mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 18:15:04 +07:00
3609801ecc
Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2271 lines
54 KiB
C
2271 lines
54 KiB
C
/*
|
|
* Copyright (c) 2006, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
* Place - Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* Copyright (C) Ashok Raj <ashok.raj@intel.com>
|
|
* Copyright (C) Shaohua Li <shaohua.li@intel.com>
|
|
* Copyright (C) Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dmar.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/mempool.h>
|
|
#include "iova.h"
|
|
#include "intel-iommu.h"
|
|
#include <asm/proto.h> /* force_iommu in this header in x86-64*/
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/gart.h>
|
|
#include "pci.h"
|
|
|
|
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
|
|
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
|
|
|
|
#define IOAPIC_RANGE_START (0xfee00000)
|
|
#define IOAPIC_RANGE_END (0xfeefffff)
|
|
#define IOVA_START_ADDR (0x1000)
|
|
|
|
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
|
|
|
|
#define DMAR_OPERATION_TIMEOUT (HZ*60) /* 1m */
|
|
|
|
#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
|
|
|
|
static void domain_remove_dev_info(struct dmar_domain *domain);
|
|
|
|
static int dmar_disabled;
|
|
static int __initdata dmar_map_gfx = 1;
|
|
static int dmar_forcedac;
|
|
|
|
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
|
|
static DEFINE_SPINLOCK(device_domain_lock);
|
|
static LIST_HEAD(device_domain_list);
|
|
|
|
static int __init intel_iommu_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
while (*str) {
|
|
if (!strncmp(str, "off", 3)) {
|
|
dmar_disabled = 1;
|
|
printk(KERN_INFO"Intel-IOMMU: disabled\n");
|
|
} else if (!strncmp(str, "igfx_off", 8)) {
|
|
dmar_map_gfx = 0;
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: disable GFX device mapping\n");
|
|
} else if (!strncmp(str, "forcedac", 8)) {
|
|
printk (KERN_INFO
|
|
"Intel-IOMMU: Forcing DAC for PCI devices\n");
|
|
dmar_forcedac = 1;
|
|
}
|
|
|
|
str += strcspn(str, ",");
|
|
while (*str == ',')
|
|
str++;
|
|
}
|
|
return 0;
|
|
}
|
|
__setup("intel_iommu=", intel_iommu_setup);
|
|
|
|
static struct kmem_cache *iommu_domain_cache;
|
|
static struct kmem_cache *iommu_devinfo_cache;
|
|
static struct kmem_cache *iommu_iova_cache;
|
|
|
|
static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
|
|
{
|
|
unsigned int flags;
|
|
void *vaddr;
|
|
|
|
/* trying to avoid low memory issues */
|
|
flags = current->flags & PF_MEMALLOC;
|
|
current->flags |= PF_MEMALLOC;
|
|
vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
|
|
current->flags &= (~PF_MEMALLOC | flags);
|
|
return vaddr;
|
|
}
|
|
|
|
|
|
static inline void *alloc_pgtable_page(void)
|
|
{
|
|
unsigned int flags;
|
|
void *vaddr;
|
|
|
|
/* trying to avoid low memory issues */
|
|
flags = current->flags & PF_MEMALLOC;
|
|
current->flags |= PF_MEMALLOC;
|
|
vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
|
|
current->flags &= (~PF_MEMALLOC | flags);
|
|
return vaddr;
|
|
}
|
|
|
|
static inline void free_pgtable_page(void *vaddr)
|
|
{
|
|
free_page((unsigned long)vaddr);
|
|
}
|
|
|
|
static inline void *alloc_domain_mem(void)
|
|
{
|
|
return iommu_kmem_cache_alloc(iommu_domain_cache);
|
|
}
|
|
|
|
static inline void free_domain_mem(void *vaddr)
|
|
{
|
|
kmem_cache_free(iommu_domain_cache, vaddr);
|
|
}
|
|
|
|
static inline void * alloc_devinfo_mem(void)
|
|
{
|
|
return iommu_kmem_cache_alloc(iommu_devinfo_cache);
|
|
}
|
|
|
|
static inline void free_devinfo_mem(void *vaddr)
|
|
{
|
|
kmem_cache_free(iommu_devinfo_cache, vaddr);
|
|
}
|
|
|
|
struct iova *alloc_iova_mem(void)
|
|
{
|
|
return iommu_kmem_cache_alloc(iommu_iova_cache);
|
|
}
|
|
|
|
void free_iova_mem(struct iova *iova)
|
|
{
|
|
kmem_cache_free(iommu_iova_cache, iova);
|
|
}
|
|
|
|
static inline void __iommu_flush_cache(
|
|
struct intel_iommu *iommu, void *addr, int size)
|
|
{
|
|
if (!ecap_coherent(iommu->ecap))
|
|
clflush_cache_range(addr, size);
|
|
}
|
|
|
|
/* Gets context entry for a given bus and devfn */
|
|
static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
struct root_entry *root;
|
|
struct context_entry *context;
|
|
unsigned long phy_addr;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
root = &iommu->root_entry[bus];
|
|
context = get_context_addr_from_root(root);
|
|
if (!context) {
|
|
context = (struct context_entry *)alloc_pgtable_page();
|
|
if (!context) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return NULL;
|
|
}
|
|
__iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K);
|
|
phy_addr = virt_to_phys((void *)context);
|
|
set_root_value(root, phy_addr);
|
|
set_root_present(root);
|
|
__iommu_flush_cache(iommu, root, sizeof(*root));
|
|
}
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return &context[devfn];
|
|
}
|
|
|
|
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
struct root_entry *root;
|
|
struct context_entry *context;
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
root = &iommu->root_entry[bus];
|
|
context = get_context_addr_from_root(root);
|
|
if (!context) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
ret = context_present(context[devfn]);
|
|
out:
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
struct root_entry *root;
|
|
struct context_entry *context;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
root = &iommu->root_entry[bus];
|
|
context = get_context_addr_from_root(root);
|
|
if (context) {
|
|
context_clear_entry(context[devfn]);
|
|
__iommu_flush_cache(iommu, &context[devfn], \
|
|
sizeof(*context));
|
|
}
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static void free_context_table(struct intel_iommu *iommu)
|
|
{
|
|
struct root_entry *root;
|
|
int i;
|
|
unsigned long flags;
|
|
struct context_entry *context;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
if (!iommu->root_entry) {
|
|
goto out;
|
|
}
|
|
for (i = 0; i < ROOT_ENTRY_NR; i++) {
|
|
root = &iommu->root_entry[i];
|
|
context = get_context_addr_from_root(root);
|
|
if (context)
|
|
free_pgtable_page(context);
|
|
}
|
|
free_pgtable_page(iommu->root_entry);
|
|
iommu->root_entry = NULL;
|
|
out:
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
/* page table handling */
|
|
#define LEVEL_STRIDE (9)
|
|
#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
|
|
|
|
static inline int agaw_to_level(int agaw)
|
|
{
|
|
return agaw + 2;
|
|
}
|
|
|
|
static inline int agaw_to_width(int agaw)
|
|
{
|
|
return 30 + agaw * LEVEL_STRIDE;
|
|
|
|
}
|
|
|
|
static inline int width_to_agaw(int width)
|
|
{
|
|
return (width - 30) / LEVEL_STRIDE;
|
|
}
|
|
|
|
static inline unsigned int level_to_offset_bits(int level)
|
|
{
|
|
return (12 + (level - 1) * LEVEL_STRIDE);
|
|
}
|
|
|
|
static inline int address_level_offset(u64 addr, int level)
|
|
{
|
|
return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
|
|
}
|
|
|
|
static inline u64 level_mask(int level)
|
|
{
|
|
return ((u64)-1 << level_to_offset_bits(level));
|
|
}
|
|
|
|
static inline u64 level_size(int level)
|
|
{
|
|
return ((u64)1 << level_to_offset_bits(level));
|
|
}
|
|
|
|
static inline u64 align_to_level(u64 addr, int level)
|
|
{
|
|
return ((addr + level_size(level) - 1) & level_mask(level));
|
|
}
|
|
|
|
static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw);
|
|
struct dma_pte *parent, *pte = NULL;
|
|
int level = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
unsigned long flags;
|
|
|
|
BUG_ON(!domain->pgd);
|
|
|
|
addr &= (((u64)1) << addr_width) - 1;
|
|
parent = domain->pgd;
|
|
|
|
spin_lock_irqsave(&domain->mapping_lock, flags);
|
|
while (level > 0) {
|
|
void *tmp_page;
|
|
|
|
offset = address_level_offset(addr, level);
|
|
pte = &parent[offset];
|
|
if (level == 1)
|
|
break;
|
|
|
|
if (!dma_pte_present(*pte)) {
|
|
tmp_page = alloc_pgtable_page();
|
|
|
|
if (!tmp_page) {
|
|
spin_unlock_irqrestore(&domain->mapping_lock,
|
|
flags);
|
|
return NULL;
|
|
}
|
|
__iommu_flush_cache(domain->iommu, tmp_page,
|
|
PAGE_SIZE_4K);
|
|
dma_set_pte_addr(*pte, virt_to_phys(tmp_page));
|
|
/*
|
|
* high level table always sets r/w, last level page
|
|
* table control read/write
|
|
*/
|
|
dma_set_pte_readable(*pte);
|
|
dma_set_pte_writable(*pte);
|
|
__iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
|
|
}
|
|
parent = phys_to_virt(dma_pte_addr(*pte));
|
|
level--;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&domain->mapping_lock, flags);
|
|
return pte;
|
|
}
|
|
|
|
/* return address's pte at specific level */
|
|
static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
|
|
int level)
|
|
{
|
|
struct dma_pte *parent, *pte = NULL;
|
|
int total = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
|
|
parent = domain->pgd;
|
|
while (level <= total) {
|
|
offset = address_level_offset(addr, total);
|
|
pte = &parent[offset];
|
|
if (level == total)
|
|
return pte;
|
|
|
|
if (!dma_pte_present(*pte))
|
|
break;
|
|
parent = phys_to_virt(dma_pte_addr(*pte));
|
|
total--;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* clear one page's page table */
|
|
static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
|
|
{
|
|
struct dma_pte *pte = NULL;
|
|
|
|
/* get last level pte */
|
|
pte = dma_addr_level_pte(domain, addr, 1);
|
|
|
|
if (pte) {
|
|
dma_clear_pte(*pte);
|
|
__iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
|
|
}
|
|
}
|
|
|
|
/* clear last level pte, a tlb flush should be followed */
|
|
static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw);
|
|
|
|
start &= (((u64)1) << addr_width) - 1;
|
|
end &= (((u64)1) << addr_width) - 1;
|
|
/* in case it's partial page */
|
|
start = PAGE_ALIGN_4K(start);
|
|
end &= PAGE_MASK_4K;
|
|
|
|
/* we don't need lock here, nobody else touches the iova range */
|
|
while (start < end) {
|
|
dma_pte_clear_one(domain, start);
|
|
start += PAGE_SIZE_4K;
|
|
}
|
|
}
|
|
|
|
/* free page table pages. last level pte should already be cleared */
|
|
static void dma_pte_free_pagetable(struct dmar_domain *domain,
|
|
u64 start, u64 end)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw);
|
|
struct dma_pte *pte;
|
|
int total = agaw_to_level(domain->agaw);
|
|
int level;
|
|
u64 tmp;
|
|
|
|
start &= (((u64)1) << addr_width) - 1;
|
|
end &= (((u64)1) << addr_width) - 1;
|
|
|
|
/* we don't need lock here, nobody else touches the iova range */
|
|
level = 2;
|
|
while (level <= total) {
|
|
tmp = align_to_level(start, level);
|
|
if (tmp >= end || (tmp + level_size(level) > end))
|
|
return;
|
|
|
|
while (tmp < end) {
|
|
pte = dma_addr_level_pte(domain, tmp, level);
|
|
if (pte) {
|
|
free_pgtable_page(
|
|
phys_to_virt(dma_pte_addr(*pte)));
|
|
dma_clear_pte(*pte);
|
|
__iommu_flush_cache(domain->iommu,
|
|
pte, sizeof(*pte));
|
|
}
|
|
tmp += level_size(level);
|
|
}
|
|
level++;
|
|
}
|
|
/* free pgd */
|
|
if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
|
|
free_pgtable_page(domain->pgd);
|
|
domain->pgd = NULL;
|
|
}
|
|
}
|
|
|
|
/* iommu handling */
|
|
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
struct root_entry *root;
|
|
unsigned long flags;
|
|
|
|
root = (struct root_entry *)alloc_pgtable_page();
|
|
if (!root)
|
|
return -ENOMEM;
|
|
|
|
__iommu_flush_cache(iommu, root, PAGE_SIZE_4K);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
iommu->root_entry = root;
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
|
|
{\
|
|
unsigned long start_time = jiffies;\
|
|
while (1) {\
|
|
sts = op (iommu->reg + offset);\
|
|
if (cond)\
|
|
break;\
|
|
if (time_after(jiffies, start_time + DMAR_OPERATION_TIMEOUT))\
|
|
panic("DMAR hardware is malfunctioning\n");\
|
|
cpu_relax();\
|
|
}\
|
|
}
|
|
|
|
static void iommu_set_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
void *addr;
|
|
u32 cmd, sts;
|
|
unsigned long flag;
|
|
|
|
addr = iommu->root_entry;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
|
|
|
|
cmd = iommu->gcmd | DMA_GCMD_SRTP;
|
|
writel(cmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_RTPS), sts);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
static void iommu_flush_write_buffer(struct intel_iommu *iommu)
|
|
{
|
|
u32 val;
|
|
unsigned long flag;
|
|
|
|
if (!cap_rwbf(iommu->cap))
|
|
return;
|
|
val = iommu->gcmd | DMA_GCMD_WBF;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(val, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(val & DMA_GSTS_WBFS)), val);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
/* return value determine if we need a write buffer flush */
|
|
static int __iommu_flush_context(struct intel_iommu *iommu,
|
|
u16 did, u16 source_id, u8 function_mask, u64 type,
|
|
int non_present_entry_flush)
|
|
{
|
|
u64 val = 0;
|
|
unsigned long flag;
|
|
|
|
/*
|
|
* In the non-present entry flush case, if hardware doesn't cache
|
|
* non-present entry we do nothing and if hardware cache non-present
|
|
* entry, we flush entries of domain 0 (the domain id is used to cache
|
|
* any non-present entries)
|
|
*/
|
|
if (non_present_entry_flush) {
|
|
if (!cap_caching_mode(iommu->cap))
|
|
return 1;
|
|
else
|
|
did = 0;
|
|
}
|
|
|
|
switch (type) {
|
|
case DMA_CCMD_GLOBAL_INVL:
|
|
val = DMA_CCMD_GLOBAL_INVL;
|
|
break;
|
|
case DMA_CCMD_DOMAIN_INVL:
|
|
val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
|
|
break;
|
|
case DMA_CCMD_DEVICE_INVL:
|
|
val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
|
|
| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
val |= DMA_CCMD_ICC;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
|
|
dmar_readq, (!(val & DMA_CCMD_ICC)), val);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
/* flush context entry will implictly flush write buffer */
|
|
return 0;
|
|
}
|
|
|
|
static int inline iommu_flush_context_global(struct intel_iommu *iommu,
|
|
int non_present_entry_flush)
|
|
{
|
|
return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
|
|
non_present_entry_flush);
|
|
}
|
|
|
|
static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did,
|
|
int non_present_entry_flush)
|
|
{
|
|
return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL,
|
|
non_present_entry_flush);
|
|
}
|
|
|
|
static int inline iommu_flush_context_device(struct intel_iommu *iommu,
|
|
u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush)
|
|
{
|
|
return __iommu_flush_context(iommu, did, source_id, function_mask,
|
|
DMA_CCMD_DEVICE_INVL, non_present_entry_flush);
|
|
}
|
|
|
|
/* return value determine if we need a write buffer flush */
|
|
static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
|
|
u64 addr, unsigned int size_order, u64 type,
|
|
int non_present_entry_flush)
|
|
{
|
|
int tlb_offset = ecap_iotlb_offset(iommu->ecap);
|
|
u64 val = 0, val_iva = 0;
|
|
unsigned long flag;
|
|
|
|
/*
|
|
* In the non-present entry flush case, if hardware doesn't cache
|
|
* non-present entry we do nothing and if hardware cache non-present
|
|
* entry, we flush entries of domain 0 (the domain id is used to cache
|
|
* any non-present entries)
|
|
*/
|
|
if (non_present_entry_flush) {
|
|
if (!cap_caching_mode(iommu->cap))
|
|
return 1;
|
|
else
|
|
did = 0;
|
|
}
|
|
|
|
switch (type) {
|
|
case DMA_TLB_GLOBAL_FLUSH:
|
|
/* global flush doesn't need set IVA_REG */
|
|
val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
|
|
break;
|
|
case DMA_TLB_DSI_FLUSH:
|
|
val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
break;
|
|
case DMA_TLB_PSI_FLUSH:
|
|
val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
/* Note: always flush non-leaf currently */
|
|
val_iva = size_order | addr;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
/* Note: set drain read/write */
|
|
#if 0
|
|
/*
|
|
* This is probably to be super secure.. Looks like we can
|
|
* ignore it without any impact.
|
|
*/
|
|
if (cap_read_drain(iommu->cap))
|
|
val |= DMA_TLB_READ_DRAIN;
|
|
#endif
|
|
if (cap_write_drain(iommu->cap))
|
|
val |= DMA_TLB_WRITE_DRAIN;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
/* Note: Only uses first TLB reg currently */
|
|
if (val_iva)
|
|
dmar_writeq(iommu->reg + tlb_offset, val_iva);
|
|
dmar_writeq(iommu->reg + tlb_offset + 8, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, tlb_offset + 8,
|
|
dmar_readq, (!(val & DMA_TLB_IVT)), val);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
/* check IOTLB invalidation granularity */
|
|
if (DMA_TLB_IAIG(val) == 0)
|
|
printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
|
|
if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
|
|
pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
|
|
DMA_TLB_IIRG(type), DMA_TLB_IAIG(val));
|
|
/* flush context entry will implictly flush write buffer */
|
|
return 0;
|
|
}
|
|
|
|
static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu,
|
|
int non_present_entry_flush)
|
|
{
|
|
return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
|
|
non_present_entry_flush);
|
|
}
|
|
|
|
static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did,
|
|
int non_present_entry_flush)
|
|
{
|
|
return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH,
|
|
non_present_entry_flush);
|
|
}
|
|
|
|
static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
|
|
u64 addr, unsigned int pages, int non_present_entry_flush)
|
|
{
|
|
unsigned int mask;
|
|
|
|
BUG_ON(addr & (~PAGE_MASK_4K));
|
|
BUG_ON(pages == 0);
|
|
|
|
/* Fallback to domain selective flush if no PSI support */
|
|
if (!cap_pgsel_inv(iommu->cap))
|
|
return iommu_flush_iotlb_dsi(iommu, did,
|
|
non_present_entry_flush);
|
|
|
|
/*
|
|
* PSI requires page size to be 2 ^ x, and the base address is naturally
|
|
* aligned to the size
|
|
*/
|
|
mask = ilog2(__roundup_pow_of_two(pages));
|
|
/* Fallback to domain selective flush if size is too big */
|
|
if (mask > cap_max_amask_val(iommu->cap))
|
|
return iommu_flush_iotlb_dsi(iommu, did,
|
|
non_present_entry_flush);
|
|
|
|
return __iommu_flush_iotlb(iommu, did, addr, mask,
|
|
DMA_TLB_PSI_FLUSH, non_present_entry_flush);
|
|
}
|
|
|
|
static int iommu_enable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flags);
|
|
writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_TES), sts);
|
|
|
|
iommu->gcmd |= DMA_GCMD_TE;
|
|
spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_disable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
iommu->gcmd &= ~DMA_GCMD_TE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(sts & DMA_GSTS_TES)), sts);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
return 0;
|
|
}
|
|
|
|
/* iommu interrupt handling. Most stuff are MSI-like. */
|
|
|
|
static char *fault_reason_strings[] =
|
|
{
|
|
"Software",
|
|
"Present bit in root entry is clear",
|
|
"Present bit in context entry is clear",
|
|
"Invalid context entry",
|
|
"Access beyond MGAW",
|
|
"PTE Write access is not set",
|
|
"PTE Read access is not set",
|
|
"Next page table ptr is invalid",
|
|
"Root table address invalid",
|
|
"Context table ptr is invalid",
|
|
"non-zero reserved fields in RTP",
|
|
"non-zero reserved fields in CTP",
|
|
"non-zero reserved fields in PTE",
|
|
"Unknown"
|
|
};
|
|
#define MAX_FAULT_REASON_IDX ARRAY_SIZE(fault_reason_strings) - 1
|
|
|
|
char *dmar_get_fault_reason(u8 fault_reason)
|
|
{
|
|
if (fault_reason >= MAX_FAULT_REASON_IDX)
|
|
return fault_reason_strings[MAX_FAULT_REASON_IDX - 1];
|
|
else
|
|
return fault_reason_strings[fault_reason];
|
|
}
|
|
|
|
void dmar_msi_unmask(unsigned int irq)
|
|
{
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
unsigned long flag;
|
|
|
|
/* unmask it */
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(0, iommu->reg + DMAR_FECTL_REG);
|
|
/* Read a reg to force flush the post write */
|
|
readl(iommu->reg + DMAR_FECTL_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_mask(unsigned int irq)
|
|
{
|
|
unsigned long flag;
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
|
|
/* mask it */
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
|
|
/* Read a reg to force flush the post write */
|
|
readl(iommu->reg + DMAR_FECTL_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_write(int irq, struct msi_msg *msg)
|
|
{
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
|
|
writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
|
|
writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_read(int irq, struct msi_msg *msg)
|
|
{
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
|
|
msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
|
|
msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type,
|
|
u8 fault_reason, u16 source_id, u64 addr)
|
|
{
|
|
char *reason;
|
|
|
|
reason = dmar_get_fault_reason(fault_reason);
|
|
|
|
printk(KERN_ERR
|
|
"DMAR:[%s] Request device [%02x:%02x.%d] "
|
|
"fault addr %llx \n"
|
|
"DMAR:[fault reason %02d] %s\n",
|
|
(type ? "DMA Read" : "DMA Write"),
|
|
(source_id >> 8), PCI_SLOT(source_id & 0xFF),
|
|
PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
|
|
return 0;
|
|
}
|
|
|
|
#define PRIMARY_FAULT_REG_LEN (16)
|
|
static irqreturn_t iommu_page_fault(int irq, void *dev_id)
|
|
{
|
|
struct intel_iommu *iommu = dev_id;
|
|
int reg, fault_index;
|
|
u32 fault_status;
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
fault_status = readl(iommu->reg + DMAR_FSTS_REG);
|
|
|
|
/* TBD: ignore advanced fault log currently */
|
|
if (!(fault_status & DMA_FSTS_PPF))
|
|
goto clear_overflow;
|
|
|
|
fault_index = dma_fsts_fault_record_index(fault_status);
|
|
reg = cap_fault_reg_offset(iommu->cap);
|
|
while (1) {
|
|
u8 fault_reason;
|
|
u16 source_id;
|
|
u64 guest_addr;
|
|
int type;
|
|
u32 data;
|
|
|
|
/* highest 32 bits */
|
|
data = readl(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 12);
|
|
if (!(data & DMA_FRCD_F))
|
|
break;
|
|
|
|
fault_reason = dma_frcd_fault_reason(data);
|
|
type = dma_frcd_type(data);
|
|
|
|
data = readl(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 8);
|
|
source_id = dma_frcd_source_id(data);
|
|
|
|
guest_addr = dmar_readq(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN);
|
|
guest_addr = dma_frcd_page_addr(guest_addr);
|
|
/* clear the fault */
|
|
writel(DMA_FRCD_F, iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 12);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
iommu_page_fault_do_one(iommu, type, fault_reason,
|
|
source_id, guest_addr);
|
|
|
|
fault_index++;
|
|
if (fault_index > cap_num_fault_regs(iommu->cap))
|
|
fault_index = 0;
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
}
|
|
clear_overflow:
|
|
/* clear primary fault overflow */
|
|
fault_status = readl(iommu->reg + DMAR_FSTS_REG);
|
|
if (fault_status & DMA_FSTS_PFO)
|
|
writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int dmar_set_interrupt(struct intel_iommu *iommu)
|
|
{
|
|
int irq, ret;
|
|
|
|
irq = create_irq();
|
|
if (!irq) {
|
|
printk(KERN_ERR "IOMMU: no free vectors\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_irq_data(irq, iommu);
|
|
iommu->irq = irq;
|
|
|
|
ret = arch_setup_dmar_msi(irq);
|
|
if (ret) {
|
|
set_irq_data(irq, NULL);
|
|
iommu->irq = 0;
|
|
destroy_irq(irq);
|
|
return 0;
|
|
}
|
|
|
|
/* Force fault register is cleared */
|
|
iommu_page_fault(irq, iommu);
|
|
|
|
ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu);
|
|
if (ret)
|
|
printk(KERN_ERR "IOMMU: can't request irq\n");
|
|
return ret;
|
|
}
|
|
|
|
static int iommu_init_domains(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long ndomains;
|
|
unsigned long nlongs;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
pr_debug("Number of Domains supportd <%ld>\n", ndomains);
|
|
nlongs = BITS_TO_LONGS(ndomains);
|
|
|
|
/* TBD: there might be 64K domains,
|
|
* consider other allocation for future chip
|
|
*/
|
|
iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
|
|
if (!iommu->domain_ids) {
|
|
printk(KERN_ERR "Allocating domain id array failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
|
|
GFP_KERNEL);
|
|
if (!iommu->domains) {
|
|
printk(KERN_ERR "Allocating domain array failed\n");
|
|
kfree(iommu->domain_ids);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* if Caching mode is set, then invalid translations are tagged
|
|
* with domainid 0. Hence we need to pre-allocate it.
|
|
*/
|
|
if (cap_caching_mode(iommu->cap))
|
|
set_bit(0, iommu->domain_ids);
|
|
return 0;
|
|
}
|
|
|
|
static struct intel_iommu *alloc_iommu(struct dmar_drhd_unit *drhd)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
int ret;
|
|
int map_size;
|
|
u32 ver;
|
|
|
|
iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
|
|
if (!iommu)
|
|
return NULL;
|
|
iommu->reg = ioremap(drhd->reg_base_addr, PAGE_SIZE_4K);
|
|
if (!iommu->reg) {
|
|
printk(KERN_ERR "IOMMU: can't map the region\n");
|
|
goto error;
|
|
}
|
|
iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
|
|
iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
|
|
|
|
/* the registers might be more than one page */
|
|
map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
|
|
cap_max_fault_reg_offset(iommu->cap));
|
|
map_size = PAGE_ALIGN_4K(map_size);
|
|
if (map_size > PAGE_SIZE_4K) {
|
|
iounmap(iommu->reg);
|
|
iommu->reg = ioremap(drhd->reg_base_addr, map_size);
|
|
if (!iommu->reg) {
|
|
printk(KERN_ERR "IOMMU: can't map the region\n");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
ver = readl(iommu->reg + DMAR_VER_REG);
|
|
pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
|
|
drhd->reg_base_addr, DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
|
|
iommu->cap, iommu->ecap);
|
|
ret = iommu_init_domains(iommu);
|
|
if (ret)
|
|
goto error_unmap;
|
|
spin_lock_init(&iommu->lock);
|
|
spin_lock_init(&iommu->register_lock);
|
|
|
|
drhd->iommu = iommu;
|
|
return iommu;
|
|
error_unmap:
|
|
iounmap(iommu->reg);
|
|
error:
|
|
kfree(iommu);
|
|
return NULL;
|
|
}
|
|
|
|
static void domain_exit(struct dmar_domain *domain);
|
|
static void free_iommu(struct intel_iommu *iommu)
|
|
{
|
|
struct dmar_domain *domain;
|
|
int i;
|
|
|
|
if (!iommu)
|
|
return;
|
|
|
|
i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
|
|
for (; i < cap_ndoms(iommu->cap); ) {
|
|
domain = iommu->domains[i];
|
|
clear_bit(i, iommu->domain_ids);
|
|
domain_exit(domain);
|
|
i = find_next_bit(iommu->domain_ids,
|
|
cap_ndoms(iommu->cap), i+1);
|
|
}
|
|
|
|
if (iommu->gcmd & DMA_GCMD_TE)
|
|
iommu_disable_translation(iommu);
|
|
|
|
if (iommu->irq) {
|
|
set_irq_data(iommu->irq, NULL);
|
|
/* This will mask the irq */
|
|
free_irq(iommu->irq, iommu);
|
|
destroy_irq(iommu->irq);
|
|
}
|
|
|
|
kfree(iommu->domains);
|
|
kfree(iommu->domain_ids);
|
|
|
|
/* free context mapping */
|
|
free_context_table(iommu);
|
|
|
|
if (iommu->reg)
|
|
iounmap(iommu->reg);
|
|
kfree(iommu);
|
|
}
|
|
|
|
static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long num;
|
|
unsigned long ndomains;
|
|
struct dmar_domain *domain;
|
|
unsigned long flags;
|
|
|
|
domain = alloc_domain_mem();
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
num = find_first_zero_bit(iommu->domain_ids, ndomains);
|
|
if (num >= ndomains) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
free_domain_mem(domain);
|
|
printk(KERN_ERR "IOMMU: no free domain ids\n");
|
|
return NULL;
|
|
}
|
|
|
|
set_bit(num, iommu->domain_ids);
|
|
domain->id = num;
|
|
domain->iommu = iommu;
|
|
iommu->domains[num] = domain;
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return domain;
|
|
}
|
|
|
|
static void iommu_free_domain(struct dmar_domain *domain)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&domain->iommu->lock, flags);
|
|
clear_bit(domain->id, domain->iommu->domain_ids);
|
|
spin_unlock_irqrestore(&domain->iommu->lock, flags);
|
|
}
|
|
|
|
static struct iova_domain reserved_iova_list;
|
|
|
|
static void dmar_init_reserved_ranges(void)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct iova *iova;
|
|
int i;
|
|
u64 addr, size;
|
|
|
|
init_iova_domain(&reserved_iova_list);
|
|
|
|
/* IOAPIC ranges shouldn't be accessed by DMA */
|
|
iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
|
|
IOVA_PFN(IOAPIC_RANGE_END));
|
|
if (!iova)
|
|
printk(KERN_ERR "Reserve IOAPIC range failed\n");
|
|
|
|
/* Reserve all PCI MMIO to avoid peer-to-peer access */
|
|
for_each_pci_dev(pdev) {
|
|
struct resource *r;
|
|
|
|
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
|
|
r = &pdev->resource[i];
|
|
if (!r->flags || !(r->flags & IORESOURCE_MEM))
|
|
continue;
|
|
addr = r->start;
|
|
addr &= PAGE_MASK_4K;
|
|
size = r->end - addr;
|
|
size = PAGE_ALIGN_4K(size);
|
|
iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
|
|
IOVA_PFN(size + addr) - 1);
|
|
if (!iova)
|
|
printk(KERN_ERR "Reserve iova failed\n");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void domain_reserve_special_ranges(struct dmar_domain *domain)
|
|
{
|
|
copy_reserved_iova(&reserved_iova_list, &domain->iovad);
|
|
}
|
|
|
|
static inline int guestwidth_to_adjustwidth(int gaw)
|
|
{
|
|
int agaw;
|
|
int r = (gaw - 12) % 9;
|
|
|
|
if (r == 0)
|
|
agaw = gaw;
|
|
else
|
|
agaw = gaw + 9 - r;
|
|
if (agaw > 64)
|
|
agaw = 64;
|
|
return agaw;
|
|
}
|
|
|
|
static int domain_init(struct dmar_domain *domain, int guest_width)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
int adjust_width, agaw;
|
|
unsigned long sagaw;
|
|
|
|
init_iova_domain(&domain->iovad);
|
|
spin_lock_init(&domain->mapping_lock);
|
|
|
|
domain_reserve_special_ranges(domain);
|
|
|
|
/* calculate AGAW */
|
|
iommu = domain->iommu;
|
|
if (guest_width > cap_mgaw(iommu->cap))
|
|
guest_width = cap_mgaw(iommu->cap);
|
|
domain->gaw = guest_width;
|
|
adjust_width = guestwidth_to_adjustwidth(guest_width);
|
|
agaw = width_to_agaw(adjust_width);
|
|
sagaw = cap_sagaw(iommu->cap);
|
|
if (!test_bit(agaw, &sagaw)) {
|
|
/* hardware doesn't support it, choose a bigger one */
|
|
pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
|
|
agaw = find_next_bit(&sagaw, 5, agaw);
|
|
if (agaw >= 5)
|
|
return -ENODEV;
|
|
}
|
|
domain->agaw = agaw;
|
|
INIT_LIST_HEAD(&domain->devices);
|
|
|
|
/* always allocate the top pgd */
|
|
domain->pgd = (struct dma_pte *)alloc_pgtable_page();
|
|
if (!domain->pgd)
|
|
return -ENOMEM;
|
|
__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K);
|
|
return 0;
|
|
}
|
|
|
|
static void domain_exit(struct dmar_domain *domain)
|
|
{
|
|
u64 end;
|
|
|
|
/* Domain 0 is reserved, so dont process it */
|
|
if (!domain)
|
|
return;
|
|
|
|
domain_remove_dev_info(domain);
|
|
/* destroy iovas */
|
|
put_iova_domain(&domain->iovad);
|
|
end = DOMAIN_MAX_ADDR(domain->gaw);
|
|
end = end & (~PAGE_MASK_4K);
|
|
|
|
/* clear ptes */
|
|
dma_pte_clear_range(domain, 0, end);
|
|
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, 0, end);
|
|
|
|
iommu_free_domain(domain);
|
|
free_domain_mem(domain);
|
|
}
|
|
|
|
static int domain_context_mapping_one(struct dmar_domain *domain,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
struct context_entry *context;
|
|
struct intel_iommu *iommu = domain->iommu;
|
|
unsigned long flags;
|
|
|
|
pr_debug("Set context mapping for %02x:%02x.%d\n",
|
|
bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
|
|
BUG_ON(!domain->pgd);
|
|
context = device_to_context_entry(iommu, bus, devfn);
|
|
if (!context)
|
|
return -ENOMEM;
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
if (context_present(*context)) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
context_set_domain_id(*context, domain->id);
|
|
context_set_address_width(*context, domain->agaw);
|
|
context_set_address_root(*context, virt_to_phys(domain->pgd));
|
|
context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL);
|
|
context_set_fault_enable(*context);
|
|
context_set_present(*context);
|
|
__iommu_flush_cache(iommu, context, sizeof(*context));
|
|
|
|
/* it's a non-present to present mapping */
|
|
if (iommu_flush_context_device(iommu, domain->id,
|
|
(((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1))
|
|
iommu_flush_write_buffer(iommu);
|
|
else
|
|
iommu_flush_iotlb_dsi(iommu, 0, 0);
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
|
|
{
|
|
int ret;
|
|
struct pci_dev *tmp, *parent;
|
|
|
|
ret = domain_context_mapping_one(domain, pdev->bus->number,
|
|
pdev->devfn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* dependent device mapping */
|
|
tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
if (!tmp)
|
|
return 0;
|
|
/* Secondary interface's bus number and devfn 0 */
|
|
parent = pdev->bus->self;
|
|
while (parent != tmp) {
|
|
ret = domain_context_mapping_one(domain, parent->bus->number,
|
|
parent->devfn);
|
|
if (ret)
|
|
return ret;
|
|
parent = parent->bus->self;
|
|
}
|
|
if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
|
|
return domain_context_mapping_one(domain,
|
|
tmp->subordinate->number, 0);
|
|
else /* this is a legacy PCI bridge */
|
|
return domain_context_mapping_one(domain,
|
|
tmp->bus->number, tmp->devfn);
|
|
}
|
|
|
|
static int domain_context_mapped(struct dmar_domain *domain,
|
|
struct pci_dev *pdev)
|
|
{
|
|
int ret;
|
|
struct pci_dev *tmp, *parent;
|
|
|
|
ret = device_context_mapped(domain->iommu,
|
|
pdev->bus->number, pdev->devfn);
|
|
if (!ret)
|
|
return ret;
|
|
/* dependent device mapping */
|
|
tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
if (!tmp)
|
|
return ret;
|
|
/* Secondary interface's bus number and devfn 0 */
|
|
parent = pdev->bus->self;
|
|
while (parent != tmp) {
|
|
ret = device_context_mapped(domain->iommu, parent->bus->number,
|
|
parent->devfn);
|
|
if (!ret)
|
|
return ret;
|
|
parent = parent->bus->self;
|
|
}
|
|
if (tmp->is_pcie)
|
|
return device_context_mapped(domain->iommu,
|
|
tmp->subordinate->number, 0);
|
|
else
|
|
return device_context_mapped(domain->iommu,
|
|
tmp->bus->number, tmp->devfn);
|
|
}
|
|
|
|
static int
|
|
domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
|
|
u64 hpa, size_t size, int prot)
|
|
{
|
|
u64 start_pfn, end_pfn;
|
|
struct dma_pte *pte;
|
|
int index;
|
|
|
|
if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
|
|
return -EINVAL;
|
|
iova &= PAGE_MASK_4K;
|
|
start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K;
|
|
end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K;
|
|
index = 0;
|
|
while (start_pfn < end_pfn) {
|
|
pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
/* We don't need lock here, nobody else
|
|
* touches the iova range
|
|
*/
|
|
BUG_ON(dma_pte_addr(*pte));
|
|
dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K);
|
|
dma_set_pte_prot(*pte, prot);
|
|
__iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
|
|
start_pfn++;
|
|
index++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn)
|
|
{
|
|
clear_context_table(domain->iommu, bus, devfn);
|
|
iommu_flush_context_global(domain->iommu, 0);
|
|
iommu_flush_iotlb_global(domain->iommu, 0);
|
|
}
|
|
|
|
static void domain_remove_dev_info(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
while (!list_empty(&domain->devices)) {
|
|
info = list_entry(domain->devices.next,
|
|
struct device_domain_info, link);
|
|
list_del(&info->link);
|
|
list_del(&info->global);
|
|
if (info->dev)
|
|
info->dev->dev.archdata.iommu = NULL;
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
detach_domain_for_dev(info->domain, info->bus, info->devfn);
|
|
free_devinfo_mem(info);
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* find_domain
|
|
* Note: we use struct pci_dev->dev.archdata.iommu stores the info
|
|
*/
|
|
struct dmar_domain *
|
|
find_domain(struct pci_dev *pdev)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
/* No lock here, assumes no domain exit in normal case */
|
|
info = pdev->dev.archdata.iommu;
|
|
if (info)
|
|
return info->domain;
|
|
return NULL;
|
|
}
|
|
|
|
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
|
|
struct pci_dev *dev)
|
|
{
|
|
int index;
|
|
|
|
while (dev) {
|
|
for (index = 0; index < cnt; index ++)
|
|
if (dev == devices[index])
|
|
return 1;
|
|
|
|
/* Check our parent */
|
|
dev = dev->bus->self;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dmar_drhd_unit *
|
|
dmar_find_matched_drhd_unit(struct pci_dev *dev)
|
|
{
|
|
struct dmar_drhd_unit *drhd = NULL;
|
|
|
|
list_for_each_entry(drhd, &dmar_drhd_units, list) {
|
|
if (drhd->include_all || dmar_pci_device_match(drhd->devices,
|
|
drhd->devices_cnt, dev))
|
|
return drhd;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* domain is initialized */
|
|
static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
|
|
{
|
|
struct dmar_domain *domain, *found = NULL;
|
|
struct intel_iommu *iommu;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct device_domain_info *info, *tmp;
|
|
struct pci_dev *dev_tmp;
|
|
unsigned long flags;
|
|
int bus = 0, devfn = 0;
|
|
|
|
domain = find_domain(pdev);
|
|
if (domain)
|
|
return domain;
|
|
|
|
dev_tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
if (dev_tmp) {
|
|
if (dev_tmp->is_pcie) {
|
|
bus = dev_tmp->subordinate->number;
|
|
devfn = 0;
|
|
} else {
|
|
bus = dev_tmp->bus->number;
|
|
devfn = dev_tmp->devfn;
|
|
}
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry(info, &device_domain_list, global) {
|
|
if (info->bus == bus && info->devfn == devfn) {
|
|
found = info->domain;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
/* pcie-pci bridge already has a domain, uses it */
|
|
if (found) {
|
|
domain = found;
|
|
goto found_domain;
|
|
}
|
|
}
|
|
|
|
/* Allocate new domain for the device */
|
|
drhd = dmar_find_matched_drhd_unit(pdev);
|
|
if (!drhd) {
|
|
printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
|
|
pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
iommu = drhd->iommu;
|
|
|
|
domain = iommu_alloc_domain(iommu);
|
|
if (!domain)
|
|
goto error;
|
|
|
|
if (domain_init(domain, gaw)) {
|
|
domain_exit(domain);
|
|
goto error;
|
|
}
|
|
|
|
/* register pcie-to-pci device */
|
|
if (dev_tmp) {
|
|
info = alloc_devinfo_mem();
|
|
if (!info) {
|
|
domain_exit(domain);
|
|
goto error;
|
|
}
|
|
info->bus = bus;
|
|
info->devfn = devfn;
|
|
info->dev = NULL;
|
|
info->domain = domain;
|
|
/* This domain is shared by devices under p2p bridge */
|
|
domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES;
|
|
|
|
/* pcie-to-pci bridge already has a domain, uses it */
|
|
found = NULL;
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry(tmp, &device_domain_list, global) {
|
|
if (tmp->bus == bus && tmp->devfn == devfn) {
|
|
found = tmp->domain;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
free_devinfo_mem(info);
|
|
domain_exit(domain);
|
|
domain = found;
|
|
} else {
|
|
list_add(&info->link, &domain->devices);
|
|
list_add(&info->global, &device_domain_list);
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
found_domain:
|
|
info = alloc_devinfo_mem();
|
|
if (!info)
|
|
goto error;
|
|
info->bus = pdev->bus->number;
|
|
info->devfn = pdev->devfn;
|
|
info->dev = pdev;
|
|
info->domain = domain;
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
/* somebody is fast */
|
|
found = find_domain(pdev);
|
|
if (found != NULL) {
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
if (found != domain) {
|
|
domain_exit(domain);
|
|
domain = found;
|
|
}
|
|
free_devinfo_mem(info);
|
|
return domain;
|
|
}
|
|
list_add(&info->link, &domain->devices);
|
|
list_add(&info->global, &device_domain_list);
|
|
pdev->dev.archdata.iommu = info;
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
return domain;
|
|
error:
|
|
/* recheck it here, maybe others set it */
|
|
return find_domain(pdev);
|
|
}
|
|
|
|
static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end)
|
|
{
|
|
struct dmar_domain *domain;
|
|
unsigned long size;
|
|
u64 base;
|
|
int ret;
|
|
|
|
printk(KERN_INFO
|
|
"IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
|
|
pci_name(pdev), start, end);
|
|
/* page table init */
|
|
domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
if (!domain)
|
|
return -ENOMEM;
|
|
|
|
/* The address might not be aligned */
|
|
base = start & PAGE_MASK_4K;
|
|
size = end - base;
|
|
size = PAGE_ALIGN_4K(size);
|
|
if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
|
|
IOVA_PFN(base + size) - 1)) {
|
|
printk(KERN_ERR "IOMMU: reserve iova failed\n");
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
pr_debug("Mapping reserved region %lx@%llx for %s\n",
|
|
size, base, pci_name(pdev));
|
|
/*
|
|
* RMRR range might have overlap with physical memory range,
|
|
* clear it first
|
|
*/
|
|
dma_pte_clear_range(domain, base, base + size);
|
|
|
|
ret = domain_page_mapping(domain, base, base, size,
|
|
DMA_PTE_READ|DMA_PTE_WRITE);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/* context entry init */
|
|
ret = domain_context_mapping(domain, pdev);
|
|
if (!ret)
|
|
return 0;
|
|
error:
|
|
domain_exit(domain);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
|
|
struct pci_dev *pdev)
|
|
{
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return 0;
|
|
return iommu_prepare_identity_map(pdev, rmrr->base_address,
|
|
rmrr->end_address + 1);
|
|
}
|
|
|
|
#ifdef CONFIG_DMAR_GFX_WA
|
|
extern int arch_get_ram_range(int slot, u64 *addr, u64 *size);
|
|
static void __init iommu_prepare_gfx_mapping(void)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
u64 base, size;
|
|
int slot;
|
|
int ret;
|
|
|
|
for_each_pci_dev(pdev) {
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
|
|
!IS_GFX_DEVICE(pdev))
|
|
continue;
|
|
printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
|
|
pci_name(pdev));
|
|
slot = arch_get_ram_range(0, &base, &size);
|
|
while (slot >= 0) {
|
|
ret = iommu_prepare_identity_map(pdev,
|
|
base, base + size);
|
|
if (ret)
|
|
goto error;
|
|
slot = arch_get_ram_range(slot, &base, &size);
|
|
}
|
|
continue;
|
|
error:
|
|
printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_DMAR_FLOPPY_WA
|
|
static inline void iommu_prepare_isa(void)
|
|
{
|
|
struct pci_dev *pdev;
|
|
int ret;
|
|
|
|
pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
|
|
if (!pdev)
|
|
return;
|
|
|
|
printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
|
|
ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
|
|
|
|
if (ret)
|
|
printk("IOMMU: Failed to create 0-64M identity map, "
|
|
"floppy might not work\n");
|
|
|
|
}
|
|
#else
|
|
static inline void iommu_prepare_isa(void)
|
|
{
|
|
return;
|
|
}
|
|
#endif /* !CONFIG_DMAR_FLPY_WA */
|
|
|
|
int __init init_dmars(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct dmar_rmrr_unit *rmrr;
|
|
struct pci_dev *pdev;
|
|
struct intel_iommu *iommu;
|
|
int ret, unit = 0;
|
|
|
|
/*
|
|
* for each drhd
|
|
* allocate root
|
|
* initialize and program root entry to not present
|
|
* endfor
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
iommu = alloc_iommu(drhd);
|
|
if (!iommu) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* TBD:
|
|
* we could share the same root & context tables
|
|
* amoung all IOMMU's. Need to Split it later.
|
|
*/
|
|
ret = iommu_alloc_root_entry(iommu);
|
|
if (ret) {
|
|
printk(KERN_ERR "IOMMU: allocate root entry failed\n");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For each rmrr
|
|
* for each dev attached to rmrr
|
|
* do
|
|
* locate drhd for dev, alloc domain for dev
|
|
* allocate free domain
|
|
* allocate page table entries for rmrr
|
|
* if context not allocated for bus
|
|
* allocate and init context
|
|
* set present in root table for this bus
|
|
* init context with domain, translation etc
|
|
* endfor
|
|
* endfor
|
|
*/
|
|
for_each_rmrr_units(rmrr) {
|
|
int i;
|
|
for (i = 0; i < rmrr->devices_cnt; i++) {
|
|
pdev = rmrr->devices[i];
|
|
/* some BIOS lists non-exist devices in DMAR table */
|
|
if (!pdev)
|
|
continue;
|
|
ret = iommu_prepare_rmrr_dev(rmrr, pdev);
|
|
if (ret)
|
|
printk(KERN_ERR
|
|
"IOMMU: mapping reserved region failed\n");
|
|
}
|
|
}
|
|
|
|
iommu_prepare_gfx_mapping();
|
|
|
|
iommu_prepare_isa();
|
|
|
|
/*
|
|
* for each drhd
|
|
* enable fault log
|
|
* global invalidate context cache
|
|
* global invalidate iotlb
|
|
* enable translation
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
iommu = drhd->iommu;
|
|
sprintf (iommu->name, "dmar%d", unit++);
|
|
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
ret = dmar_set_interrupt(iommu);
|
|
if (ret)
|
|
goto error;
|
|
|
|
iommu_set_root_entry(iommu);
|
|
|
|
iommu_flush_context_global(iommu, 0);
|
|
iommu_flush_iotlb_global(iommu, 0);
|
|
|
|
ret = iommu_enable_translation(iommu);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
iommu = drhd->iommu;
|
|
free_iommu(iommu);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline u64 aligned_size(u64 host_addr, size_t size)
|
|
{
|
|
u64 addr;
|
|
addr = (host_addr & (~PAGE_MASK_4K)) + size;
|
|
return PAGE_ALIGN_4K(addr);
|
|
}
|
|
|
|
struct iova *
|
|
iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
|
|
{
|
|
struct iova *piova;
|
|
|
|
/* Make sure it's in range */
|
|
end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
|
|
if (!size || (IOVA_START_ADDR + size > end))
|
|
return NULL;
|
|
|
|
piova = alloc_iova(&domain->iovad,
|
|
size >> PAGE_SHIFT_4K, IOVA_PFN(end), 1);
|
|
return piova;
|
|
}
|
|
|
|
static struct iova *
|
|
__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
|
|
size_t size)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct iova *iova = NULL;
|
|
|
|
if ((pdev->dma_mask <= DMA_32BIT_MASK) || (dmar_forcedac)) {
|
|
iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
|
|
} else {
|
|
/*
|
|
* First try to allocate an io virtual address in
|
|
* DMA_32BIT_MASK and if that fails then try allocating
|
|
* from higher range
|
|
*/
|
|
iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
|
|
if (!iova)
|
|
iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
|
|
}
|
|
|
|
if (!iova) {
|
|
printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
|
|
return iova;
|
|
}
|
|
|
|
static struct dmar_domain *
|
|
get_valid_domain_for_dev(struct pci_dev *pdev)
|
|
{
|
|
struct dmar_domain *domain;
|
|
int ret;
|
|
|
|
domain = get_domain_for_dev(pdev,
|
|
DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
if (!domain) {
|
|
printk(KERN_ERR
|
|
"Allocating domain for %s failed", pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
|
|
/* make sure context mapping is ok */
|
|
if (unlikely(!domain_context_mapped(domain, pdev))) {
|
|
ret = domain_context_mapping(domain, pdev);
|
|
if (ret) {
|
|
printk(KERN_ERR
|
|
"Domain context map for %s failed",
|
|
pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return domain;
|
|
}
|
|
|
|
static dma_addr_t intel_map_single(struct device *hwdev, void *addr,
|
|
size_t size, int dir)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(hwdev);
|
|
int ret;
|
|
struct dmar_domain *domain;
|
|
unsigned long start_addr;
|
|
struct iova *iova;
|
|
int prot = 0;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return virt_to_bus(addr);
|
|
|
|
domain = get_valid_domain_for_dev(pdev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
addr = (void *)virt_to_phys(addr);
|
|
size = aligned_size((u64)addr, size);
|
|
|
|
iova = __intel_alloc_iova(hwdev, domain, size);
|
|
if (!iova)
|
|
goto error;
|
|
|
|
start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
|
|
|
|
/*
|
|
* Check if DMAR supports zero-length reads on write only
|
|
* mappings..
|
|
*/
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
|
|
!cap_zlr(domain->iommu->cap))
|
|
prot |= DMA_PTE_READ;
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
prot |= DMA_PTE_WRITE;
|
|
/*
|
|
* addr - (addr + size) might be partial page, we should map the whole
|
|
* page. Note: if two part of one page are separately mapped, we
|
|
* might have two guest_addr mapping to the same host addr, but this
|
|
* is not a big problem
|
|
*/
|
|
ret = domain_page_mapping(domain, start_addr,
|
|
((u64)addr) & PAGE_MASK_4K, size, prot);
|
|
if (ret)
|
|
goto error;
|
|
|
|
pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n",
|
|
pci_name(pdev), size, (u64)addr,
|
|
size, (u64)start_addr, dir);
|
|
|
|
/* it's a non-present to present mapping */
|
|
ret = iommu_flush_iotlb_psi(domain->iommu, domain->id,
|
|
start_addr, size >> PAGE_SHIFT_4K, 1);
|
|
if (ret)
|
|
iommu_flush_write_buffer(domain->iommu);
|
|
|
|
return (start_addr + ((u64)addr & (~PAGE_MASK_4K)));
|
|
|
|
error:
|
|
if (iova)
|
|
__free_iova(&domain->iovad, iova);
|
|
printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
|
|
pci_name(pdev), size, (u64)addr, dir);
|
|
return 0;
|
|
}
|
|
|
|
static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr,
|
|
size_t size, int dir)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct dmar_domain *domain;
|
|
unsigned long start_addr;
|
|
struct iova *iova;
|
|
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return;
|
|
domain = find_domain(pdev);
|
|
BUG_ON(!domain);
|
|
|
|
iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
|
|
if (!iova)
|
|
return;
|
|
|
|
start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
|
|
size = aligned_size((u64)dev_addr, size);
|
|
|
|
pr_debug("Device %s unmapping: %lx@%llx\n",
|
|
pci_name(pdev), size, (u64)start_addr);
|
|
|
|
/* clear the whole page */
|
|
dma_pte_clear_range(domain, start_addr, start_addr + size);
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, start_addr, start_addr + size);
|
|
|
|
if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr,
|
|
size >> PAGE_SHIFT_4K, 0))
|
|
iommu_flush_write_buffer(domain->iommu);
|
|
|
|
/* free iova */
|
|
__free_iova(&domain->iovad, iova);
|
|
}
|
|
|
|
static void * intel_alloc_coherent(struct device *hwdev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags)
|
|
{
|
|
void *vaddr;
|
|
int order;
|
|
|
|
size = PAGE_ALIGN_4K(size);
|
|
order = get_order(size);
|
|
flags &= ~(GFP_DMA | GFP_DMA32);
|
|
|
|
vaddr = (void *)__get_free_pages(flags, order);
|
|
if (!vaddr)
|
|
return NULL;
|
|
memset(vaddr, 0, size);
|
|
|
|
*dma_handle = intel_map_single(hwdev, vaddr, size, DMA_BIDIRECTIONAL);
|
|
if (*dma_handle)
|
|
return vaddr;
|
|
free_pages((unsigned long)vaddr, order);
|
|
return NULL;
|
|
}
|
|
|
|
static void intel_free_coherent(struct device *hwdev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle)
|
|
{
|
|
int order;
|
|
|
|
size = PAGE_ALIGN_4K(size);
|
|
order = get_order(size);
|
|
|
|
intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
|
|
free_pages((unsigned long)vaddr, order);
|
|
}
|
|
|
|
#define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
|
|
static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
|
|
int nelems, int dir)
|
|
{
|
|
int i;
|
|
struct pci_dev *pdev = to_pci_dev(hwdev);
|
|
struct dmar_domain *domain;
|
|
unsigned long start_addr;
|
|
struct iova *iova;
|
|
size_t size = 0;
|
|
void *addr;
|
|
struct scatterlist *sg;
|
|
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return;
|
|
|
|
domain = find_domain(pdev);
|
|
|
|
iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
|
|
if (!iova)
|
|
return;
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
addr = SG_ENT_VIRT_ADDRESS(sg);
|
|
size += aligned_size((u64)addr, sg->length);
|
|
}
|
|
|
|
start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
|
|
|
|
/* clear the whole page */
|
|
dma_pte_clear_range(domain, start_addr, start_addr + size);
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, start_addr, start_addr + size);
|
|
|
|
if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr,
|
|
size >> PAGE_SHIFT_4K, 0))
|
|
iommu_flush_write_buffer(domain->iommu);
|
|
|
|
/* free iova */
|
|
__free_iova(&domain->iovad, iova);
|
|
}
|
|
|
|
static int intel_nontranslate_map_sg(struct device *hddev,
|
|
struct scatterlist *sglist, int nelems, int dir)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
BUG_ON(!sg_page(sg));
|
|
sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
|
|
sg->dma_length = sg->length;
|
|
}
|
|
return nelems;
|
|
}
|
|
|
|
static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist,
|
|
int nelems, int dir)
|
|
{
|
|
void *addr;
|
|
int i;
|
|
struct pci_dev *pdev = to_pci_dev(hwdev);
|
|
struct dmar_domain *domain;
|
|
size_t size = 0;
|
|
int prot = 0;
|
|
size_t offset = 0;
|
|
struct iova *iova = NULL;
|
|
int ret;
|
|
struct scatterlist *sg;
|
|
unsigned long start_addr;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
|
|
|
|
domain = get_valid_domain_for_dev(pdev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
addr = SG_ENT_VIRT_ADDRESS(sg);
|
|
addr = (void *)virt_to_phys(addr);
|
|
size += aligned_size((u64)addr, sg->length);
|
|
}
|
|
|
|
iova = __intel_alloc_iova(hwdev, domain, size);
|
|
if (!iova) {
|
|
sglist->dma_length = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if DMAR supports zero-length reads on write only
|
|
* mappings..
|
|
*/
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
|
|
!cap_zlr(domain->iommu->cap))
|
|
prot |= DMA_PTE_READ;
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
prot |= DMA_PTE_WRITE;
|
|
|
|
start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
|
|
offset = 0;
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
addr = SG_ENT_VIRT_ADDRESS(sg);
|
|
addr = (void *)virt_to_phys(addr);
|
|
size = aligned_size((u64)addr, sg->length);
|
|
ret = domain_page_mapping(domain, start_addr + offset,
|
|
((u64)addr) & PAGE_MASK_4K,
|
|
size, prot);
|
|
if (ret) {
|
|
/* clear the page */
|
|
dma_pte_clear_range(domain, start_addr,
|
|
start_addr + offset);
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, start_addr,
|
|
start_addr + offset);
|
|
/* free iova */
|
|
__free_iova(&domain->iovad, iova);
|
|
return 0;
|
|
}
|
|
sg->dma_address = start_addr + offset +
|
|
((u64)addr & (~PAGE_MASK_4K));
|
|
sg->dma_length = sg->length;
|
|
offset += size;
|
|
}
|
|
|
|
/* it's a non-present to present mapping */
|
|
if (iommu_flush_iotlb_psi(domain->iommu, domain->id,
|
|
start_addr, offset >> PAGE_SHIFT_4K, 1))
|
|
iommu_flush_write_buffer(domain->iommu);
|
|
return nelems;
|
|
}
|
|
|
|
static struct dma_mapping_ops intel_dma_ops = {
|
|
.alloc_coherent = intel_alloc_coherent,
|
|
.free_coherent = intel_free_coherent,
|
|
.map_single = intel_map_single,
|
|
.unmap_single = intel_unmap_single,
|
|
.map_sg = intel_map_sg,
|
|
.unmap_sg = intel_unmap_sg,
|
|
};
|
|
|
|
static inline int iommu_domain_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_domain_cache = kmem_cache_create("iommu_domain",
|
|
sizeof(struct dmar_domain),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
|
|
NULL);
|
|
if (!iommu_domain_cache) {
|
|
printk(KERN_ERR "Couldn't create iommu_domain cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int iommu_devinfo_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
|
|
sizeof(struct device_domain_info),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
|
|
NULL);
|
|
if (!iommu_devinfo_cache) {
|
|
printk(KERN_ERR "Couldn't create devinfo cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int iommu_iova_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_iova_cache = kmem_cache_create("iommu_iova",
|
|
sizeof(struct iova),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
|
|
NULL);
|
|
if (!iommu_iova_cache) {
|
|
printk(KERN_ERR "Couldn't create iova cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init iommu_init_mempool(void)
|
|
{
|
|
int ret;
|
|
ret = iommu_iova_cache_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = iommu_domain_cache_init();
|
|
if (ret)
|
|
goto domain_error;
|
|
|
|
ret = iommu_devinfo_cache_init();
|
|
if (!ret)
|
|
return ret;
|
|
|
|
kmem_cache_destroy(iommu_domain_cache);
|
|
domain_error:
|
|
kmem_cache_destroy(iommu_iova_cache);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void __init iommu_exit_mempool(void)
|
|
{
|
|
kmem_cache_destroy(iommu_devinfo_cache);
|
|
kmem_cache_destroy(iommu_domain_cache);
|
|
kmem_cache_destroy(iommu_iova_cache);
|
|
|
|
}
|
|
|
|
void __init detect_intel_iommu(void)
|
|
{
|
|
if (swiotlb || no_iommu || iommu_detected || dmar_disabled)
|
|
return;
|
|
if (early_dmar_detect()) {
|
|
iommu_detected = 1;
|
|
}
|
|
}
|
|
|
|
static void __init init_no_remapping_devices(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (!drhd->include_all) {
|
|
int i;
|
|
for (i = 0; i < drhd->devices_cnt; i++)
|
|
if (drhd->devices[i] != NULL)
|
|
break;
|
|
/* ignore DMAR unit if no pci devices exist */
|
|
if (i == drhd->devices_cnt)
|
|
drhd->ignored = 1;
|
|
}
|
|
}
|
|
|
|
if (dmar_map_gfx)
|
|
return;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
int i;
|
|
if (drhd->ignored || drhd->include_all)
|
|
continue;
|
|
|
|
for (i = 0; i < drhd->devices_cnt; i++)
|
|
if (drhd->devices[i] &&
|
|
!IS_GFX_DEVICE(drhd->devices[i]))
|
|
break;
|
|
|
|
if (i < drhd->devices_cnt)
|
|
continue;
|
|
|
|
/* bypass IOMMU if it is just for gfx devices */
|
|
drhd->ignored = 1;
|
|
for (i = 0; i < drhd->devices_cnt; i++) {
|
|
if (!drhd->devices[i])
|
|
continue;
|
|
drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
|
|
}
|
|
}
|
|
}
|
|
|
|
int __init intel_iommu_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (no_iommu || swiotlb || dmar_disabled)
|
|
return -ENODEV;
|
|
|
|
if (dmar_table_init())
|
|
return -ENODEV;
|
|
|
|
iommu_init_mempool();
|
|
dmar_init_reserved_ranges();
|
|
|
|
init_no_remapping_devices();
|
|
|
|
ret = init_dmars();
|
|
if (ret) {
|
|
printk(KERN_ERR "IOMMU: dmar init failed\n");
|
|
put_iova_domain(&reserved_iova_list);
|
|
iommu_exit_mempool();
|
|
return ret;
|
|
}
|
|
printk(KERN_INFO
|
|
"PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
|
|
|
|
force_iommu = 1;
|
|
dma_ops = &intel_dma_ops;
|
|
return 0;
|
|
}
|
|
|