linux_dsm_epyc7002/drivers/scsi/qedf/qedf_io.c
Shyam Sundar faea5719d3 scsi: qedf: Cleanup rrq_work after QEDF_CMD_OUTSTANDING is cleared
Here is the relevant logs for the problem we are solving:

qedf_flush_active_ios:1707]:3: Flush active i/o's num=0x17 fcport=0xffff948168fbcc80 port_id=0x550200 scsi_id=0.
qedf_flush_active_ios:1708]:3: Locking flush mutex.
qedf_flush_active_ios:1758]:3: Not outstanding, xid=0xaaf, cmd_type=3 refcount=1.
qedf_flush_active_ios:1896]:3: Flushed 0x16 I/Os, active=0x1.
qedf_flush_active_ios:1901]:3: Flushed 0x16 I/Os, active=0x1 cnt=60.
qedf_send_rrq:295]:3: Sending RRQ orig io = ffffb48b8f7d7158, orig_xid = 0xaaf
qedf_initiate_els:37]:3: Sending ELS
qedf_initiate_els:68]:3: initiate_els els_req = 0xffffb48b8f6d3098 cb_arg = ffff948fd5e4de80 xid = 4c6
qedf_init_mp_req:2172]:3: Entered.
qedf_init_mp_task:727]:3: Initializing MP task for cmd_type=4
qedf_initiate_els:134]:3: Ringing doorbell for ELS req
qedf_flush_active_ios:1901]:3: Flushed 0x16 I/Os, active=0x2 cnt=20.
qedf_cmd_timeout:96]:3: ELS timeout, xid=0x4c6.
qedf_rrq_compl:186]:3: Entered.
qedf_rrq_compl:204]:3: rrq_compl: orig io = ffffb48b8f7d7158, orig xid = 0xaaf, rrq_xid = 0x4c6, refcount=1
qedf_flush_active_ios:1935]:3: Unlocking flush mutex.
qedf_upload_connection:1579]:3: Uploading connection port_id=550200.

We found an ABTS command for which CMD_OUTSTANDING was cleared (line 3).
For this command, delayed send_rrq was queued, but would take 10 secs to
execute.  Adding capability to detect that (based on io_req->state that is
being introduced), and attempt to cancel rrq_work. If we succeed, we drop
the reference and free the io_req. If we cannot, then the els will get sent
out and we will wait for 10 secs for it to complete.

Signed-off-by: Shyam Sundar <ssundar@marvell.com>
Signed-off-by: Saurav Kashyap <skashyap@marvell.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-03-27 21:54:53 -04:00

2573 lines
70 KiB
C

/*
* QLogic FCoE Offload Driver
* Copyright (c) 2016-2018 Cavium Inc.
*
* This software is available under the terms of the GNU General Public License
* (GPL) Version 2, available from the file COPYING in the main directory of
* this source tree.
*/
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include "qedf.h"
#include <scsi/scsi_tcq.h>
void qedf_cmd_timer_set(struct qedf_ctx *qedf, struct qedf_ioreq *io_req,
unsigned int timer_msec)
{
queue_delayed_work(qedf->timer_work_queue, &io_req->timeout_work,
msecs_to_jiffies(timer_msec));
}
static void qedf_cmd_timeout(struct work_struct *work)
{
struct qedf_ioreq *io_req =
container_of(work, struct qedf_ioreq, timeout_work.work);
struct qedf_ctx *qedf;
struct qedf_rport *fcport;
u8 op = 0;
if (io_req == NULL) {
QEDF_INFO(NULL, QEDF_LOG_IO, "io_req is NULL.\n");
return;
}
fcport = io_req->fcport;
if (io_req->fcport == NULL) {
QEDF_INFO(NULL, QEDF_LOG_IO, "fcport is NULL.\n");
return;
}
qedf = fcport->qedf;
switch (io_req->cmd_type) {
case QEDF_ABTS:
if (qedf == NULL) {
QEDF_INFO(NULL, QEDF_LOG_IO,
"qedf is NULL for ABTS xid=0x%x.\n",
io_req->xid);
return;
}
QEDF_ERR((&qedf->dbg_ctx), "ABTS timeout, xid=0x%x.\n",
io_req->xid);
/* Cleanup timed out ABTS */
qedf_initiate_cleanup(io_req, true);
complete(&io_req->abts_done);
/*
* Need to call kref_put for reference taken when initiate_abts
* was called since abts_compl won't be called now that we've
* cleaned up the task.
*/
kref_put(&io_req->refcount, qedf_release_cmd);
/* Clear in abort bit now that we're done with the command */
clear_bit(QEDF_CMD_IN_ABORT, &io_req->flags);
/*
* Now that the original I/O and the ABTS are complete see
* if we need to reconnect to the target.
*/
qedf_restart_rport(fcport);
break;
case QEDF_ELS:
if (!qedf) {
QEDF_INFO(NULL, QEDF_LOG_IO,
"qedf is NULL for ELS xid=0x%x.\n",
io_req->xid);
return;
}
/* ELS request no longer outstanding since it timed out */
clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
kref_get(&io_req->refcount);
/*
* Don't attempt to clean an ELS timeout as any subseqeunt
* ABTS or cleanup requests just hang. For now just free
* the resources of the original I/O and the RRQ
*/
QEDF_ERR(&(qedf->dbg_ctx), "ELS timeout, xid=0x%x.\n",
io_req->xid);
io_req->event = QEDF_IOREQ_EV_ELS_TMO;
/* Call callback function to complete command */
if (io_req->cb_func && io_req->cb_arg) {
op = io_req->cb_arg->op;
io_req->cb_func(io_req->cb_arg);
io_req->cb_arg = NULL;
}
qedf_initiate_cleanup(io_req, true);
kref_put(&io_req->refcount, qedf_release_cmd);
break;
case QEDF_SEQ_CLEANUP:
QEDF_ERR(&(qedf->dbg_ctx), "Sequence cleanup timeout, "
"xid=0x%x.\n", io_req->xid);
qedf_initiate_cleanup(io_req, true);
io_req->event = QEDF_IOREQ_EV_ELS_TMO;
qedf_process_seq_cleanup_compl(qedf, NULL, io_req);
break;
default:
break;
}
}
void qedf_cmd_mgr_free(struct qedf_cmd_mgr *cmgr)
{
struct io_bdt *bdt_info;
struct qedf_ctx *qedf = cmgr->qedf;
size_t bd_tbl_sz;
u16 min_xid = 0;
u16 max_xid = (FCOE_PARAMS_NUM_TASKS - 1);
int num_ios;
int i;
struct qedf_ioreq *io_req;
num_ios = max_xid - min_xid + 1;
/* Free fcoe_bdt_ctx structures */
if (!cmgr->io_bdt_pool)
goto free_cmd_pool;
bd_tbl_sz = QEDF_MAX_BDS_PER_CMD * sizeof(struct scsi_sge);
for (i = 0; i < num_ios; i++) {
bdt_info = cmgr->io_bdt_pool[i];
if (bdt_info->bd_tbl) {
dma_free_coherent(&qedf->pdev->dev, bd_tbl_sz,
bdt_info->bd_tbl, bdt_info->bd_tbl_dma);
bdt_info->bd_tbl = NULL;
}
}
/* Destroy io_bdt pool */
for (i = 0; i < num_ios; i++) {
kfree(cmgr->io_bdt_pool[i]);
cmgr->io_bdt_pool[i] = NULL;
}
kfree(cmgr->io_bdt_pool);
cmgr->io_bdt_pool = NULL;
free_cmd_pool:
for (i = 0; i < num_ios; i++) {
io_req = &cmgr->cmds[i];
kfree(io_req->sgl_task_params);
kfree(io_req->task_params);
/* Make sure we free per command sense buffer */
if (io_req->sense_buffer)
dma_free_coherent(&qedf->pdev->dev,
QEDF_SCSI_SENSE_BUFFERSIZE, io_req->sense_buffer,
io_req->sense_buffer_dma);
cancel_delayed_work_sync(&io_req->rrq_work);
}
/* Free command manager itself */
vfree(cmgr);
}
static void qedf_handle_rrq(struct work_struct *work)
{
struct qedf_ioreq *io_req =
container_of(work, struct qedf_ioreq, rrq_work.work);
atomic_set(&io_req->state, QEDFC_CMD_ST_RRQ_ACTIVE);
qedf_send_rrq(io_req);
}
struct qedf_cmd_mgr *qedf_cmd_mgr_alloc(struct qedf_ctx *qedf)
{
struct qedf_cmd_mgr *cmgr;
struct io_bdt *bdt_info;
struct qedf_ioreq *io_req;
u16 xid;
int i;
int num_ios;
u16 min_xid = 0;
u16 max_xid = (FCOE_PARAMS_NUM_TASKS - 1);
/* Make sure num_queues is already set before calling this function */
if (!qedf->num_queues) {
QEDF_ERR(&(qedf->dbg_ctx), "num_queues is not set.\n");
return NULL;
}
if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) {
QEDF_WARN(&(qedf->dbg_ctx), "Invalid min_xid 0x%x and "
"max_xid 0x%x.\n", min_xid, max_xid);
return NULL;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "min xid 0x%x, max xid "
"0x%x.\n", min_xid, max_xid);
num_ios = max_xid - min_xid + 1;
cmgr = vzalloc(sizeof(struct qedf_cmd_mgr));
if (!cmgr) {
QEDF_WARN(&(qedf->dbg_ctx), "Failed to alloc cmd mgr.\n");
return NULL;
}
cmgr->qedf = qedf;
spin_lock_init(&cmgr->lock);
/*
* Initialize I/O request fields.
*/
xid = 0;
for (i = 0; i < num_ios; i++) {
io_req = &cmgr->cmds[i];
INIT_DELAYED_WORK(&io_req->timeout_work, qedf_cmd_timeout);
io_req->xid = xid++;
INIT_DELAYED_WORK(&io_req->rrq_work, qedf_handle_rrq);
/* Allocate DMA memory to hold sense buffer */
io_req->sense_buffer = dma_alloc_coherent(&qedf->pdev->dev,
QEDF_SCSI_SENSE_BUFFERSIZE, &io_req->sense_buffer_dma,
GFP_KERNEL);
if (!io_req->sense_buffer)
goto mem_err;
/* Allocate task parameters to pass to f/w init funcions */
io_req->task_params = kzalloc(sizeof(*io_req->task_params),
GFP_KERNEL);
if (!io_req->task_params) {
QEDF_ERR(&(qedf->dbg_ctx),
"Failed to allocate task_params for xid=0x%x\n",
i);
goto mem_err;
}
/*
* Allocate scatter/gather list info to pass to f/w init
* functions.
*/
io_req->sgl_task_params = kzalloc(
sizeof(struct scsi_sgl_task_params), GFP_KERNEL);
if (!io_req->sgl_task_params) {
QEDF_ERR(&(qedf->dbg_ctx),
"Failed to allocate sgl_task_params for xid=0x%x\n",
i);
goto mem_err;
}
}
/* Allocate pool of io_bdts - one for each qedf_ioreq */
cmgr->io_bdt_pool = kmalloc_array(num_ios, sizeof(struct io_bdt *),
GFP_KERNEL);
if (!cmgr->io_bdt_pool) {
QEDF_WARN(&(qedf->dbg_ctx), "Failed to alloc io_bdt_pool.\n");
goto mem_err;
}
for (i = 0; i < num_ios; i++) {
cmgr->io_bdt_pool[i] = kmalloc(sizeof(struct io_bdt),
GFP_KERNEL);
if (!cmgr->io_bdt_pool[i]) {
QEDF_WARN(&(qedf->dbg_ctx),
"Failed to alloc io_bdt_pool[%d].\n", i);
goto mem_err;
}
}
for (i = 0; i < num_ios; i++) {
bdt_info = cmgr->io_bdt_pool[i];
bdt_info->bd_tbl = dma_alloc_coherent(&qedf->pdev->dev,
QEDF_MAX_BDS_PER_CMD * sizeof(struct scsi_sge),
&bdt_info->bd_tbl_dma, GFP_KERNEL);
if (!bdt_info->bd_tbl) {
QEDF_WARN(&(qedf->dbg_ctx),
"Failed to alloc bdt_tbl[%d].\n", i);
goto mem_err;
}
}
atomic_set(&cmgr->free_list_cnt, num_ios);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"cmgr->free_list_cnt=%d.\n",
atomic_read(&cmgr->free_list_cnt));
return cmgr;
mem_err:
qedf_cmd_mgr_free(cmgr);
return NULL;
}
struct qedf_ioreq *qedf_alloc_cmd(struct qedf_rport *fcport, u8 cmd_type)
{
struct qedf_ctx *qedf = fcport->qedf;
struct qedf_cmd_mgr *cmd_mgr = qedf->cmd_mgr;
struct qedf_ioreq *io_req = NULL;
struct io_bdt *bd_tbl;
u16 xid;
uint32_t free_sqes;
int i;
unsigned long flags;
free_sqes = atomic_read(&fcport->free_sqes);
if (!free_sqes) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Returning NULL, free_sqes=%d.\n ",
free_sqes);
goto out_failed;
}
/* Limit the number of outstanding R/W tasks */
if ((atomic_read(&fcport->num_active_ios) >=
NUM_RW_TASKS_PER_CONNECTION)) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Returning NULL, num_active_ios=%d.\n",
atomic_read(&fcport->num_active_ios));
goto out_failed;
}
/* Limit global TIDs certain tasks */
if (atomic_read(&cmd_mgr->free_list_cnt) <= GBL_RSVD_TASKS) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Returning NULL, free_list_cnt=%d.\n",
atomic_read(&cmd_mgr->free_list_cnt));
goto out_failed;
}
spin_lock_irqsave(&cmd_mgr->lock, flags);
for (i = 0; i < FCOE_PARAMS_NUM_TASKS; i++) {
io_req = &cmd_mgr->cmds[cmd_mgr->idx];
cmd_mgr->idx++;
if (cmd_mgr->idx == FCOE_PARAMS_NUM_TASKS)
cmd_mgr->idx = 0;
/* Check to make sure command was previously freed */
if (!io_req->alloc)
break;
}
if (i == FCOE_PARAMS_NUM_TASKS) {
spin_unlock_irqrestore(&cmd_mgr->lock, flags);
goto out_failed;
}
if (test_bit(QEDF_CMD_DIRTY, &io_req->flags))
QEDF_ERR(&qedf->dbg_ctx,
"io_req found to be dirty ox_id = 0x%x.\n",
io_req->xid);
/* Clear any flags now that we've reallocated the xid */
io_req->flags = 0;
io_req->alloc = 1;
spin_unlock_irqrestore(&cmd_mgr->lock, flags);
atomic_inc(&fcport->num_active_ios);
atomic_dec(&fcport->free_sqes);
xid = io_req->xid;
atomic_dec(&cmd_mgr->free_list_cnt);
io_req->cmd_mgr = cmd_mgr;
io_req->fcport = fcport;
/* Clear any stale sc_cmd back pointer */
io_req->sc_cmd = NULL;
io_req->lun = -1;
/* Hold the io_req against deletion */
kref_init(&io_req->refcount); /* ID: 001 */
atomic_set(&io_req->state, QEDFC_CMD_ST_IO_ACTIVE);
/* Bind io_bdt for this io_req */
/* Have a static link between io_req and io_bdt_pool */
bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
if (bd_tbl == NULL) {
QEDF_ERR(&(qedf->dbg_ctx), "bd_tbl is NULL, xid=%x.\n", xid);
kref_put(&io_req->refcount, qedf_release_cmd);
goto out_failed;
}
bd_tbl->io_req = io_req;
io_req->cmd_type = cmd_type;
io_req->tm_flags = 0;
/* Reset sequence offset data */
io_req->rx_buf_off = 0;
io_req->tx_buf_off = 0;
io_req->rx_id = 0xffff; /* No OX_ID */
return io_req;
out_failed:
/* Record failure for stats and return NULL to caller */
qedf->alloc_failures++;
return NULL;
}
static void qedf_free_mp_resc(struct qedf_ioreq *io_req)
{
struct qedf_mp_req *mp_req = &(io_req->mp_req);
struct qedf_ctx *qedf = io_req->fcport->qedf;
uint64_t sz = sizeof(struct scsi_sge);
/* clear tm flags */
if (mp_req->mp_req_bd) {
dma_free_coherent(&qedf->pdev->dev, sz,
mp_req->mp_req_bd, mp_req->mp_req_bd_dma);
mp_req->mp_req_bd = NULL;
}
if (mp_req->mp_resp_bd) {
dma_free_coherent(&qedf->pdev->dev, sz,
mp_req->mp_resp_bd, mp_req->mp_resp_bd_dma);
mp_req->mp_resp_bd = NULL;
}
if (mp_req->req_buf) {
dma_free_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE,
mp_req->req_buf, mp_req->req_buf_dma);
mp_req->req_buf = NULL;
}
if (mp_req->resp_buf) {
dma_free_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE,
mp_req->resp_buf, mp_req->resp_buf_dma);
mp_req->resp_buf = NULL;
}
}
void qedf_release_cmd(struct kref *ref)
{
struct qedf_ioreq *io_req =
container_of(ref, struct qedf_ioreq, refcount);
struct qedf_cmd_mgr *cmd_mgr = io_req->cmd_mgr;
struct qedf_rport *fcport = io_req->fcport;
unsigned long flags;
if (io_req->cmd_type == QEDF_SCSI_CMD)
WARN_ON(io_req->sc_cmd);
if (io_req->cmd_type == QEDF_ELS ||
io_req->cmd_type == QEDF_TASK_MGMT_CMD)
qedf_free_mp_resc(io_req);
atomic_inc(&cmd_mgr->free_list_cnt);
atomic_dec(&fcport->num_active_ios);
atomic_set(&io_req->state, QEDF_CMD_ST_INACTIVE);
if (atomic_read(&fcport->num_active_ios) < 0)
QEDF_WARN(&(fcport->qedf->dbg_ctx), "active_ios < 0.\n");
/* Increment task retry identifier now that the request is released */
io_req->task_retry_identifier++;
io_req->fcport = NULL;
clear_bit(QEDF_CMD_DIRTY, &io_req->flags);
io_req->cpu = 0;
spin_lock_irqsave(&cmd_mgr->lock, flags);
io_req->fcport = NULL;
io_req->alloc = 0;
spin_unlock_irqrestore(&cmd_mgr->lock, flags);
}
static int qedf_map_sg(struct qedf_ioreq *io_req)
{
struct scsi_cmnd *sc = io_req->sc_cmd;
struct Scsi_Host *host = sc->device->host;
struct fc_lport *lport = shost_priv(host);
struct qedf_ctx *qedf = lport_priv(lport);
struct scsi_sge *bd = io_req->bd_tbl->bd_tbl;
struct scatterlist *sg;
int byte_count = 0;
int sg_count = 0;
int bd_count = 0;
u32 sg_len;
u64 addr, end_addr;
int i = 0;
sg_count = dma_map_sg(&qedf->pdev->dev, scsi_sglist(sc),
scsi_sg_count(sc), sc->sc_data_direction);
sg = scsi_sglist(sc);
io_req->sge_type = QEDF_IOREQ_UNKNOWN_SGE;
if (sg_count <= 8 || io_req->io_req_flags == QEDF_READ)
io_req->sge_type = QEDF_IOREQ_FAST_SGE;
scsi_for_each_sg(sc, sg, sg_count, i) {
sg_len = (u32)sg_dma_len(sg);
addr = (u64)sg_dma_address(sg);
end_addr = (u64)(addr + sg_len);
/*
* Intermediate s/g element so check if start and end address
* is page aligned. Only required for writes and only if the
* number of scatter/gather elements is 8 or more.
*/
if (io_req->sge_type == QEDF_IOREQ_UNKNOWN_SGE && (i) &&
(i != (sg_count - 1)) && sg_len < QEDF_PAGE_SIZE)
io_req->sge_type = QEDF_IOREQ_SLOW_SGE;
bd[bd_count].sge_addr.lo = cpu_to_le32(U64_LO(addr));
bd[bd_count].sge_addr.hi = cpu_to_le32(U64_HI(addr));
bd[bd_count].sge_len = cpu_to_le32(sg_len);
bd_count++;
byte_count += sg_len;
}
/* To catch a case where FAST and SLOW nothing is set, set FAST */
if (io_req->sge_type == QEDF_IOREQ_UNKNOWN_SGE)
io_req->sge_type = QEDF_IOREQ_FAST_SGE;
if (byte_count != scsi_bufflen(sc))
QEDF_ERR(&(qedf->dbg_ctx), "byte_count = %d != "
"scsi_bufflen = %d, task_id = 0x%x.\n", byte_count,
scsi_bufflen(sc), io_req->xid);
return bd_count;
}
static int qedf_build_bd_list_from_sg(struct qedf_ioreq *io_req)
{
struct scsi_cmnd *sc = io_req->sc_cmd;
struct scsi_sge *bd = io_req->bd_tbl->bd_tbl;
int bd_count;
if (scsi_sg_count(sc)) {
bd_count = qedf_map_sg(io_req);
if (bd_count == 0)
return -ENOMEM;
} else {
bd_count = 0;
bd[0].sge_addr.lo = bd[0].sge_addr.hi = 0;
bd[0].sge_len = 0;
}
io_req->bd_tbl->bd_valid = bd_count;
return 0;
}
static void qedf_build_fcp_cmnd(struct qedf_ioreq *io_req,
struct fcp_cmnd *fcp_cmnd)
{
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
/* fcp_cmnd is 32 bytes */
memset(fcp_cmnd, 0, FCP_CMND_LEN);
/* 8 bytes: SCSI LUN info */
int_to_scsilun(sc_cmd->device->lun,
(struct scsi_lun *)&fcp_cmnd->fc_lun);
/* 4 bytes: flag info */
fcp_cmnd->fc_pri_ta = 0;
fcp_cmnd->fc_tm_flags = io_req->tm_flags;
fcp_cmnd->fc_flags = io_req->io_req_flags;
fcp_cmnd->fc_cmdref = 0;
/* Populate data direction */
if (io_req->cmd_type == QEDF_TASK_MGMT_CMD) {
fcp_cmnd->fc_flags |= FCP_CFL_RDDATA;
} else {
if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
fcp_cmnd->fc_flags |= FCP_CFL_WRDATA;
else if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE)
fcp_cmnd->fc_flags |= FCP_CFL_RDDATA;
}
fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
/* 16 bytes: CDB information */
if (io_req->cmd_type != QEDF_TASK_MGMT_CMD)
memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len);
/* 4 bytes: FCP data length */
fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len);
}
static void qedf_init_task(struct qedf_rport *fcport, struct fc_lport *lport,
struct qedf_ioreq *io_req, struct e4_fcoe_task_context *task_ctx,
struct fcoe_wqe *sqe)
{
enum fcoe_task_type task_type;
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct io_bdt *bd_tbl = io_req->bd_tbl;
u8 fcp_cmnd[32];
u32 tmp_fcp_cmnd[8];
int bd_count = 0;
struct qedf_ctx *qedf = fcport->qedf;
uint16_t cq_idx = smp_processor_id() % qedf->num_queues;
struct regpair sense_data_buffer_phys_addr;
u32 tx_io_size = 0;
u32 rx_io_size = 0;
int i, cnt;
/* Note init_initiator_rw_fcoe_task memsets the task context */
io_req->task = task_ctx;
memset(task_ctx, 0, sizeof(struct e4_fcoe_task_context));
memset(io_req->task_params, 0, sizeof(struct fcoe_task_params));
memset(io_req->sgl_task_params, 0, sizeof(struct scsi_sgl_task_params));
/* Set task type bassed on DMA directio of command */
if (io_req->cmd_type == QEDF_TASK_MGMT_CMD) {
task_type = FCOE_TASK_TYPE_READ_INITIATOR;
} else {
if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
task_type = FCOE_TASK_TYPE_WRITE_INITIATOR;
tx_io_size = io_req->data_xfer_len;
} else {
task_type = FCOE_TASK_TYPE_READ_INITIATOR;
rx_io_size = io_req->data_xfer_len;
}
}
/* Setup the fields for fcoe_task_params */
io_req->task_params->context = task_ctx;
io_req->task_params->sqe = sqe;
io_req->task_params->task_type = task_type;
io_req->task_params->tx_io_size = tx_io_size;
io_req->task_params->rx_io_size = rx_io_size;
io_req->task_params->conn_cid = fcport->fw_cid;
io_req->task_params->itid = io_req->xid;
io_req->task_params->cq_rss_number = cq_idx;
io_req->task_params->is_tape_device = fcport->dev_type;
/* Fill in information for scatter/gather list */
if (io_req->cmd_type != QEDF_TASK_MGMT_CMD) {
bd_count = bd_tbl->bd_valid;
io_req->sgl_task_params->sgl = bd_tbl->bd_tbl;
io_req->sgl_task_params->sgl_phys_addr.lo =
U64_LO(bd_tbl->bd_tbl_dma);
io_req->sgl_task_params->sgl_phys_addr.hi =
U64_HI(bd_tbl->bd_tbl_dma);
io_req->sgl_task_params->num_sges = bd_count;
io_req->sgl_task_params->total_buffer_size =
scsi_bufflen(io_req->sc_cmd);
if (io_req->sge_type == QEDF_IOREQ_SLOW_SGE)
io_req->sgl_task_params->small_mid_sge = 1;
else
io_req->sgl_task_params->small_mid_sge = 0;
}
/* Fill in physical address of sense buffer */
sense_data_buffer_phys_addr.lo = U64_LO(io_req->sense_buffer_dma);
sense_data_buffer_phys_addr.hi = U64_HI(io_req->sense_buffer_dma);
/* fill FCP_CMND IU */
qedf_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tmp_fcp_cmnd);
/* Swap fcp_cmnd since FC is big endian */
cnt = sizeof(struct fcp_cmnd) / sizeof(u32);
for (i = 0; i < cnt; i++) {
tmp_fcp_cmnd[i] = cpu_to_be32(tmp_fcp_cmnd[i]);
}
memcpy(fcp_cmnd, tmp_fcp_cmnd, sizeof(struct fcp_cmnd));
init_initiator_rw_fcoe_task(io_req->task_params,
io_req->sgl_task_params,
sense_data_buffer_phys_addr,
io_req->task_retry_identifier, fcp_cmnd);
/* Increment SGL type counters */
if (io_req->sge_type == QEDF_IOREQ_SLOW_SGE)
qedf->slow_sge_ios++;
else
qedf->fast_sge_ios++;
}
void qedf_init_mp_task(struct qedf_ioreq *io_req,
struct e4_fcoe_task_context *task_ctx, struct fcoe_wqe *sqe)
{
struct qedf_mp_req *mp_req = &(io_req->mp_req);
struct qedf_rport *fcport = io_req->fcport;
struct qedf_ctx *qedf = io_req->fcport->qedf;
struct fc_frame_header *fc_hdr;
struct fcoe_tx_mid_path_params task_fc_hdr;
struct scsi_sgl_task_params tx_sgl_task_params;
struct scsi_sgl_task_params rx_sgl_task_params;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Initializing MP task for cmd_type=%d\n",
io_req->cmd_type);
qedf->control_requests++;
memset(&tx_sgl_task_params, 0, sizeof(struct scsi_sgl_task_params));
memset(&rx_sgl_task_params, 0, sizeof(struct scsi_sgl_task_params));
memset(task_ctx, 0, sizeof(struct e4_fcoe_task_context));
memset(&task_fc_hdr, 0, sizeof(struct fcoe_tx_mid_path_params));
/* Setup the task from io_req for easy reference */
io_req->task = task_ctx;
/* Setup the fields for fcoe_task_params */
io_req->task_params->context = task_ctx;
io_req->task_params->sqe = sqe;
io_req->task_params->task_type = FCOE_TASK_TYPE_MIDPATH;
io_req->task_params->tx_io_size = io_req->data_xfer_len;
/* rx_io_size tells the f/w how large a response buffer we have */
io_req->task_params->rx_io_size = PAGE_SIZE;
io_req->task_params->conn_cid = fcport->fw_cid;
io_req->task_params->itid = io_req->xid;
/* Return middle path commands on CQ 0 */
io_req->task_params->cq_rss_number = 0;
io_req->task_params->is_tape_device = fcport->dev_type;
fc_hdr = &(mp_req->req_fc_hdr);
/* Set OX_ID and RX_ID based on driver task id */
fc_hdr->fh_ox_id = io_req->xid;
fc_hdr->fh_rx_id = htons(0xffff);
/* Set up FC header information */
task_fc_hdr.parameter = fc_hdr->fh_parm_offset;
task_fc_hdr.r_ctl = fc_hdr->fh_r_ctl;
task_fc_hdr.type = fc_hdr->fh_type;
task_fc_hdr.cs_ctl = fc_hdr->fh_cs_ctl;
task_fc_hdr.df_ctl = fc_hdr->fh_df_ctl;
task_fc_hdr.rx_id = fc_hdr->fh_rx_id;
task_fc_hdr.ox_id = fc_hdr->fh_ox_id;
/* Set up s/g list parameters for request buffer */
tx_sgl_task_params.sgl = mp_req->mp_req_bd;
tx_sgl_task_params.sgl_phys_addr.lo = U64_LO(mp_req->mp_req_bd_dma);
tx_sgl_task_params.sgl_phys_addr.hi = U64_HI(mp_req->mp_req_bd_dma);
tx_sgl_task_params.num_sges = 1;
/* Set PAGE_SIZE for now since sg element is that size ??? */
tx_sgl_task_params.total_buffer_size = io_req->data_xfer_len;
tx_sgl_task_params.small_mid_sge = 0;
/* Set up s/g list parameters for request buffer */
rx_sgl_task_params.sgl = mp_req->mp_resp_bd;
rx_sgl_task_params.sgl_phys_addr.lo = U64_LO(mp_req->mp_resp_bd_dma);
rx_sgl_task_params.sgl_phys_addr.hi = U64_HI(mp_req->mp_resp_bd_dma);
rx_sgl_task_params.num_sges = 1;
/* Set PAGE_SIZE for now since sg element is that size ??? */
rx_sgl_task_params.total_buffer_size = PAGE_SIZE;
rx_sgl_task_params.small_mid_sge = 0;
/*
* Last arg is 0 as previous code did not set that we wanted the
* fc header information.
*/
init_initiator_midpath_unsolicited_fcoe_task(io_req->task_params,
&task_fc_hdr,
&tx_sgl_task_params,
&rx_sgl_task_params, 0);
}
/* Presumed that fcport->rport_lock is held */
u16 qedf_get_sqe_idx(struct qedf_rport *fcport)
{
uint16_t total_sqe = (fcport->sq_mem_size)/(sizeof(struct fcoe_wqe));
u16 rval;
rval = fcport->sq_prod_idx;
/* Adjust ring index */
fcport->sq_prod_idx++;
fcport->fw_sq_prod_idx++;
if (fcport->sq_prod_idx == total_sqe)
fcport->sq_prod_idx = 0;
return rval;
}
void qedf_ring_doorbell(struct qedf_rport *fcport)
{
struct fcoe_db_data dbell = { 0 };
dbell.agg_flags = 0;
dbell.params |= DB_DEST_XCM << FCOE_DB_DATA_DEST_SHIFT;
dbell.params |= DB_AGG_CMD_SET << FCOE_DB_DATA_AGG_CMD_SHIFT;
dbell.params |= DQ_XCM_FCOE_SQ_PROD_CMD <<
FCOE_DB_DATA_AGG_VAL_SEL_SHIFT;
dbell.sq_prod = fcport->fw_sq_prod_idx;
/* wmb makes sure that the BDs data is updated before updating the
* producer, otherwise FW may read old data from the BDs.
*/
wmb();
barrier();
writel(*(u32 *)&dbell, fcport->p_doorbell);
/*
* Fence required to flush the write combined buffer, since another
* CPU may write to the same doorbell address and data may be lost
* due to relaxed order nature of write combined bar.
*/
wmb();
}
static void qedf_trace_io(struct qedf_rport *fcport, struct qedf_ioreq *io_req,
int8_t direction)
{
struct qedf_ctx *qedf = fcport->qedf;
struct qedf_io_log *io_log;
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
unsigned long flags;
uint8_t op;
spin_lock_irqsave(&qedf->io_trace_lock, flags);
io_log = &qedf->io_trace_buf[qedf->io_trace_idx];
io_log->direction = direction;
io_log->task_id = io_req->xid;
io_log->port_id = fcport->rdata->ids.port_id;
io_log->lun = sc_cmd->device->lun;
io_log->op = op = sc_cmd->cmnd[0];
io_log->lba[0] = sc_cmd->cmnd[2];
io_log->lba[1] = sc_cmd->cmnd[3];
io_log->lba[2] = sc_cmd->cmnd[4];
io_log->lba[3] = sc_cmd->cmnd[5];
io_log->bufflen = scsi_bufflen(sc_cmd);
io_log->sg_count = scsi_sg_count(sc_cmd);
io_log->result = sc_cmd->result;
io_log->jiffies = jiffies;
io_log->refcount = kref_read(&io_req->refcount);
if (direction == QEDF_IO_TRACE_REQ) {
/* For requests we only care abot the submission CPU */
io_log->req_cpu = io_req->cpu;
io_log->int_cpu = 0;
io_log->rsp_cpu = 0;
} else if (direction == QEDF_IO_TRACE_RSP) {
io_log->req_cpu = io_req->cpu;
io_log->int_cpu = io_req->int_cpu;
io_log->rsp_cpu = smp_processor_id();
}
io_log->sge_type = io_req->sge_type;
qedf->io_trace_idx++;
if (qedf->io_trace_idx == QEDF_IO_TRACE_SIZE)
qedf->io_trace_idx = 0;
spin_unlock_irqrestore(&qedf->io_trace_lock, flags);
}
int qedf_post_io_req(struct qedf_rport *fcport, struct qedf_ioreq *io_req)
{
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct Scsi_Host *host = sc_cmd->device->host;
struct fc_lport *lport = shost_priv(host);
struct qedf_ctx *qedf = lport_priv(lport);
struct e4_fcoe_task_context *task_ctx;
u16 xid;
enum fcoe_task_type req_type = 0;
struct fcoe_wqe *sqe;
u16 sqe_idx;
/* Initialize rest of io_req fileds */
io_req->data_xfer_len = scsi_bufflen(sc_cmd);
sc_cmd->SCp.ptr = (char *)io_req;
io_req->sge_type = QEDF_IOREQ_FAST_SGE; /* Assume fast SGL by default */
/* Record which cpu this request is associated with */
io_req->cpu = smp_processor_id();
if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) {
req_type = FCOE_TASK_TYPE_READ_INITIATOR;
io_req->io_req_flags = QEDF_READ;
qedf->input_requests++;
} else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
req_type = FCOE_TASK_TYPE_WRITE_INITIATOR;
io_req->io_req_flags = QEDF_WRITE;
qedf->output_requests++;
} else {
io_req->io_req_flags = 0;
qedf->control_requests++;
}
xid = io_req->xid;
/* Build buffer descriptor list for firmware from sg list */
if (qedf_build_bd_list_from_sg(io_req)) {
QEDF_ERR(&(qedf->dbg_ctx), "BD list creation failed.\n");
/* Release cmd will release io_req, but sc_cmd is assigned */
io_req->sc_cmd = NULL;
kref_put(&io_req->refcount, qedf_release_cmd);
return -EAGAIN;
}
if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags) ||
test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) {
QEDF_ERR(&(qedf->dbg_ctx), "Session not offloaded yet.\n");
/* Release cmd will release io_req, but sc_cmd is assigned */
io_req->sc_cmd = NULL;
kref_put(&io_req->refcount, qedf_release_cmd);
return -EINVAL;
}
/* Record LUN number for later use if we neeed them */
io_req->lun = (int)sc_cmd->device->lun;
/* Obtain free SQE */
sqe_idx = qedf_get_sqe_idx(fcport);
sqe = &fcport->sq[sqe_idx];
memset(sqe, 0, sizeof(struct fcoe_wqe));
/* Get the task context */
task_ctx = qedf_get_task_mem(&qedf->tasks, xid);
if (!task_ctx) {
QEDF_WARN(&(qedf->dbg_ctx), "task_ctx is NULL, xid=%d.\n",
xid);
/* Release cmd will release io_req, but sc_cmd is assigned */
io_req->sc_cmd = NULL;
kref_put(&io_req->refcount, qedf_release_cmd);
return -EINVAL;
}
qedf_init_task(fcport, lport, io_req, task_ctx, sqe);
/* Ring doorbell */
qedf_ring_doorbell(fcport);
/* Set that command is with the firmware now */
set_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
if (qedf_io_tracing && io_req->sc_cmd)
qedf_trace_io(fcport, io_req, QEDF_IO_TRACE_REQ);
return false;
}
int
qedf_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *sc_cmd)
{
struct fc_lport *lport = shost_priv(host);
struct qedf_ctx *qedf = lport_priv(lport);
struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
struct fc_rport_libfc_priv *rp = rport->dd_data;
struct qedf_rport *fcport;
struct qedf_ioreq *io_req;
int rc = 0;
int rval;
unsigned long flags = 0;
int num_sgs = 0;
num_sgs = scsi_sg_count(sc_cmd);
if (scsi_sg_count(sc_cmd) > QEDF_MAX_BDS_PER_CMD) {
QEDF_ERR(&qedf->dbg_ctx,
"Number of SG elements %d exceeds what hardware limitation of %d.\n",
num_sgs, QEDF_MAX_BDS_PER_CMD);
sc_cmd->result = DID_ERROR;
sc_cmd->scsi_done(sc_cmd);
return 0;
}
if (test_bit(QEDF_UNLOADING, &qedf->flags) ||
test_bit(QEDF_DBG_STOP_IO, &qedf->flags)) {
sc_cmd->result = DID_NO_CONNECT << 16;
sc_cmd->scsi_done(sc_cmd);
return 0;
}
if (!qedf->pdev->msix_enabled) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Completing sc_cmd=%p DID_NO_CONNECT as MSI-X is not enabled.\n",
sc_cmd);
sc_cmd->result = DID_NO_CONNECT << 16;
sc_cmd->scsi_done(sc_cmd);
return 0;
}
rval = fc_remote_port_chkready(rport);
if (rval) {
sc_cmd->result = rval;
sc_cmd->scsi_done(sc_cmd);
return 0;
}
/* Retry command if we are doing a qed drain operation */
if (test_bit(QEDF_DRAIN_ACTIVE, &qedf->flags)) {
rc = SCSI_MLQUEUE_HOST_BUSY;
goto exit_qcmd;
}
if (lport->state != LPORT_ST_READY ||
atomic_read(&qedf->link_state) != QEDF_LINK_UP) {
rc = SCSI_MLQUEUE_HOST_BUSY;
goto exit_qcmd;
}
/* rport and tgt are allocated together, so tgt should be non-NULL */
fcport = (struct qedf_rport *)&rp[1];
if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags) ||
test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) {
/*
* Session is not offloaded yet. Let SCSI-ml retry
* the command.
*/
rc = SCSI_MLQUEUE_TARGET_BUSY;
goto exit_qcmd;
}
atomic_inc(&fcport->ios_to_queue);
if (fcport->retry_delay_timestamp) {
if (time_after(jiffies, fcport->retry_delay_timestamp)) {
fcport->retry_delay_timestamp = 0;
} else {
/* If retry_delay timer is active, flow off the ML */
rc = SCSI_MLQUEUE_TARGET_BUSY;
atomic_dec(&fcport->ios_to_queue);
goto exit_qcmd;
}
}
io_req = qedf_alloc_cmd(fcport, QEDF_SCSI_CMD);
if (!io_req) {
rc = SCSI_MLQUEUE_HOST_BUSY;
atomic_dec(&fcport->ios_to_queue);
goto exit_qcmd;
}
io_req->sc_cmd = sc_cmd;
/* Take fcport->rport_lock for posting to fcport send queue */
spin_lock_irqsave(&fcport->rport_lock, flags);
if (qedf_post_io_req(fcport, io_req)) {
QEDF_WARN(&(qedf->dbg_ctx), "Unable to post io_req\n");
/* Return SQE to pool */
atomic_inc(&fcport->free_sqes);
rc = SCSI_MLQUEUE_HOST_BUSY;
}
spin_unlock_irqrestore(&fcport->rport_lock, flags);
atomic_dec(&fcport->ios_to_queue);
exit_qcmd:
return rc;
}
static void qedf_parse_fcp_rsp(struct qedf_ioreq *io_req,
struct fcoe_cqe_rsp_info *fcp_rsp)
{
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct qedf_ctx *qedf = io_req->fcport->qedf;
u8 rsp_flags = fcp_rsp->rsp_flags.flags;
int fcp_sns_len = 0;
int fcp_rsp_len = 0;
uint8_t *rsp_info, *sense_data;
io_req->fcp_status = FC_GOOD;
io_req->fcp_resid = 0;
if (rsp_flags & (FCOE_FCP_RSP_FLAGS_FCP_RESID_OVER |
FCOE_FCP_RSP_FLAGS_FCP_RESID_UNDER))
io_req->fcp_resid = fcp_rsp->fcp_resid;
io_req->scsi_comp_flags = rsp_flags;
CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status =
fcp_rsp->scsi_status_code;
if (rsp_flags &
FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID)
fcp_rsp_len = fcp_rsp->fcp_rsp_len;
if (rsp_flags &
FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID)
fcp_sns_len = fcp_rsp->fcp_sns_len;
io_req->fcp_rsp_len = fcp_rsp_len;
io_req->fcp_sns_len = fcp_sns_len;
rsp_info = sense_data = io_req->sense_buffer;
/* fetch fcp_rsp_code */
if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) {
/* Only for task management function */
io_req->fcp_rsp_code = rsp_info[3];
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"fcp_rsp_code = %d\n", io_req->fcp_rsp_code);
/* Adjust sense-data location. */
sense_data += fcp_rsp_len;
}
if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Truncating sense buffer\n");
fcp_sns_len = SCSI_SENSE_BUFFERSIZE;
}
/* The sense buffer can be NULL for TMF commands */
if (sc_cmd->sense_buffer) {
memset(sc_cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
if (fcp_sns_len)
memcpy(sc_cmd->sense_buffer, sense_data,
fcp_sns_len);
}
}
static void qedf_unmap_sg_list(struct qedf_ctx *qedf, struct qedf_ioreq *io_req)
{
struct scsi_cmnd *sc = io_req->sc_cmd;
if (io_req->bd_tbl->bd_valid && sc && scsi_sg_count(sc)) {
dma_unmap_sg(&qedf->pdev->dev, scsi_sglist(sc),
scsi_sg_count(sc), sc->sc_data_direction);
io_req->bd_tbl->bd_valid = 0;
}
}
void qedf_scsi_completion(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
struct qedf_ioreq *io_req)
{
u16 xid;
struct e4_fcoe_task_context *task_ctx;
struct scsi_cmnd *sc_cmd;
struct fcoe_cqe_rsp_info *fcp_rsp;
struct qedf_rport *fcport;
int refcount;
u16 scope, qualifier = 0;
u8 fw_residual_flag = 0;
if (!io_req)
return;
if (!cqe)
return;
if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags) ||
test_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags) ||
test_bit(QEDF_CMD_IN_ABORT, &io_req->flags)) {
QEDF_ERR(&qedf->dbg_ctx,
"io_req xid=0x%x already in cleanup or abort processing or already completed.\n",
io_req->xid);
return;
}
xid = io_req->xid;
task_ctx = qedf_get_task_mem(&qedf->tasks, xid);
sc_cmd = io_req->sc_cmd;
fcp_rsp = &cqe->cqe_info.rsp_info;
if (!sc_cmd) {
QEDF_WARN(&(qedf->dbg_ctx), "sc_cmd is NULL!\n");
return;
}
if (!sc_cmd->SCp.ptr) {
QEDF_WARN(&(qedf->dbg_ctx), "SCp.ptr is NULL, returned in "
"another context.\n");
return;
}
if (!sc_cmd->device) {
QEDF_ERR(&qedf->dbg_ctx,
"Device for sc_cmd %p is NULL.\n", sc_cmd);
return;
}
if (!sc_cmd->request) {
QEDF_WARN(&(qedf->dbg_ctx), "sc_cmd->request is NULL, "
"sc_cmd=%p.\n", sc_cmd);
return;
}
if (!sc_cmd->request->q) {
QEDF_WARN(&(qedf->dbg_ctx), "request->q is NULL so request "
"is not valid, sc_cmd=%p.\n", sc_cmd);
return;
}
fcport = io_req->fcport;
/*
* When flush is active, let the cmds be completed from the cleanup
* context
*/
if (test_bit(QEDF_RPORT_IN_TARGET_RESET, &fcport->flags) ||
(test_bit(QEDF_RPORT_IN_LUN_RESET, &fcport->flags) &&
sc_cmd->device->lun == (u64)fcport->lun_reset_lun)) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Dropping good completion xid=0x%x as fcport is flushing",
io_req->xid);
return;
}
qedf_parse_fcp_rsp(io_req, fcp_rsp);
qedf_unmap_sg_list(qedf, io_req);
/* Check for FCP transport error */
if (io_req->fcp_rsp_len > 3 && io_req->fcp_rsp_code) {
QEDF_ERR(&(qedf->dbg_ctx),
"FCP I/O protocol failure xid=0x%x fcp_rsp_len=%d "
"fcp_rsp_code=%d.\n", io_req->xid, io_req->fcp_rsp_len,
io_req->fcp_rsp_code);
sc_cmd->result = DID_BUS_BUSY << 16;
goto out;
}
fw_residual_flag = GET_FIELD(cqe->cqe_info.rsp_info.fw_error_flags,
FCOE_CQE_RSP_INFO_FW_UNDERRUN);
if (fw_residual_flag) {
QEDF_ERR(&(qedf->dbg_ctx),
"Firmware detected underrun: xid=0x%x fcp_rsp.flags=0x%02x "
"fcp_resid=%d fw_residual=0x%x.\n", io_req->xid,
fcp_rsp->rsp_flags.flags, io_req->fcp_resid,
cqe->cqe_info.rsp_info.fw_residual);
if (io_req->cdb_status == 0)
sc_cmd->result = (DID_ERROR << 16) | io_req->cdb_status;
else
sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
/*
* Set resid to the whole buffer length so we won't try to resue
* any previously data.
*/
scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
goto out;
}
switch (io_req->fcp_status) {
case FC_GOOD:
if (io_req->cdb_status == 0) {
/* Good I/O completion */
sc_cmd->result = DID_OK << 16;
} else {
refcount = kref_read(&io_req->refcount);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"%d:0:%d:%lld xid=0x%0x op=0x%02x "
"lba=%02x%02x%02x%02x cdb_status=%d "
"fcp_resid=0x%x refcount=%d.\n",
qedf->lport->host->host_no, sc_cmd->device->id,
sc_cmd->device->lun, io_req->xid,
sc_cmd->cmnd[0], sc_cmd->cmnd[2], sc_cmd->cmnd[3],
sc_cmd->cmnd[4], sc_cmd->cmnd[5],
io_req->cdb_status, io_req->fcp_resid,
refcount);
sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL ||
io_req->cdb_status == SAM_STAT_BUSY) {
/*
* Check whether we need to set retry_delay at
* all based on retry_delay module parameter
* and the status qualifier.
*/
/* Upper 2 bits */
scope = fcp_rsp->retry_delay_timer & 0xC000;
/* Lower 14 bits */
qualifier = fcp_rsp->retry_delay_timer & 0x3FFF;
if (qedf_retry_delay &&
scope > 0 && qualifier > 0 &&
qualifier <= 0x3FEF) {
/* Check we don't go over the max */
if (qualifier > QEDF_RETRY_DELAY_MAX)
qualifier =
QEDF_RETRY_DELAY_MAX;
fcport->retry_delay_timestamp =
jiffies + (qualifier * HZ / 10);
}
/* Record stats */
if (io_req->cdb_status ==
SAM_STAT_TASK_SET_FULL)
qedf->task_set_fulls++;
else
qedf->busy++;
}
}
if (io_req->fcp_resid)
scsi_set_resid(sc_cmd, io_req->fcp_resid);
break;
default:
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "fcp_status=%d.\n",
io_req->fcp_status);
break;
}
out:
if (qedf_io_tracing)
qedf_trace_io(fcport, io_req, QEDF_IO_TRACE_RSP);
/*
* We wait till the end of the function to clear the
* outstanding bit in case we need to send an abort
*/
clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
io_req->sc_cmd = NULL;
sc_cmd->SCp.ptr = NULL;
sc_cmd->scsi_done(sc_cmd);
kref_put(&io_req->refcount, qedf_release_cmd);
}
/* Return a SCSI command in some other context besides a normal completion */
void qedf_scsi_done(struct qedf_ctx *qedf, struct qedf_ioreq *io_req,
int result)
{
u16 xid;
struct scsi_cmnd *sc_cmd;
int refcount;
if (!io_req)
return;
if (test_and_set_bit(QEDF_CMD_ERR_SCSI_DONE, &io_req->flags)) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"io_req:%p scsi_done handling already done\n",
io_req);
return;
}
/*
* We will be done with this command after this call so clear the
* outstanding bit.
*/
clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
xid = io_req->xid;
sc_cmd = io_req->sc_cmd;
if (!sc_cmd) {
QEDF_WARN(&(qedf->dbg_ctx), "sc_cmd is NULL!\n");
return;
}
if (!virt_addr_valid(sc_cmd)) {
QEDF_ERR(&qedf->dbg_ctx, "sc_cmd=%p is not valid.", sc_cmd);
goto bad_scsi_ptr;
}
if (!sc_cmd->SCp.ptr) {
QEDF_WARN(&(qedf->dbg_ctx), "SCp.ptr is NULL, returned in "
"another context.\n");
return;
}
if (!sc_cmd->device) {
QEDF_ERR(&qedf->dbg_ctx, "Device for sc_cmd %p is NULL.\n",
sc_cmd);
goto bad_scsi_ptr;
}
if (!virt_addr_valid(sc_cmd->device)) {
QEDF_ERR(&qedf->dbg_ctx,
"Device pointer for sc_cmd %p is bad.\n", sc_cmd);
goto bad_scsi_ptr;
}
if (!sc_cmd->sense_buffer) {
QEDF_ERR(&qedf->dbg_ctx,
"sc_cmd->sense_buffer for sc_cmd %p is NULL.\n",
sc_cmd);
goto bad_scsi_ptr;
}
if (!virt_addr_valid(sc_cmd->sense_buffer)) {
QEDF_ERR(&qedf->dbg_ctx,
"sc_cmd->sense_buffer for sc_cmd %p is bad.\n",
sc_cmd);
goto bad_scsi_ptr;
}
if (!sc_cmd->scsi_done) {
QEDF_ERR(&qedf->dbg_ctx,
"sc_cmd->scsi_done for sc_cmd %p is NULL.\n",
sc_cmd);
goto bad_scsi_ptr;
}
qedf_unmap_sg_list(qedf, io_req);
sc_cmd->result = result << 16;
refcount = kref_read(&io_req->refcount);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "%d:0:%d:%lld: Completing "
"sc_cmd=%p result=0x%08x op=0x%02x lba=0x%02x%02x%02x%02x, "
"allowed=%d retries=%d refcount=%d.\n",
qedf->lport->host->host_no, sc_cmd->device->id,
sc_cmd->device->lun, sc_cmd, sc_cmd->result, sc_cmd->cmnd[0],
sc_cmd->cmnd[2], sc_cmd->cmnd[3], sc_cmd->cmnd[4],
sc_cmd->cmnd[5], sc_cmd->allowed, sc_cmd->retries,
refcount);
/*
* Set resid to the whole buffer length so we won't try to resue any
* previously read data
*/
scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
if (qedf_io_tracing)
qedf_trace_io(io_req->fcport, io_req, QEDF_IO_TRACE_RSP);
io_req->sc_cmd = NULL;
sc_cmd->SCp.ptr = NULL;
sc_cmd->scsi_done(sc_cmd);
kref_put(&io_req->refcount, qedf_release_cmd);
return;
bad_scsi_ptr:
/*
* Clear the io_req->sc_cmd backpointer so we don't try to process
* this again
*/
io_req->sc_cmd = NULL;
kref_put(&io_req->refcount, qedf_release_cmd); /* ID: 001 */
}
/*
* Handle warning type CQE completions. This is mainly used for REC timer
* popping.
*/
void qedf_process_warning_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
struct qedf_ioreq *io_req)
{
int rval, i;
struct qedf_rport *fcport = io_req->fcport;
u64 err_warn_bit_map;
u8 err_warn = 0xff;
if (!cqe)
return;
QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "Warning CQE, "
"xid=0x%x\n", io_req->xid);
QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx),
"err_warn_bitmap=%08x:%08x\n",
le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_hi),
le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_lo));
QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "tx_buff_off=%08x, "
"rx_buff_off=%08x, rx_id=%04x\n",
le32_to_cpu(cqe->cqe_info.err_info.tx_buf_off),
le32_to_cpu(cqe->cqe_info.err_info.rx_buf_off),
le32_to_cpu(cqe->cqe_info.err_info.rx_id));
/* Normalize the error bitmap value to an just an unsigned int */
err_warn_bit_map = (u64)
((u64)cqe->cqe_info.err_info.err_warn_bitmap_hi << 32) |
(u64)cqe->cqe_info.err_info.err_warn_bitmap_lo;
for (i = 0; i < 64; i++) {
if (err_warn_bit_map & (u64)((u64)1 << i)) {
err_warn = i;
break;
}
}
/* Check if REC TOV expired if this is a tape device */
if (fcport->dev_type == QEDF_RPORT_TYPE_TAPE) {
if (err_warn ==
FCOE_WARNING_CODE_REC_TOV_TIMER_EXPIRATION) {
QEDF_ERR(&(qedf->dbg_ctx), "REC timer expired.\n");
if (!test_bit(QEDF_CMD_SRR_SENT, &io_req->flags)) {
io_req->rx_buf_off =
cqe->cqe_info.err_info.rx_buf_off;
io_req->tx_buf_off =
cqe->cqe_info.err_info.tx_buf_off;
io_req->rx_id = cqe->cqe_info.err_info.rx_id;
rval = qedf_send_rec(io_req);
/*
* We only want to abort the io_req if we
* can't queue the REC command as we want to
* keep the exchange open for recovery.
*/
if (rval)
goto send_abort;
}
return;
}
}
send_abort:
init_completion(&io_req->abts_done);
rval = qedf_initiate_abts(io_req, true);
if (rval)
QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n");
}
/* Cleanup a command when we receive an error detection completion */
void qedf_process_error_detect(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
struct qedf_ioreq *io_req)
{
int rval;
if (!cqe)
return;
QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "Error detection CQE, "
"xid=0x%x\n", io_req->xid);
QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx),
"err_warn_bitmap=%08x:%08x\n",
le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_hi),
le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_lo));
QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "tx_buff_off=%08x, "
"rx_buff_off=%08x, rx_id=%04x\n",
le32_to_cpu(cqe->cqe_info.err_info.tx_buf_off),
le32_to_cpu(cqe->cqe_info.err_info.rx_buf_off),
le32_to_cpu(cqe->cqe_info.err_info.rx_id));
if (qedf->stop_io_on_error) {
qedf_stop_all_io(qedf);
return;
}
init_completion(&io_req->abts_done);
rval = qedf_initiate_abts(io_req, true);
if (rval)
QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n");
}
static void qedf_flush_els_req(struct qedf_ctx *qedf,
struct qedf_ioreq *els_req)
{
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Flushing ELS request xid=0x%x refcount=%d.\n", els_req->xid,
kref_read(&els_req->refcount));
/*
* Need to distinguish this from a timeout when calling the
* els_req->cb_func.
*/
els_req->event = QEDF_IOREQ_EV_ELS_FLUSH;
/* Cancel the timer */
cancel_delayed_work_sync(&els_req->timeout_work);
/* Call callback function to complete command */
if (els_req->cb_func && els_req->cb_arg) {
els_req->cb_func(els_req->cb_arg);
els_req->cb_arg = NULL;
}
/* Release kref for original initiate_els */
kref_put(&els_req->refcount, qedf_release_cmd);
}
/* A value of -1 for lun is a wild card that means flush all
* active SCSI I/Os for the target.
*/
void qedf_flush_active_ios(struct qedf_rport *fcport, int lun)
{
struct qedf_ioreq *io_req;
struct qedf_ctx *qedf;
struct qedf_cmd_mgr *cmd_mgr;
int i, rc;
unsigned long flags;
int flush_cnt = 0;
int wait_cnt = 100;
int refcount = 0;
if (!fcport)
return;
/* Check that fcport is still offloaded */
if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
QEDF_ERR(NULL, "fcport is no longer offloaded.\n");
return;
}
qedf = fcport->qedf;
if (!qedf) {
QEDF_ERR(NULL, "qedf is NULL.\n");
return;
}
/* Only wait for all commands to be queued in the Upload context */
if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags) &&
(lun == -1)) {
while (atomic_read(&fcport->ios_to_queue)) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Waiting for %d I/Os to be queued\n",
atomic_read(&fcport->ios_to_queue));
if (wait_cnt == 0) {
QEDF_ERR(NULL,
"%d IOs request could not be queued\n",
atomic_read(&fcport->ios_to_queue));
}
msleep(20);
wait_cnt--;
}
}
cmd_mgr = qedf->cmd_mgr;
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Flush active i/o's num=0x%x fcport=0x%p port_id=0x%06x scsi_id=%d.\n",
atomic_read(&fcport->num_active_ios), fcport,
fcport->rdata->ids.port_id, fcport->rport->scsi_target_id);
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Locking flush mutex.\n");
mutex_lock(&qedf->flush_mutex);
if (lun == -1) {
set_bit(QEDF_RPORT_IN_TARGET_RESET, &fcport->flags);
} else {
set_bit(QEDF_RPORT_IN_LUN_RESET, &fcport->flags);
fcport->lun_reset_lun = lun;
}
for (i = 0; i < FCOE_PARAMS_NUM_TASKS; i++) {
io_req = &cmd_mgr->cmds[i];
if (!io_req)
continue;
if (!io_req->fcport)
continue;
spin_lock_irqsave(&cmd_mgr->lock, flags);
if (io_req->alloc) {
if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags)) {
if (io_req->cmd_type == QEDF_SCSI_CMD)
QEDF_ERR(&qedf->dbg_ctx,
"Allocated but not queued, xid=0x%x\n",
io_req->xid);
}
spin_unlock_irqrestore(&cmd_mgr->lock, flags);
} else {
spin_unlock_irqrestore(&cmd_mgr->lock, flags);
continue;
}
if (io_req->fcport != fcport)
continue;
/* In case of ABTS, CMD_OUTSTANDING is cleared on ABTS response,
* but RRQ is still pending.
* Workaround: Within qedf_send_rrq, we check if the fcport is
* NULL, and we drop the ref on the io_req to clean it up.
*/
if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags)) {
refcount = kref_read(&io_req->refcount);
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Not outstanding, xid=0x%x, cmd_type=%d refcount=%d.\n",
io_req->xid, io_req->cmd_type, refcount);
/* If RRQ work has been queue, try to cancel it and
* free the io_req
*/
if (atomic_read(&io_req->state) ==
QEDFC_CMD_ST_RRQ_WAIT) {
if (cancel_delayed_work_sync
(&io_req->rrq_work)) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Putting reference for pending RRQ work xid=0x%x.\n",
io_req->xid);
/* ID: 003 */
kref_put(&io_req->refcount,
qedf_release_cmd);
}
}
continue;
}
/* Only consider flushing ELS during target reset */
if (io_req->cmd_type == QEDF_ELS &&
lun == -1) {
rc = kref_get_unless_zero(&io_req->refcount);
if (!rc) {
QEDF_ERR(&(qedf->dbg_ctx),
"Could not get kref for ELS io_req=0x%p xid=0x%x.\n",
io_req, io_req->xid);
continue;
}
flush_cnt++;
qedf_flush_els_req(qedf, io_req);
/*
* Release the kref and go back to the top of the
* loop.
*/
goto free_cmd;
}
if (io_req->cmd_type == QEDF_ABTS) {
/* ID: 004 */
rc = kref_get_unless_zero(&io_req->refcount);
if (!rc) {
QEDF_ERR(&(qedf->dbg_ctx),
"Could not get kref for abort io_req=0x%p xid=0x%x.\n",
io_req, io_req->xid);
continue;
}
if (lun != -1 && io_req->lun != lun)
goto free_cmd;
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Flushing abort xid=0x%x.\n", io_req->xid);
if (cancel_delayed_work_sync(&io_req->rrq_work)) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Putting ref for cancelled RRQ work xid=0x%x.\n",
io_req->xid);
kref_put(&io_req->refcount, qedf_release_cmd);
}
if (cancel_delayed_work_sync(&io_req->timeout_work)) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Putting ref for cancelled tmo work xid=0x%x.\n",
io_req->xid);
qedf_initiate_cleanup(io_req, true);
/* Notify eh_abort handler that ABTS is
* complete
*/
complete(&io_req->abts_done);
clear_bit(QEDF_CMD_IN_ABORT, &io_req->flags);
/* ID: 002 */
kref_put(&io_req->refcount, qedf_release_cmd);
}
flush_cnt++;
goto free_cmd;
}
if (!io_req->sc_cmd)
continue;
if (!io_req->sc_cmd->device) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Device backpointer NULL for sc_cmd=%p.\n",
io_req->sc_cmd);
/* Put reference for non-existent scsi_cmnd */
io_req->sc_cmd = NULL;
qedf_initiate_cleanup(io_req, false);
kref_put(&io_req->refcount, qedf_release_cmd);
continue;
}
if (lun > -1) {
if (io_req->lun != lun)
continue;
}
/*
* Use kref_get_unless_zero in the unlikely case the command
* we're about to flush was completed in the normal SCSI path
*/
rc = kref_get_unless_zero(&io_req->refcount);
if (!rc) {
QEDF_ERR(&(qedf->dbg_ctx), "Could not get kref for "
"io_req=0x%p xid=0x%x\n", io_req, io_req->xid);
continue;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Cleanup xid=0x%x.\n", io_req->xid);
flush_cnt++;
/* Cleanup task and return I/O mid-layer */
qedf_initiate_cleanup(io_req, true);
free_cmd:
kref_put(&io_req->refcount, qedf_release_cmd); /* ID: 004 */
}
wait_cnt = 60;
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Flushed 0x%x I/Os, active=0x%x.\n",
flush_cnt, atomic_read(&fcport->num_active_ios));
/* Only wait for all commands to complete in the Upload context */
if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags) &&
(lun == -1)) {
while (atomic_read(&fcport->num_active_ios)) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Flushed 0x%x I/Os, active=0x%x cnt=%d.\n",
flush_cnt,
atomic_read(&fcport->num_active_ios),
wait_cnt);
if (wait_cnt == 0) {
QEDF_ERR(&qedf->dbg_ctx,
"Flushed %d I/Os, active=%d.\n",
flush_cnt,
atomic_read(&fcport->num_active_ios));
for (i = 0; i < FCOE_PARAMS_NUM_TASKS; i++) {
io_req = &cmd_mgr->cmds[i];
if (io_req->fcport &&
io_req->fcport == fcport) {
refcount =
kref_read(&io_req->refcount);
set_bit(QEDF_CMD_DIRTY,
&io_req->flags);
QEDF_ERR(&qedf->dbg_ctx,
"Outstanding io_req =%p xid=0x%x flags=0x%lx, sc_cmd=%p refcount=%d cmd_type=%d.\n",
io_req, io_req->xid,
io_req->flags,
io_req->sc_cmd,
refcount,
io_req->cmd_type);
}
}
WARN_ON(1);
break;
}
msleep(500);
wait_cnt--;
}
}
clear_bit(QEDF_RPORT_IN_LUN_RESET, &fcport->flags);
clear_bit(QEDF_RPORT_IN_TARGET_RESET, &fcport->flags);
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Unlocking flush mutex.\n");
mutex_unlock(&qedf->flush_mutex);
}
/*
* Initiate a ABTS middle path command. Note that we don't have to initialize
* the task context for an ABTS task.
*/
int qedf_initiate_abts(struct qedf_ioreq *io_req, bool return_scsi_cmd_on_abts)
{
struct fc_lport *lport;
struct qedf_rport *fcport = io_req->fcport;
struct fc_rport_priv *rdata;
struct qedf_ctx *qedf;
u16 xid;
u32 r_a_tov = 0;
int rc = 0;
unsigned long flags;
struct fcoe_wqe *sqe;
u16 sqe_idx;
int refcount = 0;
/* Sanity check qedf_rport before dereferencing any pointers */
if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
QEDF_ERR(NULL, "tgt not offloaded\n");
rc = 1;
goto out;
}
qedf = fcport->qedf;
rdata = fcport->rdata;
if (!rdata || !kref_get_unless_zero(&rdata->kref)) {
QEDF_ERR(&qedf->dbg_ctx, "stale rport\n");
rc = 1;
goto out;
}
r_a_tov = rdata->r_a_tov;
lport = qedf->lport;
if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
QEDF_ERR(&(qedf->dbg_ctx), "link is not ready\n");
rc = 1;
goto drop_rdata_kref;
}
if (atomic_read(&qedf->link_down_tmo_valid) > 0) {
QEDF_ERR(&(qedf->dbg_ctx), "link_down_tmo active.\n");
rc = 1;
goto drop_rdata_kref;
}
/* Ensure room on SQ */
if (!atomic_read(&fcport->free_sqes)) {
QEDF_ERR(&(qedf->dbg_ctx), "No SQ entries available\n");
rc = 1;
goto drop_rdata_kref;
}
if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) {
QEDF_ERR(&qedf->dbg_ctx, "fcport is uploading.\n");
rc = 1;
goto drop_rdata_kref;
}
if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags) ||
test_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags) ||
test_bit(QEDF_CMD_IN_ABORT, &io_req->flags)) {
QEDF_ERR(&(qedf->dbg_ctx), "io_req xid=0x%x already in "
"cleanup or abort processing or already "
"completed.\n", io_req->xid);
rc = 1;
goto drop_rdata_kref;
}
kref_get(&io_req->refcount);
xid = io_req->xid;
qedf->control_requests++;
qedf->packet_aborts++;
/* Set the command type to abort */
io_req->cmd_type = QEDF_ABTS;
io_req->return_scsi_cmd_on_abts = return_scsi_cmd_on_abts;
set_bit(QEDF_CMD_IN_ABORT, &io_req->flags);
refcount = kref_read(&io_req->refcount);
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_SCSI_TM,
"ABTS io_req xid = 0x%x refcount=%d\n",
xid, refcount);
qedf_cmd_timer_set(qedf, io_req, QEDF_ABORT_TIMEOUT);
spin_lock_irqsave(&fcport->rport_lock, flags);
sqe_idx = qedf_get_sqe_idx(fcport);
sqe = &fcport->sq[sqe_idx];
memset(sqe, 0, sizeof(struct fcoe_wqe));
io_req->task_params->sqe = sqe;
init_initiator_abort_fcoe_task(io_req->task_params);
qedf_ring_doorbell(fcport);
spin_unlock_irqrestore(&fcport->rport_lock, flags);
drop_rdata_kref:
kref_put(&rdata->kref, fc_rport_destroy);
out:
return rc;
}
void qedf_process_abts_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
struct qedf_ioreq *io_req)
{
uint32_t r_ctl;
uint16_t xid;
int rc;
struct qedf_rport *fcport = io_req->fcport;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "Entered with xid = "
"0x%x cmd_type = %d\n", io_req->xid, io_req->cmd_type);
xid = io_req->xid;
r_ctl = cqe->cqe_info.abts_info.r_ctl;
/* This was added at a point when we were scheduling abts_compl &
* cleanup_compl on different CPUs and there was a possibility of
* the io_req to be freed from the other context before we got here.
*/
if (!fcport) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Dropping ABTS completion xid=0x%x as fcport is NULL",
io_req->xid);
return;
}
/*
* When flush is active, let the cmds be completed from the cleanup
* context
*/
if (test_bit(QEDF_RPORT_IN_TARGET_RESET, &fcport->flags) ||
test_bit(QEDF_RPORT_IN_LUN_RESET, &fcport->flags)) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Dropping ABTS completion xid=0x%x as fcport is flushing",
io_req->xid);
return;
}
if (!cancel_delayed_work(&io_req->timeout_work)) {
QEDF_ERR(&qedf->dbg_ctx,
"Wasn't able to cancel abts timeout work.\n");
}
switch (r_ctl) {
case FC_RCTL_BA_ACC:
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM,
"ABTS response - ACC Send RRQ after R_A_TOV\n");
io_req->event = QEDF_IOREQ_EV_ABORT_SUCCESS;
rc = kref_get_unless_zero(&io_req->refcount); /* ID: 003 */
if (!rc) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_SCSI_TM,
"kref is already zero so ABTS was already completed or flushed xid=0x%x.\n",
io_req->xid);
return;
}
/*
* Dont release this cmd yet. It will be relesed
* after we get RRQ response
*/
queue_delayed_work(qedf->dpc_wq, &io_req->rrq_work,
msecs_to_jiffies(qedf->lport->r_a_tov));
atomic_set(&io_req->state, QEDFC_CMD_ST_RRQ_WAIT);
break;
/* For error cases let the cleanup return the command */
case FC_RCTL_BA_RJT:
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM,
"ABTS response - RJT\n");
io_req->event = QEDF_IOREQ_EV_ABORT_FAILED;
break;
default:
QEDF_ERR(&(qedf->dbg_ctx), "Unknown ABTS response\n");
break;
}
clear_bit(QEDF_CMD_IN_ABORT, &io_req->flags);
if (io_req->sc_cmd) {
if (io_req->return_scsi_cmd_on_abts)
qedf_scsi_done(qedf, io_req, DID_ERROR);
}
/* Notify eh_abort handler that ABTS is complete */
complete(&io_req->abts_done);
kref_put(&io_req->refcount, qedf_release_cmd);
}
int qedf_init_mp_req(struct qedf_ioreq *io_req)
{
struct qedf_mp_req *mp_req;
struct scsi_sge *mp_req_bd;
struct scsi_sge *mp_resp_bd;
struct qedf_ctx *qedf = io_req->fcport->qedf;
dma_addr_t addr;
uint64_t sz;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_MP_REQ, "Entered.\n");
mp_req = (struct qedf_mp_req *)&(io_req->mp_req);
memset(mp_req, 0, sizeof(struct qedf_mp_req));
if (io_req->cmd_type != QEDF_ELS) {
mp_req->req_len = sizeof(struct fcp_cmnd);
io_req->data_xfer_len = mp_req->req_len;
} else
mp_req->req_len = io_req->data_xfer_len;
mp_req->req_buf = dma_alloc_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE,
&mp_req->req_buf_dma, GFP_KERNEL);
if (!mp_req->req_buf) {
QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc MP req buffer\n");
qedf_free_mp_resc(io_req);
return -ENOMEM;
}
mp_req->resp_buf = dma_alloc_coherent(&qedf->pdev->dev,
QEDF_PAGE_SIZE, &mp_req->resp_buf_dma, GFP_KERNEL);
if (!mp_req->resp_buf) {
QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc TM resp "
"buffer\n");
qedf_free_mp_resc(io_req);
return -ENOMEM;
}
/* Allocate and map mp_req_bd and mp_resp_bd */
sz = sizeof(struct scsi_sge);
mp_req->mp_req_bd = dma_alloc_coherent(&qedf->pdev->dev, sz,
&mp_req->mp_req_bd_dma, GFP_KERNEL);
if (!mp_req->mp_req_bd) {
QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc MP req bd\n");
qedf_free_mp_resc(io_req);
return -ENOMEM;
}
mp_req->mp_resp_bd = dma_alloc_coherent(&qedf->pdev->dev, sz,
&mp_req->mp_resp_bd_dma, GFP_KERNEL);
if (!mp_req->mp_resp_bd) {
QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc MP resp bd\n");
qedf_free_mp_resc(io_req);
return -ENOMEM;
}
/* Fill bd table */
addr = mp_req->req_buf_dma;
mp_req_bd = mp_req->mp_req_bd;
mp_req_bd->sge_addr.lo = U64_LO(addr);
mp_req_bd->sge_addr.hi = U64_HI(addr);
mp_req_bd->sge_len = QEDF_PAGE_SIZE;
/*
* MP buffer is either a task mgmt command or an ELS.
* So the assumption is that it consumes a single bd
* entry in the bd table
*/
mp_resp_bd = mp_req->mp_resp_bd;
addr = mp_req->resp_buf_dma;
mp_resp_bd->sge_addr.lo = U64_LO(addr);
mp_resp_bd->sge_addr.hi = U64_HI(addr);
mp_resp_bd->sge_len = QEDF_PAGE_SIZE;
return 0;
}
/*
* Last ditch effort to clear the port if it's stuck. Used only after a
* cleanup task times out.
*/
static void qedf_drain_request(struct qedf_ctx *qedf)
{
if (test_bit(QEDF_DRAIN_ACTIVE, &qedf->flags)) {
QEDF_ERR(&(qedf->dbg_ctx), "MCP drain already active.\n");
return;
}
/* Set bit to return all queuecommand requests as busy */
set_bit(QEDF_DRAIN_ACTIVE, &qedf->flags);
/* Call qed drain request for function. Should be synchronous */
qed_ops->common->drain(qedf->cdev);
/* Settle time for CQEs to be returned */
msleep(100);
/* Unplug and continue */
clear_bit(QEDF_DRAIN_ACTIVE, &qedf->flags);
}
/*
* Returns SUCCESS if the cleanup task does not timeout, otherwise return
* FAILURE.
*/
int qedf_initiate_cleanup(struct qedf_ioreq *io_req,
bool return_scsi_cmd_on_abts)
{
struct qedf_rport *fcport;
struct qedf_ctx *qedf;
uint16_t xid;
struct e4_fcoe_task_context *task;
int tmo = 0;
int rc = SUCCESS;
unsigned long flags;
struct fcoe_wqe *sqe;
u16 sqe_idx;
int refcount = 0;
fcport = io_req->fcport;
if (!fcport) {
QEDF_ERR(NULL, "fcport is NULL.\n");
return SUCCESS;
}
/* Sanity check qedf_rport before dereferencing any pointers */
if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
QEDF_ERR(NULL, "tgt not offloaded\n");
rc = 1;
return SUCCESS;
}
qedf = fcport->qedf;
if (!qedf) {
QEDF_ERR(NULL, "qedf is NULL.\n");
return SUCCESS;
}
if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags) ||
test_and_set_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags)) {
QEDF_ERR(&(qedf->dbg_ctx), "io_req xid=0x%x already in "
"cleanup processing or already completed.\n",
io_req->xid);
return SUCCESS;
}
set_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags);
/* Ensure room on SQ */
if (!atomic_read(&fcport->free_sqes)) {
QEDF_ERR(&(qedf->dbg_ctx), "No SQ entries available\n");
/* Need to make sure we clear the flag since it was set */
clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags);
return FAILED;
}
if (io_req->cmd_type == QEDF_CLEANUP) {
QEDF_ERR(&qedf->dbg_ctx,
"io_req=0x%x is already a cleanup command cmd_type=%d.\n",
io_req->xid, io_req->cmd_type);
clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags);
return SUCCESS;
}
refcount = kref_read(&io_req->refcount);
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO,
"Entered xid=0x%x sc_cmd=%p cmd_type=%d flags=0x%lx refcount=%d\n",
io_req->xid, io_req->sc_cmd, io_req->cmd_type, io_req->flags,
refcount);
/* Cleanup cmds re-use the same TID as the original I/O */
xid = io_req->xid;
io_req->cmd_type = QEDF_CLEANUP;
io_req->return_scsi_cmd_on_abts = return_scsi_cmd_on_abts;
task = qedf_get_task_mem(&qedf->tasks, xid);
init_completion(&io_req->cleanup_done);
spin_lock_irqsave(&fcport->rport_lock, flags);
sqe_idx = qedf_get_sqe_idx(fcport);
sqe = &fcport->sq[sqe_idx];
memset(sqe, 0, sizeof(struct fcoe_wqe));
io_req->task_params->sqe = sqe;
init_initiator_cleanup_fcoe_task(io_req->task_params);
qedf_ring_doorbell(fcport);
spin_unlock_irqrestore(&fcport->rport_lock, flags);
tmo = wait_for_completion_timeout(&io_req->cleanup_done,
QEDF_CLEANUP_TIMEOUT * HZ);
if (!tmo) {
rc = FAILED;
/* Timeout case */
QEDF_ERR(&(qedf->dbg_ctx), "Cleanup command timeout, "
"xid=%x.\n", io_req->xid);
clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags);
/* Issue a drain request if cleanup task times out */
QEDF_ERR(&(qedf->dbg_ctx), "Issuing MCP drain request.\n");
qedf_drain_request(qedf);
}
/* If it TASK MGMT handle it, reference will be decreased
* in qedf_execute_tmf
*/
if (io_req->tm_flags == FCP_TMF_LUN_RESET ||
io_req->tm_flags == FCP_TMF_TGT_RESET) {
clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
io_req->sc_cmd = NULL;
complete(&io_req->tm_done);
}
if (io_req->sc_cmd) {
if (io_req->return_scsi_cmd_on_abts)
qedf_scsi_done(qedf, io_req, DID_ERROR);
}
if (rc == SUCCESS)
io_req->event = QEDF_IOREQ_EV_CLEANUP_SUCCESS;
else
io_req->event = QEDF_IOREQ_EV_CLEANUP_FAILED;
return rc;
}
void qedf_process_cleanup_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
struct qedf_ioreq *io_req)
{
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Entered xid = 0x%x\n",
io_req->xid);
clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags);
/* Complete so we can finish cleaning up the I/O */
complete(&io_req->cleanup_done);
}
static int qedf_execute_tmf(struct qedf_rport *fcport, struct scsi_cmnd *sc_cmd,
uint8_t tm_flags)
{
struct qedf_ioreq *io_req;
struct e4_fcoe_task_context *task;
struct qedf_ctx *qedf = fcport->qedf;
struct fc_lport *lport = qedf->lport;
int rc = 0;
uint16_t xid;
int tmo = 0;
int lun = 0;
unsigned long flags;
struct fcoe_wqe *sqe;
u16 sqe_idx;
struct fc_rport_priv *rdata = fcport->rdata;
if (!sc_cmd) {
QEDF_ERR(&(qedf->dbg_ctx), "invalid arg\n");
return FAILED;
}
lun = (int)sc_cmd->device->lun;
if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
QEDF_ERR(&(qedf->dbg_ctx), "fcport not offloaded\n");
rc = FAILED;
return FAILED;
}
if (!rdata || !kref_get_unless_zero(&rdata->kref)) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_SCSI_TM, "stale rport\n");
return FAILED;
}
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_SCSI_TM,
"portid = 0x%x tm_flags = %d\n",
rdata->ids.port_id, tm_flags);
io_req = qedf_alloc_cmd(fcport, QEDF_TASK_MGMT_CMD);
if (!io_req) {
QEDF_ERR(&(qedf->dbg_ctx), "Failed TMF");
rc = -EAGAIN;
goto reset_tmf_err;
}
if (tm_flags == FCP_TMF_LUN_RESET)
qedf->lun_resets++;
else if (tm_flags == FCP_TMF_TGT_RESET)
qedf->target_resets++;
/* Initialize rest of io_req fields */
io_req->sc_cmd = sc_cmd;
io_req->fcport = fcport;
io_req->cmd_type = QEDF_TASK_MGMT_CMD;
/* Record which cpu this request is associated with */
io_req->cpu = smp_processor_id();
/* Set TM flags */
io_req->io_req_flags = QEDF_READ;
io_req->data_xfer_len = 0;
io_req->tm_flags = tm_flags;
/* Default is to return a SCSI command when an error occurs */
io_req->return_scsi_cmd_on_abts = false;
/* Obtain exchange id */
xid = io_req->xid;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "TMF io_req xid = "
"0x%x\n", xid);
/* Initialize task context for this IO request */
task = qedf_get_task_mem(&qedf->tasks, xid);
init_completion(&io_req->tm_done);
spin_lock_irqsave(&fcport->rport_lock, flags);
sqe_idx = qedf_get_sqe_idx(fcport);
sqe = &fcport->sq[sqe_idx];
memset(sqe, 0, sizeof(struct fcoe_wqe));
qedf_init_task(fcport, lport, io_req, task, sqe);
qedf_ring_doorbell(fcport);
spin_unlock_irqrestore(&fcport->rport_lock, flags);
set_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
tmo = wait_for_completion_timeout(&io_req->tm_done,
QEDF_TM_TIMEOUT * HZ);
if (!tmo) {
rc = FAILED;
QEDF_ERR(&(qedf->dbg_ctx), "wait for tm_cmpl timeout!\n");
/* Clear outstanding bit since command timed out */
clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
io_req->sc_cmd = NULL;
} else {
/* Check TMF response code */
if (io_req->fcp_rsp_code == 0)
rc = SUCCESS;
else
rc = FAILED;
}
/*
* Double check that fcport has not gone into an uploading state before
* executing the command flush for the LUN/target.
*/
if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) {
QEDF_ERR(&qedf->dbg_ctx,
"fcport is uploading, not executing flush.\n");
goto no_flush;
}
/* We do not need this io_req any more */
kref_put(&io_req->refcount, qedf_release_cmd);
if (tm_flags == FCP_TMF_LUN_RESET)
qedf_flush_active_ios(fcport, lun);
else
qedf_flush_active_ios(fcport, -1);
no_flush:
if (rc != SUCCESS) {
QEDF_ERR(&(qedf->dbg_ctx), "task mgmt command failed...\n");
rc = FAILED;
} else {
QEDF_ERR(&(qedf->dbg_ctx), "task mgmt command success...\n");
rc = SUCCESS;
}
reset_tmf_err:
kref_put(&rdata->kref, fc_rport_destroy);
return rc;
}
int qedf_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags)
{
struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
struct fc_rport_libfc_priv *rp = rport->dd_data;
struct qedf_rport *fcport = (struct qedf_rport *)&rp[1];
struct qedf_ctx *qedf;
struct fc_lport *lport;
int rc = SUCCESS;
int rval;
struct qedf_ioreq *io_req = NULL;
int ref_cnt = 0;
struct fc_rport_priv *rdata = fcport->rdata;
QEDF_ERR(NULL,
"tm_flags 0x%x sc_cmd %p op = 0x%02x target_id = 0x%x lun=%d\n",
tm_flags, sc_cmd, sc_cmd->cmnd[0], rport->scsi_target_id,
(int)sc_cmd->device->lun);
if (!rdata || !kref_get_unless_zero(&rdata->kref)) {
QEDF_ERR(NULL, "stale rport\n");
return FAILED;
}
QEDF_ERR(NULL, "portid=%06x tm_flags =%s\n", rdata->ids.port_id,
(tm_flags == FCP_TMF_TGT_RESET) ? "TARGET RESET" :
"LUN RESET");
if (sc_cmd->SCp.ptr) {
io_req = (struct qedf_ioreq *)sc_cmd->SCp.ptr;
ref_cnt = kref_read(&io_req->refcount);
QEDF_ERR(NULL,
"orig io_req = %p xid = 0x%x ref_cnt = %d.\n",
io_req, io_req->xid, ref_cnt);
}
rval = fc_remote_port_chkready(rport);
if (rval) {
QEDF_ERR(NULL, "device_reset rport not ready\n");
rc = FAILED;
goto tmf_err;
}
rc = fc_block_scsi_eh(sc_cmd);
if (rc)
return rc;
if (!fcport) {
QEDF_ERR(NULL, "device_reset: rport is NULL\n");
rc = FAILED;
goto tmf_err;
}
qedf = fcport->qedf;
if (!qedf) {
QEDF_ERR(NULL, "qedf is NULL.\n");
rc = FAILED;
goto tmf_err;
}
lport = qedf->lport;
if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) {
QEDF_ERR(&qedf->dbg_ctx, "Connection is getting uploaded.\n");
rc = SUCCESS;
goto tmf_err;
}
if (test_bit(QEDF_UNLOADING, &qedf->flags) ||
test_bit(QEDF_DBG_STOP_IO, &qedf->flags)) {
rc = SUCCESS;
goto tmf_err;
}
if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
QEDF_ERR(&(qedf->dbg_ctx), "link is not ready\n");
rc = FAILED;
goto tmf_err;
}
if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) {
QEDF_ERR(&qedf->dbg_ctx, "fcport is uploading.\n");
rc = FAILED;
goto tmf_err;
}
rc = qedf_execute_tmf(fcport, sc_cmd, tm_flags);
tmf_err:
return rc;
}
void qedf_process_tmf_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
struct qedf_ioreq *io_req)
{
struct fcoe_cqe_rsp_info *fcp_rsp;
clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
fcp_rsp = &cqe->cqe_info.rsp_info;
qedf_parse_fcp_rsp(io_req, fcp_rsp);
io_req->sc_cmd = NULL;
complete(&io_req->tm_done);
}
void qedf_process_unsol_compl(struct qedf_ctx *qedf, uint16_t que_idx,
struct fcoe_cqe *cqe)
{
unsigned long flags;
uint16_t tmp;
uint16_t pktlen = cqe->cqe_info.unsolic_info.pkt_len;
u32 payload_len, crc;
struct fc_frame_header *fh;
struct fc_frame *fp;
struct qedf_io_work *io_work;
u32 bdq_idx;
void *bdq_addr;
struct scsi_bd *p_bd_info;
p_bd_info = &cqe->cqe_info.unsolic_info.bd_info;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_UNSOL,
"address.hi=%x, address.lo=%x, opaque_data.hi=%x, opaque_data.lo=%x, bdq_prod_idx=%u, len=%u\n",
le32_to_cpu(p_bd_info->address.hi),
le32_to_cpu(p_bd_info->address.lo),
le32_to_cpu(p_bd_info->opaque.fcoe_opaque.hi),
le32_to_cpu(p_bd_info->opaque.fcoe_opaque.lo),
qedf->bdq_prod_idx, pktlen);
bdq_idx = le32_to_cpu(p_bd_info->opaque.fcoe_opaque.lo);
if (bdq_idx >= QEDF_BDQ_SIZE) {
QEDF_ERR(&(qedf->dbg_ctx), "bdq_idx is out of range %d.\n",
bdq_idx);
goto increment_prod;
}
bdq_addr = qedf->bdq[bdq_idx].buf_addr;
if (!bdq_addr) {
QEDF_ERR(&(qedf->dbg_ctx), "bdq_addr is NULL, dropping "
"unsolicited packet.\n");
goto increment_prod;
}
if (qedf_dump_frames) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_UNSOL,
"BDQ frame is at addr=%p.\n", bdq_addr);
print_hex_dump(KERN_WARNING, "bdq ", DUMP_PREFIX_OFFSET, 16, 1,
(void *)bdq_addr, pktlen, false);
}
/* Allocate frame */
payload_len = pktlen - sizeof(struct fc_frame_header);
fp = fc_frame_alloc(qedf->lport, payload_len);
if (!fp) {
QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate fp.\n");
goto increment_prod;
}
/* Copy data from BDQ buffer into fc_frame struct */
fh = (struct fc_frame_header *)fc_frame_header_get(fp);
memcpy(fh, (void *)bdq_addr, pktlen);
/* Initialize the frame so libfc sees it as a valid frame */
crc = fcoe_fc_crc(fp);
fc_frame_init(fp);
fr_dev(fp) = qedf->lport;
fr_sof(fp) = FC_SOF_I3;
fr_eof(fp) = FC_EOF_T;
fr_crc(fp) = cpu_to_le32(~crc);
/*
* We need to return the frame back up to libfc in a non-atomic
* context
*/
io_work = mempool_alloc(qedf->io_mempool, GFP_ATOMIC);
if (!io_work) {
QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate "
"work for I/O completion.\n");
fc_frame_free(fp);
goto increment_prod;
}
memset(io_work, 0, sizeof(struct qedf_io_work));
INIT_WORK(&io_work->work, qedf_fp_io_handler);
/* Copy contents of CQE for deferred processing */
memcpy(&io_work->cqe, cqe, sizeof(struct fcoe_cqe));
io_work->qedf = qedf;
io_work->fp = fp;
queue_work_on(smp_processor_id(), qedf_io_wq, &io_work->work);
increment_prod:
spin_lock_irqsave(&qedf->hba_lock, flags);
/* Increment producer to let f/w know we've handled the frame */
qedf->bdq_prod_idx++;
/* Producer index wraps at uint16_t boundary */
if (qedf->bdq_prod_idx == 0xffff)
qedf->bdq_prod_idx = 0;
writew(qedf->bdq_prod_idx, qedf->bdq_primary_prod);
tmp = readw(qedf->bdq_primary_prod);
writew(qedf->bdq_prod_idx, qedf->bdq_secondary_prod);
tmp = readw(qedf->bdq_secondary_prod);
spin_unlock_irqrestore(&qedf->hba_lock, flags);
}