mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 08:09:22 +07:00
75aa3f6307
There's no need for __raw_i915_read8() & co. to be macros, so make them inline functions. To avoid typo mistakes generate the inline functions using preprocessor templates. We have a few users of the raw register acces functions outside intel_uncore.c, so let's also move the functions into intel_drv.h. While doing that switch I915_READ_FW() & co. to use the __raw_i915_read() functions, and use the _FW macros everywhere outside intel_uncore.c where we want to read registers without grabbing forcewake and whatnot. The only exception is i915_check_vgpu() which itself gets called from intel_uncore.c, so using the __raw_i915_read stuff there seems appropriate. v2: Squash in the intel_uncore.c->i915_drv.h move Convert I915_READ_FW() to use __raw_i915_read(), and use I915_READ_FW() outside of intel_uncore.c (Chris) Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1445517300-28173-2-git-send-email-ville.syrjala@linux.intel.com Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
265 lines
9.1 KiB
C
265 lines
9.1 KiB
C
/*
|
|
* Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "intel_drv.h"
|
|
#include "i915_vgpu.h"
|
|
|
|
/**
|
|
* DOC: Intel GVT-g guest support
|
|
*
|
|
* Intel GVT-g is a graphics virtualization technology which shares the
|
|
* GPU among multiple virtual machines on a time-sharing basis. Each
|
|
* virtual machine is presented a virtual GPU (vGPU), which has equivalent
|
|
* features as the underlying physical GPU (pGPU), so i915 driver can run
|
|
* seamlessly in a virtual machine. This file provides vGPU specific
|
|
* optimizations when running in a virtual machine, to reduce the complexity
|
|
* of vGPU emulation and to improve the overall performance.
|
|
*
|
|
* A primary function introduced here is so-called "address space ballooning"
|
|
* technique. Intel GVT-g partitions global graphics memory among multiple VMs,
|
|
* so each VM can directly access a portion of the memory without hypervisor's
|
|
* intervention, e.g. filling textures or queuing commands. However with the
|
|
* partitioning an unmodified i915 driver would assume a smaller graphics
|
|
* memory starting from address ZERO, then requires vGPU emulation module to
|
|
* translate the graphics address between 'guest view' and 'host view', for
|
|
* all registers and command opcodes which contain a graphics memory address.
|
|
* To reduce the complexity, Intel GVT-g introduces "address space ballooning",
|
|
* by telling the exact partitioning knowledge to each guest i915 driver, which
|
|
* then reserves and prevents non-allocated portions from allocation. Thus vGPU
|
|
* emulation module only needs to scan and validate graphics addresses without
|
|
* complexity of address translation.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* i915_check_vgpu - detect virtual GPU
|
|
* @dev: drm device *
|
|
*
|
|
* This function is called at the initialization stage, to detect whether
|
|
* running on a vGPU.
|
|
*/
|
|
void i915_check_vgpu(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint64_t magic;
|
|
uint32_t version;
|
|
|
|
BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
|
|
|
|
if (!IS_HASWELL(dev))
|
|
return;
|
|
|
|
magic = __raw_i915_read64(dev_priv, vgtif_reg(magic));
|
|
if (magic != VGT_MAGIC)
|
|
return;
|
|
|
|
version = INTEL_VGT_IF_VERSION_ENCODE(
|
|
__raw_i915_read16(dev_priv, vgtif_reg(version_major)),
|
|
__raw_i915_read16(dev_priv, vgtif_reg(version_minor)));
|
|
if (version != INTEL_VGT_IF_VERSION) {
|
|
DRM_INFO("VGT interface version mismatch!\n");
|
|
return;
|
|
}
|
|
|
|
dev_priv->vgpu.active = true;
|
|
DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
|
|
}
|
|
|
|
struct _balloon_info_ {
|
|
/*
|
|
* There are up to 2 regions per mappable/unmappable graphic
|
|
* memory that might be ballooned. Here, index 0/1 is for mappable
|
|
* graphic memory, 2/3 for unmappable graphic memory.
|
|
*/
|
|
struct drm_mm_node space[4];
|
|
};
|
|
|
|
static struct _balloon_info_ bl_info;
|
|
|
|
/**
|
|
* intel_vgt_deballoon - deballoon reserved graphics address trunks
|
|
*
|
|
* This function is called to deallocate the ballooned-out graphic memory, when
|
|
* driver is unloaded or when ballooning fails.
|
|
*/
|
|
void intel_vgt_deballoon(void)
|
|
{
|
|
int i;
|
|
|
|
DRM_DEBUG("VGT deballoon.\n");
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (bl_info.space[i].allocated)
|
|
drm_mm_remove_node(&bl_info.space[i]);
|
|
}
|
|
|
|
memset(&bl_info, 0, sizeof(bl_info));
|
|
}
|
|
|
|
static int vgt_balloon_space(struct drm_mm *mm,
|
|
struct drm_mm_node *node,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long size = end - start;
|
|
|
|
if (start == end)
|
|
return -EINVAL;
|
|
|
|
DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
|
|
start, end, size / 1024);
|
|
|
|
node->start = start;
|
|
node->size = size;
|
|
|
|
return drm_mm_reserve_node(mm, node);
|
|
}
|
|
|
|
/**
|
|
* intel_vgt_balloon - balloon out reserved graphics address trunks
|
|
* @dev: drm device
|
|
*
|
|
* This function is called at the initialization stage, to balloon out the
|
|
* graphic address space allocated to other vGPUs, by marking these spaces as
|
|
* reserved. The ballooning related knowledge(starting address and size of
|
|
* the mappable/unmappable graphic memory) is described in the vgt_if structure
|
|
* in a reserved mmio range.
|
|
*
|
|
* To give an example, the drawing below depicts one typical scenario after
|
|
* ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
|
|
* out each for the mappable and the non-mappable part. From the vGPU1 point of
|
|
* view, the total size is the same as the physical one, with the start address
|
|
* of its graphic space being zero. Yet there are some portions ballooned out(
|
|
* the shadow part, which are marked as reserved by drm allocator). From the
|
|
* host point of view, the graphic address space is partitioned by multiple
|
|
* vGPUs in different VMs.
|
|
*
|
|
* vGPU1 view Host view
|
|
* 0 ------> +-----------+ +-----------+
|
|
* ^ |///////////| | vGPU3 |
|
|
* | |///////////| +-----------+
|
|
* | |///////////| | vGPU2 |
|
|
* | +-----------+ +-----------+
|
|
* mappable GM | available | ==> | vGPU1 |
|
|
* | +-----------+ +-----------+
|
|
* | |///////////| | |
|
|
* v |///////////| | Host |
|
|
* +=======+===========+ +===========+
|
|
* ^ |///////////| | vGPU3 |
|
|
* | |///////////| +-----------+
|
|
* | |///////////| | vGPU2 |
|
|
* | +-----------+ +-----------+
|
|
* unmappable GM | available | ==> | vGPU1 |
|
|
* | +-----------+ +-----------+
|
|
* | |///////////| | |
|
|
* | |///////////| | Host |
|
|
* v |///////////| | |
|
|
* total GM size ------> +-----------+ +-----------+
|
|
*
|
|
* Returns:
|
|
* zero on success, non-zero if configuration invalid or ballooning failed
|
|
*/
|
|
int intel_vgt_balloon(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
|
|
unsigned long ggtt_vm_end = ggtt_vm->start + ggtt_vm->total;
|
|
|
|
unsigned long mappable_base, mappable_size, mappable_end;
|
|
unsigned long unmappable_base, unmappable_size, unmappable_end;
|
|
int ret;
|
|
|
|
mappable_base = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.base));
|
|
mappable_size = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.size));
|
|
unmappable_base = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.base));
|
|
unmappable_size = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.size));
|
|
|
|
mappable_end = mappable_base + mappable_size;
|
|
unmappable_end = unmappable_base + unmappable_size;
|
|
|
|
DRM_INFO("VGT ballooning configuration:\n");
|
|
DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
|
|
mappable_base, mappable_size / 1024);
|
|
DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
|
|
unmappable_base, unmappable_size / 1024);
|
|
|
|
if (mappable_base < ggtt_vm->start ||
|
|
mappable_end > dev_priv->gtt.mappable_end ||
|
|
unmappable_base < dev_priv->gtt.mappable_end ||
|
|
unmappable_end > ggtt_vm_end) {
|
|
DRM_ERROR("Invalid ballooning configuration!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Unmappable graphic memory ballooning */
|
|
if (unmappable_base > dev_priv->gtt.mappable_end) {
|
|
ret = vgt_balloon_space(&ggtt_vm->mm,
|
|
&bl_info.space[2],
|
|
dev_priv->gtt.mappable_end,
|
|
unmappable_base);
|
|
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* No need to partition out the last physical page,
|
|
* because it is reserved to the guard page.
|
|
*/
|
|
if (unmappable_end < ggtt_vm_end - PAGE_SIZE) {
|
|
ret = vgt_balloon_space(&ggtt_vm->mm,
|
|
&bl_info.space[3],
|
|
unmappable_end,
|
|
ggtt_vm_end - PAGE_SIZE);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
/* Mappable graphic memory ballooning */
|
|
if (mappable_base > ggtt_vm->start) {
|
|
ret = vgt_balloon_space(&ggtt_vm->mm,
|
|
&bl_info.space[0],
|
|
ggtt_vm->start, mappable_base);
|
|
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
if (mappable_end < dev_priv->gtt.mappable_end) {
|
|
ret = vgt_balloon_space(&ggtt_vm->mm,
|
|
&bl_info.space[1],
|
|
mappable_end,
|
|
dev_priv->gtt.mappable_end);
|
|
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
DRM_INFO("VGT balloon successfully\n");
|
|
return 0;
|
|
|
|
err:
|
|
DRM_ERROR("VGT balloon fail\n");
|
|
intel_vgt_deballoon();
|
|
return ret;
|
|
}
|