mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 12:16:45 +07:00
299b4eaa30
N_POSSIBLE doesn't means there is memory...and force_empty can visit invalid node which have no pgdat. To visit all valid nodes, N_HIGH_MEMORY should be used. Reported-by: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2341 lines
57 KiB
C
2341 lines
57 KiB
C
/* memcontrol.c - Memory Controller
|
|
*
|
|
* Copyright IBM Corporation, 2007
|
|
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
|
|
*
|
|
* Copyright 2007 OpenVZ SWsoft Inc
|
|
* Author: Pavel Emelianov <xemul@openvz.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/res_counter.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/bit_spinlock.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/page_cgroup.h>
|
|
#include "internal.h"
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
|
|
#define MEM_CGROUP_RECLAIM_RETRIES 5
|
|
|
|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
|
|
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
|
|
int do_swap_account __read_mostly;
|
|
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
|
|
#else
|
|
#define do_swap_account (0)
|
|
#endif
|
|
|
|
static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
|
|
|
|
/*
|
|
* Statistics for memory cgroup.
|
|
*/
|
|
enum mem_cgroup_stat_index {
|
|
/*
|
|
* For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
|
|
*/
|
|
MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
|
|
MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
|
|
MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
|
|
MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
|
|
|
|
MEM_CGROUP_STAT_NSTATS,
|
|
};
|
|
|
|
struct mem_cgroup_stat_cpu {
|
|
s64 count[MEM_CGROUP_STAT_NSTATS];
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
struct mem_cgroup_stat {
|
|
struct mem_cgroup_stat_cpu cpustat[0];
|
|
};
|
|
|
|
/*
|
|
* For accounting under irq disable, no need for increment preempt count.
|
|
*/
|
|
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
|
|
enum mem_cgroup_stat_index idx, int val)
|
|
{
|
|
stat->count[idx] += val;
|
|
}
|
|
|
|
static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
|
|
enum mem_cgroup_stat_index idx)
|
|
{
|
|
int cpu;
|
|
s64 ret = 0;
|
|
for_each_possible_cpu(cpu)
|
|
ret += stat->cpustat[cpu].count[idx];
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* per-zone information in memory controller.
|
|
*/
|
|
struct mem_cgroup_per_zone {
|
|
/*
|
|
* spin_lock to protect the per cgroup LRU
|
|
*/
|
|
struct list_head lists[NR_LRU_LISTS];
|
|
unsigned long count[NR_LRU_LISTS];
|
|
|
|
struct zone_reclaim_stat reclaim_stat;
|
|
};
|
|
/* Macro for accessing counter */
|
|
#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
|
|
|
|
struct mem_cgroup_per_node {
|
|
struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
|
|
};
|
|
|
|
struct mem_cgroup_lru_info {
|
|
struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
|
|
};
|
|
|
|
/*
|
|
* The memory controller data structure. The memory controller controls both
|
|
* page cache and RSS per cgroup. We would eventually like to provide
|
|
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
|
|
* to help the administrator determine what knobs to tune.
|
|
*
|
|
* TODO: Add a water mark for the memory controller. Reclaim will begin when
|
|
* we hit the water mark. May be even add a low water mark, such that
|
|
* no reclaim occurs from a cgroup at it's low water mark, this is
|
|
* a feature that will be implemented much later in the future.
|
|
*/
|
|
struct mem_cgroup {
|
|
struct cgroup_subsys_state css;
|
|
/*
|
|
* the counter to account for memory usage
|
|
*/
|
|
struct res_counter res;
|
|
/*
|
|
* the counter to account for mem+swap usage.
|
|
*/
|
|
struct res_counter memsw;
|
|
/*
|
|
* Per cgroup active and inactive list, similar to the
|
|
* per zone LRU lists.
|
|
*/
|
|
struct mem_cgroup_lru_info info;
|
|
|
|
/*
|
|
protect against reclaim related member.
|
|
*/
|
|
spinlock_t reclaim_param_lock;
|
|
|
|
int prev_priority; /* for recording reclaim priority */
|
|
|
|
/*
|
|
* While reclaiming in a hiearchy, we cache the last child we
|
|
* reclaimed from. Protected by hierarchy_mutex
|
|
*/
|
|
struct mem_cgroup *last_scanned_child;
|
|
/*
|
|
* Should the accounting and control be hierarchical, per subtree?
|
|
*/
|
|
bool use_hierarchy;
|
|
unsigned long last_oom_jiffies;
|
|
atomic_t refcnt;
|
|
|
|
unsigned int swappiness;
|
|
|
|
/*
|
|
* statistics. This must be placed at the end of memcg.
|
|
*/
|
|
struct mem_cgroup_stat stat;
|
|
};
|
|
|
|
enum charge_type {
|
|
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
|
|
MEM_CGROUP_CHARGE_TYPE_MAPPED,
|
|
MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
|
|
MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
|
|
MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
|
|
NR_CHARGE_TYPE,
|
|
};
|
|
|
|
/* only for here (for easy reading.) */
|
|
#define PCGF_CACHE (1UL << PCG_CACHE)
|
|
#define PCGF_USED (1UL << PCG_USED)
|
|
#define PCGF_LOCK (1UL << PCG_LOCK)
|
|
static const unsigned long
|
|
pcg_default_flags[NR_CHARGE_TYPE] = {
|
|
PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
|
|
PCGF_USED | PCGF_LOCK, /* Anon */
|
|
PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
|
|
0, /* FORCE */
|
|
};
|
|
|
|
/* for encoding cft->private value on file */
|
|
#define _MEM (0)
|
|
#define _MEMSWAP (1)
|
|
#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
|
|
#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
|
|
#define MEMFILE_ATTR(val) ((val) & 0xffff)
|
|
|
|
static void mem_cgroup_get(struct mem_cgroup *mem);
|
|
static void mem_cgroup_put(struct mem_cgroup *mem);
|
|
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
|
|
|
|
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
|
|
struct page_cgroup *pc,
|
|
bool charge)
|
|
{
|
|
int val = (charge)? 1 : -1;
|
|
struct mem_cgroup_stat *stat = &mem->stat;
|
|
struct mem_cgroup_stat_cpu *cpustat;
|
|
int cpu = get_cpu();
|
|
|
|
cpustat = &stat->cpustat[cpu];
|
|
if (PageCgroupCache(pc))
|
|
__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
|
|
else
|
|
__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
|
|
|
|
if (charge)
|
|
__mem_cgroup_stat_add_safe(cpustat,
|
|
MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
|
|
else
|
|
__mem_cgroup_stat_add_safe(cpustat,
|
|
MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
|
|
put_cpu();
|
|
}
|
|
|
|
static struct mem_cgroup_per_zone *
|
|
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
|
|
{
|
|
return &mem->info.nodeinfo[nid]->zoneinfo[zid];
|
|
}
|
|
|
|
static struct mem_cgroup_per_zone *
|
|
page_cgroup_zoneinfo(struct page_cgroup *pc)
|
|
{
|
|
struct mem_cgroup *mem = pc->mem_cgroup;
|
|
int nid = page_cgroup_nid(pc);
|
|
int zid = page_cgroup_zid(pc);
|
|
|
|
if (!mem)
|
|
return NULL;
|
|
|
|
return mem_cgroup_zoneinfo(mem, nid, zid);
|
|
}
|
|
|
|
static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
|
|
enum lru_list idx)
|
|
{
|
|
int nid, zid;
|
|
struct mem_cgroup_per_zone *mz;
|
|
u64 total = 0;
|
|
|
|
for_each_online_node(nid)
|
|
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
|
|
mz = mem_cgroup_zoneinfo(mem, nid, zid);
|
|
total += MEM_CGROUP_ZSTAT(mz, idx);
|
|
}
|
|
return total;
|
|
}
|
|
|
|
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
|
|
{
|
|
return container_of(cgroup_subsys_state(cont,
|
|
mem_cgroup_subsys_id), struct mem_cgroup,
|
|
css);
|
|
}
|
|
|
|
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
|
|
{
|
|
/*
|
|
* mm_update_next_owner() may clear mm->owner to NULL
|
|
* if it races with swapoff, page migration, etc.
|
|
* So this can be called with p == NULL.
|
|
*/
|
|
if (unlikely(!p))
|
|
return NULL;
|
|
|
|
return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
|
|
struct mem_cgroup, css);
|
|
}
|
|
|
|
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
|
|
{
|
|
struct mem_cgroup *mem = NULL;
|
|
/*
|
|
* Because we have no locks, mm->owner's may be being moved to other
|
|
* cgroup. We use css_tryget() here even if this looks
|
|
* pessimistic (rather than adding locks here).
|
|
*/
|
|
rcu_read_lock();
|
|
do {
|
|
mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
|
|
if (unlikely(!mem))
|
|
break;
|
|
} while (!css_tryget(&mem->css));
|
|
rcu_read_unlock();
|
|
return mem;
|
|
}
|
|
|
|
static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
|
|
{
|
|
if (!mem)
|
|
return true;
|
|
return css_is_removed(&mem->css);
|
|
}
|
|
|
|
/*
|
|
* Following LRU functions are allowed to be used without PCG_LOCK.
|
|
* Operations are called by routine of global LRU independently from memcg.
|
|
* What we have to take care of here is validness of pc->mem_cgroup.
|
|
*
|
|
* Changes to pc->mem_cgroup happens when
|
|
* 1. charge
|
|
* 2. moving account
|
|
* In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
|
|
* It is added to LRU before charge.
|
|
* If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
|
|
* When moving account, the page is not on LRU. It's isolated.
|
|
*/
|
|
|
|
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
|
|
{
|
|
struct page_cgroup *pc;
|
|
struct mem_cgroup *mem;
|
|
struct mem_cgroup_per_zone *mz;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return;
|
|
pc = lookup_page_cgroup(page);
|
|
/* can happen while we handle swapcache. */
|
|
if (list_empty(&pc->lru) || !pc->mem_cgroup)
|
|
return;
|
|
/*
|
|
* We don't check PCG_USED bit. It's cleared when the "page" is finally
|
|
* removed from global LRU.
|
|
*/
|
|
mz = page_cgroup_zoneinfo(pc);
|
|
mem = pc->mem_cgroup;
|
|
MEM_CGROUP_ZSTAT(mz, lru) -= 1;
|
|
list_del_init(&pc->lru);
|
|
return;
|
|
}
|
|
|
|
void mem_cgroup_del_lru(struct page *page)
|
|
{
|
|
mem_cgroup_del_lru_list(page, page_lru(page));
|
|
}
|
|
|
|
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
|
|
{
|
|
struct mem_cgroup_per_zone *mz;
|
|
struct page_cgroup *pc;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return;
|
|
|
|
pc = lookup_page_cgroup(page);
|
|
/*
|
|
* Used bit is set without atomic ops but after smp_wmb().
|
|
* For making pc->mem_cgroup visible, insert smp_rmb() here.
|
|
*/
|
|
smp_rmb();
|
|
/* unused page is not rotated. */
|
|
if (!PageCgroupUsed(pc))
|
|
return;
|
|
mz = page_cgroup_zoneinfo(pc);
|
|
list_move(&pc->lru, &mz->lists[lru]);
|
|
}
|
|
|
|
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
|
|
{
|
|
struct page_cgroup *pc;
|
|
struct mem_cgroup_per_zone *mz;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return;
|
|
pc = lookup_page_cgroup(page);
|
|
/*
|
|
* Used bit is set without atomic ops but after smp_wmb().
|
|
* For making pc->mem_cgroup visible, insert smp_rmb() here.
|
|
*/
|
|
smp_rmb();
|
|
if (!PageCgroupUsed(pc))
|
|
return;
|
|
|
|
mz = page_cgroup_zoneinfo(pc);
|
|
MEM_CGROUP_ZSTAT(mz, lru) += 1;
|
|
list_add(&pc->lru, &mz->lists[lru]);
|
|
}
|
|
|
|
/*
|
|
* At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
|
|
* lru because the page may.be reused after it's fully uncharged (because of
|
|
* SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
|
|
* it again. This function is only used to charge SwapCache. It's done under
|
|
* lock_page and expected that zone->lru_lock is never held.
|
|
*/
|
|
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
|
|
{
|
|
unsigned long flags;
|
|
struct zone *zone = page_zone(page);
|
|
struct page_cgroup *pc = lookup_page_cgroup(page);
|
|
|
|
spin_lock_irqsave(&zone->lru_lock, flags);
|
|
/*
|
|
* Forget old LRU when this page_cgroup is *not* used. This Used bit
|
|
* is guarded by lock_page() because the page is SwapCache.
|
|
*/
|
|
if (!PageCgroupUsed(pc))
|
|
mem_cgroup_del_lru_list(page, page_lru(page));
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
}
|
|
|
|
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
|
|
{
|
|
unsigned long flags;
|
|
struct zone *zone = page_zone(page);
|
|
struct page_cgroup *pc = lookup_page_cgroup(page);
|
|
|
|
spin_lock_irqsave(&zone->lru_lock, flags);
|
|
/* link when the page is linked to LRU but page_cgroup isn't */
|
|
if (PageLRU(page) && list_empty(&pc->lru))
|
|
mem_cgroup_add_lru_list(page, page_lru(page));
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
}
|
|
|
|
|
|
void mem_cgroup_move_lists(struct page *page,
|
|
enum lru_list from, enum lru_list to)
|
|
{
|
|
if (mem_cgroup_disabled())
|
|
return;
|
|
mem_cgroup_del_lru_list(page, from);
|
|
mem_cgroup_add_lru_list(page, to);
|
|
}
|
|
|
|
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
|
|
{
|
|
int ret;
|
|
|
|
task_lock(task);
|
|
ret = task->mm && mm_match_cgroup(task->mm, mem);
|
|
task_unlock(task);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Calculate mapped_ratio under memory controller. This will be used in
|
|
* vmscan.c for deteremining we have to reclaim mapped pages.
|
|
*/
|
|
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
|
|
{
|
|
long total, rss;
|
|
|
|
/*
|
|
* usage is recorded in bytes. But, here, we assume the number of
|
|
* physical pages can be represented by "long" on any arch.
|
|
*/
|
|
total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
|
|
rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
|
|
return (int)((rss * 100L) / total);
|
|
}
|
|
|
|
/*
|
|
* prev_priority control...this will be used in memory reclaim path.
|
|
*/
|
|
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
|
|
{
|
|
int prev_priority;
|
|
|
|
spin_lock(&mem->reclaim_param_lock);
|
|
prev_priority = mem->prev_priority;
|
|
spin_unlock(&mem->reclaim_param_lock);
|
|
|
|
return prev_priority;
|
|
}
|
|
|
|
void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
|
|
{
|
|
spin_lock(&mem->reclaim_param_lock);
|
|
if (priority < mem->prev_priority)
|
|
mem->prev_priority = priority;
|
|
spin_unlock(&mem->reclaim_param_lock);
|
|
}
|
|
|
|
void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
|
|
{
|
|
spin_lock(&mem->reclaim_param_lock);
|
|
mem->prev_priority = priority;
|
|
spin_unlock(&mem->reclaim_param_lock);
|
|
}
|
|
|
|
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
|
|
{
|
|
unsigned long active;
|
|
unsigned long inactive;
|
|
unsigned long gb;
|
|
unsigned long inactive_ratio;
|
|
|
|
inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
|
|
active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
|
|
|
|
gb = (inactive + active) >> (30 - PAGE_SHIFT);
|
|
if (gb)
|
|
inactive_ratio = int_sqrt(10 * gb);
|
|
else
|
|
inactive_ratio = 1;
|
|
|
|
if (present_pages) {
|
|
present_pages[0] = inactive;
|
|
present_pages[1] = active;
|
|
}
|
|
|
|
return inactive_ratio;
|
|
}
|
|
|
|
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
|
|
{
|
|
unsigned long active;
|
|
unsigned long inactive;
|
|
unsigned long present_pages[2];
|
|
unsigned long inactive_ratio;
|
|
|
|
inactive_ratio = calc_inactive_ratio(memcg, present_pages);
|
|
|
|
inactive = present_pages[0];
|
|
active = present_pages[1];
|
|
|
|
if (inactive * inactive_ratio < active)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
|
|
struct zone *zone,
|
|
enum lru_list lru)
|
|
{
|
|
int nid = zone->zone_pgdat->node_id;
|
|
int zid = zone_idx(zone);
|
|
struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
|
|
|
|
return MEM_CGROUP_ZSTAT(mz, lru);
|
|
}
|
|
|
|
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
|
|
struct zone *zone)
|
|
{
|
|
int nid = zone->zone_pgdat->node_id;
|
|
int zid = zone_idx(zone);
|
|
struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
|
|
|
|
return &mz->reclaim_stat;
|
|
}
|
|
|
|
struct zone_reclaim_stat *
|
|
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
|
|
{
|
|
struct page_cgroup *pc;
|
|
struct mem_cgroup_per_zone *mz;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return NULL;
|
|
|
|
pc = lookup_page_cgroup(page);
|
|
/*
|
|
* Used bit is set without atomic ops but after smp_wmb().
|
|
* For making pc->mem_cgroup visible, insert smp_rmb() here.
|
|
*/
|
|
smp_rmb();
|
|
if (!PageCgroupUsed(pc))
|
|
return NULL;
|
|
|
|
mz = page_cgroup_zoneinfo(pc);
|
|
if (!mz)
|
|
return NULL;
|
|
|
|
return &mz->reclaim_stat;
|
|
}
|
|
|
|
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
|
|
struct list_head *dst,
|
|
unsigned long *scanned, int order,
|
|
int mode, struct zone *z,
|
|
struct mem_cgroup *mem_cont,
|
|
int active, int file)
|
|
{
|
|
unsigned long nr_taken = 0;
|
|
struct page *page;
|
|
unsigned long scan;
|
|
LIST_HEAD(pc_list);
|
|
struct list_head *src;
|
|
struct page_cgroup *pc, *tmp;
|
|
int nid = z->zone_pgdat->node_id;
|
|
int zid = zone_idx(z);
|
|
struct mem_cgroup_per_zone *mz;
|
|
int lru = LRU_FILE * !!file + !!active;
|
|
|
|
BUG_ON(!mem_cont);
|
|
mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
|
|
src = &mz->lists[lru];
|
|
|
|
scan = 0;
|
|
list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
|
|
if (scan >= nr_to_scan)
|
|
break;
|
|
|
|
page = pc->page;
|
|
if (unlikely(!PageCgroupUsed(pc)))
|
|
continue;
|
|
if (unlikely(!PageLRU(page)))
|
|
continue;
|
|
|
|
scan++;
|
|
if (__isolate_lru_page(page, mode, file) == 0) {
|
|
list_move(&page->lru, dst);
|
|
nr_taken++;
|
|
}
|
|
}
|
|
|
|
*scanned = scan;
|
|
return nr_taken;
|
|
}
|
|
|
|
#define mem_cgroup_from_res_counter(counter, member) \
|
|
container_of(counter, struct mem_cgroup, member)
|
|
|
|
/*
|
|
* This routine finds the DFS walk successor. This routine should be
|
|
* called with hierarchy_mutex held
|
|
*/
|
|
static struct mem_cgroup *
|
|
__mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
|
|
{
|
|
struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
|
|
|
|
curr_cgroup = curr->css.cgroup;
|
|
root_cgroup = root_mem->css.cgroup;
|
|
|
|
if (!list_empty(&curr_cgroup->children)) {
|
|
/*
|
|
* Walk down to children
|
|
*/
|
|
cgroup = list_entry(curr_cgroup->children.next,
|
|
struct cgroup, sibling);
|
|
curr = mem_cgroup_from_cont(cgroup);
|
|
goto done;
|
|
}
|
|
|
|
visit_parent:
|
|
if (curr_cgroup == root_cgroup) {
|
|
/* caller handles NULL case */
|
|
curr = NULL;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Goto next sibling
|
|
*/
|
|
if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
|
|
cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
|
|
sibling);
|
|
curr = mem_cgroup_from_cont(cgroup);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Go up to next parent and next parent's sibling if need be
|
|
*/
|
|
curr_cgroup = curr_cgroup->parent;
|
|
goto visit_parent;
|
|
|
|
done:
|
|
return curr;
|
|
}
|
|
|
|
/*
|
|
* Visit the first child (need not be the first child as per the ordering
|
|
* of the cgroup list, since we track last_scanned_child) of @mem and use
|
|
* that to reclaim free pages from.
|
|
*/
|
|
static struct mem_cgroup *
|
|
mem_cgroup_get_next_node(struct mem_cgroup *root_mem)
|
|
{
|
|
struct cgroup *cgroup;
|
|
struct mem_cgroup *orig, *next;
|
|
bool obsolete;
|
|
|
|
/*
|
|
* Scan all children under the mem_cgroup mem
|
|
*/
|
|
mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
|
|
|
|
orig = root_mem->last_scanned_child;
|
|
obsolete = mem_cgroup_is_obsolete(orig);
|
|
|
|
if (list_empty(&root_mem->css.cgroup->children)) {
|
|
/*
|
|
* root_mem might have children before and last_scanned_child
|
|
* may point to one of them. We put it later.
|
|
*/
|
|
if (orig)
|
|
VM_BUG_ON(!obsolete);
|
|
next = NULL;
|
|
goto done;
|
|
}
|
|
|
|
if (!orig || obsolete) {
|
|
cgroup = list_first_entry(&root_mem->css.cgroup->children,
|
|
struct cgroup, sibling);
|
|
next = mem_cgroup_from_cont(cgroup);
|
|
} else
|
|
next = __mem_cgroup_get_next_node(orig, root_mem);
|
|
|
|
done:
|
|
if (next)
|
|
mem_cgroup_get(next);
|
|
root_mem->last_scanned_child = next;
|
|
if (orig)
|
|
mem_cgroup_put(orig);
|
|
mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
|
|
return (next) ? next : root_mem;
|
|
}
|
|
|
|
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
|
|
{
|
|
if (do_swap_account) {
|
|
if (res_counter_check_under_limit(&mem->res) &&
|
|
res_counter_check_under_limit(&mem->memsw))
|
|
return true;
|
|
} else
|
|
if (res_counter_check_under_limit(&mem->res))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static unsigned int get_swappiness(struct mem_cgroup *memcg)
|
|
{
|
|
struct cgroup *cgrp = memcg->css.cgroup;
|
|
unsigned int swappiness;
|
|
|
|
/* root ? */
|
|
if (cgrp->parent == NULL)
|
|
return vm_swappiness;
|
|
|
|
spin_lock(&memcg->reclaim_param_lock);
|
|
swappiness = memcg->swappiness;
|
|
spin_unlock(&memcg->reclaim_param_lock);
|
|
|
|
return swappiness;
|
|
}
|
|
|
|
/*
|
|
* Dance down the hierarchy if needed to reclaim memory. We remember the
|
|
* last child we reclaimed from, so that we don't end up penalizing
|
|
* one child extensively based on its position in the children list.
|
|
*
|
|
* root_mem is the original ancestor that we've been reclaim from.
|
|
*/
|
|
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
|
|
gfp_t gfp_mask, bool noswap)
|
|
{
|
|
struct mem_cgroup *next_mem;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Reclaim unconditionally and don't check for return value.
|
|
* We need to reclaim in the current group and down the tree.
|
|
* One might think about checking for children before reclaiming,
|
|
* but there might be left over accounting, even after children
|
|
* have left.
|
|
*/
|
|
ret += try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
|
|
get_swappiness(root_mem));
|
|
if (mem_cgroup_check_under_limit(root_mem))
|
|
return 1; /* indicate reclaim has succeeded */
|
|
if (!root_mem->use_hierarchy)
|
|
return ret;
|
|
|
|
next_mem = mem_cgroup_get_next_node(root_mem);
|
|
|
|
while (next_mem != root_mem) {
|
|
if (mem_cgroup_is_obsolete(next_mem)) {
|
|
next_mem = mem_cgroup_get_next_node(root_mem);
|
|
continue;
|
|
}
|
|
ret += try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
|
|
get_swappiness(next_mem));
|
|
if (mem_cgroup_check_under_limit(root_mem))
|
|
return 1; /* indicate reclaim has succeeded */
|
|
next_mem = mem_cgroup_get_next_node(root_mem);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool mem_cgroup_oom_called(struct task_struct *task)
|
|
{
|
|
bool ret = false;
|
|
struct mem_cgroup *mem;
|
|
struct mm_struct *mm;
|
|
|
|
rcu_read_lock();
|
|
mm = task->mm;
|
|
if (!mm)
|
|
mm = &init_mm;
|
|
mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
|
|
if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
|
|
ret = true;
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
/*
|
|
* Unlike exported interface, "oom" parameter is added. if oom==true,
|
|
* oom-killer can be invoked.
|
|
*/
|
|
static int __mem_cgroup_try_charge(struct mm_struct *mm,
|
|
gfp_t gfp_mask, struct mem_cgroup **memcg,
|
|
bool oom)
|
|
{
|
|
struct mem_cgroup *mem, *mem_over_limit;
|
|
int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
|
|
struct res_counter *fail_res;
|
|
|
|
if (unlikely(test_thread_flag(TIF_MEMDIE))) {
|
|
/* Don't account this! */
|
|
*memcg = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We always charge the cgroup the mm_struct belongs to.
|
|
* The mm_struct's mem_cgroup changes on task migration if the
|
|
* thread group leader migrates. It's possible that mm is not
|
|
* set, if so charge the init_mm (happens for pagecache usage).
|
|
*/
|
|
mem = *memcg;
|
|
if (likely(!mem)) {
|
|
mem = try_get_mem_cgroup_from_mm(mm);
|
|
*memcg = mem;
|
|
} else {
|
|
css_get(&mem->css);
|
|
}
|
|
if (unlikely(!mem))
|
|
return 0;
|
|
|
|
VM_BUG_ON(mem_cgroup_is_obsolete(mem));
|
|
|
|
while (1) {
|
|
int ret;
|
|
bool noswap = false;
|
|
|
|
ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
|
|
if (likely(!ret)) {
|
|
if (!do_swap_account)
|
|
break;
|
|
ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
|
|
&fail_res);
|
|
if (likely(!ret))
|
|
break;
|
|
/* mem+swap counter fails */
|
|
res_counter_uncharge(&mem->res, PAGE_SIZE);
|
|
noswap = true;
|
|
mem_over_limit = mem_cgroup_from_res_counter(fail_res,
|
|
memsw);
|
|
} else
|
|
/* mem counter fails */
|
|
mem_over_limit = mem_cgroup_from_res_counter(fail_res,
|
|
res);
|
|
|
|
if (!(gfp_mask & __GFP_WAIT))
|
|
goto nomem;
|
|
|
|
ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
|
|
noswap);
|
|
if (ret)
|
|
continue;
|
|
|
|
/*
|
|
* try_to_free_mem_cgroup_pages() might not give us a full
|
|
* picture of reclaim. Some pages are reclaimed and might be
|
|
* moved to swap cache or just unmapped from the cgroup.
|
|
* Check the limit again to see if the reclaim reduced the
|
|
* current usage of the cgroup before giving up
|
|
*
|
|
*/
|
|
if (mem_cgroup_check_under_limit(mem_over_limit))
|
|
continue;
|
|
|
|
if (!nr_retries--) {
|
|
if (oom) {
|
|
mutex_lock(&memcg_tasklist);
|
|
mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
|
|
mutex_unlock(&memcg_tasklist);
|
|
mem_over_limit->last_oom_jiffies = jiffies;
|
|
}
|
|
goto nomem;
|
|
}
|
|
}
|
|
return 0;
|
|
nomem:
|
|
css_put(&mem->css);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
swp_entry_t ent;
|
|
|
|
if (!PageSwapCache(page))
|
|
return NULL;
|
|
|
|
ent.val = page_private(page);
|
|
mem = lookup_swap_cgroup(ent);
|
|
if (!mem)
|
|
return NULL;
|
|
if (!css_tryget(&mem->css))
|
|
return NULL;
|
|
return mem;
|
|
}
|
|
|
|
/*
|
|
* commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
|
|
* USED state. If already USED, uncharge and return.
|
|
*/
|
|
|
|
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
|
|
struct page_cgroup *pc,
|
|
enum charge_type ctype)
|
|
{
|
|
/* try_charge() can return NULL to *memcg, taking care of it. */
|
|
if (!mem)
|
|
return;
|
|
|
|
lock_page_cgroup(pc);
|
|
if (unlikely(PageCgroupUsed(pc))) {
|
|
unlock_page_cgroup(pc);
|
|
res_counter_uncharge(&mem->res, PAGE_SIZE);
|
|
if (do_swap_account)
|
|
res_counter_uncharge(&mem->memsw, PAGE_SIZE);
|
|
css_put(&mem->css);
|
|
return;
|
|
}
|
|
pc->mem_cgroup = mem;
|
|
smp_wmb();
|
|
pc->flags = pcg_default_flags[ctype];
|
|
|
|
mem_cgroup_charge_statistics(mem, pc, true);
|
|
|
|
unlock_page_cgroup(pc);
|
|
}
|
|
|
|
/**
|
|
* mem_cgroup_move_account - move account of the page
|
|
* @pc: page_cgroup of the page.
|
|
* @from: mem_cgroup which the page is moved from.
|
|
* @to: mem_cgroup which the page is moved to. @from != @to.
|
|
*
|
|
* The caller must confirm following.
|
|
* - page is not on LRU (isolate_page() is useful.)
|
|
*
|
|
* returns 0 at success,
|
|
* returns -EBUSY when lock is busy or "pc" is unstable.
|
|
*
|
|
* This function does "uncharge" from old cgroup but doesn't do "charge" to
|
|
* new cgroup. It should be done by a caller.
|
|
*/
|
|
|
|
static int mem_cgroup_move_account(struct page_cgroup *pc,
|
|
struct mem_cgroup *from, struct mem_cgroup *to)
|
|
{
|
|
struct mem_cgroup_per_zone *from_mz, *to_mz;
|
|
int nid, zid;
|
|
int ret = -EBUSY;
|
|
|
|
VM_BUG_ON(from == to);
|
|
VM_BUG_ON(PageLRU(pc->page));
|
|
|
|
nid = page_cgroup_nid(pc);
|
|
zid = page_cgroup_zid(pc);
|
|
from_mz = mem_cgroup_zoneinfo(from, nid, zid);
|
|
to_mz = mem_cgroup_zoneinfo(to, nid, zid);
|
|
|
|
if (!trylock_page_cgroup(pc))
|
|
return ret;
|
|
|
|
if (!PageCgroupUsed(pc))
|
|
goto out;
|
|
|
|
if (pc->mem_cgroup != from)
|
|
goto out;
|
|
|
|
res_counter_uncharge(&from->res, PAGE_SIZE);
|
|
mem_cgroup_charge_statistics(from, pc, false);
|
|
if (do_swap_account)
|
|
res_counter_uncharge(&from->memsw, PAGE_SIZE);
|
|
css_put(&from->css);
|
|
|
|
css_get(&to->css);
|
|
pc->mem_cgroup = to;
|
|
mem_cgroup_charge_statistics(to, pc, true);
|
|
ret = 0;
|
|
out:
|
|
unlock_page_cgroup(pc);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* move charges to its parent.
|
|
*/
|
|
|
|
static int mem_cgroup_move_parent(struct page_cgroup *pc,
|
|
struct mem_cgroup *child,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct page *page = pc->page;
|
|
struct cgroup *cg = child->css.cgroup;
|
|
struct cgroup *pcg = cg->parent;
|
|
struct mem_cgroup *parent;
|
|
int ret;
|
|
|
|
/* Is ROOT ? */
|
|
if (!pcg)
|
|
return -EINVAL;
|
|
|
|
|
|
parent = mem_cgroup_from_cont(pcg);
|
|
|
|
|
|
ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
|
|
if (ret || !parent)
|
|
return ret;
|
|
|
|
if (!get_page_unless_zero(page)) {
|
|
ret = -EBUSY;
|
|
goto uncharge;
|
|
}
|
|
|
|
ret = isolate_lru_page(page);
|
|
|
|
if (ret)
|
|
goto cancel;
|
|
|
|
ret = mem_cgroup_move_account(pc, child, parent);
|
|
|
|
putback_lru_page(page);
|
|
if (!ret) {
|
|
put_page(page);
|
|
/* drop extra refcnt by try_charge() */
|
|
css_put(&parent->css);
|
|
return 0;
|
|
}
|
|
|
|
cancel:
|
|
put_page(page);
|
|
uncharge:
|
|
/* drop extra refcnt by try_charge() */
|
|
css_put(&parent->css);
|
|
/* uncharge if move fails */
|
|
res_counter_uncharge(&parent->res, PAGE_SIZE);
|
|
if (do_swap_account)
|
|
res_counter_uncharge(&parent->memsw, PAGE_SIZE);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Charge the memory controller for page usage.
|
|
* Return
|
|
* 0 if the charge was successful
|
|
* < 0 if the cgroup is over its limit
|
|
*/
|
|
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
|
|
gfp_t gfp_mask, enum charge_type ctype,
|
|
struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
struct page_cgroup *pc;
|
|
int ret;
|
|
|
|
pc = lookup_page_cgroup(page);
|
|
/* can happen at boot */
|
|
if (unlikely(!pc))
|
|
return 0;
|
|
prefetchw(pc);
|
|
|
|
mem = memcg;
|
|
ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
|
|
if (ret || !mem)
|
|
return ret;
|
|
|
|
__mem_cgroup_commit_charge(mem, pc, ctype);
|
|
return 0;
|
|
}
|
|
|
|
int mem_cgroup_newpage_charge(struct page *page,
|
|
struct mm_struct *mm, gfp_t gfp_mask)
|
|
{
|
|
if (mem_cgroup_disabled())
|
|
return 0;
|
|
if (PageCompound(page))
|
|
return 0;
|
|
/*
|
|
* If already mapped, we don't have to account.
|
|
* If page cache, page->mapping has address_space.
|
|
* But page->mapping may have out-of-use anon_vma pointer,
|
|
* detecit it by PageAnon() check. newly-mapped-anon's page->mapping
|
|
* is NULL.
|
|
*/
|
|
if (page_mapped(page) || (page->mapping && !PageAnon(page)))
|
|
return 0;
|
|
if (unlikely(!mm))
|
|
mm = &init_mm;
|
|
return mem_cgroup_charge_common(page, mm, gfp_mask,
|
|
MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
|
|
}
|
|
|
|
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct mem_cgroup *mem = NULL;
|
|
int ret;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return 0;
|
|
if (PageCompound(page))
|
|
return 0;
|
|
/*
|
|
* Corner case handling. This is called from add_to_page_cache()
|
|
* in usual. But some FS (shmem) precharges this page before calling it
|
|
* and call add_to_page_cache() with GFP_NOWAIT.
|
|
*
|
|
* For GFP_NOWAIT case, the page may be pre-charged before calling
|
|
* add_to_page_cache(). (See shmem.c) check it here and avoid to call
|
|
* charge twice. (It works but has to pay a bit larger cost.)
|
|
* And when the page is SwapCache, it should take swap information
|
|
* into account. This is under lock_page() now.
|
|
*/
|
|
if (!(gfp_mask & __GFP_WAIT)) {
|
|
struct page_cgroup *pc;
|
|
|
|
|
|
pc = lookup_page_cgroup(page);
|
|
if (!pc)
|
|
return 0;
|
|
lock_page_cgroup(pc);
|
|
if (PageCgroupUsed(pc)) {
|
|
unlock_page_cgroup(pc);
|
|
return 0;
|
|
}
|
|
unlock_page_cgroup(pc);
|
|
}
|
|
|
|
if (do_swap_account && PageSwapCache(page)) {
|
|
mem = try_get_mem_cgroup_from_swapcache(page);
|
|
if (mem)
|
|
mm = NULL;
|
|
else
|
|
mem = NULL;
|
|
/* SwapCache may be still linked to LRU now. */
|
|
mem_cgroup_lru_del_before_commit_swapcache(page);
|
|
}
|
|
|
|
if (unlikely(!mm && !mem))
|
|
mm = &init_mm;
|
|
|
|
if (page_is_file_cache(page))
|
|
return mem_cgroup_charge_common(page, mm, gfp_mask,
|
|
MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
|
|
|
|
ret = mem_cgroup_charge_common(page, mm, gfp_mask,
|
|
MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
|
|
if (mem)
|
|
css_put(&mem->css);
|
|
if (PageSwapCache(page))
|
|
mem_cgroup_lru_add_after_commit_swapcache(page);
|
|
|
|
if (do_swap_account && !ret && PageSwapCache(page)) {
|
|
swp_entry_t ent = {.val = page_private(page)};
|
|
/* avoid double counting */
|
|
mem = swap_cgroup_record(ent, NULL);
|
|
if (mem) {
|
|
res_counter_uncharge(&mem->memsw, PAGE_SIZE);
|
|
mem_cgroup_put(mem);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* While swap-in, try_charge -> commit or cancel, the page is locked.
|
|
* And when try_charge() successfully returns, one refcnt to memcg without
|
|
* struct page_cgroup is aquired. This refcnt will be cumsumed by
|
|
* "commit()" or removed by "cancel()"
|
|
*/
|
|
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
|
|
struct page *page,
|
|
gfp_t mask, struct mem_cgroup **ptr)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
int ret;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return 0;
|
|
|
|
if (!do_swap_account)
|
|
goto charge_cur_mm;
|
|
/*
|
|
* A racing thread's fault, or swapoff, may have already updated
|
|
* the pte, and even removed page from swap cache: return success
|
|
* to go on to do_swap_page()'s pte_same() test, which should fail.
|
|
*/
|
|
if (!PageSwapCache(page))
|
|
return 0;
|
|
mem = try_get_mem_cgroup_from_swapcache(page);
|
|
if (!mem)
|
|
goto charge_cur_mm;
|
|
*ptr = mem;
|
|
ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
|
|
/* drop extra refcnt from tryget */
|
|
css_put(&mem->css);
|
|
return ret;
|
|
charge_cur_mm:
|
|
if (unlikely(!mm))
|
|
mm = &init_mm;
|
|
return __mem_cgroup_try_charge(mm, mask, ptr, true);
|
|
}
|
|
|
|
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
|
|
{
|
|
struct page_cgroup *pc;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return;
|
|
if (!ptr)
|
|
return;
|
|
pc = lookup_page_cgroup(page);
|
|
mem_cgroup_lru_del_before_commit_swapcache(page);
|
|
__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
|
|
mem_cgroup_lru_add_after_commit_swapcache(page);
|
|
/*
|
|
* Now swap is on-memory. This means this page may be
|
|
* counted both as mem and swap....double count.
|
|
* Fix it by uncharging from memsw. Basically, this SwapCache is stable
|
|
* under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
|
|
* may call delete_from_swap_cache() before reach here.
|
|
*/
|
|
if (do_swap_account && PageSwapCache(page)) {
|
|
swp_entry_t ent = {.val = page_private(page)};
|
|
struct mem_cgroup *memcg;
|
|
memcg = swap_cgroup_record(ent, NULL);
|
|
if (memcg) {
|
|
res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
|
|
mem_cgroup_put(memcg);
|
|
}
|
|
|
|
}
|
|
/* add this page(page_cgroup) to the LRU we want. */
|
|
|
|
}
|
|
|
|
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
|
|
{
|
|
if (mem_cgroup_disabled())
|
|
return;
|
|
if (!mem)
|
|
return;
|
|
res_counter_uncharge(&mem->res, PAGE_SIZE);
|
|
if (do_swap_account)
|
|
res_counter_uncharge(&mem->memsw, PAGE_SIZE);
|
|
css_put(&mem->css);
|
|
}
|
|
|
|
|
|
/*
|
|
* uncharge if !page_mapped(page)
|
|
*/
|
|
static struct mem_cgroup *
|
|
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
|
|
{
|
|
struct page_cgroup *pc;
|
|
struct mem_cgroup *mem = NULL;
|
|
struct mem_cgroup_per_zone *mz;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return NULL;
|
|
|
|
if (PageSwapCache(page))
|
|
return NULL;
|
|
|
|
/*
|
|
* Check if our page_cgroup is valid
|
|
*/
|
|
pc = lookup_page_cgroup(page);
|
|
if (unlikely(!pc || !PageCgroupUsed(pc)))
|
|
return NULL;
|
|
|
|
lock_page_cgroup(pc);
|
|
|
|
mem = pc->mem_cgroup;
|
|
|
|
if (!PageCgroupUsed(pc))
|
|
goto unlock_out;
|
|
|
|
switch (ctype) {
|
|
case MEM_CGROUP_CHARGE_TYPE_MAPPED:
|
|
if (page_mapped(page))
|
|
goto unlock_out;
|
|
break;
|
|
case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
|
|
if (!PageAnon(page)) { /* Shared memory */
|
|
if (page->mapping && !page_is_file_cache(page))
|
|
goto unlock_out;
|
|
} else if (page_mapped(page)) /* Anon */
|
|
goto unlock_out;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
res_counter_uncharge(&mem->res, PAGE_SIZE);
|
|
if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
|
|
res_counter_uncharge(&mem->memsw, PAGE_SIZE);
|
|
|
|
mem_cgroup_charge_statistics(mem, pc, false);
|
|
ClearPageCgroupUsed(pc);
|
|
/*
|
|
* pc->mem_cgroup is not cleared here. It will be accessed when it's
|
|
* freed from LRU. This is safe because uncharged page is expected not
|
|
* to be reused (freed soon). Exception is SwapCache, it's handled by
|
|
* special functions.
|
|
*/
|
|
|
|
mz = page_cgroup_zoneinfo(pc);
|
|
unlock_page_cgroup(pc);
|
|
|
|
/* at swapout, this memcg will be accessed to record to swap */
|
|
if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
|
|
css_put(&mem->css);
|
|
|
|
return mem;
|
|
|
|
unlock_out:
|
|
unlock_page_cgroup(pc);
|
|
return NULL;
|
|
}
|
|
|
|
void mem_cgroup_uncharge_page(struct page *page)
|
|
{
|
|
/* early check. */
|
|
if (page_mapped(page))
|
|
return;
|
|
if (page->mapping && !PageAnon(page))
|
|
return;
|
|
__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
|
|
}
|
|
|
|
void mem_cgroup_uncharge_cache_page(struct page *page)
|
|
{
|
|
VM_BUG_ON(page_mapped(page));
|
|
VM_BUG_ON(page->mapping);
|
|
__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
|
|
}
|
|
|
|
/*
|
|
* called from __delete_from_swap_cache() and drop "page" account.
|
|
* memcg information is recorded to swap_cgroup of "ent"
|
|
*/
|
|
void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
|
|
{
|
|
struct mem_cgroup *memcg;
|
|
|
|
memcg = __mem_cgroup_uncharge_common(page,
|
|
MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
|
|
/* record memcg information */
|
|
if (do_swap_account && memcg) {
|
|
swap_cgroup_record(ent, memcg);
|
|
mem_cgroup_get(memcg);
|
|
}
|
|
if (memcg)
|
|
css_put(&memcg->css);
|
|
}
|
|
|
|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
|
|
/*
|
|
* called from swap_entry_free(). remove record in swap_cgroup and
|
|
* uncharge "memsw" account.
|
|
*/
|
|
void mem_cgroup_uncharge_swap(swp_entry_t ent)
|
|
{
|
|
struct mem_cgroup *memcg;
|
|
|
|
if (!do_swap_account)
|
|
return;
|
|
|
|
memcg = swap_cgroup_record(ent, NULL);
|
|
if (memcg) {
|
|
res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
|
|
mem_cgroup_put(memcg);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Before starting migration, account PAGE_SIZE to mem_cgroup that the old
|
|
* page belongs to.
|
|
*/
|
|
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
|
|
{
|
|
struct page_cgroup *pc;
|
|
struct mem_cgroup *mem = NULL;
|
|
int ret = 0;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return 0;
|
|
|
|
pc = lookup_page_cgroup(page);
|
|
lock_page_cgroup(pc);
|
|
if (PageCgroupUsed(pc)) {
|
|
mem = pc->mem_cgroup;
|
|
css_get(&mem->css);
|
|
}
|
|
unlock_page_cgroup(pc);
|
|
|
|
if (mem) {
|
|
ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
|
|
css_put(&mem->css);
|
|
}
|
|
*ptr = mem;
|
|
return ret;
|
|
}
|
|
|
|
/* remove redundant charge if migration failed*/
|
|
void mem_cgroup_end_migration(struct mem_cgroup *mem,
|
|
struct page *oldpage, struct page *newpage)
|
|
{
|
|
struct page *target, *unused;
|
|
struct page_cgroup *pc;
|
|
enum charge_type ctype;
|
|
|
|
if (!mem)
|
|
return;
|
|
|
|
/* at migration success, oldpage->mapping is NULL. */
|
|
if (oldpage->mapping) {
|
|
target = oldpage;
|
|
unused = NULL;
|
|
} else {
|
|
target = newpage;
|
|
unused = oldpage;
|
|
}
|
|
|
|
if (PageAnon(target))
|
|
ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
|
|
else if (page_is_file_cache(target))
|
|
ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
|
|
else
|
|
ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
|
|
|
|
/* unused page is not on radix-tree now. */
|
|
if (unused)
|
|
__mem_cgroup_uncharge_common(unused, ctype);
|
|
|
|
pc = lookup_page_cgroup(target);
|
|
/*
|
|
* __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
|
|
* So, double-counting is effectively avoided.
|
|
*/
|
|
__mem_cgroup_commit_charge(mem, pc, ctype);
|
|
|
|
/*
|
|
* Both of oldpage and newpage are still under lock_page().
|
|
* Then, we don't have to care about race in radix-tree.
|
|
* But we have to be careful that this page is unmapped or not.
|
|
*
|
|
* There is a case for !page_mapped(). At the start of
|
|
* migration, oldpage was mapped. But now, it's zapped.
|
|
* But we know *target* page is not freed/reused under us.
|
|
* mem_cgroup_uncharge_page() does all necessary checks.
|
|
*/
|
|
if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
|
|
mem_cgroup_uncharge_page(target);
|
|
}
|
|
|
|
/*
|
|
* A call to try to shrink memory usage under specified resource controller.
|
|
* This is typically used for page reclaiming for shmem for reducing side
|
|
* effect of page allocation from shmem, which is used by some mem_cgroup.
|
|
*/
|
|
int mem_cgroup_shrink_usage(struct page *page,
|
|
struct mm_struct *mm,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct mem_cgroup *mem = NULL;
|
|
int progress = 0;
|
|
int retry = MEM_CGROUP_RECLAIM_RETRIES;
|
|
|
|
if (mem_cgroup_disabled())
|
|
return 0;
|
|
if (page)
|
|
mem = try_get_mem_cgroup_from_swapcache(page);
|
|
if (!mem && mm)
|
|
mem = try_get_mem_cgroup_from_mm(mm);
|
|
if (unlikely(!mem))
|
|
return 0;
|
|
|
|
do {
|
|
progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
|
|
progress += mem_cgroup_check_under_limit(mem);
|
|
} while (!progress && --retry);
|
|
|
|
css_put(&mem->css);
|
|
if (!retry)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_MUTEX(set_limit_mutex);
|
|
|
|
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
|
|
unsigned long long val)
|
|
{
|
|
|
|
int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
|
|
int progress;
|
|
u64 memswlimit;
|
|
int ret = 0;
|
|
|
|
while (retry_count) {
|
|
if (signal_pending(current)) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
/*
|
|
* Rather than hide all in some function, I do this in
|
|
* open coded manner. You see what this really does.
|
|
* We have to guarantee mem->res.limit < mem->memsw.limit.
|
|
*/
|
|
mutex_lock(&set_limit_mutex);
|
|
memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
|
|
if (memswlimit < val) {
|
|
ret = -EINVAL;
|
|
mutex_unlock(&set_limit_mutex);
|
|
break;
|
|
}
|
|
ret = res_counter_set_limit(&memcg->res, val);
|
|
mutex_unlock(&set_limit_mutex);
|
|
|
|
if (!ret)
|
|
break;
|
|
|
|
progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
|
|
false);
|
|
if (!progress) retry_count--;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
|
|
unsigned long long val)
|
|
{
|
|
int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
|
|
u64 memlimit, oldusage, curusage;
|
|
int ret;
|
|
|
|
if (!do_swap_account)
|
|
return -EINVAL;
|
|
|
|
while (retry_count) {
|
|
if (signal_pending(current)) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
/*
|
|
* Rather than hide all in some function, I do this in
|
|
* open coded manner. You see what this really does.
|
|
* We have to guarantee mem->res.limit < mem->memsw.limit.
|
|
*/
|
|
mutex_lock(&set_limit_mutex);
|
|
memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
|
|
if (memlimit > val) {
|
|
ret = -EINVAL;
|
|
mutex_unlock(&set_limit_mutex);
|
|
break;
|
|
}
|
|
ret = res_counter_set_limit(&memcg->memsw, val);
|
|
mutex_unlock(&set_limit_mutex);
|
|
|
|
if (!ret)
|
|
break;
|
|
|
|
oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
|
|
mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
|
|
curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
|
|
if (curusage >= oldusage)
|
|
retry_count--;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This routine traverse page_cgroup in given list and drop them all.
|
|
* *And* this routine doesn't reclaim page itself, just removes page_cgroup.
|
|
*/
|
|
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
|
|
int node, int zid, enum lru_list lru)
|
|
{
|
|
struct zone *zone;
|
|
struct mem_cgroup_per_zone *mz;
|
|
struct page_cgroup *pc, *busy;
|
|
unsigned long flags, loop;
|
|
struct list_head *list;
|
|
int ret = 0;
|
|
|
|
zone = &NODE_DATA(node)->node_zones[zid];
|
|
mz = mem_cgroup_zoneinfo(mem, node, zid);
|
|
list = &mz->lists[lru];
|
|
|
|
loop = MEM_CGROUP_ZSTAT(mz, lru);
|
|
/* give some margin against EBUSY etc...*/
|
|
loop += 256;
|
|
busy = NULL;
|
|
while (loop--) {
|
|
ret = 0;
|
|
spin_lock_irqsave(&zone->lru_lock, flags);
|
|
if (list_empty(list)) {
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
break;
|
|
}
|
|
pc = list_entry(list->prev, struct page_cgroup, lru);
|
|
if (busy == pc) {
|
|
list_move(&pc->lru, list);
|
|
busy = 0;
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
continue;
|
|
}
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
|
|
ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
|
|
if (ret == -ENOMEM)
|
|
break;
|
|
|
|
if (ret == -EBUSY || ret == -EINVAL) {
|
|
/* found lock contention or "pc" is obsolete. */
|
|
busy = pc;
|
|
cond_resched();
|
|
} else
|
|
busy = NULL;
|
|
}
|
|
|
|
if (!ret && !list_empty(list))
|
|
return -EBUSY;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* make mem_cgroup's charge to be 0 if there is no task.
|
|
* This enables deleting this mem_cgroup.
|
|
*/
|
|
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
|
|
{
|
|
int ret;
|
|
int node, zid, shrink;
|
|
int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
|
|
struct cgroup *cgrp = mem->css.cgroup;
|
|
|
|
css_get(&mem->css);
|
|
|
|
shrink = 0;
|
|
/* should free all ? */
|
|
if (free_all)
|
|
goto try_to_free;
|
|
move_account:
|
|
while (mem->res.usage > 0) {
|
|
ret = -EBUSY;
|
|
if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
|
|
goto out;
|
|
ret = -EINTR;
|
|
if (signal_pending(current))
|
|
goto out;
|
|
/* This is for making all *used* pages to be on LRU. */
|
|
lru_add_drain_all();
|
|
ret = 0;
|
|
for_each_node_state(node, N_HIGH_MEMORY) {
|
|
for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
|
|
enum lru_list l;
|
|
for_each_lru(l) {
|
|
ret = mem_cgroup_force_empty_list(mem,
|
|
node, zid, l);
|
|
if (ret)
|
|
break;
|
|
}
|
|
}
|
|
if (ret)
|
|
break;
|
|
}
|
|
/* it seems parent cgroup doesn't have enough mem */
|
|
if (ret == -ENOMEM)
|
|
goto try_to_free;
|
|
cond_resched();
|
|
}
|
|
ret = 0;
|
|
out:
|
|
css_put(&mem->css);
|
|
return ret;
|
|
|
|
try_to_free:
|
|
/* returns EBUSY if there is a task or if we come here twice. */
|
|
if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
/* we call try-to-free pages for make this cgroup empty */
|
|
lru_add_drain_all();
|
|
/* try to free all pages in this cgroup */
|
|
shrink = 1;
|
|
while (nr_retries && mem->res.usage > 0) {
|
|
int progress;
|
|
|
|
if (signal_pending(current)) {
|
|
ret = -EINTR;
|
|
goto out;
|
|
}
|
|
progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
|
|
false, get_swappiness(mem));
|
|
if (!progress) {
|
|
nr_retries--;
|
|
/* maybe some writeback is necessary */
|
|
congestion_wait(WRITE, HZ/10);
|
|
}
|
|
|
|
}
|
|
lru_add_drain();
|
|
/* try move_account...there may be some *locked* pages. */
|
|
if (mem->res.usage)
|
|
goto move_account;
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
|
|
{
|
|
return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
|
|
}
|
|
|
|
|
|
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
|
|
{
|
|
return mem_cgroup_from_cont(cont)->use_hierarchy;
|
|
}
|
|
|
|
static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
|
|
u64 val)
|
|
{
|
|
int retval = 0;
|
|
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
|
|
struct cgroup *parent = cont->parent;
|
|
struct mem_cgroup *parent_mem = NULL;
|
|
|
|
if (parent)
|
|
parent_mem = mem_cgroup_from_cont(parent);
|
|
|
|
cgroup_lock();
|
|
/*
|
|
* If parent's use_hiearchy is set, we can't make any modifications
|
|
* in the child subtrees. If it is unset, then the change can
|
|
* occur, provided the current cgroup has no children.
|
|
*
|
|
* For the root cgroup, parent_mem is NULL, we allow value to be
|
|
* set if there are no children.
|
|
*/
|
|
if ((!parent_mem || !parent_mem->use_hierarchy) &&
|
|
(val == 1 || val == 0)) {
|
|
if (list_empty(&cont->children))
|
|
mem->use_hierarchy = val;
|
|
else
|
|
retval = -EBUSY;
|
|
} else
|
|
retval = -EINVAL;
|
|
cgroup_unlock();
|
|
|
|
return retval;
|
|
}
|
|
|
|
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
|
|
{
|
|
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
|
|
u64 val = 0;
|
|
int type, name;
|
|
|
|
type = MEMFILE_TYPE(cft->private);
|
|
name = MEMFILE_ATTR(cft->private);
|
|
switch (type) {
|
|
case _MEM:
|
|
val = res_counter_read_u64(&mem->res, name);
|
|
break;
|
|
case _MEMSWAP:
|
|
if (do_swap_account)
|
|
val = res_counter_read_u64(&mem->memsw, name);
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
return val;
|
|
}
|
|
/*
|
|
* The user of this function is...
|
|
* RES_LIMIT.
|
|
*/
|
|
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
|
|
const char *buffer)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
|
|
int type, name;
|
|
unsigned long long val;
|
|
int ret;
|
|
|
|
type = MEMFILE_TYPE(cft->private);
|
|
name = MEMFILE_ATTR(cft->private);
|
|
switch (name) {
|
|
case RES_LIMIT:
|
|
/* This function does all necessary parse...reuse it */
|
|
ret = res_counter_memparse_write_strategy(buffer, &val);
|
|
if (ret)
|
|
break;
|
|
if (type == _MEM)
|
|
ret = mem_cgroup_resize_limit(memcg, val);
|
|
else
|
|
ret = mem_cgroup_resize_memsw_limit(memcg, val);
|
|
break;
|
|
default:
|
|
ret = -EINVAL; /* should be BUG() ? */
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
|
|
unsigned long long *mem_limit, unsigned long long *memsw_limit)
|
|
{
|
|
struct cgroup *cgroup;
|
|
unsigned long long min_limit, min_memsw_limit, tmp;
|
|
|
|
min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
|
|
min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
|
|
cgroup = memcg->css.cgroup;
|
|
if (!memcg->use_hierarchy)
|
|
goto out;
|
|
|
|
while (cgroup->parent) {
|
|
cgroup = cgroup->parent;
|
|
memcg = mem_cgroup_from_cont(cgroup);
|
|
if (!memcg->use_hierarchy)
|
|
break;
|
|
tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
|
|
min_limit = min(min_limit, tmp);
|
|
tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
|
|
min_memsw_limit = min(min_memsw_limit, tmp);
|
|
}
|
|
out:
|
|
*mem_limit = min_limit;
|
|
*memsw_limit = min_memsw_limit;
|
|
return;
|
|
}
|
|
|
|
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
int type, name;
|
|
|
|
mem = mem_cgroup_from_cont(cont);
|
|
type = MEMFILE_TYPE(event);
|
|
name = MEMFILE_ATTR(event);
|
|
switch (name) {
|
|
case RES_MAX_USAGE:
|
|
if (type == _MEM)
|
|
res_counter_reset_max(&mem->res);
|
|
else
|
|
res_counter_reset_max(&mem->memsw);
|
|
break;
|
|
case RES_FAILCNT:
|
|
if (type == _MEM)
|
|
res_counter_reset_failcnt(&mem->res);
|
|
else
|
|
res_counter_reset_failcnt(&mem->memsw);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct mem_cgroup_stat_desc {
|
|
const char *msg;
|
|
u64 unit;
|
|
} mem_cgroup_stat_desc[] = {
|
|
[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
|
|
[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
|
|
[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
|
|
[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
|
|
};
|
|
|
|
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
|
|
struct cgroup_map_cb *cb)
|
|
{
|
|
struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
|
|
struct mem_cgroup_stat *stat = &mem_cont->stat;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
|
|
s64 val;
|
|
|
|
val = mem_cgroup_read_stat(stat, i);
|
|
val *= mem_cgroup_stat_desc[i].unit;
|
|
cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
|
|
}
|
|
/* showing # of active pages */
|
|
{
|
|
unsigned long active_anon, inactive_anon;
|
|
unsigned long active_file, inactive_file;
|
|
unsigned long unevictable;
|
|
|
|
inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
|
|
LRU_INACTIVE_ANON);
|
|
active_anon = mem_cgroup_get_all_zonestat(mem_cont,
|
|
LRU_ACTIVE_ANON);
|
|
inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
|
|
LRU_INACTIVE_FILE);
|
|
active_file = mem_cgroup_get_all_zonestat(mem_cont,
|
|
LRU_ACTIVE_FILE);
|
|
unevictable = mem_cgroup_get_all_zonestat(mem_cont,
|
|
LRU_UNEVICTABLE);
|
|
|
|
cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
|
|
cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
|
|
cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
|
|
cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
|
|
cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
|
|
|
|
}
|
|
{
|
|
unsigned long long limit, memsw_limit;
|
|
memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
|
|
cb->fill(cb, "hierarchical_memory_limit", limit);
|
|
if (do_swap_account)
|
|
cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
|
|
|
|
{
|
|
int nid, zid;
|
|
struct mem_cgroup_per_zone *mz;
|
|
unsigned long recent_rotated[2] = {0, 0};
|
|
unsigned long recent_scanned[2] = {0, 0};
|
|
|
|
for_each_online_node(nid)
|
|
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
|
|
mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
|
|
|
|
recent_rotated[0] +=
|
|
mz->reclaim_stat.recent_rotated[0];
|
|
recent_rotated[1] +=
|
|
mz->reclaim_stat.recent_rotated[1];
|
|
recent_scanned[0] +=
|
|
mz->reclaim_stat.recent_scanned[0];
|
|
recent_scanned[1] +=
|
|
mz->reclaim_stat.recent_scanned[1];
|
|
}
|
|
cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
|
|
cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
|
|
cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
|
|
cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
|
|
|
|
return get_swappiness(memcg);
|
|
}
|
|
|
|
static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
|
|
u64 val)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
|
|
struct mem_cgroup *parent;
|
|
|
|
if (val > 100)
|
|
return -EINVAL;
|
|
|
|
if (cgrp->parent == NULL)
|
|
return -EINVAL;
|
|
|
|
parent = mem_cgroup_from_cont(cgrp->parent);
|
|
|
|
cgroup_lock();
|
|
|
|
/* If under hierarchy, only empty-root can set this value */
|
|
if ((parent->use_hierarchy) ||
|
|
(memcg->use_hierarchy && !list_empty(&cgrp->children))) {
|
|
cgroup_unlock();
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock(&memcg->reclaim_param_lock);
|
|
memcg->swappiness = val;
|
|
spin_unlock(&memcg->reclaim_param_lock);
|
|
|
|
cgroup_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct cftype mem_cgroup_files[] = {
|
|
{
|
|
.name = "usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
|
|
.read_u64 = mem_cgroup_read,
|
|
},
|
|
{
|
|
.name = "max_usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
|
|
.trigger = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read,
|
|
},
|
|
{
|
|
.name = "limit_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
|
|
.write_string = mem_cgroup_write,
|
|
.read_u64 = mem_cgroup_read,
|
|
},
|
|
{
|
|
.name = "failcnt",
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
|
|
.trigger = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read,
|
|
},
|
|
{
|
|
.name = "stat",
|
|
.read_map = mem_control_stat_show,
|
|
},
|
|
{
|
|
.name = "force_empty",
|
|
.trigger = mem_cgroup_force_empty_write,
|
|
},
|
|
{
|
|
.name = "use_hierarchy",
|
|
.write_u64 = mem_cgroup_hierarchy_write,
|
|
.read_u64 = mem_cgroup_hierarchy_read,
|
|
},
|
|
{
|
|
.name = "swappiness",
|
|
.read_u64 = mem_cgroup_swappiness_read,
|
|
.write_u64 = mem_cgroup_swappiness_write,
|
|
},
|
|
};
|
|
|
|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
|
|
static struct cftype memsw_cgroup_files[] = {
|
|
{
|
|
.name = "memsw.usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
|
|
.read_u64 = mem_cgroup_read,
|
|
},
|
|
{
|
|
.name = "memsw.max_usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
|
|
.trigger = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read,
|
|
},
|
|
{
|
|
.name = "memsw.limit_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
|
|
.write_string = mem_cgroup_write,
|
|
.read_u64 = mem_cgroup_read,
|
|
},
|
|
{
|
|
.name = "memsw.failcnt",
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
|
|
.trigger = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read,
|
|
},
|
|
};
|
|
|
|
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
|
|
{
|
|
if (!do_swap_account)
|
|
return 0;
|
|
return cgroup_add_files(cont, ss, memsw_cgroup_files,
|
|
ARRAY_SIZE(memsw_cgroup_files));
|
|
};
|
|
#else
|
|
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
|
|
{
|
|
struct mem_cgroup_per_node *pn;
|
|
struct mem_cgroup_per_zone *mz;
|
|
enum lru_list l;
|
|
int zone, tmp = node;
|
|
/*
|
|
* This routine is called against possible nodes.
|
|
* But it's BUG to call kmalloc() against offline node.
|
|
*
|
|
* TODO: this routine can waste much memory for nodes which will
|
|
* never be onlined. It's better to use memory hotplug callback
|
|
* function.
|
|
*/
|
|
if (!node_state(node, N_NORMAL_MEMORY))
|
|
tmp = -1;
|
|
pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
|
|
if (!pn)
|
|
return 1;
|
|
|
|
mem->info.nodeinfo[node] = pn;
|
|
memset(pn, 0, sizeof(*pn));
|
|
|
|
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
|
|
mz = &pn->zoneinfo[zone];
|
|
for_each_lru(l)
|
|
INIT_LIST_HEAD(&mz->lists[l]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
|
|
{
|
|
kfree(mem->info.nodeinfo[node]);
|
|
}
|
|
|
|
static int mem_cgroup_size(void)
|
|
{
|
|
int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
|
|
return sizeof(struct mem_cgroup) + cpustat_size;
|
|
}
|
|
|
|
static struct mem_cgroup *mem_cgroup_alloc(void)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
int size = mem_cgroup_size();
|
|
|
|
if (size < PAGE_SIZE)
|
|
mem = kmalloc(size, GFP_KERNEL);
|
|
else
|
|
mem = vmalloc(size);
|
|
|
|
if (mem)
|
|
memset(mem, 0, size);
|
|
return mem;
|
|
}
|
|
|
|
/*
|
|
* At destroying mem_cgroup, references from swap_cgroup can remain.
|
|
* (scanning all at force_empty is too costly...)
|
|
*
|
|
* Instead of clearing all references at force_empty, we remember
|
|
* the number of reference from swap_cgroup and free mem_cgroup when
|
|
* it goes down to 0.
|
|
*
|
|
* Removal of cgroup itself succeeds regardless of refs from swap.
|
|
*/
|
|
|
|
static void __mem_cgroup_free(struct mem_cgroup *mem)
|
|
{
|
|
int node;
|
|
|
|
for_each_node_state(node, N_POSSIBLE)
|
|
free_mem_cgroup_per_zone_info(mem, node);
|
|
|
|
if (mem_cgroup_size() < PAGE_SIZE)
|
|
kfree(mem);
|
|
else
|
|
vfree(mem);
|
|
}
|
|
|
|
static void mem_cgroup_get(struct mem_cgroup *mem)
|
|
{
|
|
atomic_inc(&mem->refcnt);
|
|
}
|
|
|
|
static void mem_cgroup_put(struct mem_cgroup *mem)
|
|
{
|
|
if (atomic_dec_and_test(&mem->refcnt)) {
|
|
struct mem_cgroup *parent = parent_mem_cgroup(mem);
|
|
__mem_cgroup_free(mem);
|
|
if (parent)
|
|
mem_cgroup_put(parent);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
|
|
*/
|
|
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
|
|
{
|
|
if (!mem->res.parent)
|
|
return NULL;
|
|
return mem_cgroup_from_res_counter(mem->res.parent, res);
|
|
}
|
|
|
|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
|
|
static void __init enable_swap_cgroup(void)
|
|
{
|
|
if (!mem_cgroup_disabled() && really_do_swap_account)
|
|
do_swap_account = 1;
|
|
}
|
|
#else
|
|
static void __init enable_swap_cgroup(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static struct cgroup_subsys_state * __ref
|
|
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
|
|
{
|
|
struct mem_cgroup *mem, *parent;
|
|
int node;
|
|
|
|
mem = mem_cgroup_alloc();
|
|
if (!mem)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for_each_node_state(node, N_POSSIBLE)
|
|
if (alloc_mem_cgroup_per_zone_info(mem, node))
|
|
goto free_out;
|
|
/* root ? */
|
|
if (cont->parent == NULL) {
|
|
enable_swap_cgroup();
|
|
parent = NULL;
|
|
} else {
|
|
parent = mem_cgroup_from_cont(cont->parent);
|
|
mem->use_hierarchy = parent->use_hierarchy;
|
|
}
|
|
|
|
if (parent && parent->use_hierarchy) {
|
|
res_counter_init(&mem->res, &parent->res);
|
|
res_counter_init(&mem->memsw, &parent->memsw);
|
|
/*
|
|
* We increment refcnt of the parent to ensure that we can
|
|
* safely access it on res_counter_charge/uncharge.
|
|
* This refcnt will be decremented when freeing this
|
|
* mem_cgroup(see mem_cgroup_put).
|
|
*/
|
|
mem_cgroup_get(parent);
|
|
} else {
|
|
res_counter_init(&mem->res, NULL);
|
|
res_counter_init(&mem->memsw, NULL);
|
|
}
|
|
mem->last_scanned_child = NULL;
|
|
spin_lock_init(&mem->reclaim_param_lock);
|
|
|
|
if (parent)
|
|
mem->swappiness = get_swappiness(parent);
|
|
atomic_set(&mem->refcnt, 1);
|
|
return &mem->css;
|
|
free_out:
|
|
__mem_cgroup_free(mem);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
|
|
struct cgroup *cont)
|
|
{
|
|
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
|
|
mem_cgroup_force_empty(mem, false);
|
|
}
|
|
|
|
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
|
|
struct cgroup *cont)
|
|
{
|
|
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
|
|
struct mem_cgroup *last_scanned_child = mem->last_scanned_child;
|
|
|
|
if (last_scanned_child) {
|
|
VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));
|
|
mem_cgroup_put(last_scanned_child);
|
|
}
|
|
mem_cgroup_put(mem);
|
|
}
|
|
|
|
static int mem_cgroup_populate(struct cgroup_subsys *ss,
|
|
struct cgroup *cont)
|
|
{
|
|
int ret;
|
|
|
|
ret = cgroup_add_files(cont, ss, mem_cgroup_files,
|
|
ARRAY_SIZE(mem_cgroup_files));
|
|
|
|
if (!ret)
|
|
ret = register_memsw_files(cont, ss);
|
|
return ret;
|
|
}
|
|
|
|
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
|
|
struct cgroup *cont,
|
|
struct cgroup *old_cont,
|
|
struct task_struct *p)
|
|
{
|
|
mutex_lock(&memcg_tasklist);
|
|
/*
|
|
* FIXME: It's better to move charges of this process from old
|
|
* memcg to new memcg. But it's just on TODO-List now.
|
|
*/
|
|
mutex_unlock(&memcg_tasklist);
|
|
}
|
|
|
|
struct cgroup_subsys mem_cgroup_subsys = {
|
|
.name = "memory",
|
|
.subsys_id = mem_cgroup_subsys_id,
|
|
.create = mem_cgroup_create,
|
|
.pre_destroy = mem_cgroup_pre_destroy,
|
|
.destroy = mem_cgroup_destroy,
|
|
.populate = mem_cgroup_populate,
|
|
.attach = mem_cgroup_move_task,
|
|
.early_init = 0,
|
|
};
|
|
|
|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
|
|
|
|
static int __init disable_swap_account(char *s)
|
|
{
|
|
really_do_swap_account = 0;
|
|
return 1;
|
|
}
|
|
__setup("noswapaccount", disable_swap_account);
|
|
#endif
|