linux_dsm_epyc7002/drivers/net/bonding/bond_alb.c
Jay Vosburgh 815bcc2719 bonding: fix alb mode locking regression
Fix locking issue in alb MAC address management; removed
incorrect locking and replaced with correct locking.  This bug was
introduced in commit 059fe7a578
("bonding: Convert locks to _bh, rework alb locking for new locking")

	Bug reported by Paul Smith <paul@mad-scientist.net>, who also
tested the fix.

Signed-off-by: Jay Vosburgh <fubar@us.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-05-04 21:28:10 -07:00

1777 lines
45 KiB
C

/*
* Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
*/
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/pkt_sched.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_bonding.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <net/ipx.h>
#include <net/arp.h>
#include <net/ipv6.h>
#include <asm/byteorder.h>
#include "bonding.h"
#include "bond_alb.h"
#define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */
#define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing.
* Used for division - never set
* to zero !!!
*/
#define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of
* learning packets to the switch
*/
#define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
* ALB_TIMER_TICKS_PER_SEC)
#define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
* ALB_TIMER_TICKS_PER_SEC)
#define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table.
* Note that this value MUST NOT be smaller
* because the key hash table is BYTE wide !
*/
#define TLB_NULL_INDEX 0xffffffff
#define MAX_LP_BURST 3
/* rlb defs */
#define RLB_HASH_TABLE_SIZE 256
#define RLB_NULL_INDEX 0xffffffff
#define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
#define RLB_ARP_BURST_SIZE 2
#define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb
* rebalance interval (5 min).
*/
/* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
* promiscuous after failover
*/
#define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC
static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01};
static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
#pragma pack(1)
struct learning_pkt {
u8 mac_dst[ETH_ALEN];
u8 mac_src[ETH_ALEN];
__be16 type;
u8 padding[ETH_ZLEN - ETH_HLEN];
};
struct arp_pkt {
__be16 hw_addr_space;
__be16 prot_addr_space;
u8 hw_addr_len;
u8 prot_addr_len;
__be16 op_code;
u8 mac_src[ETH_ALEN]; /* sender hardware address */
__be32 ip_src; /* sender IP address */
u8 mac_dst[ETH_ALEN]; /* target hardware address */
__be32 ip_dst; /* target IP address */
};
#pragma pack()
static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
{
return (struct arp_pkt *)skb_network_header(skb);
}
/* Forward declaration */
static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
{
int i;
u8 hash = 0;
for (i = 0; i < hash_size; i++) {
hash ^= hash_start[i];
}
return hash;
}
/*********************** tlb specific functions ***************************/
static inline void _lock_tx_hashtbl(struct bonding *bond)
{
spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
}
static inline void _unlock_tx_hashtbl(struct bonding *bond)
{
spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
}
/* Caller must hold tx_hashtbl lock */
static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
{
if (save_load) {
entry->load_history = 1 + entry->tx_bytes /
BOND_TLB_REBALANCE_INTERVAL;
entry->tx_bytes = 0;
}
entry->tx_slave = NULL;
entry->next = TLB_NULL_INDEX;
entry->prev = TLB_NULL_INDEX;
}
static inline void tlb_init_slave(struct slave *slave)
{
SLAVE_TLB_INFO(slave).load = 0;
SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
}
/* Caller must hold bond lock for read */
static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
{
struct tlb_client_info *tx_hash_table;
u32 index;
_lock_tx_hashtbl(bond);
/* clear slave from tx_hashtbl */
tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
/* skip this if we've already freed the tx hash table */
if (tx_hash_table) {
index = SLAVE_TLB_INFO(slave).head;
while (index != TLB_NULL_INDEX) {
u32 next_index = tx_hash_table[index].next;
tlb_init_table_entry(&tx_hash_table[index], save_load);
index = next_index;
}
}
tlb_init_slave(slave);
_unlock_tx_hashtbl(bond);
}
/* Must be called before starting the monitor timer */
static int tlb_initialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
struct tlb_client_info *new_hashtbl;
int i;
spin_lock_init(&(bond_info->tx_hashtbl_lock));
new_hashtbl = kzalloc(size, GFP_KERNEL);
if (!new_hashtbl) {
printk(KERN_ERR DRV_NAME
": %s: Error: Failed to allocate TLB hash table\n",
bond->dev->name);
return -1;
}
_lock_tx_hashtbl(bond);
bond_info->tx_hashtbl = new_hashtbl;
for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
}
_unlock_tx_hashtbl(bond);
return 0;
}
/* Must be called only after all slaves have been released */
static void tlb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
_lock_tx_hashtbl(bond);
kfree(bond_info->tx_hashtbl);
bond_info->tx_hashtbl = NULL;
_unlock_tx_hashtbl(bond);
}
/* Caller must hold bond lock for read */
static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
{
struct slave *slave, *least_loaded;
s64 max_gap;
int i, found = 0;
/* Find the first enabled slave */
bond_for_each_slave(bond, slave, i) {
if (SLAVE_IS_OK(slave)) {
found = 1;
break;
}
}
if (!found) {
return NULL;
}
least_loaded = slave;
max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
(s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
/* Find the slave with the largest gap */
bond_for_each_slave_from(bond, slave, i, least_loaded) {
if (SLAVE_IS_OK(slave)) {
s64 gap = (s64)(slave->speed << 20) -
(s64)(SLAVE_TLB_INFO(slave).load << 3);
if (max_gap < gap) {
least_loaded = slave;
max_gap = gap;
}
}
}
return least_loaded;
}
/* Caller must hold bond lock for read */
static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct tlb_client_info *hash_table;
struct slave *assigned_slave;
_lock_tx_hashtbl(bond);
hash_table = bond_info->tx_hashtbl;
assigned_slave = hash_table[hash_index].tx_slave;
if (!assigned_slave) {
assigned_slave = tlb_get_least_loaded_slave(bond);
if (assigned_slave) {
struct tlb_slave_info *slave_info =
&(SLAVE_TLB_INFO(assigned_slave));
u32 next_index = slave_info->head;
hash_table[hash_index].tx_slave = assigned_slave;
hash_table[hash_index].next = next_index;
hash_table[hash_index].prev = TLB_NULL_INDEX;
if (next_index != TLB_NULL_INDEX) {
hash_table[next_index].prev = hash_index;
}
slave_info->head = hash_index;
slave_info->load +=
hash_table[hash_index].load_history;
}
}
if (assigned_slave) {
hash_table[hash_index].tx_bytes += skb_len;
}
_unlock_tx_hashtbl(bond);
return assigned_slave;
}
/*********************** rlb specific functions ***************************/
static inline void _lock_rx_hashtbl(struct bonding *bond)
{
spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
}
static inline void _unlock_rx_hashtbl(struct bonding *bond)
{
spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
}
/* when an ARP REPLY is received from a client update its info
* in the rx_hashtbl
*/
static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
u32 hash_index;
_lock_rx_hashtbl(bond);
hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
client_info = &(bond_info->rx_hashtbl[hash_index]);
if ((client_info->assigned) &&
(client_info->ip_src == arp->ip_dst) &&
(client_info->ip_dst == arp->ip_src)) {
/* update the clients MAC address */
memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
client_info->ntt = 1;
bond_info->rx_ntt = 1;
}
_unlock_rx_hashtbl(bond);
}
static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
{
struct bonding *bond;
struct arp_pkt *arp = (struct arp_pkt *)skb->data;
int res = NET_RX_DROP;
if (dev_net(bond_dev) != &init_net)
goto out;
while (bond_dev->priv_flags & IFF_802_1Q_VLAN)
bond_dev = vlan_dev_real_dev(bond_dev);
if (!(bond_dev->priv_flags & IFF_BONDING) ||
!(bond_dev->flags & IFF_MASTER))
goto out;
if (!arp) {
pr_debug("Packet has no ARP data\n");
goto out;
}
if (skb->len < sizeof(struct arp_pkt)) {
pr_debug("Packet is too small to be an ARP\n");
goto out;
}
if (arp->op_code == htons(ARPOP_REPLY)) {
/* update rx hash table for this ARP */
bond = netdev_priv(bond_dev);
rlb_update_entry_from_arp(bond, arp);
pr_debug("Server received an ARP Reply from client\n");
}
res = NET_RX_SUCCESS;
out:
dev_kfree_skb(skb);
return res;
}
/* Caller must hold bond lock for read */
static struct slave *rlb_next_rx_slave(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *rx_slave, *slave, *start_at;
int i = 0;
if (bond_info->next_rx_slave) {
start_at = bond_info->next_rx_slave;
} else {
start_at = bond->first_slave;
}
rx_slave = NULL;
bond_for_each_slave_from(bond, slave, i, start_at) {
if (SLAVE_IS_OK(slave)) {
if (!rx_slave) {
rx_slave = slave;
} else if (slave->speed > rx_slave->speed) {
rx_slave = slave;
}
}
}
if (rx_slave) {
bond_info->next_rx_slave = rx_slave->next;
}
return rx_slave;
}
/* teach the switch the mac of a disabled slave
* on the primary for fault tolerance
*
* Caller must hold bond->curr_slave_lock for write or bond lock for write
*/
static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
{
if (!bond->curr_active_slave) {
return;
}
if (!bond->alb_info.primary_is_promisc) {
if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1))
bond->alb_info.primary_is_promisc = 1;
else
bond->alb_info.primary_is_promisc = 0;
}
bond->alb_info.rlb_promisc_timeout_counter = 0;
alb_send_learning_packets(bond->curr_active_slave, addr);
}
/* slave being removed should not be active at this point
*
* Caller must hold bond lock for read
*/
static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *rx_hash_table;
u32 index, next_index;
/* clear slave from rx_hashtbl */
_lock_rx_hashtbl(bond);
rx_hash_table = bond_info->rx_hashtbl;
index = bond_info->rx_hashtbl_head;
for (; index != RLB_NULL_INDEX; index = next_index) {
next_index = rx_hash_table[index].next;
if (rx_hash_table[index].slave == slave) {
struct slave *assigned_slave = rlb_next_rx_slave(bond);
if (assigned_slave) {
rx_hash_table[index].slave = assigned_slave;
if (memcmp(rx_hash_table[index].mac_dst,
mac_bcast, ETH_ALEN)) {
bond_info->rx_hashtbl[index].ntt = 1;
bond_info->rx_ntt = 1;
/* A slave has been removed from the
* table because it is either disabled
* or being released. We must retry the
* update to avoid clients from not
* being updated & disconnecting when
* there is stress
*/
bond_info->rlb_update_retry_counter =
RLB_UPDATE_RETRY;
}
} else { /* there is no active slave */
rx_hash_table[index].slave = NULL;
}
}
}
_unlock_rx_hashtbl(bond);
write_lock_bh(&bond->curr_slave_lock);
if (slave != bond->curr_active_slave) {
rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
}
write_unlock_bh(&bond->curr_slave_lock);
}
static void rlb_update_client(struct rlb_client_info *client_info)
{
int i;
if (!client_info->slave) {
return;
}
for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
struct sk_buff *skb;
skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
client_info->ip_dst,
client_info->slave->dev,
client_info->ip_src,
client_info->mac_dst,
client_info->slave->dev->dev_addr,
client_info->mac_dst);
if (!skb) {
printk(KERN_ERR DRV_NAME
": %s: Error: failed to create an ARP packet\n",
client_info->slave->dev->master->name);
continue;
}
skb->dev = client_info->slave->dev;
if (client_info->tag) {
skb = vlan_put_tag(skb, client_info->vlan_id);
if (!skb) {
printk(KERN_ERR DRV_NAME
": %s: Error: failed to insert VLAN tag\n",
client_info->slave->dev->master->name);
continue;
}
}
arp_xmit(skb);
}
}
/* sends ARP REPLIES that update the clients that need updating */
static void rlb_update_rx_clients(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
u32 hash_index;
_lock_rx_hashtbl(bond);
hash_index = bond_info->rx_hashtbl_head;
for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (client_info->ntt) {
rlb_update_client(client_info);
if (bond_info->rlb_update_retry_counter == 0) {
client_info->ntt = 0;
}
}
}
/* do not update the entries again untill this counter is zero so that
* not to confuse the clients.
*/
bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
_unlock_rx_hashtbl(bond);
}
/* The slave was assigned a new mac address - update the clients */
static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
int ntt = 0;
u32 hash_index;
_lock_rx_hashtbl(bond);
hash_index = bond_info->rx_hashtbl_head;
for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if ((client_info->slave == slave) &&
memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
client_info->ntt = 1;
ntt = 1;
}
}
// update the team's flag only after the whole iteration
if (ntt) {
bond_info->rx_ntt = 1;
//fasten the change
bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
}
_unlock_rx_hashtbl(bond);
}
/* mark all clients using src_ip to be updated */
static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
u32 hash_index;
_lock_rx_hashtbl(bond);
hash_index = bond_info->rx_hashtbl_head;
for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (!client_info->slave) {
printk(KERN_ERR DRV_NAME
": %s: Error: found a client with no channel in "
"the client's hash table\n",
bond->dev->name);
continue;
}
/*update all clients using this src_ip, that are not assigned
* to the team's address (curr_active_slave) and have a known
* unicast mac address.
*/
if ((client_info->ip_src == src_ip) &&
memcmp(client_info->slave->dev->dev_addr,
bond->dev->dev_addr, ETH_ALEN) &&
memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
client_info->ntt = 1;
bond_info->rx_ntt = 1;
}
}
_unlock_rx_hashtbl(bond);
}
/* Caller must hold both bond and ptr locks for read */
static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct arp_pkt *arp = arp_pkt(skb);
struct slave *assigned_slave;
struct rlb_client_info *client_info;
u32 hash_index = 0;
_lock_rx_hashtbl(bond);
hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (client_info->assigned) {
if ((client_info->ip_src == arp->ip_src) &&
(client_info->ip_dst == arp->ip_dst)) {
/* the entry is already assigned to this client */
if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
/* update mac address from arp */
memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
}
assigned_slave = client_info->slave;
if (assigned_slave) {
_unlock_rx_hashtbl(bond);
return assigned_slave;
}
} else {
/* the entry is already assigned to some other client,
* move the old client to primary (curr_active_slave) so
* that the new client can be assigned to this entry.
*/
if (bond->curr_active_slave &&
client_info->slave != bond->curr_active_slave) {
client_info->slave = bond->curr_active_slave;
rlb_update_client(client_info);
}
}
}
/* assign a new slave */
assigned_slave = rlb_next_rx_slave(bond);
if (assigned_slave) {
client_info->ip_src = arp->ip_src;
client_info->ip_dst = arp->ip_dst;
/* arp->mac_dst is broadcast for arp reqeusts.
* will be updated with clients actual unicast mac address
* upon receiving an arp reply.
*/
memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
client_info->slave = assigned_slave;
if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
client_info->ntt = 1;
bond->alb_info.rx_ntt = 1;
} else {
client_info->ntt = 0;
}
if (!list_empty(&bond->vlan_list)) {
if (!vlan_get_tag(skb, &client_info->vlan_id))
client_info->tag = 1;
}
if (!client_info->assigned) {
u32 prev_tbl_head = bond_info->rx_hashtbl_head;
bond_info->rx_hashtbl_head = hash_index;
client_info->next = prev_tbl_head;
if (prev_tbl_head != RLB_NULL_INDEX) {
bond_info->rx_hashtbl[prev_tbl_head].prev =
hash_index;
}
client_info->assigned = 1;
}
}
_unlock_rx_hashtbl(bond);
return assigned_slave;
}
/* chooses (and returns) transmit channel for arp reply
* does not choose channel for other arp types since they are
* sent on the curr_active_slave
*/
static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
{
struct arp_pkt *arp = arp_pkt(skb);
struct slave *tx_slave = NULL;
if (arp->op_code == htons(ARPOP_REPLY)) {
/* the arp must be sent on the selected
* rx channel
*/
tx_slave = rlb_choose_channel(skb, bond);
if (tx_slave) {
memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
}
pr_debug("Server sent ARP Reply packet\n");
} else if (arp->op_code == htons(ARPOP_REQUEST)) {
/* Create an entry in the rx_hashtbl for this client as a
* place holder.
* When the arp reply is received the entry will be updated
* with the correct unicast address of the client.
*/
rlb_choose_channel(skb, bond);
/* The ARP relpy packets must be delayed so that
* they can cancel out the influence of the ARP request.
*/
bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
/* arp requests are broadcast and are sent on the primary
* the arp request will collapse all clients on the subnet to
* the primary slave. We must register these clients to be
* updated with their assigned mac.
*/
rlb_req_update_subnet_clients(bond, arp->ip_src);
pr_debug("Server sent ARP Request packet\n");
}
return tx_slave;
}
/* Caller must hold bond lock for read */
static void rlb_rebalance(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *assigned_slave;
struct rlb_client_info *client_info;
int ntt;
u32 hash_index;
_lock_rx_hashtbl(bond);
ntt = 0;
hash_index = bond_info->rx_hashtbl_head;
for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
assigned_slave = rlb_next_rx_slave(bond);
if (assigned_slave && (client_info->slave != assigned_slave)) {
client_info->slave = assigned_slave;
client_info->ntt = 1;
ntt = 1;
}
}
/* update the team's flag only after the whole iteration */
if (ntt) {
bond_info->rx_ntt = 1;
}
_unlock_rx_hashtbl(bond);
}
/* Caller must hold rx_hashtbl lock */
static void rlb_init_table_entry(struct rlb_client_info *entry)
{
memset(entry, 0, sizeof(struct rlb_client_info));
entry->next = RLB_NULL_INDEX;
entry->prev = RLB_NULL_INDEX;
}
static int rlb_initialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
struct rlb_client_info *new_hashtbl;
int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
int i;
spin_lock_init(&(bond_info->rx_hashtbl_lock));
new_hashtbl = kmalloc(size, GFP_KERNEL);
if (!new_hashtbl) {
printk(KERN_ERR DRV_NAME
": %s: Error: Failed to allocate RLB hash table\n",
bond->dev->name);
return -1;
}
_lock_rx_hashtbl(bond);
bond_info->rx_hashtbl = new_hashtbl;
bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
rlb_init_table_entry(bond_info->rx_hashtbl + i);
}
_unlock_rx_hashtbl(bond);
/*initialize packet type*/
pk_type->type = cpu_to_be16(ETH_P_ARP);
pk_type->dev = NULL;
pk_type->func = rlb_arp_recv;
/* register to receive ARPs */
dev_add_pack(pk_type);
return 0;
}
static void rlb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
dev_remove_pack(&(bond_info->rlb_pkt_type));
_lock_rx_hashtbl(bond);
kfree(bond_info->rx_hashtbl);
bond_info->rx_hashtbl = NULL;
bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
_unlock_rx_hashtbl(bond);
}
static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 curr_index;
_lock_rx_hashtbl(bond);
curr_index = bond_info->rx_hashtbl_head;
while (curr_index != RLB_NULL_INDEX) {
struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
u32 next_index = bond_info->rx_hashtbl[curr_index].next;
u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
if (curr->tag && (curr->vlan_id == vlan_id)) {
if (curr_index == bond_info->rx_hashtbl_head) {
bond_info->rx_hashtbl_head = next_index;
}
if (prev_index != RLB_NULL_INDEX) {
bond_info->rx_hashtbl[prev_index].next = next_index;
}
if (next_index != RLB_NULL_INDEX) {
bond_info->rx_hashtbl[next_index].prev = prev_index;
}
rlb_init_table_entry(curr);
}
curr_index = next_index;
}
_unlock_rx_hashtbl(bond);
}
/*********************** tlb/rlb shared functions *********************/
static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
{
struct bonding *bond = bond_get_bond_by_slave(slave);
struct learning_pkt pkt;
int size = sizeof(struct learning_pkt);
int i;
memset(&pkt, 0, size);
memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
pkt.type = cpu_to_be16(ETH_P_LOOP);
for (i = 0; i < MAX_LP_BURST; i++) {
struct sk_buff *skb;
char *data;
skb = dev_alloc_skb(size);
if (!skb) {
return;
}
data = skb_put(skb, size);
memcpy(data, &pkt, size);
skb_reset_mac_header(skb);
skb->network_header = skb->mac_header + ETH_HLEN;
skb->protocol = pkt.type;
skb->priority = TC_PRIO_CONTROL;
skb->dev = slave->dev;
if (!list_empty(&bond->vlan_list)) {
struct vlan_entry *vlan;
vlan = bond_next_vlan(bond,
bond->alb_info.current_alb_vlan);
bond->alb_info.current_alb_vlan = vlan;
if (!vlan) {
kfree_skb(skb);
continue;
}
skb = vlan_put_tag(skb, vlan->vlan_id);
if (!skb) {
printk(KERN_ERR DRV_NAME
": %s: Error: failed to insert VLAN tag\n",
bond->dev->name);
continue;
}
}
dev_queue_xmit(skb);
}
}
/* hw is a boolean parameter that determines whether we should try and
* set the hw address of the device as well as the hw address of the
* net_device
*/
static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
{
struct net_device *dev = slave->dev;
struct sockaddr s_addr;
if (!hw) {
memcpy(dev->dev_addr, addr, dev->addr_len);
return 0;
}
/* for rlb each slave must have a unique hw mac addresses so that */
/* each slave will receive packets destined to a different mac */
memcpy(s_addr.sa_data, addr, dev->addr_len);
s_addr.sa_family = dev->type;
if (dev_set_mac_address(dev, &s_addr)) {
printk(KERN_ERR DRV_NAME
": %s: Error: dev_set_mac_address of dev %s failed! ALB "
"mode requires that the base driver support setting "
"the hw address also when the network device's "
"interface is open\n",
dev->master->name, dev->name);
return -EOPNOTSUPP;
}
return 0;
}
/*
* Swap MAC addresses between two slaves.
*
* Called with RTNL held, and no other locks.
*
*/
static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
{
u8 tmp_mac_addr[ETH_ALEN];
memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
}
/*
* Send learning packets after MAC address swap.
*
* Called with RTNL and no other locks
*/
static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
struct slave *slave2)
{
int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
struct slave *disabled_slave = NULL;
ASSERT_RTNL();
/* fasten the change in the switch */
if (SLAVE_IS_OK(slave1)) {
alb_send_learning_packets(slave1, slave1->dev->dev_addr);
if (bond->alb_info.rlb_enabled) {
/* inform the clients that the mac address
* has changed
*/
rlb_req_update_slave_clients(bond, slave1);
}
} else {
disabled_slave = slave1;
}
if (SLAVE_IS_OK(slave2)) {
alb_send_learning_packets(slave2, slave2->dev->dev_addr);
if (bond->alb_info.rlb_enabled) {
/* inform the clients that the mac address
* has changed
*/
rlb_req_update_slave_clients(bond, slave2);
}
} else {
disabled_slave = slave2;
}
if (bond->alb_info.rlb_enabled && slaves_state_differ) {
/* A disabled slave was assigned an active mac addr */
rlb_teach_disabled_mac_on_primary(bond,
disabled_slave->dev->dev_addr);
}
}
/**
* alb_change_hw_addr_on_detach
* @bond: bonding we're working on
* @slave: the slave that was just detached
*
* We assume that @slave was already detached from the slave list.
*
* If @slave's permanent hw address is different both from its current
* address and from @bond's address, then somewhere in the bond there's
* a slave that has @slave's permanet address as its current address.
* We'll make sure that that slave no longer uses @slave's permanent address.
*
* Caller must hold RTNL and no other locks
*/
static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
{
int perm_curr_diff;
int perm_bond_diff;
perm_curr_diff = memcmp(slave->perm_hwaddr,
slave->dev->dev_addr,
ETH_ALEN);
perm_bond_diff = memcmp(slave->perm_hwaddr,
bond->dev->dev_addr,
ETH_ALEN);
if (perm_curr_diff && perm_bond_diff) {
struct slave *tmp_slave;
int i, found = 0;
bond_for_each_slave(bond, tmp_slave, i) {
if (!memcmp(slave->perm_hwaddr,
tmp_slave->dev->dev_addr,
ETH_ALEN)) {
found = 1;
break;
}
}
if (found) {
/* locking: needs RTNL and nothing else */
alb_swap_mac_addr(bond, slave, tmp_slave);
alb_fasten_mac_swap(bond, slave, tmp_slave);
}
}
}
/**
* alb_handle_addr_collision_on_attach
* @bond: bonding we're working on
* @slave: the slave that was just attached
*
* checks uniqueness of slave's mac address and handles the case the
* new slave uses the bonds mac address.
*
* If the permanent hw address of @slave is @bond's hw address, we need to
* find a different hw address to give @slave, that isn't in use by any other
* slave in the bond. This address must be, of course, one of the premanent
* addresses of the other slaves.
*
* We go over the slave list, and for each slave there we compare its
* permanent hw address with the current address of all the other slaves.
* If no match was found, then we've found a slave with a permanent address
* that isn't used by any other slave in the bond, so we can assign it to
* @slave.
*
* assumption: this function is called before @slave is attached to the
* bond slave list.
*
* caller must hold the bond lock for write since the mac addresses are compared
* and may be swapped.
*/
static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
{
struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
struct slave *has_bond_addr = bond->curr_active_slave;
int i, j, found = 0;
if (bond->slave_cnt == 0) {
/* this is the first slave */
return 0;
}
/* if slave's mac address differs from bond's mac address
* check uniqueness of slave's mac address against the other
* slaves in the bond.
*/
if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
bond_for_each_slave(bond, tmp_slave1, i) {
if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
ETH_ALEN)) {
found = 1;
break;
}
}
if (!found)
return 0;
/* Try setting slave mac to bond address and fall-through
to code handling that situation below... */
alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
bond->alb_info.rlb_enabled);
}
/* The slave's address is equal to the address of the bond.
* Search for a spare address in the bond for this slave.
*/
free_mac_slave = NULL;
bond_for_each_slave(bond, tmp_slave1, i) {
found = 0;
bond_for_each_slave(bond, tmp_slave2, j) {
if (!memcmp(tmp_slave1->perm_hwaddr,
tmp_slave2->dev->dev_addr,
ETH_ALEN)) {
found = 1;
break;
}
}
if (!found) {
/* no slave has tmp_slave1's perm addr
* as its curr addr
*/
free_mac_slave = tmp_slave1;
break;
}
if (!has_bond_addr) {
if (!memcmp(tmp_slave1->dev->dev_addr,
bond->dev->dev_addr,
ETH_ALEN)) {
has_bond_addr = tmp_slave1;
}
}
}
if (free_mac_slave) {
alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
bond->alb_info.rlb_enabled);
printk(KERN_WARNING DRV_NAME
": %s: Warning: the hw address of slave %s is in use by "
"the bond; giving it the hw address of %s\n",
bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
} else if (has_bond_addr) {
printk(KERN_ERR DRV_NAME
": %s: Error: the hw address of slave %s is in use by the "
"bond; couldn't find a slave with a free hw address to "
"give it (this should not have happened)\n",
bond->dev->name, slave->dev->name);
return -EFAULT;
}
return 0;
}
/**
* alb_set_mac_address
* @bond:
* @addr:
*
* In TLB mode all slaves are configured to the bond's hw address, but set
* their dev_addr field to different addresses (based on their permanent hw
* addresses).
*
* For each slave, this function sets the interface to the new address and then
* changes its dev_addr field to its previous value.
*
* Unwinding assumes bond's mac address has not yet changed.
*/
static int alb_set_mac_address(struct bonding *bond, void *addr)
{
struct sockaddr sa;
struct slave *slave, *stop_at;
char tmp_addr[ETH_ALEN];
int res;
int i;
if (bond->alb_info.rlb_enabled) {
return 0;
}
bond_for_each_slave(bond, slave, i) {
/* save net_device's current hw address */
memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
res = dev_set_mac_address(slave->dev, addr);
/* restore net_device's hw address */
memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
if (res)
goto unwind;
}
return 0;
unwind:
memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
sa.sa_family = bond->dev->type;
/* unwind from head to the slave that failed */
stop_at = slave;
bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
dev_set_mac_address(slave->dev, &sa);
memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
}
return res;
}
/************************ exported alb funcions ************************/
int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
{
int res;
res = tlb_initialize(bond);
if (res) {
return res;
}
if (rlb_enabled) {
bond->alb_info.rlb_enabled = 1;
/* initialize rlb */
res = rlb_initialize(bond);
if (res) {
tlb_deinitialize(bond);
return res;
}
} else {
bond->alb_info.rlb_enabled = 0;
}
return 0;
}
void bond_alb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
tlb_deinitialize(bond);
if (bond_info->rlb_enabled) {
rlb_deinitialize(bond);
}
}
int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
{
struct bonding *bond = netdev_priv(bond_dev);
struct ethhdr *eth_data;
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *tx_slave = NULL;
static const __be32 ip_bcast = htonl(0xffffffff);
int hash_size = 0;
int do_tx_balance = 1;
u32 hash_index = 0;
const u8 *hash_start = NULL;
int res = 1;
struct ipv6hdr *ip6hdr;
skb_reset_mac_header(skb);
eth_data = eth_hdr(skb);
/* make sure that the curr_active_slave and the slaves list do
* not change during tx
*/
read_lock(&bond->lock);
read_lock(&bond->curr_slave_lock);
if (!BOND_IS_OK(bond)) {
goto out;
}
switch (ntohs(skb->protocol)) {
case ETH_P_IP: {
const struct iphdr *iph = ip_hdr(skb);
if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
(iph->daddr == ip_bcast) ||
(iph->protocol == IPPROTO_IGMP)) {
do_tx_balance = 0;
break;
}
hash_start = (char *)&(iph->daddr);
hash_size = sizeof(iph->daddr);
}
break;
case ETH_P_IPV6:
/* IPv6 doesn't really use broadcast mac address, but leave
* that here just in case.
*/
if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
do_tx_balance = 0;
break;
}
/* IPv6 uses all-nodes multicast as an equivalent to
* broadcasts in IPv4.
*/
if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) {
do_tx_balance = 0;
break;
}
/* Additianally, DAD probes should not be tx-balanced as that
* will lead to false positives for duplicate addresses and
* prevent address configuration from working.
*/
ip6hdr = ipv6_hdr(skb);
if (ipv6_addr_any(&ip6hdr->saddr)) {
do_tx_balance = 0;
break;
}
hash_start = (char *)&(ipv6_hdr(skb)->daddr);
hash_size = sizeof(ipv6_hdr(skb)->daddr);
break;
case ETH_P_IPX:
if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
/* something is wrong with this packet */
do_tx_balance = 0;
break;
}
if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
/* The only protocol worth balancing in
* this family since it has an "ARP" like
* mechanism
*/
do_tx_balance = 0;
break;
}
hash_start = (char*)eth_data->h_dest;
hash_size = ETH_ALEN;
break;
case ETH_P_ARP:
do_tx_balance = 0;
if (bond_info->rlb_enabled) {
tx_slave = rlb_arp_xmit(skb, bond);
}
break;
default:
do_tx_balance = 0;
break;
}
if (do_tx_balance) {
hash_index = _simple_hash(hash_start, hash_size);
tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
}
if (!tx_slave) {
/* unbalanced or unassigned, send through primary */
tx_slave = bond->curr_active_slave;
bond_info->unbalanced_load += skb->len;
}
if (tx_slave && SLAVE_IS_OK(tx_slave)) {
if (tx_slave != bond->curr_active_slave) {
memcpy(eth_data->h_source,
tx_slave->dev->dev_addr,
ETH_ALEN);
}
res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
} else {
if (tx_slave) {
tlb_clear_slave(bond, tx_slave, 0);
}
}
out:
if (res) {
/* no suitable interface, frame not sent */
dev_kfree_skb(skb);
}
read_unlock(&bond->curr_slave_lock);
read_unlock(&bond->lock);
return 0;
}
void bond_alb_monitor(struct work_struct *work)
{
struct bonding *bond = container_of(work, struct bonding,
alb_work.work);
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *slave;
int i;
read_lock(&bond->lock);
if (bond->kill_timers) {
goto out;
}
if (bond->slave_cnt == 0) {
bond_info->tx_rebalance_counter = 0;
bond_info->lp_counter = 0;
goto re_arm;
}
bond_info->tx_rebalance_counter++;
bond_info->lp_counter++;
/* send learning packets */
if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
/* change of curr_active_slave involves swapping of mac addresses.
* in order to avoid this swapping from happening while
* sending the learning packets, the curr_slave_lock must be held for
* read.
*/
read_lock(&bond->curr_slave_lock);
bond_for_each_slave(bond, slave, i) {
alb_send_learning_packets(slave, slave->dev->dev_addr);
}
read_unlock(&bond->curr_slave_lock);
bond_info->lp_counter = 0;
}
/* rebalance tx traffic */
if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
read_lock(&bond->curr_slave_lock);
bond_for_each_slave(bond, slave, i) {
tlb_clear_slave(bond, slave, 1);
if (slave == bond->curr_active_slave) {
SLAVE_TLB_INFO(slave).load =
bond_info->unbalanced_load /
BOND_TLB_REBALANCE_INTERVAL;
bond_info->unbalanced_load = 0;
}
}
read_unlock(&bond->curr_slave_lock);
bond_info->tx_rebalance_counter = 0;
}
/* handle rlb stuff */
if (bond_info->rlb_enabled) {
if (bond_info->primary_is_promisc &&
(++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
/*
* dev_set_promiscuity requires rtnl and
* nothing else.
*/
read_unlock(&bond->lock);
rtnl_lock();
bond_info->rlb_promisc_timeout_counter = 0;
/* If the primary was set to promiscuous mode
* because a slave was disabled then
* it can now leave promiscuous mode.
*/
dev_set_promiscuity(bond->curr_active_slave->dev, -1);
bond_info->primary_is_promisc = 0;
rtnl_unlock();
read_lock(&bond->lock);
}
if (bond_info->rlb_rebalance) {
bond_info->rlb_rebalance = 0;
rlb_rebalance(bond);
}
/* check if clients need updating */
if (bond_info->rx_ntt) {
if (bond_info->rlb_update_delay_counter) {
--bond_info->rlb_update_delay_counter;
} else {
rlb_update_rx_clients(bond);
if (bond_info->rlb_update_retry_counter) {
--bond_info->rlb_update_retry_counter;
} else {
bond_info->rx_ntt = 0;
}
}
}
}
re_arm:
queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
out:
read_unlock(&bond->lock);
}
/* assumption: called before the slave is attached to the bond
* and not locked by the bond lock
*/
int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
{
int res;
res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
bond->alb_info.rlb_enabled);
if (res) {
return res;
}
/* caller must hold the bond lock for write since the mac addresses
* are compared and may be swapped.
*/
read_lock(&bond->lock);
res = alb_handle_addr_collision_on_attach(bond, slave);
read_unlock(&bond->lock);
if (res) {
return res;
}
tlb_init_slave(slave);
/* order a rebalance ASAP */
bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
if (bond->alb_info.rlb_enabled) {
bond->alb_info.rlb_rebalance = 1;
}
return 0;
}
/*
* Remove slave from tlb and rlb hash tables, and fix up MAC addresses
* if necessary.
*
* Caller must hold RTNL and no other locks
*/
void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
{
if (bond->slave_cnt > 1) {
alb_change_hw_addr_on_detach(bond, slave);
}
tlb_clear_slave(bond, slave, 0);
if (bond->alb_info.rlb_enabled) {
bond->alb_info.next_rx_slave = NULL;
rlb_clear_slave(bond, slave);
}
}
/* Caller must hold bond lock for read */
void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
if (link == BOND_LINK_DOWN) {
tlb_clear_slave(bond, slave, 0);
if (bond->alb_info.rlb_enabled) {
rlb_clear_slave(bond, slave);
}
} else if (link == BOND_LINK_UP) {
/* order a rebalance ASAP */
bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
if (bond->alb_info.rlb_enabled) {
bond->alb_info.rlb_rebalance = 1;
/* If the updelay module parameter is smaller than the
* forwarding delay of the switch the rebalance will
* not work because the rebalance arp replies will
* not be forwarded to the clients..
*/
}
}
}
/**
* bond_alb_handle_active_change - assign new curr_active_slave
* @bond: our bonding struct
* @new_slave: new slave to assign
*
* Set the bond->curr_active_slave to @new_slave and handle
* mac address swapping and promiscuity changes as needed.
*
* If new_slave is NULL, caller must hold curr_slave_lock or
* bond->lock for write.
*
* If new_slave is not NULL, caller must hold RTNL, bond->lock for
* read and curr_slave_lock for write. Processing here may sleep, so
* no other locks may be held.
*/
void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
__releases(&bond->curr_slave_lock)
__releases(&bond->lock)
__acquires(&bond->lock)
__acquires(&bond->curr_slave_lock)
{
struct slave *swap_slave;
int i;
if (bond->curr_active_slave == new_slave) {
return;
}
if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
dev_set_promiscuity(bond->curr_active_slave->dev, -1);
bond->alb_info.primary_is_promisc = 0;
bond->alb_info.rlb_promisc_timeout_counter = 0;
}
swap_slave = bond->curr_active_slave;
bond->curr_active_slave = new_slave;
if (!new_slave || (bond->slave_cnt == 0)) {
return;
}
/* set the new curr_active_slave to the bonds mac address
* i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
*/
if (!swap_slave) {
struct slave *tmp_slave;
/* find slave that is holding the bond's mac address */
bond_for_each_slave(bond, tmp_slave, i) {
if (!memcmp(tmp_slave->dev->dev_addr,
bond->dev->dev_addr, ETH_ALEN)) {
swap_slave = tmp_slave;
break;
}
}
}
/*
* Arrange for swap_slave and new_slave to temporarily be
* ignored so we can mess with their MAC addresses without
* fear of interference from transmit activity.
*/
if (swap_slave) {
tlb_clear_slave(bond, swap_slave, 1);
}
tlb_clear_slave(bond, new_slave, 1);
write_unlock_bh(&bond->curr_slave_lock);
read_unlock(&bond->lock);
ASSERT_RTNL();
/* curr_active_slave must be set before calling alb_swap_mac_addr */
if (swap_slave) {
/* swap mac address */
alb_swap_mac_addr(bond, swap_slave, new_slave);
} else {
/* set the new_slave to the bond mac address */
alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
bond->alb_info.rlb_enabled);
}
if (swap_slave) {
alb_fasten_mac_swap(bond, swap_slave, new_slave);
read_lock(&bond->lock);
} else {
read_lock(&bond->lock);
alb_send_learning_packets(new_slave, bond->dev->dev_addr);
}
write_lock_bh(&bond->curr_slave_lock);
}
/*
* Called with RTNL
*/
int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
__acquires(&bond->lock)
__releases(&bond->lock)
{
struct bonding *bond = netdev_priv(bond_dev);
struct sockaddr *sa = addr;
struct slave *slave, *swap_slave;
int res;
int i;
if (!is_valid_ether_addr(sa->sa_data)) {
return -EADDRNOTAVAIL;
}
res = alb_set_mac_address(bond, addr);
if (res) {
return res;
}
memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
/* If there is no curr_active_slave there is nothing else to do.
* Otherwise we'll need to pass the new address to it and handle
* duplications.
*/
if (!bond->curr_active_slave) {
return 0;
}
swap_slave = NULL;
bond_for_each_slave(bond, slave, i) {
if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
swap_slave = slave;
break;
}
}
if (swap_slave) {
alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
} else {
alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
bond->alb_info.rlb_enabled);
read_lock(&bond->lock);
alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
if (bond->alb_info.rlb_enabled) {
/* inform clients mac address has changed */
rlb_req_update_slave_clients(bond, bond->curr_active_slave);
}
read_unlock(&bond->lock);
}
return 0;
}
void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
{
if (bond->alb_info.current_alb_vlan &&
(bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
bond->alb_info.current_alb_vlan = NULL;
}
if (bond->alb_info.rlb_enabled) {
rlb_clear_vlan(bond, vlan_id);
}
}