mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 21:29:39 +07:00
018edcfac4
The UEFI stub executes in the context of the firmware, which identity maps the available system RAM, which implies that only memory below 4 GB can be used for allocations on 32-bit architectures, even on [L]PAE capable hardware. So ignore any reported memory above 4 GB in efi_random_alloc(). This also fixes a reported build problem on ARM under -Os, where the 64-bit logical shift relies on a software routine that the ARM decompressor does not provide. A second [minor] issue is also fixed, where the '+ 1' is moved out of the shift, where it belongs: the reason for its presence is that a memory region where start == end should count as a single slot, given that 'end' takes the desired size and alignment of the allocation into account. To clarify the code in this regard, rename start/end to 'first_slot' and 'last_slot', respectively, and introduce 'region_end' to describe the last usable address of the current region. Reported-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1480010543-25709-2-git-send-email-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
195 lines
5.4 KiB
C
195 lines
5.4 KiB
C
/*
|
|
* Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/log2.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
struct efi_rng_protocol {
|
|
efi_status_t (*get_info)(struct efi_rng_protocol *,
|
|
unsigned long *, efi_guid_t *);
|
|
efi_status_t (*get_rng)(struct efi_rng_protocol *,
|
|
efi_guid_t *, unsigned long, u8 *out);
|
|
};
|
|
|
|
efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
|
|
unsigned long size, u8 *out)
|
|
{
|
|
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
|
|
efi_status_t status;
|
|
struct efi_rng_protocol *rng;
|
|
|
|
status = efi_call_early(locate_protocol, &rng_proto, NULL,
|
|
(void **)&rng);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
return rng->get_rng(rng, NULL, size, out);
|
|
}
|
|
|
|
/*
|
|
* Return the number of slots covered by this entry, i.e., the number of
|
|
* addresses it covers that are suitably aligned and supply enough room
|
|
* for the allocation.
|
|
*/
|
|
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
|
|
unsigned long size,
|
|
unsigned long align_shift)
|
|
{
|
|
unsigned long align = 1UL << align_shift;
|
|
u64 first_slot, last_slot, region_end;
|
|
|
|
if (md->type != EFI_CONVENTIONAL_MEMORY)
|
|
return 0;
|
|
|
|
region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
|
|
|
|
first_slot = round_up(md->phys_addr, align);
|
|
last_slot = round_down(region_end - size + 1, align);
|
|
|
|
if (first_slot > last_slot)
|
|
return 0;
|
|
|
|
return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
|
|
}
|
|
|
|
/*
|
|
* The UEFI memory descriptors have a virtual address field that is only used
|
|
* when installing the virtual mapping using SetVirtualAddressMap(). Since it
|
|
* is unused here, we can reuse it to keep track of each descriptor's slot
|
|
* count.
|
|
*/
|
|
#define MD_NUM_SLOTS(md) ((md)->virt_addr)
|
|
|
|
efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
|
|
unsigned long size,
|
|
unsigned long align,
|
|
unsigned long *addr,
|
|
unsigned long random_seed)
|
|
{
|
|
unsigned long map_size, desc_size, total_slots = 0, target_slot;
|
|
unsigned long buff_size;
|
|
efi_status_t status;
|
|
efi_memory_desc_t *memory_map;
|
|
int map_offset;
|
|
struct efi_boot_memmap map;
|
|
|
|
map.map = &memory_map;
|
|
map.map_size = &map_size;
|
|
map.desc_size = &desc_size;
|
|
map.desc_ver = NULL;
|
|
map.key_ptr = NULL;
|
|
map.buff_size = &buff_size;
|
|
|
|
status = efi_get_memory_map(sys_table_arg, &map);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
if (align < EFI_ALLOC_ALIGN)
|
|
align = EFI_ALLOC_ALIGN;
|
|
|
|
/* count the suitable slots in each memory map entry */
|
|
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
unsigned long slots;
|
|
|
|
slots = get_entry_num_slots(md, size, ilog2(align));
|
|
MD_NUM_SLOTS(md) = slots;
|
|
total_slots += slots;
|
|
}
|
|
|
|
/* find a random number between 0 and total_slots */
|
|
target_slot = (total_slots * (u16)random_seed) >> 16;
|
|
|
|
/*
|
|
* target_slot is now a value in the range [0, total_slots), and so
|
|
* it corresponds with exactly one of the suitable slots we recorded
|
|
* when iterating over the memory map the first time around.
|
|
*
|
|
* So iterate over the memory map again, subtracting the number of
|
|
* slots of each entry at each iteration, until we have found the entry
|
|
* that covers our chosen slot. Use the residual value of target_slot
|
|
* to calculate the randomly chosen address, and allocate it directly
|
|
* using EFI_ALLOCATE_ADDRESS.
|
|
*/
|
|
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
efi_physical_addr_t target;
|
|
unsigned long pages;
|
|
|
|
if (target_slot >= MD_NUM_SLOTS(md)) {
|
|
target_slot -= MD_NUM_SLOTS(md);
|
|
continue;
|
|
}
|
|
|
|
target = round_up(md->phys_addr, align) + target_slot * align;
|
|
pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
|
|
|
status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
|
EFI_LOADER_DATA, pages, &target);
|
|
if (status == EFI_SUCCESS)
|
|
*addr = target;
|
|
break;
|
|
}
|
|
|
|
efi_call_early(free_pool, memory_map);
|
|
|
|
return status;
|
|
}
|
|
|
|
#define RANDOM_SEED_SIZE 32
|
|
|
|
efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
|
|
{
|
|
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
|
|
efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
|
|
efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
|
|
struct efi_rng_protocol *rng;
|
|
struct linux_efi_random_seed *seed;
|
|
efi_status_t status;
|
|
|
|
status = efi_call_early(locate_protocol, &rng_proto, NULL,
|
|
(void **)&rng);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
|
|
sizeof(*seed) + RANDOM_SEED_SIZE,
|
|
(void **)&seed);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = rng->get_rng(rng, &rng_algo_raw, RANDOM_SEED_SIZE,
|
|
seed->bits);
|
|
if (status == EFI_UNSUPPORTED)
|
|
/*
|
|
* Use whatever algorithm we have available if the raw algorithm
|
|
* is not implemented.
|
|
*/
|
|
status = rng->get_rng(rng, NULL, RANDOM_SEED_SIZE,
|
|
seed->bits);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto err_freepool;
|
|
|
|
seed->size = RANDOM_SEED_SIZE;
|
|
status = efi_call_early(install_configuration_table, &rng_table_guid,
|
|
seed);
|
|
if (status != EFI_SUCCESS)
|
|
goto err_freepool;
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
err_freepool:
|
|
efi_call_early(free_pool, seed);
|
|
return status;
|
|
}
|