linux_dsm_epyc7002/drivers/s390/cio/qdio_main.c
Linus Torvalds 386403a115 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from David Miller:
 "Another merge window, another pull full of stuff:

   1) Support alternative names for network devices, from Jiri Pirko.

   2) Introduce per-netns netdev notifiers, also from Jiri Pirko.

   3) Support MSG_PEEK in vsock/virtio, from Matias Ezequiel Vara
      Larsen.

   4) Allow compiling out the TLS TOE code, from Jakub Kicinski.

   5) Add several new tracepoints to the kTLS code, also from Jakub.

   6) Support set channels ethtool callback in ena driver, from Sameeh
      Jubran.

   7) New SCTP events SCTP_ADDR_ADDED, SCTP_ADDR_REMOVED,
      SCTP_ADDR_MADE_PRIM, and SCTP_SEND_FAILED_EVENT. From Xin Long.

   8) Add XDP support to mvneta driver, from Lorenzo Bianconi.

   9) Lots of netfilter hw offload fixes, cleanups and enhancements,
      from Pablo Neira Ayuso.

  10) PTP support for aquantia chips, from Egor Pomozov.

  11) Add UDP segmentation offload support to igb, ixgbe, and i40e. From
      Josh Hunt.

  12) Add smart nagle to tipc, from Jon Maloy.

  13) Support L2 field rewrite by TC offloads in bnxt_en, from Venkat
      Duvvuru.

  14) Add a flow mask cache to OVS, from Tonghao Zhang.

  15) Add XDP support to ice driver, from Maciej Fijalkowski.

  16) Add AF_XDP support to ice driver, from Krzysztof Kazimierczak.

  17) Support UDP GSO offload in atlantic driver, from Igor Russkikh.

  18) Support it in stmmac driver too, from Jose Abreu.

  19) Support TIPC encryption and auth, from Tuong Lien.

  20) Introduce BPF trampolines, from Alexei Starovoitov.

  21) Make page_pool API more numa friendly, from Saeed Mahameed.

  22) Introduce route hints to ipv4 and ipv6, from Paolo Abeni.

  23) Add UDP segmentation offload to cxgb4, Rahul Lakkireddy"

* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1857 commits)
  libbpf: Fix usage of u32 in userspace code
  mm: Implement no-MMU variant of vmalloc_user_node_flags
  slip: Fix use-after-free Read in slip_open
  net: dsa: sja1105: fix sja1105_parse_rgmii_delays()
  macvlan: schedule bc_work even if error
  enetc: add support Credit Based Shaper(CBS) for hardware offload
  net: phy: add helpers phy_(un)lock_mdio_bus
  mdio_bus: don't use managed reset-controller
  ax88179_178a: add ethtool_op_get_ts_info()
  mlxsw: spectrum_router: Fix use of uninitialized adjacency index
  mlxsw: spectrum_router: After underlay moves, demote conflicting tunnels
  bpf: Simplify __bpf_arch_text_poke poke type handling
  bpf: Introduce BPF_TRACE_x helper for the tracing tests
  bpf: Add bpf_jit_blinding_enabled for !CONFIG_BPF_JIT
  bpf, testing: Add various tail call test cases
  bpf, x86: Emit patchable direct jump as tail call
  bpf: Constant map key tracking for prog array pokes
  bpf: Add poke dependency tracking for prog array maps
  bpf: Add initial poke descriptor table for jit images
  bpf: Move owner type, jited info into array auxiliary data
  ...
2019-11-25 20:02:57 -08:00

1887 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Linux for s390 qdio support, buffer handling, qdio API and module support.
*
* Copyright IBM Corp. 2000, 2008
* Author(s): Utz Bacher <utz.bacher@de.ibm.com>
* Jan Glauber <jang@linux.vnet.ibm.com>
* 2.6 cio integration by Cornelia Huck <cornelia.huck@de.ibm.com>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/gfp.h>
#include <linux/io.h>
#include <linux/atomic.h>
#include <asm/debug.h>
#include <asm/qdio.h>
#include <asm/ipl.h>
#include "cio.h"
#include "css.h"
#include "device.h"
#include "qdio.h"
#include "qdio_debug.h"
MODULE_AUTHOR("Utz Bacher <utz.bacher@de.ibm.com>,"\
"Jan Glauber <jang@linux.vnet.ibm.com>");
MODULE_DESCRIPTION("QDIO base support");
MODULE_LICENSE("GPL");
static inline int do_siga_sync(unsigned long schid,
unsigned int out_mask, unsigned int in_mask,
unsigned int fc)
{
register unsigned long __fc asm ("0") = fc;
register unsigned long __schid asm ("1") = schid;
register unsigned long out asm ("2") = out_mask;
register unsigned long in asm ("3") = in_mask;
int cc;
asm volatile(
" siga 0\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc)
: "d" (__fc), "d" (__schid), "d" (out), "d" (in) : "cc");
return cc;
}
static inline int do_siga_input(unsigned long schid, unsigned int mask,
unsigned int fc)
{
register unsigned long __fc asm ("0") = fc;
register unsigned long __schid asm ("1") = schid;
register unsigned long __mask asm ("2") = mask;
int cc;
asm volatile(
" siga 0\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc)
: "d" (__fc), "d" (__schid), "d" (__mask) : "cc");
return cc;
}
/**
* do_siga_output - perform SIGA-w/wt function
* @schid: subchannel id or in case of QEBSM the subchannel token
* @mask: which output queues to process
* @bb: busy bit indicator, set only if SIGA-w/wt could not access a buffer
* @fc: function code to perform
* @aob: asynchronous operation block
*
* Returns condition code.
* Note: For IQDC unicast queues only the highest priority queue is processed.
*/
static inline int do_siga_output(unsigned long schid, unsigned long mask,
unsigned int *bb, unsigned int fc,
unsigned long aob)
{
register unsigned long __fc asm("0") = fc;
register unsigned long __schid asm("1") = schid;
register unsigned long __mask asm("2") = mask;
register unsigned long __aob asm("3") = aob;
int cc;
asm volatile(
" siga 0\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc), "+d" (__fc), "+d" (__aob)
: "d" (__schid), "d" (__mask)
: "cc");
*bb = __fc >> 31;
return cc;
}
/**
* qdio_do_eqbs - extract buffer states for QEBSM
* @q: queue to manipulate
* @state: state of the extracted buffers
* @start: buffer number to start at
* @count: count of buffers to examine
* @auto_ack: automatically acknowledge buffers
*
* Returns the number of successfully extracted equal buffer states.
* Stops processing if a state is different from the last buffers state.
*/
static int qdio_do_eqbs(struct qdio_q *q, unsigned char *state,
int start, int count, int auto_ack)
{
int tmp_count = count, tmp_start = start, nr = q->nr;
unsigned int ccq = 0;
qperf_inc(q, eqbs);
if (!q->is_input_q)
nr += q->irq_ptr->nr_input_qs;
again:
ccq = do_eqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count,
auto_ack);
switch (ccq) {
case 0:
case 32:
/* all done, or next buffer state different */
return count - tmp_count;
case 96:
/* not all buffers processed */
qperf_inc(q, eqbs_partial);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "EQBS part:%02x",
tmp_count);
return count - tmp_count;
case 97:
/* no buffer processed */
DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "EQBS again:%2d", ccq);
goto again;
default:
DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq);
DBF_ERROR("%4x EQBS ERROR", SCH_NO(q));
DBF_ERROR("%3d%3d%2d", count, tmp_count, nr);
q->handler(q->irq_ptr->cdev, QDIO_ERROR_GET_BUF_STATE, q->nr,
q->first_to_kick, count, q->irq_ptr->int_parm);
return 0;
}
}
/**
* qdio_do_sqbs - set buffer states for QEBSM
* @q: queue to manipulate
* @state: new state of the buffers
* @start: first buffer number to change
* @count: how many buffers to change
*
* Returns the number of successfully changed buffers.
* Does retrying until the specified count of buffer states is set or an
* error occurs.
*/
static int qdio_do_sqbs(struct qdio_q *q, unsigned char state, int start,
int count)
{
unsigned int ccq = 0;
int tmp_count = count, tmp_start = start;
int nr = q->nr;
if (!count)
return 0;
qperf_inc(q, sqbs);
if (!q->is_input_q)
nr += q->irq_ptr->nr_input_qs;
again:
ccq = do_sqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count);
switch (ccq) {
case 0:
case 32:
/* all done, or active buffer adapter-owned */
WARN_ON_ONCE(tmp_count);
return count - tmp_count;
case 96:
/* not all buffers processed */
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "SQBS again:%2d", ccq);
qperf_inc(q, sqbs_partial);
goto again;
default:
DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq);
DBF_ERROR("%4x SQBS ERROR", SCH_NO(q));
DBF_ERROR("%3d%3d%2d", count, tmp_count, nr);
q->handler(q->irq_ptr->cdev, QDIO_ERROR_SET_BUF_STATE, q->nr,
q->first_to_kick, count, q->irq_ptr->int_parm);
return 0;
}
}
/*
* Returns number of examined buffers and their common state in *state.
* Requested number of buffers-to-examine must be > 0.
*/
static inline int get_buf_states(struct qdio_q *q, unsigned int bufnr,
unsigned char *state, unsigned int count,
int auto_ack, int merge_pending)
{
unsigned char __state = 0;
int i = 1;
if (is_qebsm(q))
return qdio_do_eqbs(q, state, bufnr, count, auto_ack);
/* get initial state: */
__state = q->slsb.val[bufnr];
/* Bail out early if there is no work on the queue: */
if (__state & SLSB_OWNER_CU)
goto out;
if (merge_pending && __state == SLSB_P_OUTPUT_PENDING)
__state = SLSB_P_OUTPUT_EMPTY;
for (; i < count; i++) {
bufnr = next_buf(bufnr);
/* merge PENDING into EMPTY: */
if (merge_pending &&
q->slsb.val[bufnr] == SLSB_P_OUTPUT_PENDING &&
__state == SLSB_P_OUTPUT_EMPTY)
continue;
/* stop if next state differs from initial state: */
if (q->slsb.val[bufnr] != __state)
break;
}
out:
*state = __state;
return i;
}
static inline int get_buf_state(struct qdio_q *q, unsigned int bufnr,
unsigned char *state, int auto_ack)
{
return get_buf_states(q, bufnr, state, 1, auto_ack, 0);
}
/* wrap-around safe setting of slsb states, returns number of changed buffers */
static inline int set_buf_states(struct qdio_q *q, int bufnr,
unsigned char state, int count)
{
int i;
if (is_qebsm(q))
return qdio_do_sqbs(q, state, bufnr, count);
for (i = 0; i < count; i++) {
xchg(&q->slsb.val[bufnr], state);
bufnr = next_buf(bufnr);
}
return count;
}
static inline int set_buf_state(struct qdio_q *q, int bufnr,
unsigned char state)
{
return set_buf_states(q, bufnr, state, 1);
}
/* set slsb states to initial state */
static void qdio_init_buf_states(struct qdio_irq *irq_ptr)
{
struct qdio_q *q;
int i;
for_each_input_queue(irq_ptr, q, i)
set_buf_states(q, 0, SLSB_P_INPUT_NOT_INIT,
QDIO_MAX_BUFFERS_PER_Q);
for_each_output_queue(irq_ptr, q, i)
set_buf_states(q, 0, SLSB_P_OUTPUT_NOT_INIT,
QDIO_MAX_BUFFERS_PER_Q);
}
static inline int qdio_siga_sync(struct qdio_q *q, unsigned int output,
unsigned int input)
{
unsigned long schid = *((u32 *) &q->irq_ptr->schid);
unsigned int fc = QDIO_SIGA_SYNC;
int cc;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-s:%1d", q->nr);
qperf_inc(q, siga_sync);
if (is_qebsm(q)) {
schid = q->irq_ptr->sch_token;
fc |= QDIO_SIGA_QEBSM_FLAG;
}
cc = do_siga_sync(schid, output, input, fc);
if (unlikely(cc))
DBF_ERROR("%4x SIGA-S:%2d", SCH_NO(q), cc);
return (cc) ? -EIO : 0;
}
static inline int qdio_siga_sync_q(struct qdio_q *q)
{
if (q->is_input_q)
return qdio_siga_sync(q, 0, q->mask);
else
return qdio_siga_sync(q, q->mask, 0);
}
static int qdio_siga_output(struct qdio_q *q, unsigned int count,
unsigned int *busy_bit, unsigned long aob)
{
unsigned long schid = *((u32 *) &q->irq_ptr->schid);
unsigned int fc = QDIO_SIGA_WRITE;
u64 start_time = 0;
int retries = 0, cc;
if (queue_type(q) == QDIO_IQDIO_QFMT && !multicast_outbound(q)) {
if (count > 1)
fc = QDIO_SIGA_WRITEM;
else if (aob)
fc = QDIO_SIGA_WRITEQ;
}
if (is_qebsm(q)) {
schid = q->irq_ptr->sch_token;
fc |= QDIO_SIGA_QEBSM_FLAG;
}
again:
cc = do_siga_output(schid, q->mask, busy_bit, fc, aob);
/* hipersocket busy condition */
if (unlikely(*busy_bit)) {
retries++;
if (!start_time) {
start_time = get_tod_clock_fast();
goto again;
}
if (get_tod_clock_fast() - start_time < QDIO_BUSY_BIT_PATIENCE)
goto again;
}
if (retries) {
DBF_DEV_EVENT(DBF_WARN, q->irq_ptr,
"%4x cc2 BB1:%1d", SCH_NO(q), q->nr);
DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "count:%u", retries);
}
return cc;
}
static inline int qdio_siga_input(struct qdio_q *q)
{
unsigned long schid = *((u32 *) &q->irq_ptr->schid);
unsigned int fc = QDIO_SIGA_READ;
int cc;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-r:%1d", q->nr);
qperf_inc(q, siga_read);
if (is_qebsm(q)) {
schid = q->irq_ptr->sch_token;
fc |= QDIO_SIGA_QEBSM_FLAG;
}
cc = do_siga_input(schid, q->mask, fc);
if (unlikely(cc))
DBF_ERROR("%4x SIGA-R:%2d", SCH_NO(q), cc);
return (cc) ? -EIO : 0;
}
#define qdio_siga_sync_out(q) qdio_siga_sync(q, ~0U, 0)
#define qdio_siga_sync_all(q) qdio_siga_sync(q, ~0U, ~0U)
static inline void qdio_sync_queues(struct qdio_q *q)
{
/* PCI capable outbound queues will also be scanned so sync them too */
if (pci_out_supported(q->irq_ptr))
qdio_siga_sync_all(q);
else
qdio_siga_sync_q(q);
}
int debug_get_buf_state(struct qdio_q *q, unsigned int bufnr,
unsigned char *state)
{
if (need_siga_sync(q))
qdio_siga_sync_q(q);
return get_buf_state(q, bufnr, state, 0);
}
static inline void qdio_stop_polling(struct qdio_q *q)
{
if (!q->u.in.polling)
return;
q->u.in.polling = 0;
qperf_inc(q, stop_polling);
/* show the card that we are not polling anymore */
if (is_qebsm(q)) {
set_buf_states(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT,
q->u.in.ack_count);
q->u.in.ack_count = 0;
} else
set_buf_state(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT);
}
static inline void account_sbals(struct qdio_q *q, unsigned int count)
{
int pos;
q->q_stats.nr_sbal_total += count;
if (count == QDIO_MAX_BUFFERS_MASK) {
q->q_stats.nr_sbals[7]++;
return;
}
pos = ilog2(count);
q->q_stats.nr_sbals[pos]++;
}
static void process_buffer_error(struct qdio_q *q, unsigned int start,
int count)
{
q->qdio_error = QDIO_ERROR_SLSB_STATE;
/* special handling for no target buffer empty */
if (queue_type(q) == QDIO_IQDIO_QFMT && !q->is_input_q &&
q->sbal[start]->element[15].sflags == 0x10) {
qperf_inc(q, target_full);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "OUTFULL FTC:%02x", start);
return;
}
DBF_ERROR("%4x BUF ERROR", SCH_NO(q));
DBF_ERROR((q->is_input_q) ? "IN:%2d" : "OUT:%2d", q->nr);
DBF_ERROR("FTC:%3d C:%3d", start, count);
DBF_ERROR("F14:%2x F15:%2x",
q->sbal[start]->element[14].sflags,
q->sbal[start]->element[15].sflags);
}
static inline void inbound_primed(struct qdio_q *q, unsigned int start,
int count)
{
int new;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in prim:%1d %02x", q->nr, count);
/* for QEBSM the ACK was already set by EQBS */
if (is_qebsm(q)) {
if (!q->u.in.polling) {
q->u.in.polling = 1;
q->u.in.ack_count = count;
q->u.in.ack_start = start;
return;
}
/* delete the previous ACK's */
set_buf_states(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT,
q->u.in.ack_count);
q->u.in.ack_count = count;
q->u.in.ack_start = start;
return;
}
/*
* ACK the newest buffer. The ACK will be removed in qdio_stop_polling
* or by the next inbound run.
*/
new = add_buf(start, count - 1);
if (q->u.in.polling) {
/* reset the previous ACK but first set the new one */
set_buf_state(q, new, SLSB_P_INPUT_ACK);
set_buf_state(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT);
} else {
q->u.in.polling = 1;
set_buf_state(q, new, SLSB_P_INPUT_ACK);
}
q->u.in.ack_start = new;
count--;
if (!count)
return;
/* need to change ALL buffers to get more interrupts */
set_buf_states(q, start, SLSB_P_INPUT_NOT_INIT, count);
}
static int get_inbound_buffer_frontier(struct qdio_q *q, unsigned int start)
{
unsigned char state = 0;
int count;
q->timestamp = get_tod_clock_fast();
/*
* Don't check 128 buffers, as otherwise qdio_inbound_q_moved
* would return 0.
*/
count = min(atomic_read(&q->nr_buf_used), QDIO_MAX_BUFFERS_MASK);
if (!count)
return 0;
/*
* No siga sync here, as a PCI or we after a thin interrupt
* already sync'ed the queues.
*/
count = get_buf_states(q, start, &state, count, 1, 0);
if (!count)
return 0;
switch (state) {
case SLSB_P_INPUT_PRIMED:
inbound_primed(q, start, count);
if (atomic_sub_return(count, &q->nr_buf_used) == 0)
qperf_inc(q, inbound_queue_full);
if (q->irq_ptr->perf_stat_enabled)
account_sbals(q, count);
return count;
case SLSB_P_INPUT_ERROR:
process_buffer_error(q, start, count);
/*
* Interrupts may be avoided as long as the error is present
* so change the buffer state immediately to avoid starvation.
*/
set_buf_states(q, start, SLSB_P_INPUT_NOT_INIT, count);
if (atomic_sub_return(count, &q->nr_buf_used) == 0)
qperf_inc(q, inbound_queue_full);
if (q->irq_ptr->perf_stat_enabled)
account_sbals_error(q, count);
return count;
case SLSB_CU_INPUT_EMPTY:
case SLSB_P_INPUT_NOT_INIT:
case SLSB_P_INPUT_ACK:
if (q->irq_ptr->perf_stat_enabled)
q->q_stats.nr_sbal_nop++;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in nop:%1d %#02x",
q->nr, start);
return 0;
default:
WARN_ON_ONCE(1);
return 0;
}
}
static int qdio_inbound_q_moved(struct qdio_q *q, unsigned int start)
{
int count;
count = get_inbound_buffer_frontier(q, start);
if (count && !is_thinint_irq(q->irq_ptr) && MACHINE_IS_LPAR)
q->u.in.timestamp = get_tod_clock();
return count;
}
static inline int qdio_inbound_q_done(struct qdio_q *q, unsigned int start)
{
unsigned char state = 0;
if (!atomic_read(&q->nr_buf_used))
return 1;
if (need_siga_sync(q))
qdio_siga_sync_q(q);
get_buf_state(q, start, &state, 0);
if (state == SLSB_P_INPUT_PRIMED || state == SLSB_P_INPUT_ERROR)
/* more work coming */
return 0;
if (is_thinint_irq(q->irq_ptr))
return 1;
/* don't poll under z/VM */
if (MACHINE_IS_VM)
return 1;
/*
* At this point we know, that inbound first_to_check
* has (probably) not moved (see qdio_inbound_processing).
*/
if (get_tod_clock_fast() > q->u.in.timestamp + QDIO_INPUT_THRESHOLD) {
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in done:%02x", start);
return 1;
} else
return 0;
}
static inline void qdio_handle_aobs(struct qdio_q *q, int start, int count)
{
unsigned char state = 0;
int j, b = start;
for (j = 0; j < count; ++j) {
get_buf_state(q, b, &state, 0);
if (state == SLSB_P_OUTPUT_PENDING) {
struct qaob *aob = q->u.out.aobs[b];
if (aob == NULL)
continue;
q->u.out.sbal_state[b].flags |=
QDIO_OUTBUF_STATE_FLAG_PENDING;
q->u.out.aobs[b] = NULL;
}
b = next_buf(b);
}
}
static inline unsigned long qdio_aob_for_buffer(struct qdio_output_q *q,
int bufnr)
{
unsigned long phys_aob = 0;
if (!q->aobs[bufnr]) {
struct qaob *aob = qdio_allocate_aob();
q->aobs[bufnr] = aob;
}
if (q->aobs[bufnr]) {
q->aobs[bufnr]->user1 = (u64) q->sbal_state[bufnr].user;
phys_aob = virt_to_phys(q->aobs[bufnr]);
WARN_ON_ONCE(phys_aob & 0xFF);
}
q->sbal_state[bufnr].flags = 0;
return phys_aob;
}
static void qdio_kick_handler(struct qdio_q *q, unsigned int count)
{
int start = q->first_to_kick;
if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE))
return;
if (q->is_input_q) {
qperf_inc(q, inbound_handler);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "kih s:%02x c:%02x", start, count);
} else {
qperf_inc(q, outbound_handler);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "koh: s:%02x c:%02x",
start, count);
}
q->handler(q->irq_ptr->cdev, q->qdio_error, q->nr, start, count,
q->irq_ptr->int_parm);
/* for the next time */
q->first_to_kick = add_buf(start, count);
q->qdio_error = 0;
}
static inline int qdio_tasklet_schedule(struct qdio_q *q)
{
if (likely(q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE)) {
tasklet_schedule(&q->tasklet);
return 0;
}
return -EPERM;
}
static void __qdio_inbound_processing(struct qdio_q *q)
{
unsigned int start = q->first_to_check;
int count;
qperf_inc(q, tasklet_inbound);
count = qdio_inbound_q_moved(q, start);
if (count == 0)
return;
start = add_buf(start, count);
q->first_to_check = start;
qdio_kick_handler(q, count);
if (!qdio_inbound_q_done(q, start)) {
/* means poll time is not yet over */
qperf_inc(q, tasklet_inbound_resched);
if (!qdio_tasklet_schedule(q))
return;
}
qdio_stop_polling(q);
/*
* We need to check again to not lose initiative after
* resetting the ACK state.
*/
if (!qdio_inbound_q_done(q, start)) {
qperf_inc(q, tasklet_inbound_resched2);
qdio_tasklet_schedule(q);
}
}
void qdio_inbound_processing(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
__qdio_inbound_processing(q);
}
static int get_outbound_buffer_frontier(struct qdio_q *q, unsigned int start)
{
unsigned char state = 0;
int count;
q->timestamp = get_tod_clock_fast();
if (need_siga_sync(q))
if (((queue_type(q) != QDIO_IQDIO_QFMT) &&
!pci_out_supported(q->irq_ptr)) ||
(queue_type(q) == QDIO_IQDIO_QFMT &&
multicast_outbound(q)))
qdio_siga_sync_q(q);
count = atomic_read(&q->nr_buf_used);
if (!count)
return 0;
count = get_buf_states(q, start, &state, count, 0, q->u.out.use_cq);
if (!count)
return 0;
switch (state) {
case SLSB_P_OUTPUT_EMPTY:
case SLSB_P_OUTPUT_PENDING:
/* the adapter got it */
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr,
"out empty:%1d %02x", q->nr, count);
atomic_sub(count, &q->nr_buf_used);
if (q->irq_ptr->perf_stat_enabled)
account_sbals(q, count);
return count;
case SLSB_P_OUTPUT_ERROR:
process_buffer_error(q, start, count);
atomic_sub(count, &q->nr_buf_used);
if (q->irq_ptr->perf_stat_enabled)
account_sbals_error(q, count);
return count;
case SLSB_CU_OUTPUT_PRIMED:
/* the adapter has not fetched the output yet */
if (q->irq_ptr->perf_stat_enabled)
q->q_stats.nr_sbal_nop++;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out primed:%1d",
q->nr);
return 0;
case SLSB_P_OUTPUT_NOT_INIT:
case SLSB_P_OUTPUT_HALTED:
return 0;
default:
WARN_ON_ONCE(1);
return 0;
}
}
/* all buffers processed? */
static inline int qdio_outbound_q_done(struct qdio_q *q)
{
return atomic_read(&q->nr_buf_used) == 0;
}
static inline int qdio_outbound_q_moved(struct qdio_q *q, unsigned int start)
{
int count;
count = get_outbound_buffer_frontier(q, start);
if (count) {
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out moved:%1d", q->nr);
if (q->u.out.use_cq)
qdio_handle_aobs(q, start, count);
}
return count;
}
static int qdio_kick_outbound_q(struct qdio_q *q, unsigned int count,
unsigned long aob)
{
int retries = 0, cc;
unsigned int busy_bit;
if (!need_siga_out(q))
return 0;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w:%1d", q->nr);
retry:
qperf_inc(q, siga_write);
cc = qdio_siga_output(q, count, &busy_bit, aob);
switch (cc) {
case 0:
break;
case 2:
if (busy_bit) {
while (++retries < QDIO_BUSY_BIT_RETRIES) {
mdelay(QDIO_BUSY_BIT_RETRY_DELAY);
goto retry;
}
DBF_ERROR("%4x cc2 BBC:%1d", SCH_NO(q), q->nr);
cc = -EBUSY;
} else {
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w cc2:%1d", q->nr);
cc = -ENOBUFS;
}
break;
case 1:
case 3:
DBF_ERROR("%4x SIGA-W:%1d", SCH_NO(q), cc);
cc = -EIO;
break;
}
if (retries) {
DBF_ERROR("%4x cc2 BB2:%1d", SCH_NO(q), q->nr);
DBF_ERROR("count:%u", retries);
}
return cc;
}
static void __qdio_outbound_processing(struct qdio_q *q)
{
unsigned int start = q->first_to_check;
int count;
qperf_inc(q, tasklet_outbound);
WARN_ON_ONCE(atomic_read(&q->nr_buf_used) < 0);
count = qdio_outbound_q_moved(q, start);
if (count) {
q->first_to_check = add_buf(start, count);
qdio_kick_handler(q, count);
}
if (queue_type(q) == QDIO_ZFCP_QFMT && !pci_out_supported(q->irq_ptr) &&
!qdio_outbound_q_done(q))
goto sched;
if (q->u.out.pci_out_enabled)
return;
/*
* Now we know that queue type is either qeth without pci enabled
* or HiperSockets. Make sure buffer switch from PRIMED to EMPTY
* is noticed and outbound_handler is called after some time.
*/
if (qdio_outbound_q_done(q))
del_timer_sync(&q->u.out.timer);
else
if (!timer_pending(&q->u.out.timer) &&
likely(q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE))
mod_timer(&q->u.out.timer, jiffies + 10 * HZ);
return;
sched:
qdio_tasklet_schedule(q);
}
/* outbound tasklet */
void qdio_outbound_processing(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
__qdio_outbound_processing(q);
}
void qdio_outbound_timer(struct timer_list *t)
{
struct qdio_q *q = from_timer(q, t, u.out.timer);
qdio_tasklet_schedule(q);
}
static inline void qdio_check_outbound_pci_queues(struct qdio_irq *irq)
{
struct qdio_q *out;
int i;
if (!pci_out_supported(irq) || !irq->scan_threshold)
return;
for_each_output_queue(irq, out, i)
if (!qdio_outbound_q_done(out))
qdio_tasklet_schedule(out);
}
static void __tiqdio_inbound_processing(struct qdio_q *q)
{
unsigned int start = q->first_to_check;
int count;
qperf_inc(q, tasklet_inbound);
if (need_siga_sync(q) && need_siga_sync_after_ai(q))
qdio_sync_queues(q);
/* The interrupt could be caused by a PCI request: */
qdio_check_outbound_pci_queues(q->irq_ptr);
count = qdio_inbound_q_moved(q, start);
if (count == 0)
return;
start = add_buf(start, count);
q->first_to_check = start;
qdio_kick_handler(q, count);
if (!qdio_inbound_q_done(q, start)) {
qperf_inc(q, tasklet_inbound_resched);
if (!qdio_tasklet_schedule(q))
return;
}
qdio_stop_polling(q);
/*
* We need to check again to not lose initiative after
* resetting the ACK state.
*/
if (!qdio_inbound_q_done(q, start)) {
qperf_inc(q, tasklet_inbound_resched2);
qdio_tasklet_schedule(q);
}
}
void tiqdio_inbound_processing(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
__tiqdio_inbound_processing(q);
}
static inline void qdio_set_state(struct qdio_irq *irq_ptr,
enum qdio_irq_states state)
{
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "newstate: %1d", state);
irq_ptr->state = state;
mb();
}
static void qdio_irq_check_sense(struct qdio_irq *irq_ptr, struct irb *irb)
{
if (irb->esw.esw0.erw.cons) {
DBF_ERROR("%4x sense:", irq_ptr->schid.sch_no);
DBF_ERROR_HEX(irb, 64);
DBF_ERROR_HEX(irb->ecw, 64);
}
}
/* PCI interrupt handler */
static void qdio_int_handler_pci(struct qdio_irq *irq_ptr)
{
int i;
struct qdio_q *q;
if (unlikely(irq_ptr->state != QDIO_IRQ_STATE_ACTIVE))
return;
for_each_input_queue(irq_ptr, q, i) {
if (q->u.in.queue_start_poll) {
/* skip if polling is enabled or already in work */
if (test_and_set_bit(QDIO_QUEUE_IRQS_DISABLED,
&q->u.in.queue_irq_state)) {
QDIO_PERF_STAT_INC(irq_ptr, int_discarded);
continue;
}
q->u.in.queue_start_poll(q->irq_ptr->cdev, q->nr,
q->irq_ptr->int_parm);
} else {
tasklet_schedule(&q->tasklet);
}
}
if (!pci_out_supported(irq_ptr) || !irq_ptr->scan_threshold)
return;
for_each_output_queue(irq_ptr, q, i) {
if (qdio_outbound_q_done(q))
continue;
if (need_siga_sync(q) && need_siga_sync_out_after_pci(q))
qdio_siga_sync_q(q);
qdio_tasklet_schedule(q);
}
}
static void qdio_handle_activate_check(struct ccw_device *cdev,
unsigned long intparm, int cstat, int dstat)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct qdio_q *q;
int count;
DBF_ERROR("%4x ACT CHECK", irq_ptr->schid.sch_no);
DBF_ERROR("intp :%lx", intparm);
DBF_ERROR("ds: %2x cs:%2x", dstat, cstat);
if (irq_ptr->nr_input_qs) {
q = irq_ptr->input_qs[0];
} else if (irq_ptr->nr_output_qs) {
q = irq_ptr->output_qs[0];
} else {
dump_stack();
goto no_handler;
}
count = sub_buf(q->first_to_check, q->first_to_kick);
q->handler(q->irq_ptr->cdev, QDIO_ERROR_ACTIVATE,
q->nr, q->first_to_kick, count, irq_ptr->int_parm);
no_handler:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED);
/*
* In case of z/VM LGR (Live Guest Migration) QDIO recovery will happen.
* Therefore we call the LGR detection function here.
*/
lgr_info_log();
}
static void qdio_establish_handle_irq(struct ccw_device *cdev, int cstat,
int dstat)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "qest irq");
if (cstat)
goto error;
if (dstat & ~(DEV_STAT_DEV_END | DEV_STAT_CHN_END))
goto error;
if (!(dstat & DEV_STAT_DEV_END))
goto error;
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ESTABLISHED);
return;
error:
DBF_ERROR("%4x EQ:error", irq_ptr->schid.sch_no);
DBF_ERROR("ds: %2x cs:%2x", dstat, cstat);
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR);
}
/* qdio interrupt handler */
void qdio_int_handler(struct ccw_device *cdev, unsigned long intparm,
struct irb *irb)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct subchannel_id schid;
int cstat, dstat;
if (!intparm || !irq_ptr) {
ccw_device_get_schid(cdev, &schid);
DBF_ERROR("qint:%4x", schid.sch_no);
return;
}
if (irq_ptr->perf_stat_enabled)
irq_ptr->perf_stat.qdio_int++;
if (IS_ERR(irb)) {
DBF_ERROR("%4x IO error", irq_ptr->schid.sch_no);
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR);
wake_up(&cdev->private->wait_q);
return;
}
qdio_irq_check_sense(irq_ptr, irb);
cstat = irb->scsw.cmd.cstat;
dstat = irb->scsw.cmd.dstat;
switch (irq_ptr->state) {
case QDIO_IRQ_STATE_INACTIVE:
qdio_establish_handle_irq(cdev, cstat, dstat);
break;
case QDIO_IRQ_STATE_CLEANUP:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
break;
case QDIO_IRQ_STATE_ESTABLISHED:
case QDIO_IRQ_STATE_ACTIVE:
if (cstat & SCHN_STAT_PCI) {
qdio_int_handler_pci(irq_ptr);
return;
}
if (cstat || dstat)
qdio_handle_activate_check(cdev, intparm, cstat,
dstat);
break;
case QDIO_IRQ_STATE_STOPPED:
break;
default:
WARN_ON_ONCE(1);
}
wake_up(&cdev->private->wait_q);
}
/**
* qdio_get_ssqd_desc - get qdio subchannel description
* @cdev: ccw device to get description for
* @data: where to store the ssqd
*
* Returns 0 or an error code. The results of the chsc are stored in the
* specified structure.
*/
int qdio_get_ssqd_desc(struct ccw_device *cdev,
struct qdio_ssqd_desc *data)
{
struct subchannel_id schid;
if (!cdev || !cdev->private)
return -EINVAL;
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("get ssqd:%4x", schid.sch_no);
return qdio_setup_get_ssqd(NULL, &schid, data);
}
EXPORT_SYMBOL_GPL(qdio_get_ssqd_desc);
static void qdio_shutdown_queues(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct qdio_q *q;
int i;
for_each_input_queue(irq_ptr, q, i)
tasklet_kill(&q->tasklet);
for_each_output_queue(irq_ptr, q, i) {
del_timer_sync(&q->u.out.timer);
tasklet_kill(&q->tasklet);
}
}
/**
* qdio_shutdown - shut down a qdio subchannel
* @cdev: associated ccw device
* @how: use halt or clear to shutdown
*/
int qdio_shutdown(struct ccw_device *cdev, int how)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct subchannel_id schid;
int rc;
if (!irq_ptr)
return -ENODEV;
WARN_ON_ONCE(irqs_disabled());
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("qshutdown:%4x", schid.sch_no);
mutex_lock(&irq_ptr->setup_mutex);
/*
* Subchannel was already shot down. We cannot prevent being called
* twice since cio may trigger a shutdown asynchronously.
*/
if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) {
mutex_unlock(&irq_ptr->setup_mutex);
return 0;
}
/*
* Indicate that the device is going down. Scheduling the queue
* tasklets is forbidden from here on.
*/
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED);
tiqdio_remove_device(irq_ptr);
qdio_shutdown_queues(cdev);
qdio_shutdown_debug_entries(irq_ptr);
/* cleanup subchannel */
spin_lock_irq(get_ccwdev_lock(cdev));
if (how & QDIO_FLAG_CLEANUP_USING_CLEAR)
rc = ccw_device_clear(cdev, QDIO_DOING_CLEANUP);
else
/* default behaviour is halt */
rc = ccw_device_halt(cdev, QDIO_DOING_CLEANUP);
if (rc) {
DBF_ERROR("%4x SHUTD ERR", irq_ptr->schid.sch_no);
DBF_ERROR("rc:%4d", rc);
goto no_cleanup;
}
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_CLEANUP);
spin_unlock_irq(get_ccwdev_lock(cdev));
wait_event_interruptible_timeout(cdev->private->wait_q,
irq_ptr->state == QDIO_IRQ_STATE_INACTIVE ||
irq_ptr->state == QDIO_IRQ_STATE_ERR,
10 * HZ);
spin_lock_irq(get_ccwdev_lock(cdev));
no_cleanup:
qdio_shutdown_thinint(irq_ptr);
/* restore interrupt handler */
if ((void *)cdev->handler == (void *)qdio_int_handler) {
cdev->handler = irq_ptr->orig_handler;
cdev->private->intparm = 0;
}
spin_unlock_irq(get_ccwdev_lock(cdev));
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
mutex_unlock(&irq_ptr->setup_mutex);
if (rc)
return rc;
return 0;
}
EXPORT_SYMBOL_GPL(qdio_shutdown);
/**
* qdio_free - free data structures for a qdio subchannel
* @cdev: associated ccw device
*/
int qdio_free(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct subchannel_id schid;
if (!irq_ptr)
return -ENODEV;
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("qfree:%4x", schid.sch_no);
DBF_DEV_EVENT(DBF_ERR, irq_ptr, "dbf abandoned");
mutex_lock(&irq_ptr->setup_mutex);
irq_ptr->debug_area = NULL;
cdev->private->qdio_data = NULL;
mutex_unlock(&irq_ptr->setup_mutex);
qdio_release_memory(irq_ptr);
return 0;
}
EXPORT_SYMBOL_GPL(qdio_free);
/**
* qdio_allocate - allocate qdio queues and associated data
* @init_data: initialization data
*/
int qdio_allocate(struct qdio_initialize *init_data)
{
struct subchannel_id schid;
struct qdio_irq *irq_ptr;
ccw_device_get_schid(init_data->cdev, &schid);
DBF_EVENT("qallocate:%4x", schid.sch_no);
if ((init_data->no_input_qs && !init_data->input_handler) ||
(init_data->no_output_qs && !init_data->output_handler))
return -EINVAL;
if ((init_data->no_input_qs > QDIO_MAX_QUEUES_PER_IRQ) ||
(init_data->no_output_qs > QDIO_MAX_QUEUES_PER_IRQ))
return -EINVAL;
if ((!init_data->input_sbal_addr_array) ||
(!init_data->output_sbal_addr_array))
return -EINVAL;
/* irq_ptr must be in GFP_DMA since it contains ccw1.cda */
irq_ptr = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!irq_ptr)
goto out_err;
mutex_init(&irq_ptr->setup_mutex);
if (qdio_allocate_dbf(init_data, irq_ptr))
goto out_rel;
/*
* Allocate a page for the chsc calls in qdio_establish.
* Must be pre-allocated since a zfcp recovery will call
* qdio_establish. In case of low memory and swap on a zfcp disk
* we may not be able to allocate memory otherwise.
*/
irq_ptr->chsc_page = get_zeroed_page(GFP_KERNEL);
if (!irq_ptr->chsc_page)
goto out_rel;
/* qdr is used in ccw1.cda which is u32 */
irq_ptr->qdr = (struct qdr *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!irq_ptr->qdr)
goto out_rel;
if (qdio_allocate_qs(irq_ptr, init_data->no_input_qs,
init_data->no_output_qs))
goto out_rel;
INIT_LIST_HEAD(&irq_ptr->entry);
init_data->cdev->private->qdio_data = irq_ptr;
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
return 0;
out_rel:
qdio_release_memory(irq_ptr);
out_err:
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(qdio_allocate);
static void qdio_detect_hsicq(struct qdio_irq *irq_ptr)
{
struct qdio_q *q = irq_ptr->input_qs[0];
int i, use_cq = 0;
if (irq_ptr->nr_input_qs > 1 && queue_type(q) == QDIO_IQDIO_QFMT)
use_cq = 1;
for_each_output_queue(irq_ptr, q, i) {
if (use_cq) {
if (multicast_outbound(q))
continue;
if (qdio_enable_async_operation(&q->u.out) < 0) {
use_cq = 0;
continue;
}
} else
qdio_disable_async_operation(&q->u.out);
}
DBF_EVENT("use_cq:%d", use_cq);
}
/**
* qdio_establish - establish queues on a qdio subchannel
* @init_data: initialization data
*/
int qdio_establish(struct qdio_initialize *init_data)
{
struct ccw_device *cdev = init_data->cdev;
struct subchannel_id schid;
struct qdio_irq *irq_ptr;
int rc;
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("qestablish:%4x", schid.sch_no);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
mutex_lock(&irq_ptr->setup_mutex);
qdio_setup_irq(init_data);
rc = qdio_establish_thinint(irq_ptr);
if (rc) {
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return rc;
}
/* establish q */
irq_ptr->ccw.cmd_code = irq_ptr->equeue.cmd;
irq_ptr->ccw.flags = CCW_FLAG_SLI;
irq_ptr->ccw.count = irq_ptr->equeue.count;
irq_ptr->ccw.cda = (u32)((addr_t)irq_ptr->qdr);
spin_lock_irq(get_ccwdev_lock(cdev));
ccw_device_set_options_mask(cdev, 0);
rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ESTABLISH, 0, 0);
spin_unlock_irq(get_ccwdev_lock(cdev));
if (rc) {
DBF_ERROR("%4x est IO ERR", irq_ptr->schid.sch_no);
DBF_ERROR("rc:%4x", rc);
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return rc;
}
wait_event_interruptible_timeout(cdev->private->wait_q,
irq_ptr->state == QDIO_IRQ_STATE_ESTABLISHED ||
irq_ptr->state == QDIO_IRQ_STATE_ERR, HZ);
if (irq_ptr->state != QDIO_IRQ_STATE_ESTABLISHED) {
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return -EIO;
}
qdio_setup_ssqd_info(irq_ptr);
qdio_detect_hsicq(irq_ptr);
/* qebsm is now setup if available, initialize buffer states */
qdio_init_buf_states(irq_ptr);
mutex_unlock(&irq_ptr->setup_mutex);
qdio_print_subchannel_info(irq_ptr, cdev);
qdio_setup_debug_entries(irq_ptr, cdev);
return 0;
}
EXPORT_SYMBOL_GPL(qdio_establish);
/**
* qdio_activate - activate queues on a qdio subchannel
* @cdev: associated cdev
*/
int qdio_activate(struct ccw_device *cdev)
{
struct subchannel_id schid;
struct qdio_irq *irq_ptr;
int rc;
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("qactivate:%4x", schid.sch_no);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
mutex_lock(&irq_ptr->setup_mutex);
if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) {
rc = -EBUSY;
goto out;
}
irq_ptr->ccw.cmd_code = irq_ptr->aqueue.cmd;
irq_ptr->ccw.flags = CCW_FLAG_SLI;
irq_ptr->ccw.count = irq_ptr->aqueue.count;
irq_ptr->ccw.cda = 0;
spin_lock_irq(get_ccwdev_lock(cdev));
ccw_device_set_options(cdev, CCWDEV_REPORT_ALL);
rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ACTIVATE,
0, DOIO_DENY_PREFETCH);
spin_unlock_irq(get_ccwdev_lock(cdev));
if (rc) {
DBF_ERROR("%4x act IO ERR", irq_ptr->schid.sch_no);
DBF_ERROR("rc:%4x", rc);
goto out;
}
if (is_thinint_irq(irq_ptr))
tiqdio_add_device(irq_ptr);
/* wait for subchannel to become active */
msleep(5);
switch (irq_ptr->state) {
case QDIO_IRQ_STATE_STOPPED:
case QDIO_IRQ_STATE_ERR:
rc = -EIO;
break;
default:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ACTIVE);
rc = 0;
}
out:
mutex_unlock(&irq_ptr->setup_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_activate);
static inline int buf_in_between(int bufnr, int start, int count)
{
int end = add_buf(start, count);
if (end > start) {
if (bufnr >= start && bufnr < end)
return 1;
else
return 0;
}
/* wrap-around case */
if ((bufnr >= start && bufnr <= QDIO_MAX_BUFFERS_PER_Q) ||
(bufnr < end))
return 1;
else
return 0;
}
/**
* handle_inbound - reset processed input buffers
* @q: queue containing the buffers
* @callflags: flags
* @bufnr: first buffer to process
* @count: how many buffers are emptied
*/
static int handle_inbound(struct qdio_q *q, unsigned int callflags,
int bufnr, int count)
{
int diff;
qperf_inc(q, inbound_call);
if (!q->u.in.polling)
goto set;
/* protect against stop polling setting an ACK for an emptied slsb */
if (count == QDIO_MAX_BUFFERS_PER_Q) {
/* overwriting everything, just delete polling status */
q->u.in.polling = 0;
q->u.in.ack_count = 0;
goto set;
} else if (buf_in_between(q->u.in.ack_start, bufnr, count)) {
if (is_qebsm(q)) {
/* partial overwrite, just update ack_start */
diff = add_buf(bufnr, count);
diff = sub_buf(diff, q->u.in.ack_start);
q->u.in.ack_count -= diff;
if (q->u.in.ack_count <= 0) {
q->u.in.polling = 0;
q->u.in.ack_count = 0;
goto set;
}
q->u.in.ack_start = add_buf(q->u.in.ack_start, diff);
}
else
/* the only ACK will be deleted, so stop polling */
q->u.in.polling = 0;
}
set:
count = set_buf_states(q, bufnr, SLSB_CU_INPUT_EMPTY, count);
atomic_add(count, &q->nr_buf_used);
if (need_siga_in(q))
return qdio_siga_input(q);
return 0;
}
/**
* handle_outbound - process filled outbound buffers
* @q: queue containing the buffers
* @callflags: flags
* @bufnr: first buffer to process
* @count: how many buffers are filled
*/
static int handle_outbound(struct qdio_q *q, unsigned int callflags,
unsigned int bufnr, unsigned int count)
{
const unsigned int scan_threshold = q->irq_ptr->scan_threshold;
unsigned char state = 0;
int used, rc = 0;
qperf_inc(q, outbound_call);
count = set_buf_states(q, bufnr, SLSB_CU_OUTPUT_PRIMED, count);
used = atomic_add_return(count, &q->nr_buf_used);
if (used == QDIO_MAX_BUFFERS_PER_Q)
qperf_inc(q, outbound_queue_full);
if (callflags & QDIO_FLAG_PCI_OUT) {
q->u.out.pci_out_enabled = 1;
qperf_inc(q, pci_request_int);
} else
q->u.out.pci_out_enabled = 0;
if (queue_type(q) == QDIO_IQDIO_QFMT) {
unsigned long phys_aob = 0;
if (q->u.out.use_cq && count == 1)
phys_aob = qdio_aob_for_buffer(&q->u.out, bufnr);
rc = qdio_kick_outbound_q(q, count, phys_aob);
} else if (need_siga_sync(q)) {
rc = qdio_siga_sync_q(q);
} else if (count < QDIO_MAX_BUFFERS_PER_Q &&
get_buf_state(q, prev_buf(bufnr), &state, 0) > 0 &&
state == SLSB_CU_OUTPUT_PRIMED) {
/* The previous buffer is not processed yet, tack on. */
qperf_inc(q, fast_requeue);
} else {
rc = qdio_kick_outbound_q(q, count, 0);
}
/* Let drivers implement their own completion scanning: */
if (!scan_threshold)
return rc;
/* in case of SIGA errors we must process the error immediately */
if (used >= scan_threshold || rc)
qdio_tasklet_schedule(q);
else
/* free the SBALs in case of no further traffic */
if (!timer_pending(&q->u.out.timer) &&
likely(q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE))
mod_timer(&q->u.out.timer, jiffies + HZ);
return rc;
}
/**
* do_QDIO - process input or output buffers
* @cdev: associated ccw_device for the qdio subchannel
* @callflags: input or output and special flags from the program
* @q_nr: queue number
* @bufnr: buffer number
* @count: how many buffers to process
*/
int do_QDIO(struct ccw_device *cdev, unsigned int callflags,
int q_nr, unsigned int bufnr, unsigned int count)
{
struct qdio_irq *irq_ptr;
if (bufnr >= QDIO_MAX_BUFFERS_PER_Q || count > QDIO_MAX_BUFFERS_PER_Q)
return -EINVAL;
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
DBF_DEV_EVENT(DBF_INFO, irq_ptr,
"do%02x b:%02x c:%02x", callflags, bufnr, count);
if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)
return -EIO;
if (!count)
return 0;
if (callflags & QDIO_FLAG_SYNC_INPUT)
return handle_inbound(irq_ptr->input_qs[q_nr],
callflags, bufnr, count);
else if (callflags & QDIO_FLAG_SYNC_OUTPUT)
return handle_outbound(irq_ptr->output_qs[q_nr],
callflags, bufnr, count);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(do_QDIO);
/**
* qdio_start_irq - process input buffers
* @cdev: associated ccw_device for the qdio subchannel
* @nr: input queue number
*
* Return codes
* 0 - success
* 1 - irqs not started since new data is available
*/
int qdio_start_irq(struct ccw_device *cdev, int nr)
{
struct qdio_q *q;
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
q = irq_ptr->input_qs[nr];
clear_nonshared_ind(irq_ptr);
qdio_stop_polling(q);
clear_bit(QDIO_QUEUE_IRQS_DISABLED, &q->u.in.queue_irq_state);
/*
* We need to check again to not lose initiative after
* resetting the ACK state.
*/
if (test_nonshared_ind(irq_ptr))
goto rescan;
if (!qdio_inbound_q_done(q, q->first_to_check))
goto rescan;
return 0;
rescan:
if (test_and_set_bit(QDIO_QUEUE_IRQS_DISABLED,
&q->u.in.queue_irq_state))
return 0;
else
return 1;
}
EXPORT_SYMBOL(qdio_start_irq);
static int __qdio_inspect_queue(struct qdio_q *q, unsigned int *bufnr,
unsigned int *error)
{
unsigned int start = q->first_to_check;
int count;
count = q->is_input_q ? qdio_inbound_q_moved(q, start) :
qdio_outbound_q_moved(q, start);
if (count == 0)
return 0;
*bufnr = start;
*error = q->qdio_error;
/* for the next time */
q->first_to_check = add_buf(start, count);
q->qdio_error = 0;
return count;
}
int qdio_inspect_queue(struct ccw_device *cdev, unsigned int nr, bool is_input,
unsigned int *bufnr, unsigned int *error)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct qdio_q *q;
if (!irq_ptr)
return -ENODEV;
q = is_input ? irq_ptr->input_qs[nr] : irq_ptr->output_qs[nr];
if (need_siga_sync(q))
qdio_siga_sync_q(q);
return __qdio_inspect_queue(q, bufnr, error);
}
EXPORT_SYMBOL_GPL(qdio_inspect_queue);
/**
* qdio_get_next_buffers - process input buffers
* @cdev: associated ccw_device for the qdio subchannel
* @nr: input queue number
* @bufnr: first filled buffer number
* @error: buffers are in error state
*
* Return codes
* < 0 - error
* = 0 - no new buffers found
* > 0 - number of processed buffers
*/
int qdio_get_next_buffers(struct ccw_device *cdev, int nr, int *bufnr,
int *error)
{
struct qdio_q *q;
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
q = irq_ptr->input_qs[nr];
/*
* Cannot rely on automatic sync after interrupt since queues may
* also be examined without interrupt.
*/
if (need_siga_sync(q))
qdio_sync_queues(q);
qdio_check_outbound_pci_queues(irq_ptr);
/* Note: upper-layer MUST stop processing immediately here ... */
if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE))
return -EIO;
return __qdio_inspect_queue(q, bufnr, error);
}
EXPORT_SYMBOL(qdio_get_next_buffers);
/**
* qdio_stop_irq - disable interrupt processing for the device
* @cdev: associated ccw_device for the qdio subchannel
* @nr: input queue number
*
* Return codes
* 0 - interrupts were already disabled
* 1 - interrupts successfully disabled
*/
int qdio_stop_irq(struct ccw_device *cdev, int nr)
{
struct qdio_q *q;
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
q = irq_ptr->input_qs[nr];
if (test_and_set_bit(QDIO_QUEUE_IRQS_DISABLED,
&q->u.in.queue_irq_state))
return 0;
else
return 1;
}
EXPORT_SYMBOL(qdio_stop_irq);
/**
* qdio_pnso_brinfo() - perform network subchannel op #0 - bridge info.
* @schid: Subchannel ID.
* @cnc: Boolean Change-Notification Control
* @response: Response code will be stored at this address
* @cb: Callback function will be executed for each element
* of the address list
* @priv: Pointer to pass to the callback function.
*
* Performs "Store-network-bridging-information list" operation and calls
* the callback function for every entry in the list. If "change-
* notification-control" is set, further changes in the address list
* will be reported via the IPA command.
*/
int qdio_pnso_brinfo(struct subchannel_id schid,
int cnc, u16 *response,
void (*cb)(void *priv, enum qdio_brinfo_entry_type type,
void *entry),
void *priv)
{
struct chsc_pnso_area *rr;
int rc;
u32 prev_instance = 0;
int isfirstblock = 1;
int i, size, elems;
rr = (struct chsc_pnso_area *)get_zeroed_page(GFP_KERNEL);
if (rr == NULL)
return -ENOMEM;
do {
/* on the first iteration, naihdr.resume_token will be zero */
rc = chsc_pnso_brinfo(schid, rr, rr->naihdr.resume_token, cnc);
if (rc != 0 && rc != -EBUSY)
goto out;
if (rr->response.code != 1) {
rc = -EIO;
continue;
} else
rc = 0;
if (cb == NULL)
continue;
size = rr->naihdr.naids;
elems = (rr->response.length -
sizeof(struct chsc_header) -
sizeof(struct chsc_brinfo_naihdr)) /
size;
if (!isfirstblock && (rr->naihdr.instance != prev_instance)) {
/* Inform the caller that they need to scrap */
/* the data that was already reported via cb */
rc = -EAGAIN;
break;
}
isfirstblock = 0;
prev_instance = rr->naihdr.instance;
for (i = 0; i < elems; i++)
switch (size) {
case sizeof(struct qdio_brinfo_entry_l3_ipv6):
(*cb)(priv, l3_ipv6_addr,
&rr->entries.l3_ipv6[i]);
break;
case sizeof(struct qdio_brinfo_entry_l3_ipv4):
(*cb)(priv, l3_ipv4_addr,
&rr->entries.l3_ipv4[i]);
break;
case sizeof(struct qdio_brinfo_entry_l2):
(*cb)(priv, l2_addr_lnid,
&rr->entries.l2[i]);
break;
default:
WARN_ON_ONCE(1);
rc = -EIO;
goto out;
}
} while (rr->response.code == 0x0107 || /* channel busy */
(rr->response.code == 1 && /* list stored */
/* resume token is non-zero => list incomplete */
(rr->naihdr.resume_token.t1 || rr->naihdr.resume_token.t2)));
(*response) = rr->response.code;
out:
free_page((unsigned long)rr);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_pnso_brinfo);
static int __init init_QDIO(void)
{
int rc;
rc = qdio_debug_init();
if (rc)
return rc;
rc = qdio_setup_init();
if (rc)
goto out_debug;
rc = tiqdio_allocate_memory();
if (rc)
goto out_cache;
rc = tiqdio_register_thinints();
if (rc)
goto out_ti;
return 0;
out_ti:
tiqdio_free_memory();
out_cache:
qdio_setup_exit();
out_debug:
qdio_debug_exit();
return rc;
}
static void __exit exit_QDIO(void)
{
tiqdio_unregister_thinints();
tiqdio_free_memory();
qdio_setup_exit();
qdio_debug_exit();
}
module_init(init_QDIO);
module_exit(exit_QDIO);