mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
6365b842aa
For unfortunate historical reasons, the x32 syscalls and the x86_64 syscalls are not all numbered the same. As an example, ioctl() is nr 16 on x86_64 but 514 on x32. This has potentially nasty consequences, since it means that there are two valid RAX values to do ioctl(2) and two invalid RAX values. The valid values are 16 (i.e. ioctl(2) using the x86_64 ABI) and (514 | 0x40000000) (i.e. ioctl(2) using the x32 ABI). The invalid values are 514 and (16 | 0x40000000). 514 will enter the "COMPAT_SYSCALL_DEFINE3(ioctl, ...)" entry point with in_compat_syscall() and in_x32_syscall() returning false, whereas (16 | 0x40000000) will enter the native entry point with in_compat_syscall() and in_x32_syscall() returning true. Both are bogus, and both will exercise code paths in the kernel and in any running seccomp filters that really ought to be unreachable. Splitting out the x32 syscalls into their own tables, allows both bogus invocations to return -ENOSYS. I've checked glibc, musl, and Bionic, and all of them appear to call syscalls with their correct numbers, so this change should have no effect on them. There is an added benefit going forward: new syscalls that need special handling on x32 can share the same number on x32 and x86_64. This means that the special syscall range 512-547 can be treated as a legacy wart instead of something that may need to be extended in the future. Also add a selftest to verify the new behavior. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/208024256b764312598f014ebfb0a42472c19354.1562185330.git.luto@kernel.org
437 lines
12 KiB
C
437 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* common.c - C code for kernel entry and exit
|
|
* Copyright (c) 2015 Andrew Lutomirski
|
|
*
|
|
* Based on asm and ptrace code by many authors. The code here originated
|
|
* in ptrace.c and signal.c.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/seccomp.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/export.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/user-return-notifier.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/uprobes.h>
|
|
#include <linux/livepatch.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/desc.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/nospec-branch.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/syscalls.h>
|
|
|
|
#ifdef CONFIG_CONTEXT_TRACKING
|
|
/* Called on entry from user mode with IRQs off. */
|
|
__visible inline void enter_from_user_mode(void)
|
|
{
|
|
CT_WARN_ON(ct_state() != CONTEXT_USER);
|
|
user_exit_irqoff();
|
|
}
|
|
#else
|
|
static inline void enter_from_user_mode(void) {}
|
|
#endif
|
|
|
|
static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
if (arch == AUDIT_ARCH_X86_64) {
|
|
audit_syscall_entry(regs->orig_ax, regs->di,
|
|
regs->si, regs->dx, regs->r10);
|
|
} else
|
|
#endif
|
|
{
|
|
audit_syscall_entry(regs->orig_ax, regs->bx,
|
|
regs->cx, regs->dx, regs->si);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the syscall nr to run (which should match regs->orig_ax) or -1
|
|
* to skip the syscall.
|
|
*/
|
|
static long syscall_trace_enter(struct pt_regs *regs)
|
|
{
|
|
u32 arch = in_ia32_syscall() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
|
|
|
|
struct thread_info *ti = current_thread_info();
|
|
unsigned long ret = 0;
|
|
u32 work;
|
|
|
|
if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
|
|
BUG_ON(regs != task_pt_regs(current));
|
|
|
|
work = READ_ONCE(ti->flags);
|
|
|
|
if (work & (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU)) {
|
|
ret = tracehook_report_syscall_entry(regs);
|
|
if (ret || (work & _TIF_SYSCALL_EMU))
|
|
return -1L;
|
|
}
|
|
|
|
#ifdef CONFIG_SECCOMP
|
|
/*
|
|
* Do seccomp after ptrace, to catch any tracer changes.
|
|
*/
|
|
if (work & _TIF_SECCOMP) {
|
|
struct seccomp_data sd;
|
|
|
|
sd.arch = arch;
|
|
sd.nr = regs->orig_ax;
|
|
sd.instruction_pointer = regs->ip;
|
|
#ifdef CONFIG_X86_64
|
|
if (arch == AUDIT_ARCH_X86_64) {
|
|
sd.args[0] = regs->di;
|
|
sd.args[1] = regs->si;
|
|
sd.args[2] = regs->dx;
|
|
sd.args[3] = regs->r10;
|
|
sd.args[4] = regs->r8;
|
|
sd.args[5] = regs->r9;
|
|
} else
|
|
#endif
|
|
{
|
|
sd.args[0] = regs->bx;
|
|
sd.args[1] = regs->cx;
|
|
sd.args[2] = regs->dx;
|
|
sd.args[3] = regs->si;
|
|
sd.args[4] = regs->di;
|
|
sd.args[5] = regs->bp;
|
|
}
|
|
|
|
ret = __secure_computing(&sd);
|
|
if (ret == -1)
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
|
|
trace_sys_enter(regs, regs->orig_ax);
|
|
|
|
do_audit_syscall_entry(regs, arch);
|
|
|
|
return ret ?: regs->orig_ax;
|
|
}
|
|
|
|
#define EXIT_TO_USERMODE_LOOP_FLAGS \
|
|
(_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \
|
|
_TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY | _TIF_PATCH_PENDING)
|
|
|
|
static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
|
|
{
|
|
/*
|
|
* In order to return to user mode, we need to have IRQs off with
|
|
* none of EXIT_TO_USERMODE_LOOP_FLAGS set. Several of these flags
|
|
* can be set at any time on preemptible kernels if we have IRQs on,
|
|
* so we need to loop. Disabling preemption wouldn't help: doing the
|
|
* work to clear some of the flags can sleep.
|
|
*/
|
|
while (true) {
|
|
/* We have work to do. */
|
|
local_irq_enable();
|
|
|
|
if (cached_flags & _TIF_NEED_RESCHED)
|
|
schedule();
|
|
|
|
if (cached_flags & _TIF_UPROBE)
|
|
uprobe_notify_resume(regs);
|
|
|
|
if (cached_flags & _TIF_PATCH_PENDING)
|
|
klp_update_patch_state(current);
|
|
|
|
/* deal with pending signal delivery */
|
|
if (cached_flags & _TIF_SIGPENDING)
|
|
do_signal(regs);
|
|
|
|
if (cached_flags & _TIF_NOTIFY_RESUME) {
|
|
clear_thread_flag(TIF_NOTIFY_RESUME);
|
|
tracehook_notify_resume(regs);
|
|
rseq_handle_notify_resume(NULL, regs);
|
|
}
|
|
|
|
if (cached_flags & _TIF_USER_RETURN_NOTIFY)
|
|
fire_user_return_notifiers();
|
|
|
|
/* Disable IRQs and retry */
|
|
local_irq_disable();
|
|
|
|
cached_flags = READ_ONCE(current_thread_info()->flags);
|
|
|
|
if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Called with IRQs disabled. */
|
|
__visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
u32 cached_flags;
|
|
|
|
addr_limit_user_check();
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
lockdep_sys_exit();
|
|
|
|
cached_flags = READ_ONCE(ti->flags);
|
|
|
|
if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
|
|
exit_to_usermode_loop(regs, cached_flags);
|
|
|
|
/* Reload ti->flags; we may have rescheduled above. */
|
|
cached_flags = READ_ONCE(ti->flags);
|
|
|
|
fpregs_assert_state_consistent();
|
|
if (unlikely(cached_flags & _TIF_NEED_FPU_LOAD))
|
|
switch_fpu_return();
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
/*
|
|
* Compat syscalls set TS_COMPAT. Make sure we clear it before
|
|
* returning to user mode. We need to clear it *after* signal
|
|
* handling, because syscall restart has a fixup for compat
|
|
* syscalls. The fixup is exercised by the ptrace_syscall_32
|
|
* selftest.
|
|
*
|
|
* We also need to clear TS_REGS_POKED_I386: the 32-bit tracer
|
|
* special case only applies after poking regs and before the
|
|
* very next return to user mode.
|
|
*/
|
|
ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
|
|
#endif
|
|
|
|
user_enter_irqoff();
|
|
|
|
mds_user_clear_cpu_buffers();
|
|
}
|
|
|
|
#define SYSCALL_EXIT_WORK_FLAGS \
|
|
(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \
|
|
_TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
|
|
|
|
static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
|
|
{
|
|
bool step;
|
|
|
|
audit_syscall_exit(regs);
|
|
|
|
if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
|
|
trace_sys_exit(regs, regs->ax);
|
|
|
|
/*
|
|
* If TIF_SYSCALL_EMU is set, we only get here because of
|
|
* TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
|
|
* We already reported this syscall instruction in
|
|
* syscall_trace_enter().
|
|
*/
|
|
step = unlikely(
|
|
(cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
|
|
== _TIF_SINGLESTEP);
|
|
if (step || cached_flags & _TIF_SYSCALL_TRACE)
|
|
tracehook_report_syscall_exit(regs, step);
|
|
}
|
|
|
|
/*
|
|
* Called with IRQs on and fully valid regs. Returns with IRQs off in a
|
|
* state such that we can immediately switch to user mode.
|
|
*/
|
|
__visible inline void syscall_return_slowpath(struct pt_regs *regs)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
u32 cached_flags = READ_ONCE(ti->flags);
|
|
|
|
CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
|
|
|
|
if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
|
|
WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
|
|
local_irq_enable();
|
|
|
|
rseq_syscall(regs);
|
|
|
|
/*
|
|
* First do one-time work. If these work items are enabled, we
|
|
* want to run them exactly once per syscall exit with IRQs on.
|
|
*/
|
|
if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
|
|
syscall_slow_exit_work(regs, cached_flags);
|
|
|
|
local_irq_disable();
|
|
prepare_exit_to_usermode(regs);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
__visible void do_syscall_64(unsigned long nr, struct pt_regs *regs)
|
|
{
|
|
struct thread_info *ti;
|
|
|
|
enter_from_user_mode();
|
|
local_irq_enable();
|
|
ti = current_thread_info();
|
|
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
|
|
nr = syscall_trace_enter(regs);
|
|
|
|
if (likely(nr < NR_syscalls)) {
|
|
nr = array_index_nospec(nr, NR_syscalls);
|
|
regs->ax = sys_call_table[nr](regs);
|
|
#ifdef CONFIG_X86_X32_ABI
|
|
} else if (likely((nr & __X32_SYSCALL_BIT) &&
|
|
(nr & ~__X32_SYSCALL_BIT) < X32_NR_syscalls)) {
|
|
nr = array_index_nospec(nr & ~__X32_SYSCALL_BIT,
|
|
X32_NR_syscalls);
|
|
regs->ax = x32_sys_call_table[nr](regs);
|
|
#endif
|
|
}
|
|
|
|
syscall_return_slowpath(regs);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
|
|
/*
|
|
* Does a 32-bit syscall. Called with IRQs on in CONTEXT_KERNEL. Does
|
|
* all entry and exit work and returns with IRQs off. This function is
|
|
* extremely hot in workloads that use it, and it's usually called from
|
|
* do_fast_syscall_32, so forcibly inline it to improve performance.
|
|
*/
|
|
static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
unsigned int nr = (unsigned int)regs->orig_ax;
|
|
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
ti->status |= TS_COMPAT;
|
|
#endif
|
|
|
|
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
|
|
/*
|
|
* Subtlety here: if ptrace pokes something larger than
|
|
* 2^32-1 into orig_ax, this truncates it. This may or
|
|
* may not be necessary, but it matches the old asm
|
|
* behavior.
|
|
*/
|
|
nr = syscall_trace_enter(regs);
|
|
}
|
|
|
|
if (likely(nr < IA32_NR_syscalls)) {
|
|
nr = array_index_nospec(nr, IA32_NR_syscalls);
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
regs->ax = ia32_sys_call_table[nr](regs);
|
|
#else
|
|
/*
|
|
* It's possible that a 32-bit syscall implementation
|
|
* takes a 64-bit parameter but nonetheless assumes that
|
|
* the high bits are zero. Make sure we zero-extend all
|
|
* of the args.
|
|
*/
|
|
regs->ax = ia32_sys_call_table[nr](
|
|
(unsigned int)regs->bx, (unsigned int)regs->cx,
|
|
(unsigned int)regs->dx, (unsigned int)regs->si,
|
|
(unsigned int)regs->di, (unsigned int)regs->bp);
|
|
#endif /* CONFIG_IA32_EMULATION */
|
|
}
|
|
|
|
syscall_return_slowpath(regs);
|
|
}
|
|
|
|
/* Handles int $0x80 */
|
|
__visible void do_int80_syscall_32(struct pt_regs *regs)
|
|
{
|
|
enter_from_user_mode();
|
|
local_irq_enable();
|
|
do_syscall_32_irqs_on(regs);
|
|
}
|
|
|
|
/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
|
|
__visible long do_fast_syscall_32(struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* Called using the internal vDSO SYSENTER/SYSCALL32 calling
|
|
* convention. Adjust regs so it looks like we entered using int80.
|
|
*/
|
|
|
|
unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
|
|
vdso_image_32.sym_int80_landing_pad;
|
|
|
|
/*
|
|
* SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
|
|
* so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
|
|
* Fix it up.
|
|
*/
|
|
regs->ip = landing_pad;
|
|
|
|
enter_from_user_mode();
|
|
|
|
local_irq_enable();
|
|
|
|
/* Fetch EBP from where the vDSO stashed it. */
|
|
if (
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Micro-optimization: the pointer we're following is explicitly
|
|
* 32 bits, so it can't be out of range.
|
|
*/
|
|
__get_user(*(u32 *)®s->bp,
|
|
(u32 __user __force *)(unsigned long)(u32)regs->sp)
|
|
#else
|
|
get_user(*(u32 *)®s->bp,
|
|
(u32 __user __force *)(unsigned long)(u32)regs->sp)
|
|
#endif
|
|
) {
|
|
|
|
/* User code screwed up. */
|
|
local_irq_disable();
|
|
regs->ax = -EFAULT;
|
|
prepare_exit_to_usermode(regs);
|
|
return 0; /* Keep it simple: use IRET. */
|
|
}
|
|
|
|
/* Now this is just like a normal syscall. */
|
|
do_syscall_32_irqs_on(regs);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Opportunistic SYSRETL: if possible, try to return using SYSRETL.
|
|
* SYSRETL is available on all 64-bit CPUs, so we don't need to
|
|
* bother with SYSEXIT.
|
|
*
|
|
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
|
|
* because the ECX fixup above will ensure that this is essentially
|
|
* never the case.
|
|
*/
|
|
return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
|
|
regs->ip == landing_pad &&
|
|
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
|
|
#else
|
|
/*
|
|
* Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
|
|
*
|
|
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
|
|
* because the ECX fixup above will ensure that this is essentially
|
|
* never the case.
|
|
*
|
|
* We don't allow syscalls at all from VM86 mode, but we still
|
|
* need to check VM, because we might be returning from sys_vm86.
|
|
*/
|
|
return static_cpu_has(X86_FEATURE_SEP) &&
|
|
regs->cs == __USER_CS && regs->ss == __USER_DS &&
|
|
regs->ip == landing_pad &&
|
|
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
|
|
#endif
|
|
}
|
|
#endif
|