linux_dsm_epyc7002/drivers/firmware/efi/libstub/Makefile
Ard Biesheuvel b0dddf6c14 efi/arm: Fix absolute relocation detection for older toolchains
When building the ARM kernel with CONFIG_EFI=y, the following build
error may occur when using a less recent version of binutils (2.23 or
older):

   STUBCPY drivers/firmware/efi/libstub/lib-sort.stub.o
 00000000 R_ARM_ABS32       sort
 00000004 R_ARM_ABS32       __ksymtab_strings
 drivers/firmware/efi/libstub/lib-sort.stub.o: absolute symbol references not allowed in the EFI stub

(and when building with debug symbols, the list above is much longer, and
contains all the internal references between the .debug sections and the
actual code)

This issue is caused by the fact that objcopy v2.23 or earlier does not
support wildcards in its -R and -j options, which means the following
line from the Makefile:

  STUBCOPY_FLAGS-y		:= -R .debug* -R *ksymtab* -R *kcrctab*

fails to take effect, leaving harmless absolute relocations in the binary
that are indistinguishable from relocations that may cause crashes at
runtime due to the fact that these relocations are resolved at link time
using the virtual address of the kernel, which is always different from
the address at which the EFI firmware loads and invokes the stub.

So, as a workaround, disable debug symbols explicitly when building the
stub for ARM, and strip the ksymtab and kcrctab symbols for the only
exported symbol we currently reuse in the stub, which is 'sort'.

Tested-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1476805991-7160-2-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-19 14:49:44 +02:00

85 lines
3.4 KiB
Makefile

#
# The stub may be linked into the kernel proper or into a separate boot binary,
# but in either case, it executes before the kernel does (with MMU disabled) so
# things like ftrace and stack-protector are likely to cause trouble if left
# enabled, even if doing so doesn't break the build.
#
cflags-$(CONFIG_X86_32) := -march=i386
cflags-$(CONFIG_X86_64) := -mcmodel=small
cflags-$(CONFIG_X86) += -m$(BITS) -D__KERNEL__ $(LINUX_INCLUDE) -O2 \
-fPIC -fno-strict-aliasing -mno-red-zone \
-mno-mmx -mno-sse
cflags-$(CONFIG_ARM64) := $(subst -pg,,$(KBUILD_CFLAGS))
cflags-$(CONFIG_ARM) := $(subst -pg,,$(KBUILD_CFLAGS)) -g0 \
-fno-builtin -fpic -mno-single-pic-base
cflags-$(CONFIG_EFI_ARMSTUB) += -I$(srctree)/scripts/dtc/libfdt
KBUILD_CFLAGS := $(cflags-y) -DDISABLE_BRANCH_PROFILING \
$(call cc-option,-ffreestanding) \
$(call cc-option,-fno-stack-protector)
GCOV_PROFILE := n
KASAN_SANITIZE := n
UBSAN_SANITIZE := n
OBJECT_FILES_NON_STANDARD := y
# Prevents link failures: __sanitizer_cov_trace_pc() is not linked in.
KCOV_INSTRUMENT := n
lib-y := efi-stub-helper.o gop.o
# include the stub's generic dependencies from lib/ when building for ARM/arm64
arm-deps := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c sort.c
$(obj)/lib-%.o: $(srctree)/lib/%.c FORCE
$(call if_changed_rule,cc_o_c)
lib-$(CONFIG_EFI_ARMSTUB) += arm-stub.o fdt.o string.o \
$(patsubst %.c,lib-%.o,$(arm-deps))
lib-$(CONFIG_ARM) += arm32-stub.o
lib-$(CONFIG_ARM64) += arm64-stub.o random.o
CFLAGS_arm64-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
#
# arm64 puts the stub in the kernel proper, which will unnecessarily retain all
# code indefinitely unless it is annotated as __init/__initdata/__initconst etc.
# So let's apply the __init annotations at the section level, by prefixing
# the section names directly. This will ensure that even all the inline string
# literals are covered.
# The fact that the stub and the kernel proper are essentially the same binary
# also means that we need to be extra careful to make sure that the stub does
# not rely on any absolute symbol references, considering that the virtual
# kernel mapping that the linker uses is not active yet when the stub is
# executing. So build all C dependencies of the EFI stub into libstub, and do
# a verification pass to see if any absolute relocations exist in any of the
# object files.
#
extra-$(CONFIG_EFI_ARMSTUB) := $(lib-y)
lib-$(CONFIG_EFI_ARMSTUB) := $(patsubst %.o,%.stub.o,$(lib-y))
STUBCOPY_FLAGS-y := -R .debug* -R *ksymtab* -R *kcrctab*
STUBCOPY_FLAGS-$(CONFIG_ARM64) += --prefix-alloc-sections=.init \
--prefix-symbols=__efistub_
STUBCOPY_RELOC-$(CONFIG_ARM64) := R_AARCH64_ABS
$(obj)/%.stub.o: $(obj)/%.o FORCE
$(call if_changed,stubcopy)
quiet_cmd_stubcopy = STUBCPY $@
cmd_stubcopy = if $(OBJCOPY) $(STUBCOPY_FLAGS-y) $< $@; then \
$(OBJDUMP) -r $@ | grep $(STUBCOPY_RELOC-y) \
&& (echo >&2 "$@: absolute symbol references not allowed in the EFI stub"; \
rm -f $@; /bin/false); else /bin/false; fi
#
# ARM discards the .data section because it disallows r/w data in the
# decompressor. So move our .data to .data.efistub, which is preserved
# explicitly by the decompressor linker script.
#
STUBCOPY_FLAGS-$(CONFIG_ARM) += --rename-section .data=.data.efistub \
-R ___ksymtab+sort -R ___kcrctab+sort
STUBCOPY_RELOC-$(CONFIG_ARM) := R_ARM_ABS