh_result);
|
|
|
|
/*
|
|
* Need to update the i_size under the extent lock so buffered
|
|
* readers will get the updated i_size when we unlock.
|
|
*/
|
|
if (!dio_data->overwrite && start + len > i_size_read(inode))
|
|
i_size_write(inode, start + len);
|
|
|
|
WARN_ON(dio_data->reserve < len);
|
|
dio_data->reserve -= len;
|
|
dio_data->unsubmitted_oe_range_end = start + len;
|
|
current->journal_info = dio_data;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_map *em;
|
|
struct extent_state *cached_state = NULL;
|
|
struct btrfs_dio_data *dio_data = NULL;
|
|
u64 start = iblock << inode->i_blkbits;
|
|
u64 lockstart, lockend;
|
|
u64 len = bh_result->b_size;
|
|
int ret = 0;
|
|
|
|
if (!create)
|
|
len = min_t(u64, len, fs_info->sectorsize);
|
|
|
|
lockstart = start;
|
|
lockend = start + len - 1;
|
|
|
|
if (current->journal_info) {
|
|
/*
|
|
* Need to pull our outstanding extents and set journal_info to NULL so
|
|
* that anything that needs to check if there's a transaction doesn't get
|
|
* confused.
|
|
*/
|
|
dio_data = current->journal_info;
|
|
current->journal_info = NULL;
|
|
}
|
|
|
|
/*
|
|
* If this errors out it's because we couldn't invalidate pagecache for
|
|
* this range and we need to fallback to buffered.
|
|
*/
|
|
if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
|
|
create)) {
|
|
ret = -ENOTBLK;
|
|
goto err;
|
|
}
|
|
|
|
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto unlock_err;
|
|
}
|
|
|
|
/*
|
|
* Ok for INLINE and COMPRESSED extents we need to fallback on buffered
|
|
* io. INLINE is special, and we could probably kludge it in here, but
|
|
* it's still buffered so for safety lets just fall back to the generic
|
|
* buffered path.
|
|
*
|
|
* For COMPRESSED we _have_ to read the entire extent in so we can
|
|
* decompress it, so there will be buffering required no matter what we
|
|
* do, so go ahead and fallback to buffered.
|
|
*
|
|
* We return -ENOTBLK because that's what makes DIO go ahead and go back
|
|
* to buffered IO. Don't blame me, this is the price we pay for using
|
|
* the generic code.
|
|
*/
|
|
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
|
|
em->block_start == EXTENT_MAP_INLINE) {
|
|
free_extent_map(em);
|
|
ret = -ENOTBLK;
|
|
goto unlock_err;
|
|
}
|
|
|
|
if (create) {
|
|
ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
|
|
dio_data, start, len);
|
|
if (ret < 0)
|
|
goto unlock_err;
|
|
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
|
|
lockend, &cached_state);
|
|
} else {
|
|
ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
|
|
start, len);
|
|
/* Can be negative only if we read from a hole */
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
free_extent_map(em);
|
|
goto unlock_err;
|
|
}
|
|
/*
|
|
* We need to unlock only the end area that we aren't using.
|
|
* The rest is going to be unlocked by the endio routine.
|
|
*/
|
|
lockstart = start + bh_result->b_size;
|
|
if (lockstart < lockend) {
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
lockstart, lockend, &cached_state);
|
|
} else {
|
|
free_extent_state(cached_state);
|
|
}
|
|
}
|
|
|
|
free_extent_map(em);
|
|
|
|
return 0;
|
|
|
|
unlock_err:
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
&cached_state);
|
|
err:
|
|
if (dio_data)
|
|
current->journal_info = dio_data;
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
|
|
{
|
|
/*
|
|
* This implies a barrier so that stores to dio_bio->bi_status before
|
|
* this and loads of dio_bio->bi_status after this are fully ordered.
|
|
*/
|
|
if (!refcount_dec_and_test(&dip->refs))
|
|
return;
|
|
|
|
if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
|
|
__endio_write_update_ordered(BTRFS_I(dip->inode),
|
|
dip->logical_offset,
|
|
dip->bytes,
|
|
!dip->dio_bio->bi_status);
|
|
} else {
|
|
unlock_extent(&BTRFS_I(dip->inode)->io_tree,
|
|
dip->logical_offset,
|
|
dip->logical_offset + dip->bytes - 1);
|
|
}
|
|
|
|
dio_end_io(dip->dio_bio);
|
|
kfree(dip);
|
|
}
|
|
|
|
static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
|
|
int mirror_num,
|
|
unsigned long bio_flags)
|
|
{
|
|
struct btrfs_dio_private *dip = bio->bi_private;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
blk_status_t ret;
|
|
|
|
BUG_ON(bio_op(bio) == REQ_OP_WRITE);
|
|
|
|
ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
|
|
if (ret)
|
|
return ret;
|
|
|
|
refcount_inc(&dip->refs);
|
|
ret = btrfs_map_bio(fs_info, bio, mirror_num);
|
|
if (ret)
|
|
refcount_dec(&dip->refs);
|
|
return ret;
|
|
}
|
|
|
|
static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
|
|
struct btrfs_io_bio *io_bio,
|
|
const bool uptodate)
|
|
{
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
|
|
struct bio_vec bvec;
|
|
struct bvec_iter iter;
|
|
u64 start = io_bio->logical;
|
|
int icsum = 0;
|
|
blk_status_t err = BLK_STS_OK;
|
|
|
|
__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
|
|
unsigned int i, nr_sectors, pgoff;
|
|
|
|
nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
|
|
pgoff = bvec.bv_offset;
|
|
for (i = 0; i < nr_sectors; i++) {
|
|
ASSERT(pgoff < PAGE_SIZE);
|
|
if (uptodate &&
|
|
(!csum || !check_data_csum(inode, io_bio, icsum,
|
|
bvec.bv_page, pgoff,
|
|
start, sectorsize))) {
|
|
clean_io_failure(fs_info, failure_tree, io_tree,
|
|
start, bvec.bv_page,
|
|
btrfs_ino(BTRFS_I(inode)),
|
|
pgoff);
|
|
} else {
|
|
blk_status_t status;
|
|
|
|
status = btrfs_submit_read_repair(inode,
|
|
&io_bio->bio,
|
|
start - io_bio->logical,
|
|
bvec.bv_page, pgoff,
|
|
start,
|
|
start + sectorsize - 1,
|
|
io_bio->mirror_num,
|
|
submit_dio_repair_bio);
|
|
if (status)
|
|
err = status;
|
|
}
|
|
start += sectorsize;
|
|
icsum++;
|
|
pgoff += sectorsize;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void __endio_write_update_ordered(struct btrfs_inode *inode,
|
|
const u64 offset, const u64 bytes,
|
|
const bool uptodate)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_ordered_extent *ordered = NULL;
|
|
struct btrfs_workqueue *wq;
|
|
u64 ordered_offset = offset;
|
|
u64 ordered_bytes = bytes;
|
|
u64 last_offset;
|
|
|
|
if (btrfs_is_free_space_inode(inode))
|
|
wq = fs_info->endio_freespace_worker;
|
|
else
|
|
wq = fs_info->endio_write_workers;
|
|
|
|
while (ordered_offset < offset + bytes) {
|
|
last_offset = ordered_offset;
|
|
if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
|
|
&ordered_offset,
|
|
ordered_bytes,
|
|
uptodate)) {
|
|
btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
|
|
NULL);
|
|
btrfs_queue_work(wq, &ordered->work);
|
|
}
|
|
/*
|
|
* If btrfs_dec_test_ordered_pending does not find any ordered
|
|
* extent in the range, we can exit.
|
|
*/
|
|
if (ordered_offset == last_offset)
|
|
return;
|
|
/*
|
|
* Our bio might span multiple ordered extents. In this case
|
|
* we keep going until we have accounted the whole dio.
|
|
*/
|
|
if (ordered_offset < offset + bytes) {
|
|
ordered_bytes = offset + bytes - ordered_offset;
|
|
ordered = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
|
|
struct bio *bio, u64 offset)
|
|
{
|
|
struct inode *inode = private_data;
|
|
|
|
return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
|
|
}
|
|
|
|
static void btrfs_end_dio_bio(struct bio *bio)
|
|
{
|
|
struct btrfs_dio_private *dip = bio->bi_private;
|
|
blk_status_t err = bio->bi_status;
|
|
|
|
if (err)
|
|
btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
|
|
"direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
|
|
btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
|
|
bio->bi_opf,
|
|
(unsigned long long)bio->bi_iter.bi_sector,
|
|
bio->bi_iter.bi_size, err);
|
|
|
|
if (bio_op(bio) == REQ_OP_READ) {
|
|
err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
|
|
!err);
|
|
}
|
|
|
|
if (err)
|
|
dip->dio_bio->bi_status = err;
|
|
|
|
bio_put(bio);
|
|
btrfs_dio_private_put(dip);
|
|
}
|
|
|
|
static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
|
|
struct inode *inode, u64 file_offset, int async_submit)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_dio_private *dip = bio->bi_private;
|
|
bool write = bio_op(bio) == REQ_OP_WRITE;
|
|
blk_status_t ret;
|
|
|
|
/* Check btrfs_submit_bio_hook() for rules about async submit. */
|
|
if (async_submit)
|
|
async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
|
|
|
|
if (!write) {
|
|
ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
|
|
goto map;
|
|
|
|
if (write && async_submit) {
|
|
ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
|
|
file_offset, inode,
|
|
btrfs_submit_bio_start_direct_io);
|
|
goto err;
|
|
} else if (write) {
|
|
/*
|
|
* If we aren't doing async submit, calculate the csum of the
|
|
* bio now.
|
|
*/
|
|
ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
|
|
if (ret)
|
|
goto err;
|
|
} else {
|
|
u64 csum_offset;
|
|
|
|
csum_offset = file_offset - dip->logical_offset;
|
|
csum_offset >>= inode->i_sb->s_blocksize_bits;
|
|
csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
|
|
btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
|
|
}
|
|
map:
|
|
ret = btrfs_map_bio(fs_info, bio, 0);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
|
|
* or ordered extents whether or not we submit any bios.
|
|
*/
|
|
static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
|
|
struct inode *inode,
|
|
loff_t file_offset)
|
|
{
|
|
const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
|
|
const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
|
|
size_t dip_size;
|
|
struct btrfs_dio_private *dip;
|
|
|
|
dip_size = sizeof(*dip);
|
|
if (!write && csum) {
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
size_t nblocks;
|
|
|
|
nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
|
|
dip_size += csum_size * nblocks;
|
|
}
|
|
|
|
dip = kzalloc(dip_size, GFP_NOFS);
|
|
if (!dip)
|
|
return NULL;
|
|
|
|
dip->inode = inode;
|
|
dip->logical_offset = file_offset;
|
|
dip->bytes = dio_bio->bi_iter.bi_size;
|
|
dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
|
|
dip->dio_bio = dio_bio;
|
|
refcount_set(&dip->refs, 1);
|
|
|
|
if (write) {
|
|
struct btrfs_dio_data *dio_data = current->journal_info;
|
|
|
|
/*
|
|
* Setting range start and end to the same value means that
|
|
* no cleanup will happen in btrfs_direct_IO
|
|
*/
|
|
dio_data->unsubmitted_oe_range_end = dip->logical_offset +
|
|
dip->bytes;
|
|
dio_data->unsubmitted_oe_range_start =
|
|
dio_data->unsubmitted_oe_range_end;
|
|
}
|
|
return dip;
|
|
}
|
|
|
|
static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
|
|
loff_t file_offset)
|
|
{
|
|
const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
|
|
const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
|
|
BTRFS_BLOCK_GROUP_RAID56_MASK);
|
|
struct btrfs_dio_private *dip;
|
|
struct bio *bio;
|
|
u64 start_sector;
|
|
int async_submit = 0;
|
|
u64 submit_len;
|
|
int clone_offset = 0;
|
|
int clone_len;
|
|
int ret;
|
|
blk_status_t status;
|
|
struct btrfs_io_geometry geom;
|
|
|
|
dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
|
|
if (!dip) {
|
|
if (!write) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
|
|
file_offset + dio_bio->bi_iter.bi_size - 1);
|
|
}
|
|
dio_bio->bi_status = BLK_STS_RESOURCE;
|
|
dio_end_io(dio_bio);
|
|
return;
|
|
}
|
|
|
|
if (!write && csum) {
|
|
/*
|
|
* Load the csums up front to reduce csum tree searches and
|
|
* contention when submitting bios.
|
|
*/
|
|
status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
|
|
dip->csums);
|
|
if (status != BLK_STS_OK)
|
|
goto out_err;
|
|
}
|
|
|
|
start_sector = dio_bio->bi_iter.bi_sector;
|
|
submit_len = dio_bio->bi_iter.bi_size;
|
|
|
|
do {
|
|
ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
|
|
start_sector << 9, submit_len,
|
|
&geom);
|
|
if (ret) {
|
|
status = errno_to_blk_status(ret);
|
|
goto out_err;
|
|
}
|
|
ASSERT(geom.len <= INT_MAX);
|
|
|
|
clone_len = min_t(int, submit_len, geom.len);
|
|
|
|
/*
|
|
* This will never fail as it's passing GPF_NOFS and
|
|
* the allocation is backed by btrfs_bioset.
|
|
*/
|
|
bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
|
|
bio->bi_private = dip;
|
|
bio->bi_end_io = btrfs_end_dio_bio;
|
|
btrfs_io_bio(bio)->logical = file_offset;
|
|
|
|
ASSERT(submit_len >= clone_len);
|
|
submit_len -= clone_len;
|
|
|
|
/*
|
|
* Increase the count before we submit the bio so we know
|
|
* the end IO handler won't happen before we increase the
|
|
* count. Otherwise, the dip might get freed before we're
|
|
* done setting it up.
|
|
*
|
|
* We transfer the initial reference to the last bio, so we
|
|
* don't need to increment the reference count for the last one.
|
|
*/
|
|
if (submit_len > 0) {
|
|
refcount_inc(&dip->refs);
|
|
/*
|
|
* If we are submitting more than one bio, submit them
|
|
* all asynchronously. The exception is RAID 5 or 6, as
|
|
* asynchronous checksums make it difficult to collect
|
|
* full stripe writes.
|
|
*/
|
|
if (!raid56)
|
|
async_submit = 1;
|
|
}
|
|
|
|
status = btrfs_submit_dio_bio(bio, inode, file_offset,
|
|
async_submit);
|
|
if (status) {
|
|
bio_put(bio);
|
|
if (submit_len > 0)
|
|
refcount_dec(&dip->refs);
|
|
goto out_err;
|
|
}
|
|
|
|
clone_offset += clone_len;
|
|
start_sector += clone_len >> 9;
|
|
file_offset += clone_len;
|
|
} while (submit_len > 0);
|
|
return;
|
|
|
|
out_err:
|
|
dip->dio_bio->bi_status = status;
|
|
btrfs_dio_private_put(dip);
|
|
}
|
|
|
|
static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
|
|
const struct iov_iter *iter, loff_t offset)
|
|
{
|
|
int seg;
|
|
int i;
|
|
unsigned int blocksize_mask = fs_info->sectorsize - 1;
|
|
ssize_t retval = -EINVAL;
|
|
|
|
if (offset & blocksize_mask)
|
|
goto out;
|
|
|
|
if (iov_iter_alignment(iter) & blocksize_mask)
|
|
goto out;
|
|
|
|
/* If this is a write we don't need to check anymore */
|
|
if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
|
|
return 0;
|
|
/*
|
|
* Check to make sure we don't have duplicate iov_base's in this
|
|
* iovec, if so return EINVAL, otherwise we'll get csum errors
|
|
* when reading back.
|
|
*/
|
|
for (seg = 0; seg < iter->nr_segs; seg++) {
|
|
for (i = seg + 1; i < iter->nr_segs; i++) {
|
|
if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
|
|
goto out;
|
|
}
|
|
}
|
|
retval = 0;
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_dio_data dio_data = { 0 };
|
|
struct extent_changeset *data_reserved = NULL;
|
|
loff_t offset = iocb->ki_pos;
|
|
size_t count = 0;
|
|
int flags = 0;
|
|
bool wakeup = true;
|
|
bool relock = false;
|
|
ssize_t ret;
|
|
|
|
if (check_direct_IO(fs_info, iter, offset))
|
|
return 0;
|
|
|
|
inode_dio_begin(inode);
|
|
|
|
/*
|
|
* The generic stuff only does filemap_write_and_wait_range, which
|
|
* isn't enough if we've written compressed pages to this area, so
|
|
* we need to flush the dirty pages again to make absolutely sure
|
|
* that any outstanding dirty pages are on disk.
|
|
*/
|
|
count = iov_iter_count(iter);
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
filemap_fdatawrite_range(inode->i_mapping, offset,
|
|
offset + count - 1);
|
|
|
|
if (iov_iter_rw(iter) == WRITE) {
|
|
/*
|
|
* If the write DIO is beyond the EOF, we need update
|
|
* the isize, but it is protected by i_mutex. So we can
|
|
* not unlock the i_mutex at this case.
|
|
*/
|
|
if (offset + count <= inode->i_size) {
|
|
dio_data.overwrite = 1;
|
|
inode_unlock(inode);
|
|
relock = true;
|
|
}
|
|
ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
|
|
offset, count);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* We need to know how many extents we reserved so that we can
|
|
* do the accounting properly if we go over the number we
|
|
* originally calculated. Abuse current->journal_info for this.
|
|
*/
|
|
dio_data.reserve = round_up(count,
|
|
fs_info->sectorsize);
|
|
dio_data.unsubmitted_oe_range_start = (u64)offset;
|
|
dio_data.unsubmitted_oe_range_end = (u64)offset;
|
|
current->journal_info = &dio_data;
|
|
down_read(&BTRFS_I(inode)->dio_sem);
|
|
} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
|
|
&BTRFS_I(inode)->runtime_flags)) {
|
|
inode_dio_end(inode);
|
|
flags = DIO_LOCKING | DIO_SKIP_HOLES;
|
|
wakeup = false;
|
|
}
|
|
|
|
ret = __blockdev_direct_IO(iocb, inode,
|
|
fs_info->fs_devices->latest_bdev,
|
|
iter, btrfs_get_blocks_direct, NULL,
|
|
btrfs_submit_direct, flags);
|
|
if (iov_iter_rw(iter) == WRITE) {
|
|
up_read(&BTRFS_I(inode)->dio_sem);
|
|
current->journal_info = NULL;
|
|
if (ret < 0 && ret != -EIOCBQUEUED) {
|
|
if (dio_data.reserve)
|
|
btrfs_delalloc_release_space(BTRFS_I(inode),
|
|
data_reserved, offset, dio_data.reserve,
|
|
true);
|
|
/*
|
|
* On error we might have left some ordered extents
|
|
* without submitting corresponding bios for them, so
|
|
* cleanup them up to avoid other tasks getting them
|
|
* and waiting for them to complete forever.
|
|
*/
|
|
if (dio_data.unsubmitted_oe_range_start <
|
|
dio_data.unsubmitted_oe_range_end)
|
|
__endio_write_update_ordered(BTRFS_I(inode),
|
|
dio_data.unsubmitted_oe_range_start,
|
|
dio_data.unsubmitted_oe_range_end -
|
|
dio_data.unsubmitted_oe_range_start,
|
|
false);
|
|
} else if (ret >= 0 && (size_t)ret < count)
|
|
btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
|
|
offset, count - (size_t)ret, true);
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), count);
|
|
}
|
|
out:
|
|
if (wakeup)
|
|
inode_dio_end(inode);
|
|
if (relock)
|
|
inode_lock(inode);
|
|
|
|
extent_changeset_free(data_reserved);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
u64 start, u64 len)
|
|
{
|
|
int ret;
|
|
|
|
ret = fiemap_prep(inode, fieinfo, start, &len, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return extent_fiemap(inode, fieinfo, start, len);
|
|
}
|
|
|
|
int btrfs_readpage(struct file *file, struct page *page)
|
|
{
|
|
return extent_read_full_page(page, btrfs_get_extent, 0);
|
|
}
|
|
|
|
static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
int ret;
|
|
|
|
if (current->flags & PF_MEMALLOC) {
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we are under memory pressure we will call this directly from the
|
|
* VM, we need to make sure we have the inode referenced for the ordered
|
|
* extent. If not just return like we didn't do anything.
|
|
*/
|
|
if (!igrab(inode)) {
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
ret = extent_write_full_page(page, wbc);
|
|
btrfs_add_delayed_iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
return extent_writepages(mapping, wbc);
|
|
}
|
|
|
|
static void btrfs_readahead(struct readahead_control *rac)
|
|
{
|
|
extent_readahead(rac);
|
|
}
|
|
|
|
static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
int ret = try_release_extent_mapping(page, gfp_flags);
|
|
if (ret == 1)
|
|
detach_page_private(page);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
if (PageWriteback(page) || PageDirty(page))
|
|
return 0;
|
|
return __btrfs_releasepage(page, gfp_flags);
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int btrfs_migratepage(struct address_space *mapping,
|
|
struct page *newpage, struct page *page,
|
|
enum migrate_mode mode)
|
|
{
|
|
int ret;
|
|
|
|
ret = migrate_page_move_mapping(mapping, newpage, page, 0);
|
|
if (ret != MIGRATEPAGE_SUCCESS)
|
|
return ret;
|
|
|
|
if (page_has_private(page))
|
|
attach_page_private(newpage, detach_page_private(page));
|
|
|
|
if (PagePrivate2(page)) {
|
|
ClearPagePrivate2(page);
|
|
SetPagePrivate2(newpage);
|
|
}
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
migrate_page_copy(newpage, page);
|
|
else
|
|
migrate_page_states(newpage, page);
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
static void btrfs_invalidatepage(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct extent_io_tree *tree;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 page_start = page_offset(page);
|
|
u64 page_end = page_start + PAGE_SIZE - 1;
|
|
u64 start;
|
|
u64 end;
|
|
int inode_evicting = inode->i_state & I_FREEING;
|
|
|
|
/*
|
|
* we have the page locked, so new writeback can't start,
|
|
* and the dirty bit won't be cleared while we are here.
|
|
*
|
|
* Wait for IO on this page so that we can safely clear
|
|
* the PagePrivate2 bit and do ordered accounting
|
|
*/
|
|
wait_on_page_writeback(page);
|
|
|
|
tree = &BTRFS_I(inode)->io_tree;
|
|
if (offset) {
|
|
btrfs_releasepage(page, GFP_NOFS);
|
|
return;
|
|
}
|
|
|
|
if (!inode_evicting)
|
|
lock_extent_bits(tree, page_start, page_end, &cached_state);
|
|
again:
|
|
start = page_start;
|
|
ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
|
|
page_end - start + 1);
|
|
if (ordered) {
|
|
end = min(page_end,
|
|
ordered->file_offset + ordered->num_bytes - 1);
|
|
/*
|
|
* IO on this page will never be started, so we need
|
|
* to account for any ordered extents now
|
|
*/
|
|
if (!inode_evicting)
|
|
clear_extent_bit(tree, start, end,
|
|
EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
|
|
EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, 1, 0, &cached_state);
|
|
/*
|
|
* whoever cleared the private bit is responsible
|
|
* for the finish_ordered_io
|
|
*/
|
|
if (TestClearPagePrivate2(page)) {
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
u64 new_len;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
|
|
new_len = start - ordered->file_offset;
|
|
if (new_len < ordered->truncated_len)
|
|
ordered->truncated_len = new_len;
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
if (btrfs_dec_test_ordered_pending(inode, &ordered,
|
|
start,
|
|
end - start + 1, 1))
|
|
btrfs_finish_ordered_io(ordered);
|
|
}
|
|
btrfs_put_ordered_extent(ordered);
|
|
if (!inode_evicting) {
|
|
cached_state = NULL;
|
|
lock_extent_bits(tree, start, end,
|
|
&cached_state);
|
|
}
|
|
|
|
start = end + 1;
|
|
if (start < page_end)
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* Qgroup reserved space handler
|
|
* Page here will be either
|
|
* 1) Already written to disk or ordered extent already submitted
|
|
* Then its QGROUP_RESERVED bit in io_tree is already cleaned.
|
|
* Qgroup will be handled by its qgroup_record then.
|
|
* btrfs_qgroup_free_data() call will do nothing here.
|
|
*
|
|
* 2) Not written to disk yet
|
|
* Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
|
|
* bit of its io_tree, and free the qgroup reserved data space.
|
|
* Since the IO will never happen for this page.
|
|
*/
|
|
btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
|
|
if (!inode_evicting) {
|
|
clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
|
|
EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
|
|
EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
|
|
&cached_state);
|
|
|
|
__btrfs_releasepage(page, GFP_NOFS);
|
|
}
|
|
|
|
ClearPageChecked(page);
|
|
detach_page_private(page);
|
|
}
|
|
|
|
/*
|
|
* btrfs_page_mkwrite() is not allowed to change the file size as it gets
|
|
* called from a page fault handler when a page is first dirtied. Hence we must
|
|
* be careful to check for EOF conditions here. We set the page up correctly
|
|
* for a written page which means we get ENOSPC checking when writing into
|
|
* holes and correct delalloc and unwritten extent mapping on filesystems that
|
|
* support these features.
|
|
*
|
|
* We are not allowed to take the i_mutex here so we have to play games to
|
|
* protect against truncate races as the page could now be beyond EOF. Because
|
|
* truncate_setsize() writes the inode size before removing pages, once we have
|
|
* the page lock we can determine safely if the page is beyond EOF. If it is not
|
|
* beyond EOF, then the page is guaranteed safe against truncation until we
|
|
* unlock the page.
|
|
*/
|
|
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
|
|
{
|
|
struct page *page = vmf->page;
|
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
char *kaddr;
|
|
unsigned long zero_start;
|
|
loff_t size;
|
|
vm_fault_t ret;
|
|
int ret2;
|
|
int reserved = 0;
|
|
u64 reserved_space;
|
|
u64 page_start;
|
|
u64 page_end;
|
|
u64 end;
|
|
|
|
reserved_space = PAGE_SIZE;
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
page_start = page_offset(page);
|
|
page_end = page_start + PAGE_SIZE - 1;
|
|
end = page_end;
|
|
|
|
/*
|
|
* Reserving delalloc space after obtaining the page lock can lead to
|
|
* deadlock. For example, if a dirty page is locked by this function
|
|
* and the call to btrfs_delalloc_reserve_space() ends up triggering
|
|
* dirty page write out, then the btrfs_writepage() function could
|
|
* end up waiting indefinitely to get a lock on the page currently
|
|
* being processed by btrfs_page_mkwrite() function.
|
|
*/
|
|
ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
|
|
page_start, reserved_space);
|
|
if (!ret2) {
|
|
ret2 = file_update_time(vmf->vma->vm_file);
|
|
reserved = 1;
|
|
}
|
|
if (ret2) {
|
|
ret = vmf_error(ret2);
|
|
if (reserved)
|
|
goto out;
|
|
goto out_noreserve;
|
|
}
|
|
|
|
ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
|
|
again:
|
|
lock_page(page);
|
|
size = i_size_read(inode);
|
|
|
|
if ((page->mapping != inode->i_mapping) ||
|
|
(page_start >= size)) {
|
|
/* page got truncated out from underneath us */
|
|
goto out_unlock;
|
|
}
|
|
wait_on_page_writeback(page);
|
|
|
|
lock_extent_bits(io_tree, page_start, page_end, &cached_state);
|
|
set_page_extent_mapped(page);
|
|
|
|
/*
|
|
* we can't set the delalloc bits if there are pending ordered
|
|
* extents. Drop our locks and wait for them to finish
|
|
*/
|
|
ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
|
|
PAGE_SIZE);
|
|
if (ordered) {
|
|
unlock_extent_cached(io_tree, page_start, page_end,
|
|
&cached_state);
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
|
|
if (page->index == ((size - 1) >> PAGE_SHIFT)) {
|
|
reserved_space = round_up(size - page_start,
|
|
fs_info->sectorsize);
|
|
if (reserved_space < PAGE_SIZE) {
|
|
end = page_start + reserved_space - 1;
|
|
btrfs_delalloc_release_space(BTRFS_I(inode),
|
|
data_reserved, page_start,
|
|
PAGE_SIZE - reserved_space, true);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* page_mkwrite gets called when the page is firstly dirtied after it's
|
|
* faulted in, but write(2) could also dirty a page and set delalloc
|
|
* bits, thus in this case for space account reason, we still need to
|
|
* clear any delalloc bits within this page range since we have to
|
|
* reserve data&meta space before lock_page() (see above comments).
|
|
*/
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
|
|
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, 0, 0, &cached_state);
|
|
|
|
ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
|
|
&cached_state);
|
|
if (ret2) {
|
|
unlock_extent_cached(io_tree, page_start, page_end,
|
|
&cached_state);
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* page is wholly or partially inside EOF */
|
|
if (page_start + PAGE_SIZE > size)
|
|
zero_start = offset_in_page(size);
|
|
else
|
|
zero_start = PAGE_SIZE;
|
|
|
|
if (zero_start != PAGE_SIZE) {
|
|
kaddr = kmap(page);
|
|
memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
|
|
flush_dcache_page(page);
|
|
kunmap(page);
|
|
}
|
|
ClearPageChecked(page);
|
|
set_page_dirty(page);
|
|
SetPageUptodate(page);
|
|
|
|
BTRFS_I(inode)->last_trans = fs_info->generation;
|
|
BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
|
|
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
|
|
|
|
unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
|
|
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
|
|
sb_end_pagefault(inode->i_sb);
|
|
extent_changeset_free(data_reserved);
|
|
return VM_FAULT_LOCKED;
|
|
|
|
out_unlock:
|
|
unlock_page(page);
|
|
out:
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
|
|
btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
|
|
reserved_space, (ret != 0));
|
|
out_noreserve:
|
|
sb_end_pagefault(inode->i_sb);
|
|
extent_changeset_free(data_reserved);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_truncate(struct inode *inode, bool skip_writeback)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_block_rsv *rsv;
|
|
int ret;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 mask = fs_info->sectorsize - 1;
|
|
u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
|
|
|
|
if (!skip_writeback) {
|
|
ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
|
|
(u64)-1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Yes ladies and gentlemen, this is indeed ugly. We have a couple of
|
|
* things going on here:
|
|
*
|
|
* 1) We need to reserve space to update our inode.
|
|
*
|
|
* 2) We need to have something to cache all the space that is going to
|
|
* be free'd up by the truncate operation, but also have some slack
|
|
* space reserved in case it uses space during the truncate (thank you
|
|
* very much snapshotting).
|
|
*
|
|
* And we need these to be separate. The fact is we can use a lot of
|
|
* space doing the truncate, and we have no earthly idea how much space
|
|
* we will use, so we need the truncate reservation to be separate so it
|
|
* doesn't end up using space reserved for updating the inode. We also
|
|
* need to be able to stop the transaction and start a new one, which
|
|
* means we need to be able to update the inode several times, and we
|
|
* have no idea of knowing how many times that will be, so we can't just
|
|
* reserve 1 item for the entirety of the operation, so that has to be
|
|
* done separately as well.
|
|
*
|
|
* So that leaves us with
|
|
*
|
|
* 1) rsv - for the truncate reservation, which we will steal from the
|
|
* transaction reservation.
|
|
* 2) fs_info->trans_block_rsv - this will have 1 items worth left for
|
|
* updating the inode.
|
|
*/
|
|
rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
|
|
if (!rsv)
|
|
return -ENOMEM;
|
|
rsv->size = min_size;
|
|
rsv->failfast = 1;
|
|
|
|
/*
|
|
* 1 for the truncate slack space
|
|
* 1 for updating the inode.
|
|
*/
|
|
trans = btrfs_start_transaction(root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
/* Migrate the slack space for the truncate to our reserve */
|
|
ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
|
|
min_size, false);
|
|
BUG_ON(ret);
|
|
|
|
/*
|
|
* So if we truncate and then write and fsync we normally would just
|
|
* write the extents that changed, which is a problem if we need to
|
|
* first truncate that entire inode. So set this flag so we write out
|
|
* all of the extents in the inode to the sync log so we're completely
|
|
* safe.
|
|
*/
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
|
|
trans->block_rsv = rsv;
|
|
|
|
while (1) {
|
|
ret = btrfs_truncate_inode_items(trans, root, inode,
|
|
inode->i_size,
|
|
BTRFS_EXTENT_DATA_KEY);
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
if (ret != -ENOSPC && ret != -EAGAIN)
|
|
break;
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret)
|
|
break;
|
|
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
|
|
trans = btrfs_start_transaction(root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
break;
|
|
}
|
|
|
|
btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
|
|
ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
|
|
rsv, min_size, false);
|
|
BUG_ON(ret); /* shouldn't happen */
|
|
trans->block_rsv = rsv;
|
|
}
|
|
|
|
/*
|
|
* We can't call btrfs_truncate_block inside a trans handle as we could
|
|
* deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
|
|
* we've truncated everything except the last little bit, and can do
|
|
* btrfs_truncate_block and then update the disk_i_size.
|
|
*/
|
|
if (ret == NEED_TRUNCATE_BLOCK) {
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
|
|
ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
|
|
if (ret)
|
|
goto out;
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
btrfs_inode_safe_disk_i_size_write(inode, 0);
|
|
}
|
|
|
|
if (trans) {
|
|
int ret2;
|
|
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
ret2 = btrfs_update_inode(trans, root, inode);
|
|
if (ret2 && !ret)
|
|
ret = ret2;
|
|
|
|
ret2 = btrfs_end_transaction(trans);
|
|
if (ret2 && !ret)
|
|
ret = ret2;
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
}
|
|
out:
|
|
btrfs_free_block_rsv(fs_info, rsv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* create a new subvolume directory/inode (helper for the ioctl).
|
|
*/
|
|
int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *new_root,
|
|
struct btrfs_root *parent_root,
|
|
u64 new_dirid)
|
|
{
|
|
struct inode *inode;
|
|
int err;
|
|
u64 index = 0;
|
|
|
|
inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
|
|
new_dirid, new_dirid,
|
|
S_IFDIR | (~current_umask() & S_IRWXUGO),
|
|
&index);
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
inode->i_op = &btrfs_dir_inode_operations;
|
|
inode->i_fop = &btrfs_dir_file_operations;
|
|
|
|
set_nlink(inode, 1);
|
|
btrfs_i_size_write(BTRFS_I(inode), 0);
|
|
unlock_new_inode(inode);
|
|
|
|
err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
|
|
if (err)
|
|
btrfs_err(new_root->fs_info,
|
|
"error inheriting subvolume %llu properties: %d",
|
|
new_root->root_key.objectid, err);
|
|
|
|
err = btrfs_update_inode(trans, new_root, inode);
|
|
|
|
iput(inode);
|
|
return err;
|
|
}
|
|
|
|
struct inode *btrfs_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_inode *ei;
|
|
struct inode *inode;
|
|
|
|
ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
|
|
if (!ei)
|
|
return NULL;
|
|
|
|
ei->root = NULL;
|
|
ei->generation = 0;
|
|
ei->last_trans = 0;
|
|
ei->last_sub_trans = 0;
|
|
ei->logged_trans = 0;
|
|
ei->delalloc_bytes = 0;
|
|
ei->new_delalloc_bytes = 0;
|
|
ei->defrag_bytes = 0;
|
|
ei->disk_i_size = 0;
|
|
ei->flags = 0;
|
|
ei->csum_bytes = 0;
|
|
ei->index_cnt = (u64)-1;
|
|
ei->dir_index = 0;
|
|
ei->last_unlink_trans = 0;
|
|
ei->last_reflink_trans = 0;
|
|
ei->last_log_commit = 0;
|
|
|
|
spin_lock_init(&ei->lock);
|
|
ei->outstanding_extents = 0;
|
|
if (sb->s_magic != BTRFS_TEST_MAGIC)
|
|
btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
|
|
BTRFS_BLOCK_RSV_DELALLOC);
|
|
ei->runtime_flags = 0;
|
|
ei->prop_compress = BTRFS_COMPRESS_NONE;
|
|
ei->defrag_compress = BTRFS_COMPRESS_NONE;
|
|
|
|
ei->delayed_node = NULL;
|
|
|
|
ei->i_otime.tv_sec = 0;
|
|
ei->i_otime.tv_nsec = 0;
|
|
|
|
inode = &ei->vfs_inode;
|
|
extent_map_tree_init(&ei->extent_tree);
|
|
extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
|
|
extent_io_tree_init(fs_info, &ei->io_failure_tree,
|
|
IO_TREE_INODE_IO_FAILURE, inode);
|
|
extent_io_tree_init(fs_info, &ei->file_extent_tree,
|
|
IO_TREE_INODE_FILE_EXTENT, inode);
|
|
ei->io_tree.track_uptodate = true;
|
|
ei->io_failure_tree.track_uptodate = true;
|
|
atomic_set(&ei->sync_writers, 0);
|
|
mutex_init(&ei->log_mutex);
|
|
btrfs_ordered_inode_tree_init(&ei->ordered_tree);
|
|
INIT_LIST_HEAD(&ei->delalloc_inodes);
|
|
INIT_LIST_HEAD(&ei->delayed_iput);
|
|
RB_CLEAR_NODE(&ei->rb_node);
|
|
init_rwsem(&ei->dio_sem);
|
|
|
|
return inode;
|
|
}
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
void btrfs_test_destroy_inode(struct inode *inode)
|
|
{
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
|
|
kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
|
|
}
|
|
#endif
|
|
|
|
void btrfs_free_inode(struct inode *inode)
|
|
{
|
|
kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
|
|
}
|
|
|
|
void btrfs_destroy_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
|
|
WARN_ON(!hlist_empty(&inode->i_dentry));
|
|
WARN_ON(inode->i_data.nrpages);
|
|
WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
|
|
WARN_ON(BTRFS_I(inode)->block_rsv.size);
|
|
WARN_ON(BTRFS_I(inode)->outstanding_extents);
|
|
WARN_ON(BTRFS_I(inode)->delalloc_bytes);
|
|
WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
|
|
WARN_ON(BTRFS_I(inode)->csum_bytes);
|
|
WARN_ON(BTRFS_I(inode)->defrag_bytes);
|
|
|
|
/*
|
|
* This can happen where we create an inode, but somebody else also
|
|
* created the same inode and we need to destroy the one we already
|
|
* created.
|
|
*/
|
|
if (!root)
|
|
return;
|
|
|
|
while (1) {
|
|
ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
|
|
if (!ordered)
|
|
break;
|
|
else {
|
|
btrfs_err(fs_info,
|
|
"found ordered extent %llu %llu on inode cleanup",
|
|
ordered->file_offset, ordered->num_bytes);
|
|
btrfs_remove_ordered_extent(inode, ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
}
|
|
btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
|
|
inode_tree_del(inode);
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
|
|
btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
|
|
btrfs_put_root(BTRFS_I(inode)->root);
|
|
}
|
|
|
|
int btrfs_drop_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
|
|
if (root == NULL)
|
|
return 1;
|
|
|
|
/* the snap/subvol tree is on deleting */
|
|
if (btrfs_root_refs(&root->root_item) == 0)
|
|
return 1;
|
|
else
|
|
return generic_drop_inode(inode);
|
|
}
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct btrfs_inode *ei = (struct btrfs_inode *) foo;
|
|
|
|
inode_init_once(&ei->vfs_inode);
|
|
}
|
|
|
|
void __cold btrfs_destroy_cachep(void)
|
|
{
|
|
/*
|
|
* Make sure all delayed rcu free inodes are flushed before we
|
|
* destroy cache.
|
|
*/
|
|
rcu_barrier();
|
|
kmem_cache_destroy(btrfs_inode_cachep);
|
|
kmem_cache_destroy(btrfs_trans_handle_cachep);
|
|
kmem_cache_destroy(btrfs_path_cachep);
|
|
kmem_cache_destroy(btrfs_free_space_cachep);
|
|
kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
|
|
}
|
|
|
|
int __init btrfs_init_cachep(void)
|
|
{
|
|
btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
|
|
sizeof(struct btrfs_inode), 0,
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
|
|
init_once);
|
|
if (!btrfs_inode_cachep)
|
|
goto fail;
|
|
|
|
btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
|
|
sizeof(struct btrfs_trans_handle), 0,
|
|
SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_trans_handle_cachep)
|
|
goto fail;
|
|
|
|
btrfs_path_cachep = kmem_cache_create("btrfs_path",
|
|
sizeof(struct btrfs_path), 0,
|
|
SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_path_cachep)
|
|
goto fail;
|
|
|
|
btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
|
|
sizeof(struct btrfs_free_space), 0,
|
|
SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_free_space_cachep)
|
|
goto fail;
|
|
|
|
btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
|
|
PAGE_SIZE, PAGE_SIZE,
|
|
SLAB_RED_ZONE, NULL);
|
|
if (!btrfs_free_space_bitmap_cachep)
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
btrfs_destroy_cachep();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int btrfs_getattr(const struct path *path, struct kstat *stat,
|
|
u32 request_mask, unsigned int flags)
|
|
{
|
|
u64 delalloc_bytes;
|
|
struct inode *inode = d_inode(path->dentry);
|
|
u32 blocksize = inode->i_sb->s_blocksize;
|
|
u32 bi_flags = BTRFS_I(inode)->flags;
|
|
|
|
stat->result_mask |= STATX_BTIME;
|
|
stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
|
|
stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
|
|
if (bi_flags & BTRFS_INODE_APPEND)
|
|
stat->attributes |= STATX_ATTR_APPEND;
|
|
if (bi_flags & BTRFS_INODE_COMPRESS)
|
|
stat->attributes |= STATX_ATTR_COMPRESSED;
|
|
if (bi_flags & BTRFS_INODE_IMMUTABLE)
|
|
stat->attributes |= STATX_ATTR_IMMUTABLE;
|
|
if (bi_flags & BTRFS_INODE_NODUMP)
|
|
stat->attributes |= STATX_ATTR_NODUMP;
|
|
|
|
stat->attributes_mask |= (STATX_ATTR_APPEND |
|
|
STATX_ATTR_COMPRESSED |
|
|
STATX_ATTR_IMMUTABLE |
|
|
STATX_ATTR_NODUMP);
|
|
|
|
generic_fillattr(inode, stat);
|
|
stat->dev = BTRFS_I(inode)->root->anon_dev;
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
|
|
ALIGN(delalloc_bytes, blocksize)) >> 9;
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_rename_exchange(struct inode *old_dir,
|
|
struct dentry *old_dentry,
|
|
struct inode *new_dir,
|
|
struct dentry *new_dentry)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(old_dir)->root;
|
|
struct btrfs_root *dest = BTRFS_I(new_dir)->root;
|
|
struct inode *new_inode = new_dentry->d_inode;
|
|
struct inode *old_inode = old_dentry->d_inode;
|
|
struct timespec64 ctime = current_time(old_inode);
|
|
struct dentry *parent;
|
|
u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
|
|
u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
|
|
u64 old_idx = 0;
|
|
u64 new_idx = 0;
|
|
int ret;
|
|
bool root_log_pinned = false;
|
|
bool dest_log_pinned = false;
|
|
struct btrfs_log_ctx ctx_root;
|
|
struct btrfs_log_ctx ctx_dest;
|
|
bool sync_log_root = false;
|
|
bool sync_log_dest = false;
|
|
bool commit_transaction = false;
|
|
|
|
/* we only allow rename subvolume link between subvolumes */
|
|
if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
|
|
return -EXDEV;
|
|
|
|
btrfs_init_log_ctx(&ctx_root, old_inode);
|
|
btrfs_init_log_ctx(&ctx_dest, new_inode);
|
|
|
|
/* close the race window with snapshot create/destroy ioctl */
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
|
|
new_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
down_read(&fs_info->subvol_sem);
|
|
|
|
/*
|
|
* We want to reserve the absolute worst case amount of items. So if
|
|
* both inodes are subvols and we need to unlink them then that would
|
|
* require 4 item modifications, but if they are both normal inodes it
|
|
* would require 5 item modifications, so we'll assume their normal
|
|
* inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
|
|
* should cover the worst case number of items we'll modify.
|
|
*/
|
|
trans = btrfs_start_transaction(root, 12);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_notrans;
|
|
}
|
|
|
|
if (dest != root)
|
|
btrfs_record_root_in_trans(trans, dest);
|
|
|
|
/*
|
|
* We need to find a free sequence number both in the source and
|
|
* in the destination directory for the exchange.
|
|
*/
|
|
ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
|
|
if (ret)
|
|
goto out_fail;
|
|
ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
|
|
if (ret)
|
|
goto out_fail;
|
|
|
|
BTRFS_I(old_inode)->dir_index = 0ULL;
|
|
BTRFS_I(new_inode)->dir_index = 0ULL;
|
|
|
|
/* Reference for the source. */
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
|
|
/* force full log commit if subvolume involved. */
|
|
btrfs_set_log_full_commit(trans);
|
|
} else {
|
|
btrfs_pin_log_trans(root);
|
|
root_log_pinned = true;
|
|
ret = btrfs_insert_inode_ref(trans, dest,
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len,
|
|
old_ino,
|
|
btrfs_ino(BTRFS_I(new_dir)),
|
|
old_idx);
|
|
if (ret)
|
|
goto out_fail;
|
|
}
|
|
|
|
/* And now for the dest. */
|
|
if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
|
|
/* force full log commit if subvolume involved. */
|
|
btrfs_set_log_full_commit(trans);
|
|
} else {
|
|
btrfs_pin_log_trans(dest);
|
|
dest_log_pinned = true;
|
|
ret = btrfs_insert_inode_ref(trans, root,
|
|
old_dentry->d_name.name,
|
|
old_dentry->d_name.len,
|
|
new_ino,
|
|
btrfs_ino(BTRFS_I(old_dir)),
|
|
new_idx);
|
|
if (ret)
|
|
goto out_fail;
|
|
}
|
|
|
|
/* Update inode version and ctime/mtime. */
|
|
inode_inc_iversion(old_dir);
|
|
inode_inc_iversion(new_dir);
|
|
inode_inc_iversion(old_inode);
|
|
inode_inc_iversion(new_inode);
|
|
old_dir->i_ctime = old_dir->i_mtime = ctime;
|
|
new_dir->i_ctime = new_dir->i_mtime = ctime;
|
|
old_inode->i_ctime = ctime;
|
|
new_inode->i_ctime = ctime;
|
|
|
|
if (old_dentry->d_parent != new_dentry->d_parent) {
|
|
btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
|
|
BTRFS_I(old_inode), 1);
|
|
btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
|
|
BTRFS_I(new_inode), 1);
|
|
}
|
|
|
|
/* src is a subvolume */
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
|
|
} else { /* src is an inode */
|
|
ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
|
|
BTRFS_I(old_dentry->d_inode),
|
|
old_dentry->d_name.name,
|
|
old_dentry->d_name.len);
|
|
if (!ret)
|
|
ret = btrfs_update_inode(trans, root, old_inode);
|
|
}
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
/* dest is a subvolume */
|
|
if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
|
|
} else { /* dest is an inode */
|
|
ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
|
|
BTRFS_I(new_dentry->d_inode),
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len);
|
|
if (!ret)
|
|
ret = btrfs_update_inode(trans, dest, new_inode);
|
|
}
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len, 0, old_idx);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
|
|
old_dentry->d_name.name,
|
|
old_dentry->d_name.len, 0, new_idx);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
if (old_inode->i_nlink == 1)
|
|
BTRFS_I(old_inode)->dir_index = old_idx;
|
|
if (new_inode->i_nlink == 1)
|
|
BTRFS_I(new_inode)->dir_index = new_idx;
|
|
|
|
if (root_log_pinned) {
|
|
parent = new_dentry->d_parent;
|
|
ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
|
|
BTRFS_I(old_dir), parent,
|
|
false, &ctx_root);
|
|
if (ret == BTRFS_NEED_LOG_SYNC)
|
|
sync_log_root = true;
|
|
else if (ret == BTRFS_NEED_TRANS_COMMIT)
|
|
commit_transaction = true;
|
|
ret = 0;
|
|
btrfs_end_log_trans(root);
|
|
root_log_pinned = false;
|
|
}
|
|
if (dest_log_pinned) {
|
|
if (!commit_transaction) {
|
|
parent = old_dentry->d_parent;
|
|
ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
|
|
BTRFS_I(new_dir), parent,
|
|
false, &ctx_dest);
|
|
if (ret == BTRFS_NEED_LOG_SYNC)
|
|
sync_log_dest = true;
|
|
else if (ret == BTRFS_NEED_TRANS_COMMIT)
|
|
commit_transaction = true;
|
|
ret = 0;
|
|
}
|
|
btrfs_end_log_trans(dest);
|
|
dest_log_pinned = false;
|
|
}
|
|
out_fail:
|
|
/*
|
|
* If we have pinned a log and an error happened, we unpin tasks
|
|
* trying to sync the log and force them to fallback to a transaction
|
|
* commit if the log currently contains any of the inodes involved in
|
|
* this rename operation (to ensure we do not persist a log with an
|
|
* inconsistent state for any of these inodes or leading to any
|
|
* inconsistencies when replayed). If the transaction was aborted, the
|
|
* abortion reason is propagated to userspace when attempting to commit
|
|
* the transaction. If the log does not contain any of these inodes, we
|
|
* allow the tasks to sync it.
|
|
*/
|
|
if (ret && (root_log_pinned || dest_log_pinned)) {
|
|
if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
|
|
btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
|
|
btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
|
|
(new_inode &&
|
|
btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
|
|
btrfs_set_log_full_commit(trans);
|
|
|
|
if (root_log_pinned) {
|
|
btrfs_end_log_trans(root);
|
|
root_log_pinned = false;
|
|
}
|
|
if (dest_log_pinned) {
|
|
btrfs_end_log_trans(dest);
|
|
dest_log_pinned = false;
|
|
}
|
|
}
|
|
if (!ret && sync_log_root && !commit_transaction) {
|
|
ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
|
|
&ctx_root);
|
|
if (ret)
|
|
commit_transaction = true;
|
|
}
|
|
if (!ret && sync_log_dest && !commit_transaction) {
|
|
ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
|
|
&ctx_dest);
|
|
if (ret)
|
|
commit_transaction = true;
|
|
}
|
|
if (commit_transaction) {
|
|
/*
|
|
* We may have set commit_transaction when logging the new name
|
|
* in the destination root, in which case we left the source
|
|
* root context in the list of log contextes. So make sure we
|
|
* remove it to avoid invalid memory accesses, since the context
|
|
* was allocated in our stack frame.
|
|
*/
|
|
if (sync_log_root) {
|
|
mutex_lock(&root->log_mutex);
|
|
list_del_init(&ctx_root.list);
|
|
mutex_unlock(&root->log_mutex);
|
|
}
|
|
ret = btrfs_commit_transaction(trans);
|
|
} else {
|
|
int ret2;
|
|
|
|
ret2 = btrfs_end_transaction(trans);
|
|
ret = ret ? ret : ret2;
|
|
}
|
|
out_notrans:
|
|
if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
|
|
old_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
up_read(&fs_info->subvol_sem);
|
|
|
|
ASSERT(list_empty(&ctx_root.list));
|
|
ASSERT(list_empty(&ctx_dest.list));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
int ret;
|
|
struct inode *inode;
|
|
u64 objectid;
|
|
u64 index;
|
|
|
|
ret = btrfs_find_free_ino(root, &objectid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode = btrfs_new_inode(trans, root, dir,
|
|
dentry->d_name.name,
|
|
dentry->d_name.len,
|
|
btrfs_ino(BTRFS_I(dir)),
|
|
objectid,
|
|
S_IFCHR | WHITEOUT_MODE,
|
|
&index);
|
|
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
return ret;
|
|
}
|
|
|
|
inode->i_op = &btrfs_special_inode_operations;
|
|
init_special_inode(inode, inode->i_mode,
|
|
WHITEOUT_DEV);
|
|
|
|
ret = btrfs_init_inode_security(trans, inode, dir,
|
|
&dentry->d_name);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
|
|
BTRFS_I(inode), 0, index);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
out:
|
|
unlock_new_inode(inode);
|
|
if (ret)
|
|
inode_dec_link_count(inode);
|
|
iput(inode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
unsigned int flags)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
unsigned int trans_num_items;
|
|
struct btrfs_root *root = BTRFS_I(old_dir)->root;
|
|
struct btrfs_root *dest = BTRFS_I(new_dir)->root;
|
|
struct inode *new_inode = d_inode(new_dentry);
|
|
struct inode *old_inode = d_inode(old_dentry);
|
|
u64 index = 0;
|
|
int ret;
|
|
u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
|
|
bool log_pinned = false;
|
|
struct btrfs_log_ctx ctx;
|
|
bool sync_log = false;
|
|
bool commit_transaction = false;
|
|
|
|
if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
|
|
return -EPERM;
|
|
|
|
/* we only allow rename subvolume link between subvolumes */
|
|
if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
|
|
return -EXDEV;
|
|
|
|
if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
|
|
(new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
|
|
return -ENOTEMPTY;
|
|
|
|
if (S_ISDIR(old_inode->i_mode) && new_inode &&
|
|
new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
|
|
return -ENOTEMPTY;
|
|
|
|
|
|
/* check for collisions, even if the name isn't there */
|
|
ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len);
|
|
|
|
if (ret) {
|
|
if (ret == -EEXIST) {
|
|
/* we shouldn't get
|
|
* eexist without a new_inode */
|
|
if (WARN_ON(!new_inode)) {
|
|
return ret;
|
|
}
|
|
} else {
|
|
/* maybe -EOVERFLOW */
|
|
return ret;
|
|
}
|
|
}
|
|
ret = 0;
|
|
|
|
/*
|
|
* we're using rename to replace one file with another. Start IO on it
|
|
* now so we don't add too much work to the end of the transaction
|
|
*/
|
|
if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
|
|
filemap_flush(old_inode->i_mapping);
|
|
|
|
/* close the racy window with snapshot create/destroy ioctl */
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
down_read(&fs_info->subvol_sem);
|
|
/*
|
|
* We want to reserve the absolute worst case amount of items. So if
|
|
* both inodes are subvols and we need to unlink them then that would
|
|
* require 4 item modifications, but if they are both normal inodes it
|
|
* would require 5 item modifications, so we'll assume they are normal
|
|
* inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
|
|
* should cover the worst case number of items we'll modify.
|
|
* If our rename has the whiteout flag, we need more 5 units for the
|
|
* new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
|
|
* when selinux is enabled).
|
|
*/
|
|
trans_num_items = 11;
|
|
if (flags & RENAME_WHITEOUT)
|
|
trans_num_items += 5;
|
|
trans = btrfs_start_transaction(root, trans_num_items);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_notrans;
|
|
}
|
|
|
|
if (dest != root)
|
|
btrfs_record_root_in_trans(trans, dest);
|
|
|
|
ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
|
|
if (ret)
|
|
goto out_fail;
|
|
|
|
BTRFS_I(old_inode)->dir_index = 0ULL;
|
|
if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
/* force full log commit if subvolume involved. */
|
|
btrfs_set_log_full_commit(trans);
|
|
} else {
|
|
btrfs_pin_log_trans(root);
|
|
log_pinned = true;
|
|
ret = btrfs_insert_inode_ref(trans, dest,
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len,
|
|
old_ino,
|
|
btrfs_ino(BTRFS_I(new_dir)), index);
|
|
if (ret)
|
|
goto out_fail;
|
|
}
|
|
|
|
inode_inc_iversion(old_dir);
|
|
inode_inc_iversion(new_dir);
|
|
inode_inc_iversion(old_inode);
|
|
old_dir->i_ctime = old_dir->i_mtime =
|
|
new_dir->i_ctime = new_dir->i_mtime =
|
|
old_inode->i_ctime = current_time(old_dir);
|
|
|
|
if (old_dentry->d_parent != new_dentry->d_parent)
|
|
btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
|
|
BTRFS_I(old_inode), 1);
|
|
|
|
if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
|
|
} else {
|
|
ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
|
|
BTRFS_I(d_inode(old_dentry)),
|
|
old_dentry->d_name.name,
|
|
old_dentry->d_name.len);
|
|
if (!ret)
|
|
ret = btrfs_update_inode(trans, root, old_inode);
|
|
}
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
if (new_inode) {
|
|
inode_inc_iversion(new_inode);
|
|
new_inode->i_ctime = current_time(new_inode);
|
|
if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
|
|
BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
|
|
ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
|
|
BUG_ON(new_inode->i_nlink == 0);
|
|
} else {
|
|
ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
|
|
BTRFS_I(d_inode(new_dentry)),
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len);
|
|
}
|
|
if (!ret && new_inode->i_nlink == 0)
|
|
ret = btrfs_orphan_add(trans,
|
|
BTRFS_I(d_inode(new_dentry)));
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len, 0, index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
if (old_inode->i_nlink == 1)
|
|
BTRFS_I(old_inode)->dir_index = index;
|
|
|
|
if (log_pinned) {
|
|
struct dentry *parent = new_dentry->d_parent;
|
|
|
|
btrfs_init_log_ctx(&ctx, old_inode);
|
|
ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
|
|
BTRFS_I(old_dir), parent,
|
|
false, &ctx);
|
|
if (ret == BTRFS_NEED_LOG_SYNC)
|
|
sync_log = true;
|
|
else if (ret == BTRFS_NEED_TRANS_COMMIT)
|
|
commit_transaction = true;
|
|
ret = 0;
|
|
btrfs_end_log_trans(root);
|
|
log_pinned = false;
|
|
}
|
|
|
|
if (flags & RENAME_WHITEOUT) {
|
|
ret = btrfs_whiteout_for_rename(trans, root, old_dir,
|
|
old_dentry);
|
|
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
}
|
|
out_fail:
|
|
/*
|
|
* If we have pinned the log and an error happened, we unpin tasks
|
|
* trying to sync the log and force them to fallback to a transaction
|
|
* commit if the log currently contains any of the inodes involved in
|
|
* this rename operation (to ensure we do not persist a log with an
|
|
* inconsistent state for any of these inodes or leading to any
|
|
* inconsistencies when replayed). If the transaction was aborted, the
|
|
* abortion reason is propagated to userspace when attempting to commit
|
|
* the transaction. If the log does not contain any of these inodes, we
|
|
* allow the tasks to sync it.
|
|
*/
|
|
if (ret && log_pinned) {
|
|
if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
|
|
btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
|
|
btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
|
|
(new_inode &&
|
|
btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
|
|
btrfs_set_log_full_commit(trans);
|
|
|
|
btrfs_end_log_trans(root);
|
|
log_pinned = false;
|
|
}
|
|
if (!ret && sync_log) {
|
|
ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
|
|
if (ret)
|
|
commit_transaction = true;
|
|
} else if (sync_log) {
|
|
mutex_lock(&root->log_mutex);
|
|
list_del(&ctx.list);
|
|
mutex_unlock(&root->log_mutex);
|
|
}
|
|
if (commit_transaction) {
|
|
ret = btrfs_commit_transaction(trans);
|
|
} else {
|
|
int ret2;
|
|
|
|
ret2 = btrfs_end_transaction(trans);
|
|
ret = ret ? ret : ret2;
|
|
}
|
|
out_notrans:
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
up_read(&fs_info->subvol_sem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
unsigned int flags)
|
|
{
|
|
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
|
|
return -EINVAL;
|
|
|
|
if (flags & RENAME_EXCHANGE)
|
|
return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
|
|
new_dentry);
|
|
|
|
return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
|
|
}
|
|
|
|
struct btrfs_delalloc_work {
|
|
struct inode *inode;
|
|
struct completion completion;
|
|
struct list_head list;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static void btrfs_run_delalloc_work(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_delalloc_work *delalloc_work;
|
|
struct inode *inode;
|
|
|
|
delalloc_work = container_of(work, struct btrfs_delalloc_work,
|
|
work);
|
|
inode = delalloc_work->inode;
|
|
filemap_flush(inode->i_mapping);
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
filemap_flush(inode->i_mapping);
|
|
|
|
iput(inode);
|
|
complete(&delalloc_work->completion);
|
|
}
|
|
|
|
static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
|
|
{
|
|
struct btrfs_delalloc_work *work;
|
|
|
|
work = kmalloc(sizeof(*work), GFP_NOFS);
|
|
if (!work)
|
|
return NULL;
|
|
|
|
init_completion(&work->completion);
|
|
INIT_LIST_HEAD(&work->list);
|
|
work->inode = inode;
|
|
btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
|
|
|
|
return work;
|
|
}
|
|
|
|
/*
|
|
* some fairly slow code that needs optimization. This walks the list
|
|
* of all the inodes with pending delalloc and forces them to disk.
|
|
*/
|
|
static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
|
|
{
|
|
struct btrfs_inode *binode;
|
|
struct inode *inode;
|
|
struct btrfs_delalloc_work *work, *next;
|
|
struct list_head works;
|
|
struct list_head splice;
|
|
int ret = 0;
|
|
|
|
INIT_LIST_HEAD(&works);
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&root->delalloc_mutex);
|
|
spin_lock(&root->delalloc_lock);
|
|
list_splice_init(&root->delalloc_inodes, &splice);
|
|
while (!list_empty(&splice)) {
|
|
binode = list_entry(splice.next, struct btrfs_inode,
|
|
delalloc_inodes);
|
|
|
|
list_move_tail(&binode->delalloc_inodes,
|
|
&root->delalloc_inodes);
|
|
inode = igrab(&binode->vfs_inode);
|
|
if (!inode) {
|
|
cond_resched_lock(&root->delalloc_lock);
|
|
continue;
|
|
}
|
|
spin_unlock(&root->delalloc_lock);
|
|
|
|
if (snapshot)
|
|
set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
|
|
&binode->runtime_flags);
|
|
work = btrfs_alloc_delalloc_work(inode);
|
|
if (!work) {
|
|
iput(inode);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
list_add_tail(&work->list, &works);
|
|
btrfs_queue_work(root->fs_info->flush_workers,
|
|
&work->work);
|
|
ret++;
|
|
if (nr != -1 && ret >= nr)
|
|
goto out;
|
|
cond_resched();
|
|
spin_lock(&root->delalloc_lock);
|
|
}
|
|
spin_unlock(&root->delalloc_lock);
|
|
|
|
out:
|
|
list_for_each_entry_safe(work, next, &works, list) {
|
|
list_del_init(&work->list);
|
|
wait_for_completion(&work->completion);
|
|
kfree(work);
|
|
}
|
|
|
|
if (!list_empty(&splice)) {
|
|
spin_lock(&root->delalloc_lock);
|
|
list_splice_tail(&splice, &root->delalloc_inodes);
|
|
spin_unlock(&root->delalloc_lock);
|
|
}
|
|
mutex_unlock(&root->delalloc_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
|
|
return -EROFS;
|
|
|
|
ret = start_delalloc_inodes(root, -1, true);
|
|
if (ret > 0)
|
|
ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
int ret;
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
|
|
return -EROFS;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&fs_info->delalloc_root_mutex);
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
list_splice_init(&fs_info->delalloc_roots, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
delalloc_root);
|
|
root = btrfs_grab_root(root);
|
|
BUG_ON(!root);
|
|
list_move_tail(&root->delalloc_root,
|
|
&fs_info->delalloc_roots);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
|
|
ret = start_delalloc_inodes(root, nr, false);
|
|
btrfs_put_root(root);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (nr != -1) {
|
|
nr -= ret;
|
|
WARN_ON(nr < 0);
|
|
}
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
}
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
|
|
ret = 0;
|
|
out:
|
|
if (!list_empty(&splice)) {
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
list_splice_tail(&splice, &fs_info->delalloc_roots);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
}
|
|
mutex_unlock(&fs_info->delalloc_root_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
|
|
const char *symname)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct inode *inode = NULL;
|
|
int err;
|
|
u64 objectid;
|
|
u64 index = 0;
|
|
int name_len;
|
|
int datasize;
|
|
unsigned long ptr;
|
|
struct btrfs_file_extent_item *ei;
|
|
struct extent_buffer *leaf;
|
|
|
|
name_len = strlen(symname);
|
|
if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
|
|
return -ENAMETOOLONG;
|
|
|
|
/*
|
|
* 2 items for inode item and ref
|
|
* 2 items for dir items
|
|
* 1 item for updating parent inode item
|
|
* 1 item for the inline extent item
|
|
* 1 item for xattr if selinux is on
|
|
*/
|
|
trans = btrfs_start_transaction(root, 7);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
err = btrfs_find_free_ino(root, &objectid);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
|
|
dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
|
|
objectid, S_IFLNK|S_IRWXUGO, &index);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If the active LSM wants to access the inode during
|
|
* d_instantiate it needs these. Smack checks to see
|
|
* if the filesystem supports xattrs by looking at the
|
|
* ops vector.
|
|
*/
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
|
|
|
|
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
key.objectid = btrfs_ino(BTRFS_I(inode));
|
|
key.offset = 0;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
datasize = btrfs_file_extent_calc_inline_size(name_len);
|
|
err = btrfs_insert_empty_item(trans, root, path, &key,
|
|
datasize);
|
|
if (err) {
|
|
btrfs_free_path(path);
|
|
goto out_unlock;
|
|
}
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, ei, trans->transid);
|
|
btrfs_set_file_extent_type(leaf, ei,
|
|
BTRFS_FILE_EXTENT_INLINE);
|
|
btrfs_set_file_extent_encryption(leaf, ei, 0);
|
|
btrfs_set_file_extent_compression(leaf, ei, 0);
|
|
btrfs_set_file_extent_other_encoding(leaf, ei, 0);
|
|
btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
|
|
|
|
ptr = btrfs_file_extent_inline_start(ei);
|
|
write_extent_buffer(leaf, symname, ptr, name_len);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_free_path(path);
|
|
|
|
inode->i_op = &btrfs_symlink_inode_operations;
|
|
inode_nohighmem(inode);
|
|
inode_set_bytes(inode, name_len);
|
|
btrfs_i_size_write(BTRFS_I(inode), name_len);
|
|
err = btrfs_update_inode(trans, root, inode);
|
|
/*
|
|
* Last step, add directory indexes for our symlink inode. This is the
|
|
* last step to avoid extra cleanup of these indexes if an error happens
|
|
* elsewhere above.
|
|
*/
|
|
if (!err)
|
|
err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
|
|
BTRFS_I(inode), 0, index);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
d_instantiate_new(dentry, inode);
|
|
|
|
out_unlock:
|
|
btrfs_end_transaction(trans);
|
|
if (err && inode) {
|
|
inode_dec_link_count(inode);
|
|
discard_new_inode(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return err;
|
|
}
|
|
|
|
static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, struct btrfs_key *ins,
|
|
u64 file_offset)
|
|
{
|
|
struct btrfs_file_extent_item stack_fi;
|
|
u64 start = ins->objectid;
|
|
u64 len = ins->offset;
|
|
int ret;
|
|
|
|
memset(&stack_fi, 0, sizeof(stack_fi));
|
|
|
|
btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
|
|
btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
|
|
btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
|
|
btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
|
|
btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
|
|
btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
|
|
/* Encryption and other encoding is reserved and all 0 */
|
|
|
|
ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
|
|
if (ret < 0)
|
|
return ret;
|
|
return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
|
|
&stack_fi, ret);
|
|
}
|
|
static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
|
|
u64 start, u64 num_bytes, u64 min_size,
|
|
loff_t actual_len, u64 *alloc_hint,
|
|
struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_map *em;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_key ins;
|
|
u64 cur_offset = start;
|
|
u64 clear_offset = start;
|
|
u64 i_size;
|
|
u64 cur_bytes;
|
|
u64 last_alloc = (u64)-1;
|
|
int ret = 0;
|
|
bool own_trans = true;
|
|
u64 end = start + num_bytes - 1;
|
|
|
|
if (trans)
|
|
own_trans = false;
|
|
while (num_bytes > 0) {
|
|
if (own_trans) {
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cur_bytes = min_t(u64, num_bytes, SZ_256M);
|
|
cur_bytes = max(cur_bytes, min_size);
|
|
/*
|
|
* If we are severely fragmented we could end up with really
|
|
* small allocations, so if the allocator is returning small
|
|
* chunks lets make its job easier by only searching for those
|
|
* sized chunks.
|
|
*/
|
|
cur_bytes = min(cur_bytes, last_alloc);
|
|
ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
|
|
min_size, 0, *alloc_hint, &ins, 1, 0);
|
|
if (ret) {
|
|
if (own_trans)
|
|
btrfs_end_transaction(trans);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We've reserved this space, and thus converted it from
|
|
* ->bytes_may_use to ->bytes_reserved. Any error that happens
|
|
* from here on out we will only need to clear our reservation
|
|
* for the remaining unreserved area, so advance our
|
|
* clear_offset by our extent size.
|
|
*/
|
|
clear_offset += ins.offset;
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
|
|
last_alloc = ins.offset;
|
|
ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
|
|
if (ret) {
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid,
|
|
ins.offset, 0);
|
|
btrfs_abort_transaction(trans, ret);
|
|
if (own_trans)
|
|
btrfs_end_transaction(trans);
|
|
break;
|
|
}
|
|
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
|
|
cur_offset + ins.offset -1, 0);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
goto next;
|
|
}
|
|
|
|
em->start = cur_offset;
|
|
em->orig_start = cur_offset;
|
|
em->len = ins.offset;
|
|
em->block_start = ins.objectid;
|
|
em->block_len = ins.offset;
|
|
em->orig_block_len = ins.offset;
|
|
em->ram_bytes = ins.offset;
|
|
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
|
|
em->generation = trans->transid;
|
|
|
|
while (1) {
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 1);
|
|
write_unlock(&em_tree->lock);
|
|
if (ret != -EEXIST)
|
|
break;
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
|
|
cur_offset + ins.offset - 1,
|
|
0);
|
|
}
|
|
free_extent_map(em);
|
|
next:
|
|
num_bytes -= ins.offset;
|
|
cur_offset += ins.offset;
|
|
*alloc_hint = ins.objectid + ins.offset;
|
|
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
|
(actual_len > inode->i_size) &&
|
|
(cur_offset > inode->i_size)) {
|
|
if (cur_offset > actual_len)
|
|
i_size = actual_len;
|
|
else
|
|
i_size = cur_offset;
|
|
i_size_write(inode, i_size);
|
|
btrfs_inode_safe_disk_i_size_write(inode, 0);
|
|
}
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
if (own_trans)
|
|
btrfs_end_transaction(trans);
|
|
break;
|
|
}
|
|
|
|
if (own_trans)
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
if (clear_offset < end)
|
|
btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
|
|
end - clear_offset + 1);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_prealloc_file_range(struct inode *inode, int mode,
|
|
u64 start, u64 num_bytes, u64 min_size,
|
|
loff_t actual_len, u64 *alloc_hint)
|
|
{
|
|
return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
|
|
min_size, actual_len, alloc_hint,
|
|
NULL);
|
|
}
|
|
|
|
int btrfs_prealloc_file_range_trans(struct inode *inode,
|
|
struct btrfs_trans_handle *trans, int mode,
|
|
u64 start, u64 num_bytes, u64 min_size,
|
|
loff_t actual_len, u64 *alloc_hint)
|
|
{
|
|
return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
|
|
min_size, actual_len, alloc_hint, trans);
|
|
}
|
|
|
|
static int btrfs_set_page_dirty(struct page *page)
|
|
{
|
|
return __set_page_dirty_nobuffers(page);
|
|
}
|
|
|
|
static int btrfs_permission(struct inode *inode, int mask)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
umode_t mode = inode->i_mode;
|
|
|
|
if (mask & MAY_WRITE &&
|
|
(S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
|
|
return -EACCES;
|
|
}
|
|
return generic_permission(inode, mask);
|
|
}
|
|
|
|
static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = NULL;
|
|
u64 objectid;
|
|
u64 index;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* 5 units required for adding orphan entry
|
|
*/
|
|
trans = btrfs_start_transaction(root, 5);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_find_free_ino(root, &objectid);
|
|
if (ret)
|
|
goto out;
|
|
|
|
inode = btrfs_new_inode(trans, root, dir, NULL, 0,
|
|
btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out;
|
|
}
|
|
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
|
|
|
|
ret = btrfs_init_inode_security(trans, inode, dir, NULL);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret)
|
|
goto out;
|
|
ret = btrfs_orphan_add(trans, BTRFS_I(inode));
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* We set number of links to 0 in btrfs_new_inode(), and here we set
|
|
* it to 1 because d_tmpfile() will issue a warning if the count is 0,
|
|
* through:
|
|
*
|
|
* d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
|
|
*/
|
|
set_nlink(inode, 1);
|
|
d_tmpfile(dentry, inode);
|
|
unlock_new_inode(inode);
|
|
mark_inode_dirty(inode);
|
|
out:
|
|
btrfs_end_transaction(trans);
|
|
if (ret && inode)
|
|
discard_new_inode(inode);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
|
|
{
|
|
struct inode *inode = tree->private_data;
|
|
unsigned long index = start >> PAGE_SHIFT;
|
|
unsigned long end_index = end >> PAGE_SHIFT;
|
|
struct page *page;
|
|
|
|
while (index <= end_index) {
|
|
page = find_get_page(inode->i_mapping, index);
|
|
ASSERT(page); /* Pages should be in the extent_io_tree */
|
|
set_page_writeback(page);
|
|
put_page(page);
|
|
index++;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SWAP
|
|
/*
|
|
* Add an entry indicating a block group or device which is pinned by a
|
|
* swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
|
|
* negative errno on failure.
|
|
*/
|
|
static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
|
|
bool is_block_group)
|
|
{
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
struct btrfs_swapfile_pin *sp, *entry;
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
|
|
sp = kmalloc(sizeof(*sp), GFP_NOFS);
|
|
if (!sp)
|
|
return -ENOMEM;
|
|
sp->ptr = ptr;
|
|
sp->inode = inode;
|
|
sp->is_block_group = is_block_group;
|
|
|
|
spin_lock(&fs_info->swapfile_pins_lock);
|
|
p = &fs_info->swapfile_pins.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
|
|
if (sp->ptr < entry->ptr ||
|
|
(sp->ptr == entry->ptr && sp->inode < entry->inode)) {
|
|
p = &(*p)->rb_left;
|
|
} else if (sp->ptr > entry->ptr ||
|
|
(sp->ptr == entry->ptr && sp->inode > entry->inode)) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
spin_unlock(&fs_info->swapfile_pins_lock);
|
|
kfree(sp);
|
|
return 1;
|
|
}
|
|
}
|
|
rb_link_node(&sp->node, parent, p);
|
|
rb_insert_color(&sp->node, &fs_info->swapfile_pins);
|
|
spin_unlock(&fs_info->swapfile_pins_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Free all of the entries pinned by this swapfile. */
|
|
static void btrfs_free_swapfile_pins(struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
struct btrfs_swapfile_pin *sp;
|
|
struct rb_node *node, *next;
|
|
|
|
spin_lock(&fs_info->swapfile_pins_lock);
|
|
node = rb_first(&fs_info->swapfile_pins);
|
|
while (node) {
|
|
next = rb_next(node);
|
|
sp = rb_entry(node, struct btrfs_swapfile_pin, node);
|
|
if (sp->inode == inode) {
|
|
rb_erase(&sp->node, &fs_info->swapfile_pins);
|
|
if (sp->is_block_group)
|
|
btrfs_put_block_group(sp->ptr);
|
|
kfree(sp);
|
|
}
|
|
node = next;
|
|
}
|
|
spin_unlock(&fs_info->swapfile_pins_lock);
|
|
}
|
|
|
|
struct btrfs_swap_info {
|
|
u64 start;
|
|
u64 block_start;
|
|
u64 block_len;
|
|
u64 lowest_ppage;
|
|
u64 highest_ppage;
|
|
unsigned long nr_pages;
|
|
int nr_extents;
|
|
};
|
|
|
|
static int btrfs_add_swap_extent(struct swap_info_struct *sis,
|
|
struct btrfs_swap_info *bsi)
|
|
{
|
|
unsigned long nr_pages;
|
|
u64 first_ppage, first_ppage_reported, next_ppage;
|
|
int ret;
|
|
|
|
first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
|
|
next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
|
|
PAGE_SIZE) >> PAGE_SHIFT;
|
|
|
|
if (first_ppage >= next_ppage)
|
|
return 0;
|
|
nr_pages = next_ppage - first_ppage;
|
|
|
|
first_ppage_reported = first_ppage;
|
|
if (bsi->start == 0)
|
|
first_ppage_reported++;
|
|
if (bsi->lowest_ppage > first_ppage_reported)
|
|
bsi->lowest_ppage = first_ppage_reported;
|
|
if (bsi->highest_ppage < (next_ppage - 1))
|
|
bsi->highest_ppage = next_ppage - 1;
|
|
|
|
ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
|
|
if (ret < 0)
|
|
return ret;
|
|
bsi->nr_extents += ret;
|
|
bsi->nr_pages += nr_pages;
|
|
return 0;
|
|
}
|
|
|
|
static void btrfs_swap_deactivate(struct file *file)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
|
|
btrfs_free_swapfile_pins(inode);
|
|
atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
|
|
}
|
|
|
|
static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_map *em = NULL;
|
|
struct btrfs_device *device = NULL;
|
|
struct btrfs_swap_info bsi = {
|
|
.lowest_ppage = (sector_t)-1ULL,
|
|
};
|
|
int ret = 0;
|
|
u64 isize;
|
|
u64 start;
|
|
|
|
/*
|
|
* If the swap file was just created, make sure delalloc is done. If the
|
|
* file changes again after this, the user is doing something stupid and
|
|
* we don't really care.
|
|
*/
|
|
ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* The inode is locked, so these flags won't change after we check them.
|
|
*/
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
|
|
btrfs_warn(fs_info, "swapfile must not be compressed");
|
|
return -EINVAL;
|
|
}
|
|
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
|
|
btrfs_warn(fs_info, "swapfile must not be copy-on-write");
|
|
return -EINVAL;
|
|
}
|
|
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
|
|
btrfs_warn(fs_info, "swapfile must not be checksummed");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Balance or device remove/replace/resize can move stuff around from
|
|
* under us. The EXCL_OP flag makes sure they aren't running/won't run
|
|
* concurrently while we are mapping the swap extents, and
|
|
* fs_info->swapfile_pins prevents them from running while the swap file
|
|
* is active and moving the extents. Note that this also prevents a
|
|
* concurrent device add which isn't actually necessary, but it's not
|
|
* really worth the trouble to allow it.
|
|
*/
|
|
if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
|
|
btrfs_warn(fs_info,
|
|
"cannot activate swapfile while exclusive operation is running");
|
|
return -EBUSY;
|
|
}
|
|
/*
|
|
* Snapshots can create extents which require COW even if NODATACOW is
|
|
* set. We use this counter to prevent snapshots. We must increment it
|
|
* before walking the extents because we don't want a concurrent
|
|
* snapshot to run after we've already checked the extents.
|
|
*/
|
|
atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
|
|
|
|
isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
|
|
|
|
lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
|
|
start = 0;
|
|
while (start < isize) {
|
|
u64 logical_block_start, physical_block_start;
|
|
struct btrfs_block_group *bg;
|
|
u64 len = isize - start;
|
|
|
|
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out;
|
|
}
|
|
|
|
if (em->block_start == EXTENT_MAP_HOLE) {
|
|
btrfs_warn(fs_info, "swapfile must not have holes");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (em->block_start == EXTENT_MAP_INLINE) {
|
|
/*
|
|
* It's unlikely we'll ever actually find ourselves
|
|
* here, as a file small enough to fit inline won't be
|
|
* big enough to store more than the swap header, but in
|
|
* case something changes in the future, let's catch it
|
|
* here rather than later.
|
|
*/
|
|
btrfs_warn(fs_info, "swapfile must not be inline");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
|
|
btrfs_warn(fs_info, "swapfile must not be compressed");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
logical_block_start = em->block_start + (start - em->start);
|
|
len = min(len, em->len - (start - em->start));
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
|
|
ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret) {
|
|
ret = 0;
|
|
} else {
|
|
btrfs_warn(fs_info,
|
|
"swapfile must not be copy-on-write");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out;
|
|
}
|
|
|
|
if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
|
|
btrfs_warn(fs_info,
|
|
"swapfile must have single data profile");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (device == NULL) {
|
|
device = em->map_lookup->stripes[0].dev;
|
|
ret = btrfs_add_swapfile_pin(inode, device, false);
|
|
if (ret == 1)
|
|
ret = 0;
|
|
else if (ret)
|
|
goto out;
|
|
} else if (device != em->map_lookup->stripes[0].dev) {
|
|
btrfs_warn(fs_info, "swapfile must be on one device");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
physical_block_start = (em->map_lookup->stripes[0].physical +
|
|
(logical_block_start - em->start));
|
|
len = min(len, em->len - (logical_block_start - em->start));
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
|
|
bg = btrfs_lookup_block_group(fs_info, logical_block_start);
|
|
if (!bg) {
|
|
btrfs_warn(fs_info,
|
|
"could not find block group containing swapfile");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_add_swapfile_pin(inode, bg, true);
|
|
if (ret) {
|
|
btrfs_put_block_group(bg);
|
|
if (ret == 1)
|
|
ret = 0;
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
if (bsi.block_len &&
|
|
bsi.block_start + bsi.block_len == physical_block_start) {
|
|
bsi.block_len += len;
|
|
} else {
|
|
if (bsi.block_len) {
|
|
ret = btrfs_add_swap_extent(sis, &bsi);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
bsi.start = start;
|
|
bsi.block_start = physical_block_start;
|
|
bsi.block_len = len;
|
|
}
|
|
|
|
start += len;
|
|
}
|
|
|
|
if (bsi.block_len)
|
|
ret = btrfs_add_swap_extent(sis, &bsi);
|
|
|
|
out:
|
|
if (!IS_ERR_OR_NULL(em))
|
|
free_extent_map(em);
|
|
|
|
unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
|
|
|
|
if (ret)
|
|
btrfs_swap_deactivate(file);
|
|
|
|
clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (device)
|
|
sis->bdev = device->bdev;
|
|
*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
|
|
sis->max = bsi.nr_pages;
|
|
sis->pages = bsi.nr_pages - 1;
|
|
sis->highest_bit = bsi.nr_pages - 1;
|
|
return bsi.nr_extents;
|
|
}
|
|
#else
|
|
static void btrfs_swap_deactivate(struct file *file)
|
|
{
|
|
}
|
|
|
|
static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
#endif
|
|
|
|
static const struct inode_operations btrfs_dir_inode_operations = {
|
|
.getattr = btrfs_getattr,
|
|
.lookup = btrfs_lookup,
|
|
.create = btrfs_create,
|
|
.unlink = btrfs_unlink,
|
|
.link = btrfs_link,
|
|
.mkdir = btrfs_mkdir,
|
|
.rmdir = btrfs_rmdir,
|
|
.rename = btrfs_rename2,
|
|
.symlink = btrfs_symlink,
|
|
.setattr = btrfs_setattr,
|
|
.mknod = btrfs_mknod,
|
|
.listxattr = btrfs_listxattr,
|
|
.permission = btrfs_permission,
|
|
.get_acl = btrfs_get_acl,
|
|
.set_acl = btrfs_set_acl,
|
|
.update_time = btrfs_update_time,
|
|
.tmpfile = btrfs_tmpfile,
|
|
};
|
|
|
|
static const struct file_operations btrfs_dir_file_operations = {
|
|
.llseek = generic_file_llseek,
|
|
.read = generic_read_dir,
|
|
.iterate_shared = btrfs_real_readdir,
|
|
.open = btrfs_opendir,
|
|
.unlocked_ioctl = btrfs_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = btrfs_compat_ioctl,
|
|
#endif
|
|
.release = btrfs_release_file,
|
|
.fsync = btrfs_sync_file,
|
|
};
|
|
|
|
static const struct extent_io_ops btrfs_extent_io_ops = {
|
|
/* mandatory callbacks */
|
|
.submit_bio_hook = btrfs_submit_bio_hook,
|
|
.readpage_end_io_hook = btrfs_readpage_end_io_hook,
|
|
};
|
|
|
|
/*
|
|
* btrfs doesn't support the bmap operation because swapfiles
|
|
* use bmap to make a mapping of extents in the file. They assume
|
|
* these extents won't change over the life of the file and they
|
|
* use the bmap result to do IO directly to the drive.
|
|
*
|
|
* the btrfs bmap call would return logical addresses that aren't
|
|
* suitable for IO and they also will change frequently as COW
|
|
* operations happen. So, swapfile + btrfs == corruption.
|
|
*
|
|
* For now we're avoiding this by dropping bmap.
|
|
*/
|
|
static const struct address_space_operations btrfs_aops = {
|
|
.readpage = btrfs_readpage,
|
|
.writepage = btrfs_writepage,
|
|
.writepages = btrfs_writepages,
|
|
.readahead = btrfs_readahead,
|
|
.direct_IO = btrfs_direct_IO,
|
|
.invalidatepage = btrfs_invalidatepage,
|
|
.releasepage = btrfs_releasepage,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = btrfs_migratepage,
|
|
#endif
|
|
.set_page_dirty = btrfs_set_page_dirty,
|
|
.error_remove_page = generic_error_remove_page,
|
|
.swap_activate = btrfs_swap_activate,
|
|
.swap_deactivate = btrfs_swap_deactivate,
|
|
};
|
|
|
|
static const struct inode_operations btrfs_file_inode_operations = {
|
|
.getattr = btrfs_getattr,
|
|
.setattr = btrfs_setattr,
|
|
.listxattr = btrfs_listxattr,
|
|
.permission = btrfs_permission,
|
|
.fiemap = btrfs_fiemap,
|
|
.get_acl = btrfs_get_acl,
|
|
.set_acl = btrfs_set_acl,
|
|
.update_time = btrfs_update_time,
|
|
};
|
|
static const struct inode_operations btrfs_special_inode_operations = {
|
|
.getattr = btrfs_getattr,
|
|
.setattr = btrfs_setattr,
|
|
.permission = btrfs_permission,
|
|
.listxattr = btrfs_listxattr,
|
|
.get_acl = btrfs_get_acl,
|
|
.set_acl = btrfs_set_acl,
|
|
.update_time = btrfs_update_time,
|
|
};
|
|
static const struct inode_operations btrfs_symlink_inode_operations = {
|
|
.get_link = page_get_link,
|
|
.getattr = btrfs_getattr,
|
|
.setattr = btrfs_setattr,
|
|
.permission = btrfs_permission,
|
|
.listxattr = btrfs_listxattr,
|
|
.update_time = btrfs_update_time,
|
|
};
|
|
|
|
const struct dentry_operations btrfs_dentry_operations = {
|
|
.d_delete = btrfs_dentry_delete,
|
|
};
|