mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-26 06:30:53 +07:00
d2acc3479c
Basically this patch moves the generic tunnel protocol stuff out of xfrm4_tunnel/xfrm6_tunnel and moves it into the new files of tunnel4.c and tunnel6 respectively. The reason for this is that the problem that Hugo uncovered is only the tip of the iceberg. The real problem is that when we removed the dependency of ipip on xfrm4_tunnel we didn't really consider the module case at all. For instance, as it is it's possible to build both ipip and xfrm4_tunnel as modules and if the latter is loaded then ipip simply won't load. After considering the alternatives I've decided that the best way out of this is to restore the dependency of ipip on the non-xfrm-specific part of xfrm4_tunnel. This is acceptable IMHO because the intention of the removal was really to be able to use ipip without the xfrm subsystem. This is still preserved by this patch. So now both ipip/xfrm4_tunnel depend on the new tunnel4.c which handles the arbitration between the two. The order of processing is determined by a simple integer which ensures that ipip gets processed before xfrm4_tunnel. The situation for ICMP handling is a little bit more complicated since we may not have enough information to determine who it's for. It's not a big deal at the moment since the xfrm ICMP handlers are basically no-ops. In future we can deal with this when we look at ICMP caching in general. The user-visible change to this is the removal of the TUNNEL Kconfig prompts. This makes sense because it can only be used through IPCOMP as it stands. The addition of the new modules shouldn't introduce any problems since module dependency will cause them to be loaded. Oh and I also turned some unnecessary pskb's in IPv6 related to this patch to skb's. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
544 lines
20 KiB
Plaintext
544 lines
20 KiB
Plaintext
#
|
|
# IP configuration
|
|
#
|
|
config IP_MULTICAST
|
|
bool "IP: multicasting"
|
|
help
|
|
This is code for addressing several networked computers at once,
|
|
enlarging your kernel by about 2 KB. You need multicasting if you
|
|
intend to participate in the MBONE, a high bandwidth network on top
|
|
of the Internet which carries audio and video broadcasts. More
|
|
information about the MBONE is on the WWW at
|
|
<http://www-itg.lbl.gov/mbone/>. Information about the multicast
|
|
capabilities of the various network cards is contained in
|
|
<file:Documentation/networking/multicast.txt>. For most people, it's
|
|
safe to say N.
|
|
|
|
config IP_ADVANCED_ROUTER
|
|
bool "IP: advanced router"
|
|
---help---
|
|
If you intend to run your Linux box mostly as a router, i.e. as a
|
|
computer that forwards and redistributes network packets, say Y; you
|
|
will then be presented with several options that allow more precise
|
|
control about the routing process.
|
|
|
|
The answer to this question won't directly affect the kernel:
|
|
answering N will just cause the configurator to skip all the
|
|
questions about advanced routing.
|
|
|
|
Note that your box can only act as a router if you enable IP
|
|
forwarding in your kernel; you can do that by saying Y to "/proc
|
|
file system support" and "Sysctl support" below and executing the
|
|
line
|
|
|
|
echo "1" > /proc/sys/net/ipv4/ip_forward
|
|
|
|
at boot time after the /proc file system has been mounted.
|
|
|
|
If you turn on IP forwarding, you will also get the rp_filter, which
|
|
automatically rejects incoming packets if the routing table entry
|
|
for their source address doesn't match the network interface they're
|
|
arriving on. This has security advantages because it prevents the
|
|
so-called IP spoofing, however it can pose problems if you use
|
|
asymmetric routing (packets from you to a host take a different path
|
|
than packets from that host to you) or if you operate a non-routing
|
|
host which has several IP addresses on different interfaces. To turn
|
|
rp_filter off use:
|
|
|
|
echo 0 > /proc/sys/net/ipv4/conf/<device>/rp_filter
|
|
or
|
|
echo 0 > /proc/sys/net/ipv4/conf/all/rp_filter
|
|
|
|
If unsure, say N here.
|
|
|
|
choice
|
|
prompt "Choose IP: FIB lookup algorithm (choose FIB_HASH if unsure)"
|
|
depends on IP_ADVANCED_ROUTER
|
|
default ASK_IP_FIB_HASH
|
|
|
|
config ASK_IP_FIB_HASH
|
|
bool "FIB_HASH"
|
|
---help---
|
|
Current FIB is very proven and good enough for most users.
|
|
|
|
config IP_FIB_TRIE
|
|
bool "FIB_TRIE"
|
|
---help---
|
|
Use new experimental LC-trie as FIB lookup algoritm.
|
|
This improves lookup performance if you have a large
|
|
number of routes.
|
|
|
|
LC-trie is a longest matching prefix lookup algorithm which
|
|
performs better than FIB_HASH for large routing tables.
|
|
But, it consumes more memory and is more complex.
|
|
|
|
LC-trie is described in:
|
|
|
|
IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
|
|
IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
|
|
An experimental study of compression methods for dynamic tries
|
|
Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
|
|
http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
|
|
|
|
endchoice
|
|
|
|
config IP_FIB_HASH
|
|
def_bool ASK_IP_FIB_HASH || !IP_ADVANCED_ROUTER
|
|
|
|
config IP_MULTIPLE_TABLES
|
|
bool "IP: policy routing"
|
|
depends on IP_ADVANCED_ROUTER
|
|
---help---
|
|
Normally, a router decides what to do with a received packet based
|
|
solely on the packet's final destination address. If you say Y here,
|
|
the Linux router will also be able to take the packet's source
|
|
address into account. Furthermore, the TOS (Type-Of-Service) field
|
|
of the packet can be used for routing decisions as well.
|
|
|
|
If you are interested in this, please see the preliminary
|
|
documentation at <http://www.compendium.com.ar/policy-routing.txt>
|
|
and <ftp://post.tepkom.ru/pub/vol2/Linux/docs/advanced-routing.tex>.
|
|
You will need supporting software from
|
|
<ftp://ftp.tux.org/pub/net/ip-routing/>.
|
|
|
|
If unsure, say N.
|
|
|
|
config IP_ROUTE_FWMARK
|
|
bool "IP: use netfilter MARK value as routing key"
|
|
depends on IP_MULTIPLE_TABLES && NETFILTER
|
|
help
|
|
If you say Y here, you will be able to specify different routes for
|
|
packets with different mark values (see iptables(8), MARK target).
|
|
|
|
config IP_ROUTE_MULTIPATH
|
|
bool "IP: equal cost multipath"
|
|
depends on IP_ADVANCED_ROUTER
|
|
help
|
|
Normally, the routing tables specify a single action to be taken in
|
|
a deterministic manner for a given packet. If you say Y here
|
|
however, it becomes possible to attach several actions to a packet
|
|
pattern, in effect specifying several alternative paths to travel
|
|
for those packets. The router considers all these paths to be of
|
|
equal "cost" and chooses one of them in a non-deterministic fashion
|
|
if a matching packet arrives.
|
|
|
|
config IP_ROUTE_MULTIPATH_CACHED
|
|
bool "IP: equal cost multipath with caching support (EXPERIMENTAL)"
|
|
depends on IP_ROUTE_MULTIPATH
|
|
help
|
|
Normally, equal cost multipath routing is not supported by the
|
|
routing cache. If you say Y here, alternative routes are cached
|
|
and on cache lookup a route is chosen in a configurable fashion.
|
|
|
|
If unsure, say N.
|
|
|
|
config IP_ROUTE_MULTIPATH_RR
|
|
tristate "MULTIPATH: round robin algorithm"
|
|
depends on IP_ROUTE_MULTIPATH_CACHED
|
|
help
|
|
Mulitpath routes are chosen according to Round Robin
|
|
|
|
config IP_ROUTE_MULTIPATH_RANDOM
|
|
tristate "MULTIPATH: random algorithm"
|
|
depends on IP_ROUTE_MULTIPATH_CACHED
|
|
help
|
|
Multipath routes are chosen in a random fashion. Actually,
|
|
there is no weight for a route. The advantage of this policy
|
|
is that it is implemented stateless and therefore introduces only
|
|
a very small delay.
|
|
|
|
config IP_ROUTE_MULTIPATH_WRANDOM
|
|
tristate "MULTIPATH: weighted random algorithm"
|
|
depends on IP_ROUTE_MULTIPATH_CACHED
|
|
help
|
|
Multipath routes are chosen in a weighted random fashion.
|
|
The per route weights are the weights visible via ip route 2. As the
|
|
corresponding state management introduces some overhead routing delay
|
|
is increased.
|
|
|
|
config IP_ROUTE_MULTIPATH_DRR
|
|
tristate "MULTIPATH: interface round robin algorithm"
|
|
depends on IP_ROUTE_MULTIPATH_CACHED
|
|
help
|
|
Connections are distributed in a round robin fashion over the
|
|
available interfaces. This policy makes sense if the connections
|
|
should be primarily distributed on interfaces and not on routes.
|
|
|
|
config IP_ROUTE_VERBOSE
|
|
bool "IP: verbose route monitoring"
|
|
depends on IP_ADVANCED_ROUTER
|
|
help
|
|
If you say Y here, which is recommended, then the kernel will print
|
|
verbose messages regarding the routing, for example warnings about
|
|
received packets which look strange and could be evidence of an
|
|
attack or a misconfigured system somewhere. The information is
|
|
handled by the klogd daemon which is responsible for kernel messages
|
|
("man klogd").
|
|
|
|
config IP_PNP
|
|
bool "IP: kernel level autoconfiguration"
|
|
help
|
|
This enables automatic configuration of IP addresses of devices and
|
|
of the routing table during kernel boot, based on either information
|
|
supplied on the kernel command line or by BOOTP or RARP protocols.
|
|
You need to say Y only for diskless machines requiring network
|
|
access to boot (in which case you want to say Y to "Root file system
|
|
on NFS" as well), because all other machines configure the network
|
|
in their startup scripts.
|
|
|
|
config IP_PNP_DHCP
|
|
bool "IP: DHCP support"
|
|
depends on IP_PNP
|
|
---help---
|
|
If you want your Linux box to mount its whole root file system (the
|
|
one containing the directory /) from some other computer over the
|
|
net via NFS and you want the IP address of your computer to be
|
|
discovered automatically at boot time using the DHCP protocol (a
|
|
special protocol designed for doing this job), say Y here. In case
|
|
the boot ROM of your network card was designed for booting Linux and
|
|
does DHCP itself, providing all necessary information on the kernel
|
|
command line, you can say N here.
|
|
|
|
If unsure, say Y. Note that if you want to use DHCP, a DHCP server
|
|
must be operating on your network. Read
|
|
<file:Documentation/nfsroot.txt> for details.
|
|
|
|
config IP_PNP_BOOTP
|
|
bool "IP: BOOTP support"
|
|
depends on IP_PNP
|
|
---help---
|
|
If you want your Linux box to mount its whole root file system (the
|
|
one containing the directory /) from some other computer over the
|
|
net via NFS and you want the IP address of your computer to be
|
|
discovered automatically at boot time using the BOOTP protocol (a
|
|
special protocol designed for doing this job), say Y here. In case
|
|
the boot ROM of your network card was designed for booting Linux and
|
|
does BOOTP itself, providing all necessary information on the kernel
|
|
command line, you can say N here. If unsure, say Y. Note that if you
|
|
want to use BOOTP, a BOOTP server must be operating on your network.
|
|
Read <file:Documentation/nfsroot.txt> for details.
|
|
|
|
config IP_PNP_RARP
|
|
bool "IP: RARP support"
|
|
depends on IP_PNP
|
|
help
|
|
If you want your Linux box to mount its whole root file system (the
|
|
one containing the directory /) from some other computer over the
|
|
net via NFS and you want the IP address of your computer to be
|
|
discovered automatically at boot time using the RARP protocol (an
|
|
older protocol which is being obsoleted by BOOTP and DHCP), say Y
|
|
here. Note that if you want to use RARP, a RARP server must be
|
|
operating on your network. Read <file:Documentation/nfsroot.txt> for
|
|
details.
|
|
|
|
# not yet ready..
|
|
# bool ' IP: ARP support' CONFIG_IP_PNP_ARP
|
|
config NET_IPIP
|
|
tristate "IP: tunneling"
|
|
select INET_TUNNEL
|
|
---help---
|
|
Tunneling means encapsulating data of one protocol type within
|
|
another protocol and sending it over a channel that understands the
|
|
encapsulating protocol. This particular tunneling driver implements
|
|
encapsulation of IP within IP, which sounds kind of pointless, but
|
|
can be useful if you want to make your (or some other) machine
|
|
appear on a different network than it physically is, or to use
|
|
mobile-IP facilities (allowing laptops to seamlessly move between
|
|
networks without changing their IP addresses).
|
|
|
|
Saying Y to this option will produce two modules ( = code which can
|
|
be inserted in and removed from the running kernel whenever you
|
|
want). Most people won't need this and can say N.
|
|
|
|
config NET_IPGRE
|
|
tristate "IP: GRE tunnels over IP"
|
|
help
|
|
Tunneling means encapsulating data of one protocol type within
|
|
another protocol and sending it over a channel that understands the
|
|
encapsulating protocol. This particular tunneling driver implements
|
|
GRE (Generic Routing Encapsulation) and at this time allows
|
|
encapsulating of IPv4 or IPv6 over existing IPv4 infrastructure.
|
|
This driver is useful if the other endpoint is a Cisco router: Cisco
|
|
likes GRE much better than the other Linux tunneling driver ("IP
|
|
tunneling" above). In addition, GRE allows multicast redistribution
|
|
through the tunnel.
|
|
|
|
config NET_IPGRE_BROADCAST
|
|
bool "IP: broadcast GRE over IP"
|
|
depends on IP_MULTICAST && NET_IPGRE
|
|
help
|
|
One application of GRE/IP is to construct a broadcast WAN (Wide Area
|
|
Network), which looks like a normal Ethernet LAN (Local Area
|
|
Network), but can be distributed all over the Internet. If you want
|
|
to do that, say Y here and to "IP multicast routing" below.
|
|
|
|
config IP_MROUTE
|
|
bool "IP: multicast routing"
|
|
depends on IP_MULTICAST
|
|
help
|
|
This is used if you want your machine to act as a router for IP
|
|
packets that have several destination addresses. It is needed on the
|
|
MBONE, a high bandwidth network on top of the Internet which carries
|
|
audio and video broadcasts. In order to do that, you would most
|
|
likely run the program mrouted. Information about the multicast
|
|
capabilities of the various network cards is contained in
|
|
<file:Documentation/networking/multicast.txt>. If you haven't heard
|
|
about it, you don't need it.
|
|
|
|
config IP_PIMSM_V1
|
|
bool "IP: PIM-SM version 1 support"
|
|
depends on IP_MROUTE
|
|
help
|
|
Kernel side support for Sparse Mode PIM (Protocol Independent
|
|
Multicast) version 1. This multicast routing protocol is used widely
|
|
because Cisco supports it. You need special software to use it
|
|
(pimd-v1). Please see <http://netweb.usc.edu/pim/> for more
|
|
information about PIM.
|
|
|
|
Say Y if you want to use PIM-SM v1. Note that you can say N here if
|
|
you just want to use Dense Mode PIM.
|
|
|
|
config IP_PIMSM_V2
|
|
bool "IP: PIM-SM version 2 support"
|
|
depends on IP_MROUTE
|
|
help
|
|
Kernel side support for Sparse Mode PIM version 2. In order to use
|
|
this, you need an experimental routing daemon supporting it (pimd or
|
|
gated-5). This routing protocol is not used widely, so say N unless
|
|
you want to play with it.
|
|
|
|
config ARPD
|
|
bool "IP: ARP daemon support (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
---help---
|
|
Normally, the kernel maintains an internal cache which maps IP
|
|
addresses to hardware addresses on the local network, so that
|
|
Ethernet/Token Ring/ etc. frames are sent to the proper address on
|
|
the physical networking layer. For small networks having a few
|
|
hundred directly connected hosts or less, keeping this address
|
|
resolution (ARP) cache inside the kernel works well. However,
|
|
maintaining an internal ARP cache does not work well for very large
|
|
switched networks, and will use a lot of kernel memory if TCP/IP
|
|
connections are made to many machines on the network.
|
|
|
|
If you say Y here, the kernel's internal ARP cache will never grow
|
|
to more than 256 entries (the oldest entries are expired in a LIFO
|
|
manner) and communication will be attempted with the user space ARP
|
|
daemon arpd. Arpd then answers the address resolution request either
|
|
from its own cache or by asking the net.
|
|
|
|
This code is experimental and also obsolete. If you want to use it,
|
|
you need to find a version of the daemon arpd on the net somewhere,
|
|
and you should also say Y to "Kernel/User network link driver",
|
|
below. If unsure, say N.
|
|
|
|
config SYN_COOKIES
|
|
bool "IP: TCP syncookie support (disabled per default)"
|
|
---help---
|
|
Normal TCP/IP networking is open to an attack known as "SYN
|
|
flooding". This denial-of-service attack prevents legitimate remote
|
|
users from being able to connect to your computer during an ongoing
|
|
attack and requires very little work from the attacker, who can
|
|
operate from anywhere on the Internet.
|
|
|
|
SYN cookies provide protection against this type of attack. If you
|
|
say Y here, the TCP/IP stack will use a cryptographic challenge
|
|
protocol known as "SYN cookies" to enable legitimate users to
|
|
continue to connect, even when your machine is under attack. There
|
|
is no need for the legitimate users to change their TCP/IP software;
|
|
SYN cookies work transparently to them. For technical information
|
|
about SYN cookies, check out <http://cr.yp.to/syncookies.html>.
|
|
|
|
If you are SYN flooded, the source address reported by the kernel is
|
|
likely to have been forged by the attacker; it is only reported as
|
|
an aid in tracing the packets to their actual source and should not
|
|
be taken as absolute truth.
|
|
|
|
SYN cookies may prevent correct error reporting on clients when the
|
|
server is really overloaded. If this happens frequently better turn
|
|
them off.
|
|
|
|
If you say Y here, note that SYN cookies aren't enabled by default;
|
|
you can enable them by saying Y to "/proc file system support" and
|
|
"Sysctl support" below and executing the command
|
|
|
|
echo 1 >/proc/sys/net/ipv4/tcp_syncookies
|
|
|
|
at boot time after the /proc file system has been mounted.
|
|
|
|
If unsure, say N.
|
|
|
|
config INET_AH
|
|
tristate "IP: AH transformation"
|
|
select XFRM
|
|
select CRYPTO
|
|
select CRYPTO_HMAC
|
|
select CRYPTO_MD5
|
|
select CRYPTO_SHA1
|
|
---help---
|
|
Support for IPsec AH.
|
|
|
|
If unsure, say Y.
|
|
|
|
config INET_ESP
|
|
tristate "IP: ESP transformation"
|
|
select XFRM
|
|
select CRYPTO
|
|
select CRYPTO_HMAC
|
|
select CRYPTO_MD5
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_DES
|
|
---help---
|
|
Support for IPsec ESP.
|
|
|
|
If unsure, say Y.
|
|
|
|
config INET_IPCOMP
|
|
tristate "IP: IPComp transformation"
|
|
select XFRM
|
|
select INET_XFRM_TUNNEL
|
|
select CRYPTO
|
|
select CRYPTO_DEFLATE
|
|
---help---
|
|
Support for IP Payload Compression Protocol (IPComp) (RFC3173),
|
|
typically needed for IPsec.
|
|
|
|
If unsure, say Y.
|
|
|
|
config INET_XFRM_TUNNEL
|
|
tristate
|
|
select INET_TUNNEL
|
|
default n
|
|
|
|
config INET_TUNNEL
|
|
tristate
|
|
default n
|
|
|
|
config INET_DIAG
|
|
tristate "INET: socket monitoring interface"
|
|
default y
|
|
---help---
|
|
Support for INET (TCP, DCCP, etc) socket monitoring interface used by
|
|
native Linux tools such as ss. ss is included in iproute2, currently
|
|
downloadable at <http://developer.osdl.org/dev/iproute2>.
|
|
|
|
If unsure, say Y.
|
|
|
|
config INET_TCP_DIAG
|
|
depends on INET_DIAG
|
|
def_tristate INET_DIAG
|
|
|
|
config TCP_CONG_ADVANCED
|
|
bool "TCP: advanced congestion control"
|
|
---help---
|
|
Support for selection of various TCP congestion control
|
|
modules.
|
|
|
|
Nearly all users can safely say no here, and a safe default
|
|
selection will be made (BIC-TCP with new Reno as a fallback).
|
|
|
|
If unsure, say N.
|
|
|
|
# TCP Reno is builtin (required as fallback)
|
|
menu "TCP congestion control"
|
|
depends on TCP_CONG_ADVANCED
|
|
|
|
config TCP_CONG_BIC
|
|
tristate "Binary Increase Congestion (BIC) control"
|
|
default y
|
|
---help---
|
|
BIC-TCP is a sender-side only change that ensures a linear RTT
|
|
fairness under large windows while offering both scalability and
|
|
bounded TCP-friendliness. The protocol combines two schemes
|
|
called additive increase and binary search increase. When the
|
|
congestion window is large, additive increase with a large
|
|
increment ensures linear RTT fairness as well as good
|
|
scalability. Under small congestion windows, binary search
|
|
increase provides TCP friendliness.
|
|
See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/
|
|
|
|
config TCP_CONG_CUBIC
|
|
tristate "CUBIC TCP"
|
|
default m
|
|
---help---
|
|
This is version 2.0 of BIC-TCP which uses a cubic growth function
|
|
among other techniques.
|
|
See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
|
|
|
|
config TCP_CONG_WESTWOOD
|
|
tristate "TCP Westwood+"
|
|
default m
|
|
---help---
|
|
TCP Westwood+ is a sender-side only modification of the TCP Reno
|
|
protocol stack that optimizes the performance of TCP congestion
|
|
control. It is based on end-to-end bandwidth estimation to set
|
|
congestion window and slow start threshold after a congestion
|
|
episode. Using this estimation, TCP Westwood+ adaptively sets a
|
|
slow start threshold and a congestion window which takes into
|
|
account the bandwidth used at the time congestion is experienced.
|
|
TCP Westwood+ significantly increases fairness wrt TCP Reno in
|
|
wired networks and throughput over wireless links.
|
|
|
|
config TCP_CONG_HTCP
|
|
tristate "H-TCP"
|
|
default m
|
|
---help---
|
|
H-TCP is a send-side only modifications of the TCP Reno
|
|
protocol stack that optimizes the performance of TCP
|
|
congestion control for high speed network links. It uses a
|
|
modeswitch to change the alpha and beta parameters of TCP Reno
|
|
based on network conditions and in a way so as to be fair with
|
|
other Reno and H-TCP flows.
|
|
|
|
config TCP_CONG_HSTCP
|
|
tristate "High Speed TCP"
|
|
depends on EXPERIMENTAL
|
|
default n
|
|
---help---
|
|
Sally Floyd's High Speed TCP (RFC 3649) congestion control.
|
|
A modification to TCP's congestion control mechanism for use
|
|
with large congestion windows. A table indicates how much to
|
|
increase the congestion window by when an ACK is received.
|
|
For more detail see http://www.icir.org/floyd/hstcp.html
|
|
|
|
config TCP_CONG_HYBLA
|
|
tristate "TCP-Hybla congestion control algorithm"
|
|
depends on EXPERIMENTAL
|
|
default n
|
|
---help---
|
|
TCP-Hybla is a sender-side only change that eliminates penalization of
|
|
long-RTT, large-bandwidth connections, like when satellite legs are
|
|
involved, expecially when sharing a common bottleneck with normal
|
|
terrestrial connections.
|
|
|
|
config TCP_CONG_VEGAS
|
|
tristate "TCP Vegas"
|
|
depends on EXPERIMENTAL
|
|
default n
|
|
---help---
|
|
TCP Vegas is a sender-side only change to TCP that anticipates
|
|
the onset of congestion by estimating the bandwidth. TCP Vegas
|
|
adjusts the sending rate by modifying the congestion
|
|
window. TCP Vegas should provide less packet loss, but it is
|
|
not as aggressive as TCP Reno.
|
|
|
|
config TCP_CONG_SCALABLE
|
|
tristate "Scalable TCP"
|
|
depends on EXPERIMENTAL
|
|
default n
|
|
---help---
|
|
Scalable TCP is a sender-side only change to TCP which uses a
|
|
MIMD congestion control algorithm which has some nice scaling
|
|
properties, though is known to have fairness issues.
|
|
See http://www-lce.eng.cam.ac.uk/~ctk21/scalable/
|
|
|
|
endmenu
|
|
|
|
config TCP_CONG_BIC
|
|
tristate
|
|
depends on !TCP_CONG_ADVANCED
|
|
default y
|
|
|
|
source "net/ipv4/ipvs/Kconfig"
|
|
|