linux_dsm_epyc7002/fs/jffs2/nodelist.c
Artem B. Bityutskiy f97117d153 [JFFS2] Move scattered function into related files
Move functions to read inodes into readinode.c
Move functions to handle fragtree and dentry lists into nodelist.[ch]

Signed-off-by: Artem B. Bityutskiy <dedekind@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2005-11-06 17:50:45 +01:00

545 lines
17 KiB
C

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright (C) 2001-2003 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: nodelist.c,v 1.101 2005/07/27 14:46:11 dedekind Exp $
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mtd/mtd.h>
#include <linux/rbtree.h>
#include <linux/crc32.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include "nodelist.h"
void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list)
{
struct jffs2_full_dirent **prev = list;
D1(printk(KERN_DEBUG "jffs2_add_fd_to_list( %p, %p (->%p))\n", new, list, *list));
while ((*prev) && (*prev)->nhash <= new->nhash) {
if ((*prev)->nhash == new->nhash && !strcmp((*prev)->name, new->name)) {
/* Duplicate. Free one */
if (new->version < (*prev)->version) {
D1(printk(KERN_DEBUG "Eep! Marking new dirent node obsolete\n"));
D1(printk(KERN_DEBUG "New dirent is \"%s\"->ino #%u. Old is \"%s\"->ino #%u\n", new->name, new->ino, (*prev)->name, (*prev)->ino));
jffs2_mark_node_obsolete(c, new->raw);
jffs2_free_full_dirent(new);
} else {
D1(printk(KERN_DEBUG "Marking old dirent node (ino #%u) obsolete\n", (*prev)->ino));
new->next = (*prev)->next;
jffs2_mark_node_obsolete(c, ((*prev)->raw));
jffs2_free_full_dirent(*prev);
*prev = new;
}
goto out;
}
prev = &((*prev)->next);
}
new->next = *prev;
*prev = new;
out:
D2(while(*list) {
printk(KERN_DEBUG "Dirent \"%s\" (hash 0x%08x, ino #%u\n", (*list)->name, (*list)->nhash, (*list)->ino);
list = &(*list)->next;
});
}
void jffs2_obsolete_node_frag(struct jffs2_sb_info *c, struct jffs2_node_frag *this)
{
if (this->node) {
this->node->frags--;
if (!this->node->frags) {
/* The node has no valid frags left. It's totally obsoleted */
D2(printk(KERN_DEBUG "Marking old node @0x%08x (0x%04x-0x%04x) obsolete\n",
ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size));
jffs2_mark_node_obsolete(c, this->node->raw);
jffs2_free_full_dnode(this->node);
} else {
D2(printk(KERN_DEBUG "Marking old node @0x%08x (0x%04x-0x%04x) REF_NORMAL. frags is %d\n",
ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size,
this->node->frags));
mark_ref_normal(this->node->raw);
}
}
jffs2_free_node_frag(this);
}
static void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base)
{
struct rb_node *parent = &base->rb;
struct rb_node **link = &parent;
D2(printk(KERN_DEBUG "jffs2_fragtree_insert(%p; %d-%d, %p)\n", newfrag,
newfrag->ofs, newfrag->ofs+newfrag->size, base));
while (*link) {
parent = *link;
base = rb_entry(parent, struct jffs2_node_frag, rb);
D2(printk(KERN_DEBUG "fragtree_insert considering frag at 0x%x\n", base->ofs));
if (newfrag->ofs > base->ofs)
link = &base->rb.rb_right;
else if (newfrag->ofs < base->ofs)
link = &base->rb.rb_left;
else {
printk(KERN_CRIT "Duplicate frag at %08x (%p,%p)\n", newfrag->ofs, newfrag, base);
BUG();
}
}
rb_link_node(&newfrag->rb, &base->rb, link);
}
/* Doesn't set inode->i_size */
static int jffs2_add_frag_to_fragtree(struct jffs2_sb_info *c, struct rb_root *list, struct jffs2_node_frag *newfrag)
{
struct jffs2_node_frag *this;
uint32_t lastend;
/* Skip all the nodes which are completed before this one starts */
this = jffs2_lookup_node_frag(list, newfrag->node->ofs);
if (this) {
D2(printk(KERN_DEBUG "j_a_f_d_t_f: Lookup gave frag 0x%04x-0x%04x; phys 0x%08x (*%p)\n",
this->ofs, this->ofs+this->size, this->node?(ref_offset(this->node->raw)):0xffffffff, this));
lastend = this->ofs + this->size;
} else {
D2(printk(KERN_DEBUG "j_a_f_d_t_f: Lookup gave no frag\n"));
lastend = 0;
}
/* See if we ran off the end of the list */
if (lastend <= newfrag->ofs) {
/* We did */
/* Check if 'this' node was on the same page as the new node.
If so, both 'this' and the new node get marked REF_NORMAL so
the GC can take a look.
*/
if (lastend && (lastend-1) >> PAGE_CACHE_SHIFT == newfrag->ofs >> PAGE_CACHE_SHIFT) {
if (this->node)
mark_ref_normal(this->node->raw);
mark_ref_normal(newfrag->node->raw);
}
if (lastend < newfrag->node->ofs) {
/* ... and we need to put a hole in before the new node */
struct jffs2_node_frag *holefrag = jffs2_alloc_node_frag();
if (!holefrag) {
jffs2_free_node_frag(newfrag);
return -ENOMEM;
}
holefrag->ofs = lastend;
holefrag->size = newfrag->node->ofs - lastend;
holefrag->node = NULL;
if (this) {
/* By definition, the 'this' node has no right-hand child,
because there are no frags with offset greater than it.
So that's where we want to put the hole */
D2(printk(KERN_DEBUG "Adding hole frag (%p) on right of node at (%p)\n", holefrag, this));
rb_link_node(&holefrag->rb, &this->rb, &this->rb.rb_right);
} else {
D2(printk(KERN_DEBUG "Adding hole frag (%p) at root of tree\n", holefrag));
rb_link_node(&holefrag->rb, NULL, &list->rb_node);
}
rb_insert_color(&holefrag->rb, list);
this = holefrag;
}
if (this) {
/* By definition, the 'this' node has no right-hand child,
because there are no frags with offset greater than it.
So that's where we want to put new fragment */
D2(printk(KERN_DEBUG "Adding new frag (%p) on right of node at (%p)\n", newfrag, this));
rb_link_node(&newfrag->rb, &this->rb, &this->rb.rb_right);
} else {
D2(printk(KERN_DEBUG "Adding new frag (%p) at root of tree\n", newfrag));
rb_link_node(&newfrag->rb, NULL, &list->rb_node);
}
rb_insert_color(&newfrag->rb, list);
return 0;
}
D2(printk(KERN_DEBUG "j_a_f_d_t_f: dealing with frag 0x%04x-0x%04x; phys 0x%08x (*%p)\n",
this->ofs, this->ofs+this->size, this->node?(ref_offset(this->node->raw)):0xffffffff, this));
/* OK. 'this' is pointing at the first frag that newfrag->ofs at least partially obsoletes,
* - i.e. newfrag->ofs < this->ofs+this->size && newfrag->ofs >= this->ofs
*/
if (newfrag->ofs > this->ofs) {
/* This node isn't completely obsoleted. The start of it remains valid */
/* Mark the new node and the partially covered node REF_NORMAL -- let
the GC take a look at them */
mark_ref_normal(newfrag->node->raw);
if (this->node)
mark_ref_normal(this->node->raw);
if (this->ofs + this->size > newfrag->ofs + newfrag->size) {
/* The new node splits 'this' frag into two */
struct jffs2_node_frag *newfrag2 = jffs2_alloc_node_frag();
if (!newfrag2) {
jffs2_free_node_frag(newfrag);
return -ENOMEM;
}
D2(printk(KERN_DEBUG "split old frag 0x%04x-0x%04x -->", this->ofs, this->ofs+this->size);
if (this->node)
printk("phys 0x%08x\n", ref_offset(this->node->raw));
else
printk("hole\n");
)
/* New second frag pointing to this's node */
newfrag2->ofs = newfrag->ofs + newfrag->size;
newfrag2->size = (this->ofs+this->size) - newfrag2->ofs;
newfrag2->node = this->node;
if (this->node)
this->node->frags++;
/* Adjust size of original 'this' */
this->size = newfrag->ofs - this->ofs;
/* Now, we know there's no node with offset
greater than this->ofs but smaller than
newfrag2->ofs or newfrag->ofs, for obvious
reasons. So we can do a tree insert from
'this' to insert newfrag, and a tree insert
from newfrag to insert newfrag2. */
jffs2_fragtree_insert(newfrag, this);
rb_insert_color(&newfrag->rb, list);
jffs2_fragtree_insert(newfrag2, newfrag);
rb_insert_color(&newfrag2->rb, list);
return 0;
}
/* New node just reduces 'this' frag in size, doesn't split it */
this->size = newfrag->ofs - this->ofs;
/* Again, we know it lives down here in the tree */
jffs2_fragtree_insert(newfrag, this);
rb_insert_color(&newfrag->rb, list);
} else {
/* New frag starts at the same point as 'this' used to. Replace
it in the tree without doing a delete and insertion */
D2(printk(KERN_DEBUG "Inserting newfrag (*%p),%d-%d in before 'this' (*%p),%d-%d\n",
newfrag, newfrag->ofs, newfrag->ofs+newfrag->size,
this, this->ofs, this->ofs+this->size));
rb_replace_node(&this->rb, &newfrag->rb, list);
if (newfrag->ofs + newfrag->size >= this->ofs+this->size) {
D2(printk(KERN_DEBUG "Obsoleting node frag %p (%x-%x)\n", this, this->ofs, this->ofs+this->size));
jffs2_obsolete_node_frag(c, this);
} else {
this->ofs += newfrag->size;
this->size -= newfrag->size;
jffs2_fragtree_insert(this, newfrag);
rb_insert_color(&this->rb, list);
return 0;
}
}
/* OK, now we have newfrag added in the correct place in the tree, but
frag_next(newfrag) may be a fragment which is overlapped by it
*/
while ((this = frag_next(newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) {
/* 'this' frag is obsoleted completely. */
D2(printk(KERN_DEBUG "Obsoleting node frag %p (%x-%x) and removing from tree\n", this, this->ofs, this->ofs+this->size));
rb_erase(&this->rb, list);
jffs2_obsolete_node_frag(c, this);
}
/* Now we're pointing at the first frag which isn't totally obsoleted by
the new frag */
if (!this || newfrag->ofs + newfrag->size == this->ofs) {
return 0;
}
/* Still some overlap but we don't need to move it in the tree */
this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size);
this->ofs = newfrag->ofs + newfrag->size;
/* And mark them REF_NORMAL so the GC takes a look at them */
if (this->node)
mark_ref_normal(this->node->raw);
mark_ref_normal(newfrag->node->raw);
return 0;
}
/* Given an inode, probably with existing list of fragments, add the new node
* to the fragment list.
*/
int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
{
int ret;
struct jffs2_node_frag *newfrag;
D1(printk(KERN_DEBUG "jffs2_add_full_dnode_to_inode(ino #%u, f %p, fn %p)\n", f->inocache->ino, f, fn));
if (unlikely(!fn->size))
return 0;
newfrag = jffs2_alloc_node_frag();
if (unlikely(!newfrag))
return -ENOMEM;
D2(printk(KERN_DEBUG "adding node %04x-%04x @0x%08x on flash, newfrag *%p\n",
fn->ofs, fn->ofs+fn->size, ref_offset(fn->raw), newfrag));
newfrag->ofs = fn->ofs;
newfrag->size = fn->size;
newfrag->node = fn;
newfrag->node->frags = 1;
ret = jffs2_add_frag_to_fragtree(c, &f->fragtree, newfrag);
if (unlikely(ret))
return ret;
/* If we now share a page with other nodes, mark either previous
or next node REF_NORMAL, as appropriate. */
if (newfrag->ofs & (PAGE_CACHE_SIZE-1)) {
struct jffs2_node_frag *prev = frag_prev(newfrag);
mark_ref_normal(fn->raw);
/* If we don't start at zero there's _always_ a previous */
if (prev->node)
mark_ref_normal(prev->node->raw);
}
if ((newfrag->ofs+newfrag->size) & (PAGE_CACHE_SIZE-1)) {
struct jffs2_node_frag *next = frag_next(newfrag);
if (next) {
mark_ref_normal(fn->raw);
if (next->node)
mark_ref_normal(next->node->raw);
}
}
jffs2_dbg_fragtree_paranoia_check_nolock(f);
jffs2_dbg_dump_fragtree_nolock(f);
return 0;
}
void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state)
{
spin_lock(&c->inocache_lock);
ic->state = state;
wake_up(&c->inocache_wq);
spin_unlock(&c->inocache_lock);
}
/* During mount, this needs no locking. During normal operation, its
callers want to do other stuff while still holding the inocache_lock.
Rather than introducing special case get_ino_cache functions or
callbacks, we just let the caller do the locking itself. */
struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
{
struct jffs2_inode_cache *ret;
D2(printk(KERN_DEBUG "jffs2_get_ino_cache(): ino %u\n", ino));
ret = c->inocache_list[ino % INOCACHE_HASHSIZE];
while (ret && ret->ino < ino) {
ret = ret->next;
}
if (ret && ret->ino != ino)
ret = NULL;
D2(printk(KERN_DEBUG "jffs2_get_ino_cache found %p for ino %u\n", ret, ino));
return ret;
}
void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new)
{
struct jffs2_inode_cache **prev;
spin_lock(&c->inocache_lock);
if (!new->ino)
new->ino = ++c->highest_ino;
D2(printk(KERN_DEBUG "jffs2_add_ino_cache: Add %p (ino #%u)\n", new, new->ino));
prev = &c->inocache_list[new->ino % INOCACHE_HASHSIZE];
while ((*prev) && (*prev)->ino < new->ino) {
prev = &(*prev)->next;
}
new->next = *prev;
*prev = new;
spin_unlock(&c->inocache_lock);
}
void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old)
{
struct jffs2_inode_cache **prev;
D1(printk(KERN_DEBUG "jffs2_del_ino_cache: Del %p (ino #%u)\n", old, old->ino));
spin_lock(&c->inocache_lock);
prev = &c->inocache_list[old->ino % INOCACHE_HASHSIZE];
while ((*prev) && (*prev)->ino < old->ino) {
prev = &(*prev)->next;
}
if ((*prev) == old) {
*prev = old->next;
}
/* Free it now unless it's in READING or CLEARING state, which
are the transitions upon read_inode() and clear_inode(). The
rest of the time we know nobody else is looking at it, and
if it's held by read_inode() or clear_inode() they'll free it
for themselves. */
if (old->state != INO_STATE_READING && old->state != INO_STATE_CLEARING)
jffs2_free_inode_cache(old);
spin_unlock(&c->inocache_lock);
}
void jffs2_free_ino_caches(struct jffs2_sb_info *c)
{
int i;
struct jffs2_inode_cache *this, *next;
for (i=0; i<INOCACHE_HASHSIZE; i++) {
this = c->inocache_list[i];
while (this) {
next = this->next;
jffs2_free_inode_cache(this);
this = next;
}
c->inocache_list[i] = NULL;
}
}
void jffs2_free_raw_node_refs(struct jffs2_sb_info *c)
{
int i;
struct jffs2_raw_node_ref *this, *next;
for (i=0; i<c->nr_blocks; i++) {
this = c->blocks[i].first_node;
while(this) {
next = this->next_phys;
jffs2_free_raw_node_ref(this);
this = next;
}
c->blocks[i].first_node = c->blocks[i].last_node = NULL;
}
}
struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset)
{
/* The common case in lookup is that there will be a node
which precisely matches. So we go looking for that first */
struct rb_node *next;
struct jffs2_node_frag *prev = NULL;
struct jffs2_node_frag *frag = NULL;
D2(printk(KERN_DEBUG "jffs2_lookup_node_frag(%p, %d)\n", fragtree, offset));
next = fragtree->rb_node;
while(next) {
frag = rb_entry(next, struct jffs2_node_frag, rb);
D2(printk(KERN_DEBUG "Considering frag %d-%d (%p). left %p, right %p\n",
frag->ofs, frag->ofs+frag->size, frag, frag->rb.rb_left, frag->rb.rb_right));
if (frag->ofs + frag->size <= offset) {
D2(printk(KERN_DEBUG "Going right from frag %d-%d, before the region we care about\n",
frag->ofs, frag->ofs+frag->size));
/* Remember the closest smaller match on the way down */
if (!prev || frag->ofs > prev->ofs)
prev = frag;
next = frag->rb.rb_right;
} else if (frag->ofs > offset) {
D2(printk(KERN_DEBUG "Going left from frag %d-%d, after the region we care about\n",
frag->ofs, frag->ofs+frag->size));
next = frag->rb.rb_left;
} else {
D2(printk(KERN_DEBUG "Returning frag %d,%d, matched\n",
frag->ofs, frag->ofs+frag->size));
return frag;
}
}
/* Exact match not found. Go back up looking at each parent,
and return the closest smaller one */
if (prev)
D2(printk(KERN_DEBUG "No match. Returning frag %d,%d, closest previous\n",
prev->ofs, prev->ofs+prev->size));
else
D2(printk(KERN_DEBUG "Returning NULL, empty fragtree\n"));
return prev;
}
/* Pass 'c' argument to indicate that nodes should be marked obsolete as
they're killed. */
void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c)
{
struct jffs2_node_frag *frag;
struct jffs2_node_frag *parent;
if (!root->rb_node)
return;
frag = (rb_entry(root->rb_node, struct jffs2_node_frag, rb));
while(frag) {
if (frag->rb.rb_left) {
D2(printk(KERN_DEBUG "Going left from frag (%p) %d-%d\n",
frag, frag->ofs, frag->ofs+frag->size));
frag = frag_left(frag);
continue;
}
if (frag->rb.rb_right) {
D2(printk(KERN_DEBUG "Going right from frag (%p) %d-%d\n",
frag, frag->ofs, frag->ofs+frag->size));
frag = frag_right(frag);
continue;
}
D2(printk(KERN_DEBUG "jffs2_kill_fragtree: frag at 0x%x-0x%x: node %p, frags %d--\n",
frag->ofs, frag->ofs+frag->size, frag->node,
frag->node?frag->node->frags:0));
if (frag->node && !(--frag->node->frags)) {
/* Not a hole, and it's the final remaining frag
of this node. Free the node */
if (c)
jffs2_mark_node_obsolete(c, frag->node->raw);
jffs2_free_full_dnode(frag->node);
}
parent = frag_parent(frag);
if (parent) {
if (frag_left(parent) == frag)
parent->rb.rb_left = NULL;
else
parent->rb.rb_right = NULL;
}
jffs2_free_node_frag(frag);
frag = parent;
cond_resched();
}
}