mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
cac085524c
Frames that are transmitted via MGMT_TX are using reserved descriptor slots in firmware. This limitation is for the htt_mgmt_tx path itself, not for mgmt frames per se. In 16 MBSSID scenario, these reserved slots will be easy exhausted due to frequent probe responses. So for 10.4 based solutions, probe responses are limited by a threshold (24). management tx path is separate for all except tlv based solutions. Since tlv solutions (qca6174 & qca9377) do not support 16 AP interfaces, it is safe to move management descriptor limitation check under mgmt_tx function. Though CPU improvement is negligible, unlikely conditions or never hit conditions in hot path can be avoided on data transmission. Signed-off-by: Rajkumar Manoharan <rmanohar@qti.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2534 lines
68 KiB
C
2534 lines
68 KiB
C
/*
|
|
* Copyright (c) 2005-2011 Atheros Communications Inc.
|
|
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "core.h"
|
|
#include "htc.h"
|
|
#include "htt.h"
|
|
#include "txrx.h"
|
|
#include "debug.h"
|
|
#include "trace.h"
|
|
#include "mac.h"
|
|
|
|
#include <linux/log2.h>
|
|
|
|
#define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
|
|
#define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
|
|
|
|
/* when under memory pressure rx ring refill may fail and needs a retry */
|
|
#define HTT_RX_RING_REFILL_RETRY_MS 50
|
|
|
|
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
|
|
static void ath10k_htt_txrx_compl_task(unsigned long ptr);
|
|
|
|
static struct sk_buff *
|
|
ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
|
|
{
|
|
struct ath10k_skb_rxcb *rxcb;
|
|
|
|
hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
|
|
if (rxcb->paddr == paddr)
|
|
return ATH10K_RXCB_SKB(rxcb);
|
|
|
|
WARN_ON_ONCE(1);
|
|
return NULL;
|
|
}
|
|
|
|
static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct ath10k_skb_rxcb *rxcb;
|
|
struct hlist_node *n;
|
|
int i;
|
|
|
|
if (htt->rx_ring.in_ord_rx) {
|
|
hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
|
|
skb = ATH10K_RXCB_SKB(rxcb);
|
|
dma_unmap_single(htt->ar->dev, rxcb->paddr,
|
|
skb->len + skb_tailroom(skb),
|
|
DMA_FROM_DEVICE);
|
|
hash_del(&rxcb->hlist);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
} else {
|
|
for (i = 0; i < htt->rx_ring.size; i++) {
|
|
skb = htt->rx_ring.netbufs_ring[i];
|
|
if (!skb)
|
|
continue;
|
|
|
|
rxcb = ATH10K_SKB_RXCB(skb);
|
|
dma_unmap_single(htt->ar->dev, rxcb->paddr,
|
|
skb->len + skb_tailroom(skb),
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
}
|
|
|
|
htt->rx_ring.fill_cnt = 0;
|
|
hash_init(htt->rx_ring.skb_table);
|
|
memset(htt->rx_ring.netbufs_ring, 0,
|
|
htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
|
|
}
|
|
|
|
static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
|
|
{
|
|
struct htt_rx_desc *rx_desc;
|
|
struct ath10k_skb_rxcb *rxcb;
|
|
struct sk_buff *skb;
|
|
dma_addr_t paddr;
|
|
int ret = 0, idx;
|
|
|
|
/* The Full Rx Reorder firmware has no way of telling the host
|
|
* implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
|
|
* To keep things simple make sure ring is always half empty. This
|
|
* guarantees there'll be no replenishment overruns possible.
|
|
*/
|
|
BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
|
|
|
|
idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
|
|
while (num > 0) {
|
|
skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
|
|
if (!skb) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
|
|
skb_pull(skb,
|
|
PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
|
|
skb->data);
|
|
|
|
/* Clear rx_desc attention word before posting to Rx ring */
|
|
rx_desc = (struct htt_rx_desc *)skb->data;
|
|
rx_desc->attention.flags = __cpu_to_le32(0);
|
|
|
|
paddr = dma_map_single(htt->ar->dev, skb->data,
|
|
skb->len + skb_tailroom(skb),
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
|
|
dev_kfree_skb_any(skb);
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
rxcb = ATH10K_SKB_RXCB(skb);
|
|
rxcb->paddr = paddr;
|
|
htt->rx_ring.netbufs_ring[idx] = skb;
|
|
htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
|
|
htt->rx_ring.fill_cnt++;
|
|
|
|
if (htt->rx_ring.in_ord_rx) {
|
|
hash_add(htt->rx_ring.skb_table,
|
|
&ATH10K_SKB_RXCB(skb)->hlist,
|
|
(u32)paddr);
|
|
}
|
|
|
|
num--;
|
|
idx++;
|
|
idx &= htt->rx_ring.size_mask;
|
|
}
|
|
|
|
fail:
|
|
/*
|
|
* Make sure the rx buffer is updated before available buffer
|
|
* index to avoid any potential rx ring corruption.
|
|
*/
|
|
mb();
|
|
*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
|
|
return ret;
|
|
}
|
|
|
|
static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
|
|
{
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
return __ath10k_htt_rx_ring_fill_n(htt, num);
|
|
}
|
|
|
|
static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
|
|
{
|
|
int ret, num_deficit, num_to_fill;
|
|
|
|
/* Refilling the whole RX ring buffer proves to be a bad idea. The
|
|
* reason is RX may take up significant amount of CPU cycles and starve
|
|
* other tasks, e.g. TX on an ethernet device while acting as a bridge
|
|
* with ath10k wlan interface. This ended up with very poor performance
|
|
* once CPU the host system was overwhelmed with RX on ath10k.
|
|
*
|
|
* By limiting the number of refills the replenishing occurs
|
|
* progressively. This in turns makes use of the fact tasklets are
|
|
* processed in FIFO order. This means actual RX processing can starve
|
|
* out refilling. If there's not enough buffers on RX ring FW will not
|
|
* report RX until it is refilled with enough buffers. This
|
|
* automatically balances load wrt to CPU power.
|
|
*
|
|
* This probably comes at a cost of lower maximum throughput but
|
|
* improves the average and stability. */
|
|
spin_lock_bh(&htt->rx_ring.lock);
|
|
num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
|
|
num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
|
|
num_deficit -= num_to_fill;
|
|
ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
|
|
if (ret == -ENOMEM) {
|
|
/*
|
|
* Failed to fill it to the desired level -
|
|
* we'll start a timer and try again next time.
|
|
* As long as enough buffers are left in the ring for
|
|
* another A-MPDU rx, no special recovery is needed.
|
|
*/
|
|
mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
|
|
msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
|
|
} else if (num_deficit > 0) {
|
|
tasklet_schedule(&htt->rx_replenish_task);
|
|
}
|
|
spin_unlock_bh(&htt->rx_ring.lock);
|
|
}
|
|
|
|
static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
|
|
{
|
|
struct ath10k_htt *htt = (struct ath10k_htt *)arg;
|
|
|
|
ath10k_htt_rx_msdu_buff_replenish(htt);
|
|
}
|
|
|
|
int ath10k_htt_rx_ring_refill(struct ath10k *ar)
|
|
{
|
|
struct ath10k_htt *htt = &ar->htt;
|
|
int ret;
|
|
|
|
spin_lock_bh(&htt->rx_ring.lock);
|
|
ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
|
|
htt->rx_ring.fill_cnt));
|
|
spin_unlock_bh(&htt->rx_ring.lock);
|
|
|
|
if (ret)
|
|
ath10k_htt_rx_ring_free(htt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void ath10k_htt_rx_free(struct ath10k_htt *htt)
|
|
{
|
|
del_timer_sync(&htt->rx_ring.refill_retry_timer);
|
|
tasklet_kill(&htt->rx_replenish_task);
|
|
tasklet_kill(&htt->txrx_compl_task);
|
|
|
|
skb_queue_purge(&htt->tx_compl_q);
|
|
skb_queue_purge(&htt->rx_compl_q);
|
|
skb_queue_purge(&htt->rx_in_ord_compl_q);
|
|
skb_queue_purge(&htt->tx_fetch_ind_q);
|
|
|
|
ath10k_htt_rx_ring_free(htt);
|
|
|
|
dma_free_coherent(htt->ar->dev,
|
|
(htt->rx_ring.size *
|
|
sizeof(htt->rx_ring.paddrs_ring)),
|
|
htt->rx_ring.paddrs_ring,
|
|
htt->rx_ring.base_paddr);
|
|
|
|
dma_free_coherent(htt->ar->dev,
|
|
sizeof(*htt->rx_ring.alloc_idx.vaddr),
|
|
htt->rx_ring.alloc_idx.vaddr,
|
|
htt->rx_ring.alloc_idx.paddr);
|
|
|
|
kfree(htt->rx_ring.netbufs_ring);
|
|
}
|
|
|
|
static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
|
|
{
|
|
struct ath10k *ar = htt->ar;
|
|
int idx;
|
|
struct sk_buff *msdu;
|
|
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
|
|
if (htt->rx_ring.fill_cnt == 0) {
|
|
ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
|
|
return NULL;
|
|
}
|
|
|
|
idx = htt->rx_ring.sw_rd_idx.msdu_payld;
|
|
msdu = htt->rx_ring.netbufs_ring[idx];
|
|
htt->rx_ring.netbufs_ring[idx] = NULL;
|
|
htt->rx_ring.paddrs_ring[idx] = 0;
|
|
|
|
idx++;
|
|
idx &= htt->rx_ring.size_mask;
|
|
htt->rx_ring.sw_rd_idx.msdu_payld = idx;
|
|
htt->rx_ring.fill_cnt--;
|
|
|
|
dma_unmap_single(htt->ar->dev,
|
|
ATH10K_SKB_RXCB(msdu)->paddr,
|
|
msdu->len + skb_tailroom(msdu),
|
|
DMA_FROM_DEVICE);
|
|
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
|
|
msdu->data, msdu->len + skb_tailroom(msdu));
|
|
|
|
return msdu;
|
|
}
|
|
|
|
/* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
|
|
static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
|
|
u8 **fw_desc, int *fw_desc_len,
|
|
struct sk_buff_head *amsdu)
|
|
{
|
|
struct ath10k *ar = htt->ar;
|
|
int msdu_len, msdu_chaining = 0;
|
|
struct sk_buff *msdu;
|
|
struct htt_rx_desc *rx_desc;
|
|
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
|
|
for (;;) {
|
|
int last_msdu, msdu_len_invalid, msdu_chained;
|
|
|
|
msdu = ath10k_htt_rx_netbuf_pop(htt);
|
|
if (!msdu) {
|
|
__skb_queue_purge(amsdu);
|
|
return -ENOENT;
|
|
}
|
|
|
|
__skb_queue_tail(amsdu, msdu);
|
|
|
|
rx_desc = (struct htt_rx_desc *)msdu->data;
|
|
|
|
/* FIXME: we must report msdu payload since this is what caller
|
|
* expects now */
|
|
skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
|
|
skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
|
|
|
|
/*
|
|
* Sanity check - confirm the HW is finished filling in the
|
|
* rx data.
|
|
* If the HW and SW are working correctly, then it's guaranteed
|
|
* that the HW's MAC DMA is done before this point in the SW.
|
|
* To prevent the case that we handle a stale Rx descriptor,
|
|
* just assert for now until we have a way to recover.
|
|
*/
|
|
if (!(__le32_to_cpu(rx_desc->attention.flags)
|
|
& RX_ATTENTION_FLAGS_MSDU_DONE)) {
|
|
__skb_queue_purge(amsdu);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Copy the FW rx descriptor for this MSDU from the rx
|
|
* indication message into the MSDU's netbuf. HL uses the
|
|
* same rx indication message definition as LL, and simply
|
|
* appends new info (fields from the HW rx desc, and the
|
|
* MSDU payload itself). So, the offset into the rx
|
|
* indication message only has to account for the standard
|
|
* offset of the per-MSDU FW rx desc info within the
|
|
* message, and how many bytes of the per-MSDU FW rx desc
|
|
* info have already been consumed. (And the endianness of
|
|
* the host, since for a big-endian host, the rx ind
|
|
* message contents, including the per-MSDU rx desc bytes,
|
|
* were byteswapped during upload.)
|
|
*/
|
|
if (*fw_desc_len > 0) {
|
|
rx_desc->fw_desc.info0 = **fw_desc;
|
|
/*
|
|
* The target is expected to only provide the basic
|
|
* per-MSDU rx descriptors. Just to be sure, verify
|
|
* that the target has not attached extension data
|
|
* (e.g. LRO flow ID).
|
|
*/
|
|
|
|
/* or more, if there's extension data */
|
|
(*fw_desc)++;
|
|
(*fw_desc_len)--;
|
|
} else {
|
|
/*
|
|
* When an oversized AMSDU happened, FW will lost
|
|
* some of MSDU status - in this case, the FW
|
|
* descriptors provided will be less than the
|
|
* actual MSDUs inside this MPDU. Mark the FW
|
|
* descriptors so that it will still deliver to
|
|
* upper stack, if no CRC error for this MPDU.
|
|
*
|
|
* FIX THIS - the FW descriptors are actually for
|
|
* MSDUs in the end of this A-MSDU instead of the
|
|
* beginning.
|
|
*/
|
|
rx_desc->fw_desc.info0 = 0;
|
|
}
|
|
|
|
msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
|
|
& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
|
|
RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
|
|
msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
|
|
RX_MSDU_START_INFO0_MSDU_LENGTH);
|
|
msdu_chained = rx_desc->frag_info.ring2_more_count;
|
|
|
|
if (msdu_len_invalid)
|
|
msdu_len = 0;
|
|
|
|
skb_trim(msdu, 0);
|
|
skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
|
|
msdu_len -= msdu->len;
|
|
|
|
/* Note: Chained buffers do not contain rx descriptor */
|
|
while (msdu_chained--) {
|
|
msdu = ath10k_htt_rx_netbuf_pop(htt);
|
|
if (!msdu) {
|
|
__skb_queue_purge(amsdu);
|
|
return -ENOENT;
|
|
}
|
|
|
|
__skb_queue_tail(amsdu, msdu);
|
|
skb_trim(msdu, 0);
|
|
skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
|
|
msdu_len -= msdu->len;
|
|
msdu_chaining = 1;
|
|
}
|
|
|
|
last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
|
|
RX_MSDU_END_INFO0_LAST_MSDU;
|
|
|
|
trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
|
|
sizeof(*rx_desc) - sizeof(u32));
|
|
|
|
if (last_msdu)
|
|
break;
|
|
}
|
|
|
|
if (skb_queue_empty(amsdu))
|
|
msdu_chaining = -1;
|
|
|
|
/*
|
|
* Don't refill the ring yet.
|
|
*
|
|
* First, the elements popped here are still in use - it is not
|
|
* safe to overwrite them until the matching call to
|
|
* mpdu_desc_list_next. Second, for efficiency it is preferable to
|
|
* refill the rx ring with 1 PPDU's worth of rx buffers (something
|
|
* like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
|
|
* (something like 3 buffers). Consequently, we'll rely on the txrx
|
|
* SW to tell us when it is done pulling all the PPDU's rx buffers
|
|
* out of the rx ring, and then refill it just once.
|
|
*/
|
|
|
|
return msdu_chaining;
|
|
}
|
|
|
|
static void ath10k_htt_rx_replenish_task(unsigned long ptr)
|
|
{
|
|
struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
|
|
|
|
ath10k_htt_rx_msdu_buff_replenish(htt);
|
|
}
|
|
|
|
static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
|
|
u32 paddr)
|
|
{
|
|
struct ath10k *ar = htt->ar;
|
|
struct ath10k_skb_rxcb *rxcb;
|
|
struct sk_buff *msdu;
|
|
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
|
|
msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
|
|
if (!msdu)
|
|
return NULL;
|
|
|
|
rxcb = ATH10K_SKB_RXCB(msdu);
|
|
hash_del(&rxcb->hlist);
|
|
htt->rx_ring.fill_cnt--;
|
|
|
|
dma_unmap_single(htt->ar->dev, rxcb->paddr,
|
|
msdu->len + skb_tailroom(msdu),
|
|
DMA_FROM_DEVICE);
|
|
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
|
|
msdu->data, msdu->len + skb_tailroom(msdu));
|
|
|
|
return msdu;
|
|
}
|
|
|
|
static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
|
|
struct htt_rx_in_ord_ind *ev,
|
|
struct sk_buff_head *list)
|
|
{
|
|
struct ath10k *ar = htt->ar;
|
|
struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
|
|
struct htt_rx_desc *rxd;
|
|
struct sk_buff *msdu;
|
|
int msdu_count;
|
|
bool is_offload;
|
|
u32 paddr;
|
|
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
|
|
msdu_count = __le16_to_cpu(ev->msdu_count);
|
|
is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
|
|
|
|
while (msdu_count--) {
|
|
paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
|
|
|
|
msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
|
|
if (!msdu) {
|
|
__skb_queue_purge(list);
|
|
return -ENOENT;
|
|
}
|
|
|
|
__skb_queue_tail(list, msdu);
|
|
|
|
if (!is_offload) {
|
|
rxd = (void *)msdu->data;
|
|
|
|
trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
|
|
|
|
skb_put(msdu, sizeof(*rxd));
|
|
skb_pull(msdu, sizeof(*rxd));
|
|
skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
|
|
|
|
if (!(__le32_to_cpu(rxd->attention.flags) &
|
|
RX_ATTENTION_FLAGS_MSDU_DONE)) {
|
|
ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
msdu_desc++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
|
|
{
|
|
struct ath10k *ar = htt->ar;
|
|
dma_addr_t paddr;
|
|
void *vaddr;
|
|
size_t size;
|
|
struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
|
|
|
|
htt->rx_confused = false;
|
|
|
|
/* XXX: The fill level could be changed during runtime in response to
|
|
* the host processing latency. Is this really worth it?
|
|
*/
|
|
htt->rx_ring.size = HTT_RX_RING_SIZE;
|
|
htt->rx_ring.size_mask = htt->rx_ring.size - 1;
|
|
htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
|
|
|
|
if (!is_power_of_2(htt->rx_ring.size)) {
|
|
ath10k_warn(ar, "htt rx ring size is not power of 2\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
htt->rx_ring.netbufs_ring =
|
|
kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
|
|
GFP_KERNEL);
|
|
if (!htt->rx_ring.netbufs_ring)
|
|
goto err_netbuf;
|
|
|
|
size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
|
|
|
|
vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
|
|
if (!vaddr)
|
|
goto err_dma_ring;
|
|
|
|
htt->rx_ring.paddrs_ring = vaddr;
|
|
htt->rx_ring.base_paddr = paddr;
|
|
|
|
vaddr = dma_alloc_coherent(htt->ar->dev,
|
|
sizeof(*htt->rx_ring.alloc_idx.vaddr),
|
|
&paddr, GFP_KERNEL);
|
|
if (!vaddr)
|
|
goto err_dma_idx;
|
|
|
|
htt->rx_ring.alloc_idx.vaddr = vaddr;
|
|
htt->rx_ring.alloc_idx.paddr = paddr;
|
|
htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
|
|
*htt->rx_ring.alloc_idx.vaddr = 0;
|
|
|
|
/* Initialize the Rx refill retry timer */
|
|
setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
|
|
|
|
spin_lock_init(&htt->rx_ring.lock);
|
|
|
|
htt->rx_ring.fill_cnt = 0;
|
|
htt->rx_ring.sw_rd_idx.msdu_payld = 0;
|
|
hash_init(htt->rx_ring.skb_table);
|
|
|
|
tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
|
|
(unsigned long)htt);
|
|
|
|
skb_queue_head_init(&htt->tx_compl_q);
|
|
skb_queue_head_init(&htt->rx_compl_q);
|
|
skb_queue_head_init(&htt->rx_in_ord_compl_q);
|
|
skb_queue_head_init(&htt->tx_fetch_ind_q);
|
|
|
|
tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
|
|
(unsigned long)htt);
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
|
|
htt->rx_ring.size, htt->rx_ring.fill_level);
|
|
return 0;
|
|
|
|
err_dma_idx:
|
|
dma_free_coherent(htt->ar->dev,
|
|
(htt->rx_ring.size *
|
|
sizeof(htt->rx_ring.paddrs_ring)),
|
|
htt->rx_ring.paddrs_ring,
|
|
htt->rx_ring.base_paddr);
|
|
err_dma_ring:
|
|
kfree(htt->rx_ring.netbufs_ring);
|
|
err_netbuf:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
|
|
enum htt_rx_mpdu_encrypt_type type)
|
|
{
|
|
switch (type) {
|
|
case HTT_RX_MPDU_ENCRYPT_NONE:
|
|
return 0;
|
|
case HTT_RX_MPDU_ENCRYPT_WEP40:
|
|
case HTT_RX_MPDU_ENCRYPT_WEP104:
|
|
return IEEE80211_WEP_IV_LEN;
|
|
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
|
|
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
|
|
return IEEE80211_TKIP_IV_LEN;
|
|
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
|
|
return IEEE80211_CCMP_HDR_LEN;
|
|
case HTT_RX_MPDU_ENCRYPT_WEP128:
|
|
case HTT_RX_MPDU_ENCRYPT_WAPI:
|
|
break;
|
|
}
|
|
|
|
ath10k_warn(ar, "unsupported encryption type %d\n", type);
|
|
return 0;
|
|
}
|
|
|
|
#define MICHAEL_MIC_LEN 8
|
|
|
|
static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
|
|
enum htt_rx_mpdu_encrypt_type type)
|
|
{
|
|
switch (type) {
|
|
case HTT_RX_MPDU_ENCRYPT_NONE:
|
|
return 0;
|
|
case HTT_RX_MPDU_ENCRYPT_WEP40:
|
|
case HTT_RX_MPDU_ENCRYPT_WEP104:
|
|
return IEEE80211_WEP_ICV_LEN;
|
|
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
|
|
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
|
|
return IEEE80211_TKIP_ICV_LEN;
|
|
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
|
|
return IEEE80211_CCMP_MIC_LEN;
|
|
case HTT_RX_MPDU_ENCRYPT_WEP128:
|
|
case HTT_RX_MPDU_ENCRYPT_WAPI:
|
|
break;
|
|
}
|
|
|
|
ath10k_warn(ar, "unsupported encryption type %d\n", type);
|
|
return 0;
|
|
}
|
|
|
|
struct amsdu_subframe_hdr {
|
|
u8 dst[ETH_ALEN];
|
|
u8 src[ETH_ALEN];
|
|
__be16 len;
|
|
} __packed;
|
|
|
|
#define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
|
|
|
|
static void ath10k_htt_rx_h_rates(struct ath10k *ar,
|
|
struct ieee80211_rx_status *status,
|
|
struct htt_rx_desc *rxd)
|
|
{
|
|
struct ieee80211_supported_band *sband;
|
|
u8 cck, rate, bw, sgi, mcs, nss;
|
|
u8 preamble = 0;
|
|
u8 group_id;
|
|
u32 info1, info2, info3;
|
|
|
|
info1 = __le32_to_cpu(rxd->ppdu_start.info1);
|
|
info2 = __le32_to_cpu(rxd->ppdu_start.info2);
|
|
info3 = __le32_to_cpu(rxd->ppdu_start.info3);
|
|
|
|
preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
|
|
|
|
switch (preamble) {
|
|
case HTT_RX_LEGACY:
|
|
/* To get legacy rate index band is required. Since band can't
|
|
* be undefined check if freq is non-zero.
|
|
*/
|
|
if (!status->freq)
|
|
return;
|
|
|
|
cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
|
|
rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
|
|
rate &= ~RX_PPDU_START_RATE_FLAG;
|
|
|
|
sband = &ar->mac.sbands[status->band];
|
|
status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
|
|
break;
|
|
case HTT_RX_HT:
|
|
case HTT_RX_HT_WITH_TXBF:
|
|
/* HT-SIG - Table 20-11 in info2 and info3 */
|
|
mcs = info2 & 0x1F;
|
|
nss = mcs >> 3;
|
|
bw = (info2 >> 7) & 1;
|
|
sgi = (info3 >> 7) & 1;
|
|
|
|
status->rate_idx = mcs;
|
|
status->flag |= RX_FLAG_HT;
|
|
if (sgi)
|
|
status->flag |= RX_FLAG_SHORT_GI;
|
|
if (bw)
|
|
status->flag |= RX_FLAG_40MHZ;
|
|
break;
|
|
case HTT_RX_VHT:
|
|
case HTT_RX_VHT_WITH_TXBF:
|
|
/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
|
|
TODO check this */
|
|
bw = info2 & 3;
|
|
sgi = info3 & 1;
|
|
group_id = (info2 >> 4) & 0x3F;
|
|
|
|
if (GROUP_ID_IS_SU_MIMO(group_id)) {
|
|
mcs = (info3 >> 4) & 0x0F;
|
|
nss = ((info2 >> 10) & 0x07) + 1;
|
|
} else {
|
|
/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
|
|
* so it's impossible to decode MCS. Also since
|
|
* firmware consumes Group Id Management frames host
|
|
* has no knowledge regarding group/user position
|
|
* mapping so it's impossible to pick the correct Nsts
|
|
* from VHT-SIG-A1.
|
|
*
|
|
* Bandwidth and SGI are valid so report the rateinfo
|
|
* on best-effort basis.
|
|
*/
|
|
mcs = 0;
|
|
nss = 1;
|
|
}
|
|
|
|
if (mcs > 0x09) {
|
|
ath10k_warn(ar, "invalid MCS received %u\n", mcs);
|
|
ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
|
|
__le32_to_cpu(rxd->attention.flags),
|
|
__le32_to_cpu(rxd->mpdu_start.info0),
|
|
__le32_to_cpu(rxd->mpdu_start.info1),
|
|
__le32_to_cpu(rxd->msdu_start.common.info0),
|
|
__le32_to_cpu(rxd->msdu_start.common.info1),
|
|
rxd->ppdu_start.info0,
|
|
__le32_to_cpu(rxd->ppdu_start.info1),
|
|
__le32_to_cpu(rxd->ppdu_start.info2),
|
|
__le32_to_cpu(rxd->ppdu_start.info3),
|
|
__le32_to_cpu(rxd->ppdu_start.info4));
|
|
|
|
ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
|
|
__le32_to_cpu(rxd->msdu_end.common.info0),
|
|
__le32_to_cpu(rxd->mpdu_end.info0));
|
|
|
|
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
|
|
"rx desc msdu payload: ",
|
|
rxd->msdu_payload, 50);
|
|
}
|
|
|
|
status->rate_idx = mcs;
|
|
status->vht_nss = nss;
|
|
|
|
if (sgi)
|
|
status->flag |= RX_FLAG_SHORT_GI;
|
|
|
|
switch (bw) {
|
|
/* 20MHZ */
|
|
case 0:
|
|
break;
|
|
/* 40MHZ */
|
|
case 1:
|
|
status->flag |= RX_FLAG_40MHZ;
|
|
break;
|
|
/* 80MHZ */
|
|
case 2:
|
|
status->vht_flag |= RX_VHT_FLAG_80MHZ;
|
|
}
|
|
|
|
status->flag |= RX_FLAG_VHT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static struct ieee80211_channel *
|
|
ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
|
|
{
|
|
struct ath10k_peer *peer;
|
|
struct ath10k_vif *arvif;
|
|
struct cfg80211_chan_def def;
|
|
u16 peer_id;
|
|
|
|
lockdep_assert_held(&ar->data_lock);
|
|
|
|
if (!rxd)
|
|
return NULL;
|
|
|
|
if (rxd->attention.flags &
|
|
__cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
|
|
return NULL;
|
|
|
|
if (!(rxd->msdu_end.common.info0 &
|
|
__cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
|
|
return NULL;
|
|
|
|
peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
|
|
RX_MPDU_START_INFO0_PEER_IDX);
|
|
|
|
peer = ath10k_peer_find_by_id(ar, peer_id);
|
|
if (!peer)
|
|
return NULL;
|
|
|
|
arvif = ath10k_get_arvif(ar, peer->vdev_id);
|
|
if (WARN_ON_ONCE(!arvif))
|
|
return NULL;
|
|
|
|
if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
|
|
return NULL;
|
|
|
|
return def.chan;
|
|
}
|
|
|
|
static struct ieee80211_channel *
|
|
ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
|
|
{
|
|
struct ath10k_vif *arvif;
|
|
struct cfg80211_chan_def def;
|
|
|
|
lockdep_assert_held(&ar->data_lock);
|
|
|
|
list_for_each_entry(arvif, &ar->arvifs, list) {
|
|
if (arvif->vdev_id == vdev_id &&
|
|
ath10k_mac_vif_chan(arvif->vif, &def) == 0)
|
|
return def.chan;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
|
|
struct ieee80211_chanctx_conf *conf,
|
|
void *data)
|
|
{
|
|
struct cfg80211_chan_def *def = data;
|
|
|
|
*def = conf->def;
|
|
}
|
|
|
|
static struct ieee80211_channel *
|
|
ath10k_htt_rx_h_any_channel(struct ath10k *ar)
|
|
{
|
|
struct cfg80211_chan_def def = {};
|
|
|
|
ieee80211_iter_chan_contexts_atomic(ar->hw,
|
|
ath10k_htt_rx_h_any_chan_iter,
|
|
&def);
|
|
|
|
return def.chan;
|
|
}
|
|
|
|
static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
|
|
struct ieee80211_rx_status *status,
|
|
struct htt_rx_desc *rxd,
|
|
u32 vdev_id)
|
|
{
|
|
struct ieee80211_channel *ch;
|
|
|
|
spin_lock_bh(&ar->data_lock);
|
|
ch = ar->scan_channel;
|
|
if (!ch)
|
|
ch = ar->rx_channel;
|
|
if (!ch)
|
|
ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
|
|
if (!ch)
|
|
ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
|
|
if (!ch)
|
|
ch = ath10k_htt_rx_h_any_channel(ar);
|
|
if (!ch)
|
|
ch = ar->tgt_oper_chan;
|
|
spin_unlock_bh(&ar->data_lock);
|
|
|
|
if (!ch)
|
|
return false;
|
|
|
|
status->band = ch->band;
|
|
status->freq = ch->center_freq;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_signal(struct ath10k *ar,
|
|
struct ieee80211_rx_status *status,
|
|
struct htt_rx_desc *rxd)
|
|
{
|
|
/* FIXME: Get real NF */
|
|
status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
|
|
rxd->ppdu_start.rssi_comb;
|
|
status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
|
|
struct ieee80211_rx_status *status,
|
|
struct htt_rx_desc *rxd)
|
|
{
|
|
/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
|
|
* means all prior MSDUs in a PPDU are reported to mac80211 without the
|
|
* TSF. Is it worth holding frames until end of PPDU is known?
|
|
*
|
|
* FIXME: Can we get/compute 64bit TSF?
|
|
*/
|
|
status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
|
|
status->flag |= RX_FLAG_MACTIME_END;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
|
|
struct sk_buff_head *amsdu,
|
|
struct ieee80211_rx_status *status,
|
|
u32 vdev_id)
|
|
{
|
|
struct sk_buff *first;
|
|
struct htt_rx_desc *rxd;
|
|
bool is_first_ppdu;
|
|
bool is_last_ppdu;
|
|
|
|
if (skb_queue_empty(amsdu))
|
|
return;
|
|
|
|
first = skb_peek(amsdu);
|
|
rxd = (void *)first->data - sizeof(*rxd);
|
|
|
|
is_first_ppdu = !!(rxd->attention.flags &
|
|
__cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
|
|
is_last_ppdu = !!(rxd->attention.flags &
|
|
__cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
|
|
|
|
if (is_first_ppdu) {
|
|
/* New PPDU starts so clear out the old per-PPDU status. */
|
|
status->freq = 0;
|
|
status->rate_idx = 0;
|
|
status->vht_nss = 0;
|
|
status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
|
|
status->flag &= ~(RX_FLAG_HT |
|
|
RX_FLAG_VHT |
|
|
RX_FLAG_SHORT_GI |
|
|
RX_FLAG_40MHZ |
|
|
RX_FLAG_MACTIME_END);
|
|
status->flag |= RX_FLAG_NO_SIGNAL_VAL;
|
|
|
|
ath10k_htt_rx_h_signal(ar, status, rxd);
|
|
ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
|
|
ath10k_htt_rx_h_rates(ar, status, rxd);
|
|
}
|
|
|
|
if (is_last_ppdu)
|
|
ath10k_htt_rx_h_mactime(ar, status, rxd);
|
|
}
|
|
|
|
static const char * const tid_to_ac[] = {
|
|
"BE",
|
|
"BK",
|
|
"BK",
|
|
"BE",
|
|
"VI",
|
|
"VI",
|
|
"VO",
|
|
"VO",
|
|
};
|
|
|
|
static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
|
|
{
|
|
u8 *qc;
|
|
int tid;
|
|
|
|
if (!ieee80211_is_data_qos(hdr->frame_control))
|
|
return "";
|
|
|
|
qc = ieee80211_get_qos_ctl(hdr);
|
|
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
|
|
if (tid < 8)
|
|
snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
|
|
else
|
|
snprintf(out, size, "tid %d", tid);
|
|
|
|
return out;
|
|
}
|
|
|
|
static void ath10k_process_rx(struct ath10k *ar,
|
|
struct ieee80211_rx_status *rx_status,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_rx_status *status;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
char tid[32];
|
|
|
|
status = IEEE80211_SKB_RXCB(skb);
|
|
*status = *rx_status;
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_DATA,
|
|
"rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
|
|
skb,
|
|
skb->len,
|
|
ieee80211_get_SA(hdr),
|
|
ath10k_get_tid(hdr, tid, sizeof(tid)),
|
|
is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
|
|
"mcast" : "ucast",
|
|
(__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
|
|
status->flag == 0 ? "legacy" : "",
|
|
status->flag & RX_FLAG_HT ? "ht" : "",
|
|
status->flag & RX_FLAG_VHT ? "vht" : "",
|
|
status->flag & RX_FLAG_40MHZ ? "40" : "",
|
|
status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
|
|
status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
|
|
status->rate_idx,
|
|
status->vht_nss,
|
|
status->freq,
|
|
status->band, status->flag,
|
|
!!(status->flag & RX_FLAG_FAILED_FCS_CRC),
|
|
!!(status->flag & RX_FLAG_MMIC_ERROR),
|
|
!!(status->flag & RX_FLAG_AMSDU_MORE));
|
|
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
|
|
skb->data, skb->len);
|
|
trace_ath10k_rx_hdr(ar, skb->data, skb->len);
|
|
trace_ath10k_rx_payload(ar, skb->data, skb->len);
|
|
|
|
ieee80211_rx(ar->hw, skb);
|
|
}
|
|
|
|
static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
|
|
struct ieee80211_hdr *hdr)
|
|
{
|
|
int len = ieee80211_hdrlen(hdr->frame_control);
|
|
|
|
if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
|
|
ar->fw_features))
|
|
len = round_up(len, 4);
|
|
|
|
return len;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
|
|
struct sk_buff *msdu,
|
|
struct ieee80211_rx_status *status,
|
|
enum htt_rx_mpdu_encrypt_type enctype,
|
|
bool is_decrypted)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
struct htt_rx_desc *rxd;
|
|
size_t hdr_len;
|
|
size_t crypto_len;
|
|
bool is_first;
|
|
bool is_last;
|
|
|
|
rxd = (void *)msdu->data - sizeof(*rxd);
|
|
is_first = !!(rxd->msdu_end.common.info0 &
|
|
__cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
|
|
is_last = !!(rxd->msdu_end.common.info0 &
|
|
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
|
|
|
|
/* Delivered decapped frame:
|
|
* [802.11 header]
|
|
* [crypto param] <-- can be trimmed if !fcs_err &&
|
|
* !decrypt_err && !peer_idx_invalid
|
|
* [amsdu header] <-- only if A-MSDU
|
|
* [rfc1042/llc]
|
|
* [payload]
|
|
* [FCS] <-- at end, needs to be trimmed
|
|
*/
|
|
|
|
/* This probably shouldn't happen but warn just in case */
|
|
if (unlikely(WARN_ON_ONCE(!is_first)))
|
|
return;
|
|
|
|
/* This probably shouldn't happen but warn just in case */
|
|
if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
|
|
return;
|
|
|
|
skb_trim(msdu, msdu->len - FCS_LEN);
|
|
|
|
/* In most cases this will be true for sniffed frames. It makes sense
|
|
* to deliver them as-is without stripping the crypto param. This is
|
|
* necessary for software based decryption.
|
|
*
|
|
* If there's no error then the frame is decrypted. At least that is
|
|
* the case for frames that come in via fragmented rx indication.
|
|
*/
|
|
if (!is_decrypted)
|
|
return;
|
|
|
|
/* The payload is decrypted so strip crypto params. Start from tail
|
|
* since hdr is used to compute some stuff.
|
|
*/
|
|
|
|
hdr = (void *)msdu->data;
|
|
|
|
/* Tail */
|
|
if (status->flag & RX_FLAG_IV_STRIPPED)
|
|
skb_trim(msdu, msdu->len -
|
|
ath10k_htt_rx_crypto_tail_len(ar, enctype));
|
|
|
|
/* MMIC */
|
|
if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
|
|
!ieee80211_has_morefrags(hdr->frame_control) &&
|
|
enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
|
|
skb_trim(msdu, msdu->len - 8);
|
|
|
|
/* Head */
|
|
if (status->flag & RX_FLAG_IV_STRIPPED) {
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
|
|
|
|
memmove((void *)msdu->data + crypto_len,
|
|
(void *)msdu->data, hdr_len);
|
|
skb_pull(msdu, crypto_len);
|
|
}
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
|
|
struct sk_buff *msdu,
|
|
struct ieee80211_rx_status *status,
|
|
const u8 first_hdr[64])
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
size_t hdr_len;
|
|
u8 da[ETH_ALEN];
|
|
u8 sa[ETH_ALEN];
|
|
|
|
/* Delivered decapped frame:
|
|
* [nwifi 802.11 header] <-- replaced with 802.11 hdr
|
|
* [rfc1042/llc]
|
|
*
|
|
* Note: The nwifi header doesn't have QoS Control and is
|
|
* (always?) a 3addr frame.
|
|
*
|
|
* Note2: There's no A-MSDU subframe header. Even if it's part
|
|
* of an A-MSDU.
|
|
*/
|
|
|
|
/* pull decapped header and copy SA & DA */
|
|
if ((ar->hw_params.hw_4addr_pad == ATH10K_HW_4ADDR_PAD_BEFORE) &&
|
|
ieee80211_has_a4(((struct ieee80211_hdr *)first_hdr)->frame_control)) {
|
|
/* The QCA99X0 4 address mode pad 2 bytes at the
|
|
* beginning of MSDU
|
|
*/
|
|
hdr = (struct ieee80211_hdr *)(msdu->data + 2);
|
|
/* The skb length need be extended 2 as the 2 bytes at the tail
|
|
* be excluded due to the padding
|
|
*/
|
|
skb_put(msdu, 2);
|
|
} else {
|
|
hdr = (struct ieee80211_hdr *)(msdu->data);
|
|
}
|
|
|
|
hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
|
|
ether_addr_copy(da, ieee80211_get_DA(hdr));
|
|
ether_addr_copy(sa, ieee80211_get_SA(hdr));
|
|
skb_pull(msdu, hdr_len);
|
|
|
|
/* push original 802.11 header */
|
|
hdr = (struct ieee80211_hdr *)first_hdr;
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
|
|
|
|
/* original 802.11 header has a different DA and in
|
|
* case of 4addr it may also have different SA
|
|
*/
|
|
hdr = (struct ieee80211_hdr *)msdu->data;
|
|
ether_addr_copy(ieee80211_get_DA(hdr), da);
|
|
ether_addr_copy(ieee80211_get_SA(hdr), sa);
|
|
}
|
|
|
|
static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
|
|
struct sk_buff *msdu,
|
|
enum htt_rx_mpdu_encrypt_type enctype)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
struct htt_rx_desc *rxd;
|
|
size_t hdr_len, crypto_len;
|
|
void *rfc1042;
|
|
bool is_first, is_last, is_amsdu;
|
|
|
|
rxd = (void *)msdu->data - sizeof(*rxd);
|
|
hdr = (void *)rxd->rx_hdr_status;
|
|
|
|
is_first = !!(rxd->msdu_end.common.info0 &
|
|
__cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
|
|
is_last = !!(rxd->msdu_end.common.info0 &
|
|
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
|
|
is_amsdu = !(is_first && is_last);
|
|
|
|
rfc1042 = hdr;
|
|
|
|
if (is_first) {
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
|
|
|
|
rfc1042 += round_up(hdr_len, 4) +
|
|
round_up(crypto_len, 4);
|
|
}
|
|
|
|
if (is_amsdu)
|
|
rfc1042 += sizeof(struct amsdu_subframe_hdr);
|
|
|
|
return rfc1042;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
|
|
struct sk_buff *msdu,
|
|
struct ieee80211_rx_status *status,
|
|
const u8 first_hdr[64],
|
|
enum htt_rx_mpdu_encrypt_type enctype)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
struct ethhdr *eth;
|
|
size_t hdr_len;
|
|
void *rfc1042;
|
|
u8 da[ETH_ALEN];
|
|
u8 sa[ETH_ALEN];
|
|
|
|
/* Delivered decapped frame:
|
|
* [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
|
|
* [payload]
|
|
*/
|
|
|
|
rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
|
|
if (WARN_ON_ONCE(!rfc1042))
|
|
return;
|
|
|
|
/* pull decapped header and copy SA & DA */
|
|
eth = (struct ethhdr *)msdu->data;
|
|
ether_addr_copy(da, eth->h_dest);
|
|
ether_addr_copy(sa, eth->h_source);
|
|
skb_pull(msdu, sizeof(struct ethhdr));
|
|
|
|
/* push rfc1042/llc/snap */
|
|
memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
|
|
sizeof(struct rfc1042_hdr));
|
|
|
|
/* push original 802.11 header */
|
|
hdr = (struct ieee80211_hdr *)first_hdr;
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
|
|
|
|
/* original 802.11 header has a different DA and in
|
|
* case of 4addr it may also have different SA
|
|
*/
|
|
hdr = (struct ieee80211_hdr *)msdu->data;
|
|
ether_addr_copy(ieee80211_get_DA(hdr), da);
|
|
ether_addr_copy(ieee80211_get_SA(hdr), sa);
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
|
|
struct sk_buff *msdu,
|
|
struct ieee80211_rx_status *status,
|
|
const u8 first_hdr[64])
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
size_t hdr_len;
|
|
|
|
/* Delivered decapped frame:
|
|
* [amsdu header] <-- replaced with 802.11 hdr
|
|
* [rfc1042/llc]
|
|
* [payload]
|
|
*/
|
|
|
|
skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
|
|
|
|
hdr = (struct ieee80211_hdr *)first_hdr;
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
|
|
struct sk_buff *msdu,
|
|
struct ieee80211_rx_status *status,
|
|
u8 first_hdr[64],
|
|
enum htt_rx_mpdu_encrypt_type enctype,
|
|
bool is_decrypted)
|
|
{
|
|
struct htt_rx_desc *rxd;
|
|
enum rx_msdu_decap_format decap;
|
|
|
|
/* First msdu's decapped header:
|
|
* [802.11 header] <-- padded to 4 bytes long
|
|
* [crypto param] <-- padded to 4 bytes long
|
|
* [amsdu header] <-- only if A-MSDU
|
|
* [rfc1042/llc]
|
|
*
|
|
* Other (2nd, 3rd, ..) msdu's decapped header:
|
|
* [amsdu header] <-- only if A-MSDU
|
|
* [rfc1042/llc]
|
|
*/
|
|
|
|
rxd = (void *)msdu->data - sizeof(*rxd);
|
|
decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
|
|
RX_MSDU_START_INFO1_DECAP_FORMAT);
|
|
|
|
switch (decap) {
|
|
case RX_MSDU_DECAP_RAW:
|
|
ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
|
|
is_decrypted);
|
|
break;
|
|
case RX_MSDU_DECAP_NATIVE_WIFI:
|
|
ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
|
|
break;
|
|
case RX_MSDU_DECAP_ETHERNET2_DIX:
|
|
ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
|
|
break;
|
|
case RX_MSDU_DECAP_8023_SNAP_LLC:
|
|
ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
|
|
{
|
|
struct htt_rx_desc *rxd;
|
|
u32 flags, info;
|
|
bool is_ip4, is_ip6;
|
|
bool is_tcp, is_udp;
|
|
bool ip_csum_ok, tcpudp_csum_ok;
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
flags = __le32_to_cpu(rxd->attention.flags);
|
|
info = __le32_to_cpu(rxd->msdu_start.common.info1);
|
|
|
|
is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
|
|
is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
|
|
is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
|
|
is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
|
|
ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
|
|
tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
|
|
|
|
if (!is_ip4 && !is_ip6)
|
|
return CHECKSUM_NONE;
|
|
if (!is_tcp && !is_udp)
|
|
return CHECKSUM_NONE;
|
|
if (!ip_csum_ok)
|
|
return CHECKSUM_NONE;
|
|
if (!tcpudp_csum_ok)
|
|
return CHECKSUM_NONE;
|
|
|
|
return CHECKSUM_UNNECESSARY;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
|
|
{
|
|
msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
|
|
struct sk_buff_head *amsdu,
|
|
struct ieee80211_rx_status *status)
|
|
{
|
|
struct sk_buff *first;
|
|
struct sk_buff *last;
|
|
struct sk_buff *msdu;
|
|
struct htt_rx_desc *rxd;
|
|
struct ieee80211_hdr *hdr;
|
|
enum htt_rx_mpdu_encrypt_type enctype;
|
|
u8 first_hdr[64];
|
|
u8 *qos;
|
|
size_t hdr_len;
|
|
bool has_fcs_err;
|
|
bool has_crypto_err;
|
|
bool has_tkip_err;
|
|
bool has_peer_idx_invalid;
|
|
bool is_decrypted;
|
|
bool is_mgmt;
|
|
u32 attention;
|
|
|
|
if (skb_queue_empty(amsdu))
|
|
return;
|
|
|
|
first = skb_peek(amsdu);
|
|
rxd = (void *)first->data - sizeof(*rxd);
|
|
|
|
is_mgmt = !!(rxd->attention.flags &
|
|
__cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
|
|
|
|
enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
|
|
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
|
|
|
|
/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
|
|
* decapped header. It'll be used for undecapping of each MSDU.
|
|
*/
|
|
hdr = (void *)rxd->rx_hdr_status;
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
memcpy(first_hdr, hdr, hdr_len);
|
|
|
|
/* Each A-MSDU subframe will use the original header as the base and be
|
|
* reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
|
|
*/
|
|
hdr = (void *)first_hdr;
|
|
qos = ieee80211_get_qos_ctl(hdr);
|
|
qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
|
|
|
|
/* Some attention flags are valid only in the last MSDU. */
|
|
last = skb_peek_tail(amsdu);
|
|
rxd = (void *)last->data - sizeof(*rxd);
|
|
attention = __le32_to_cpu(rxd->attention.flags);
|
|
|
|
has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
|
|
has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
|
|
has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
|
|
has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
|
|
|
|
/* Note: If hardware captures an encrypted frame that it can't decrypt,
|
|
* e.g. due to fcs error, missing peer or invalid key data it will
|
|
* report the frame as raw.
|
|
*/
|
|
is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
|
|
!has_fcs_err &&
|
|
!has_crypto_err &&
|
|
!has_peer_idx_invalid);
|
|
|
|
/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
|
|
status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
|
|
RX_FLAG_MMIC_ERROR |
|
|
RX_FLAG_DECRYPTED |
|
|
RX_FLAG_IV_STRIPPED |
|
|
RX_FLAG_ONLY_MONITOR |
|
|
RX_FLAG_MMIC_STRIPPED);
|
|
|
|
if (has_fcs_err)
|
|
status->flag |= RX_FLAG_FAILED_FCS_CRC;
|
|
|
|
if (has_tkip_err)
|
|
status->flag |= RX_FLAG_MMIC_ERROR;
|
|
|
|
/* Firmware reports all necessary management frames via WMI already.
|
|
* They are not reported to monitor interfaces at all so pass the ones
|
|
* coming via HTT to monitor interfaces instead. This simplifies
|
|
* matters a lot.
|
|
*/
|
|
if (is_mgmt)
|
|
status->flag |= RX_FLAG_ONLY_MONITOR;
|
|
|
|
if (is_decrypted) {
|
|
status->flag |= RX_FLAG_DECRYPTED;
|
|
|
|
if (likely(!is_mgmt))
|
|
status->flag |= RX_FLAG_IV_STRIPPED |
|
|
RX_FLAG_MMIC_STRIPPED;
|
|
}
|
|
|
|
skb_queue_walk(amsdu, msdu) {
|
|
ath10k_htt_rx_h_csum_offload(msdu);
|
|
ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
|
|
is_decrypted);
|
|
|
|
/* Undecapping involves copying the original 802.11 header back
|
|
* to sk_buff. If frame is protected and hardware has decrypted
|
|
* it then remove the protected bit.
|
|
*/
|
|
if (!is_decrypted)
|
|
continue;
|
|
if (is_mgmt)
|
|
continue;
|
|
|
|
hdr = (void *)msdu->data;
|
|
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
|
|
}
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
|
|
struct sk_buff_head *amsdu,
|
|
struct ieee80211_rx_status *status)
|
|
{
|
|
struct sk_buff *msdu;
|
|
|
|
while ((msdu = __skb_dequeue(amsdu))) {
|
|
/* Setup per-MSDU flags */
|
|
if (skb_queue_empty(amsdu))
|
|
status->flag &= ~RX_FLAG_AMSDU_MORE;
|
|
else
|
|
status->flag |= RX_FLAG_AMSDU_MORE;
|
|
|
|
ath10k_process_rx(ar, status, msdu);
|
|
}
|
|
}
|
|
|
|
static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
|
|
{
|
|
struct sk_buff *skb, *first;
|
|
int space;
|
|
int total_len = 0;
|
|
|
|
/* TODO: Might could optimize this by using
|
|
* skb_try_coalesce or similar method to
|
|
* decrease copying, or maybe get mac80211 to
|
|
* provide a way to just receive a list of
|
|
* skb?
|
|
*/
|
|
|
|
first = __skb_dequeue(amsdu);
|
|
|
|
/* Allocate total length all at once. */
|
|
skb_queue_walk(amsdu, skb)
|
|
total_len += skb->len;
|
|
|
|
space = total_len - skb_tailroom(first);
|
|
if ((space > 0) &&
|
|
(pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
|
|
/* TODO: bump some rx-oom error stat */
|
|
/* put it back together so we can free the
|
|
* whole list at once.
|
|
*/
|
|
__skb_queue_head(amsdu, first);
|
|
return -1;
|
|
}
|
|
|
|
/* Walk list again, copying contents into
|
|
* msdu_head
|
|
*/
|
|
while ((skb = __skb_dequeue(amsdu))) {
|
|
skb_copy_from_linear_data(skb, skb_put(first, skb->len),
|
|
skb->len);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
__skb_queue_head(amsdu, first);
|
|
return 0;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
|
|
struct sk_buff_head *amsdu,
|
|
bool chained)
|
|
{
|
|
struct sk_buff *first;
|
|
struct htt_rx_desc *rxd;
|
|
enum rx_msdu_decap_format decap;
|
|
|
|
first = skb_peek(amsdu);
|
|
rxd = (void *)first->data - sizeof(*rxd);
|
|
decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
|
|
RX_MSDU_START_INFO1_DECAP_FORMAT);
|
|
|
|
if (!chained)
|
|
return;
|
|
|
|
/* FIXME: Current unchaining logic can only handle simple case of raw
|
|
* msdu chaining. If decapping is other than raw the chaining may be
|
|
* more complex and this isn't handled by the current code. Don't even
|
|
* try re-constructing such frames - it'll be pretty much garbage.
|
|
*/
|
|
if (decap != RX_MSDU_DECAP_RAW ||
|
|
skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
|
|
__skb_queue_purge(amsdu);
|
|
return;
|
|
}
|
|
|
|
ath10k_unchain_msdu(amsdu);
|
|
}
|
|
|
|
static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
|
|
struct sk_buff_head *amsdu,
|
|
struct ieee80211_rx_status *rx_status)
|
|
{
|
|
/* FIXME: It might be a good idea to do some fuzzy-testing to drop
|
|
* invalid/dangerous frames.
|
|
*/
|
|
|
|
if (!rx_status->freq) {
|
|
ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
|
|
return false;
|
|
}
|
|
|
|
if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_filter(struct ath10k *ar,
|
|
struct sk_buff_head *amsdu,
|
|
struct ieee80211_rx_status *rx_status)
|
|
{
|
|
if (skb_queue_empty(amsdu))
|
|
return;
|
|
|
|
if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
|
|
return;
|
|
|
|
__skb_queue_purge(amsdu);
|
|
}
|
|
|
|
static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
|
|
struct htt_rx_indication *rx)
|
|
{
|
|
struct ath10k *ar = htt->ar;
|
|
struct ieee80211_rx_status *rx_status = &htt->rx_status;
|
|
struct htt_rx_indication_mpdu_range *mpdu_ranges;
|
|
struct sk_buff_head amsdu;
|
|
int num_mpdu_ranges;
|
|
int fw_desc_len;
|
|
u8 *fw_desc;
|
|
int i, ret, mpdu_count = 0;
|
|
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
|
|
if (htt->rx_confused)
|
|
return;
|
|
|
|
fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
|
|
fw_desc = (u8 *)&rx->fw_desc;
|
|
|
|
num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
|
|
HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
|
|
mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
|
|
|
|
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
|
|
rx, sizeof(*rx) +
|
|
(sizeof(struct htt_rx_indication_mpdu_range) *
|
|
num_mpdu_ranges));
|
|
|
|
for (i = 0; i < num_mpdu_ranges; i++)
|
|
mpdu_count += mpdu_ranges[i].mpdu_count;
|
|
|
|
while (mpdu_count--) {
|
|
__skb_queue_head_init(&amsdu);
|
|
ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
|
|
&fw_desc_len, &amsdu);
|
|
if (ret < 0) {
|
|
ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
|
|
__skb_queue_purge(&amsdu);
|
|
/* FIXME: It's probably a good idea to reboot the
|
|
* device instead of leaving it inoperable.
|
|
*/
|
|
htt->rx_confused = true;
|
|
break;
|
|
}
|
|
|
|
ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
|
|
ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
|
|
ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
|
|
ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
|
|
ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
|
|
}
|
|
|
|
tasklet_schedule(&htt->rx_replenish_task);
|
|
}
|
|
|
|
static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
|
|
struct htt_rx_fragment_indication *frag)
|
|
{
|
|
struct ath10k *ar = htt->ar;
|
|
struct ieee80211_rx_status *rx_status = &htt->rx_status;
|
|
struct sk_buff_head amsdu;
|
|
int ret;
|
|
u8 *fw_desc;
|
|
int fw_desc_len;
|
|
|
|
fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
|
|
fw_desc = (u8 *)frag->fw_msdu_rx_desc;
|
|
|
|
__skb_queue_head_init(&amsdu);
|
|
|
|
spin_lock_bh(&htt->rx_ring.lock);
|
|
ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
|
|
&amsdu);
|
|
spin_unlock_bh(&htt->rx_ring.lock);
|
|
|
|
tasklet_schedule(&htt->rx_replenish_task);
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
|
|
|
|
if (ret) {
|
|
ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
|
|
ret);
|
|
__skb_queue_purge(&amsdu);
|
|
return;
|
|
}
|
|
|
|
if (skb_queue_len(&amsdu) != 1) {
|
|
ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
|
|
__skb_queue_purge(&amsdu);
|
|
return;
|
|
}
|
|
|
|
ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
|
|
ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
|
|
ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
|
|
ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
|
|
|
|
if (fw_desc_len > 0) {
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT,
|
|
"expecting more fragmented rx in one indication %d\n",
|
|
fw_desc_len);
|
|
}
|
|
}
|
|
|
|
static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ath10k_htt *htt = &ar->htt;
|
|
struct htt_resp *resp = (struct htt_resp *)skb->data;
|
|
struct htt_tx_done tx_done = {};
|
|
int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
|
|
__le16 msdu_id;
|
|
int i;
|
|
|
|
switch (status) {
|
|
case HTT_DATA_TX_STATUS_NO_ACK:
|
|
tx_done.no_ack = true;
|
|
break;
|
|
case HTT_DATA_TX_STATUS_OK:
|
|
tx_done.success = true;
|
|
break;
|
|
case HTT_DATA_TX_STATUS_DISCARD:
|
|
case HTT_DATA_TX_STATUS_POSTPONE:
|
|
case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
|
|
tx_done.discard = true;
|
|
break;
|
|
default:
|
|
ath10k_warn(ar, "unhandled tx completion status %d\n", status);
|
|
tx_done.discard = true;
|
|
break;
|
|
}
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
|
|
resp->data_tx_completion.num_msdus);
|
|
|
|
for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
|
|
msdu_id = resp->data_tx_completion.msdus[i];
|
|
tx_done.msdu_id = __le16_to_cpu(msdu_id);
|
|
ath10k_txrx_tx_unref(htt, &tx_done);
|
|
}
|
|
}
|
|
|
|
static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
|
|
{
|
|
struct htt_rx_addba *ev = &resp->rx_addba;
|
|
struct ath10k_peer *peer;
|
|
struct ath10k_vif *arvif;
|
|
u16 info0, tid, peer_id;
|
|
|
|
info0 = __le16_to_cpu(ev->info0);
|
|
tid = MS(info0, HTT_RX_BA_INFO0_TID);
|
|
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT,
|
|
"htt rx addba tid %hu peer_id %hu size %hhu\n",
|
|
tid, peer_id, ev->window_size);
|
|
|
|
spin_lock_bh(&ar->data_lock);
|
|
peer = ath10k_peer_find_by_id(ar, peer_id);
|
|
if (!peer) {
|
|
ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
|
|
peer_id);
|
|
spin_unlock_bh(&ar->data_lock);
|
|
return;
|
|
}
|
|
|
|
arvif = ath10k_get_arvif(ar, peer->vdev_id);
|
|
if (!arvif) {
|
|
ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
|
|
peer->vdev_id);
|
|
spin_unlock_bh(&ar->data_lock);
|
|
return;
|
|
}
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT,
|
|
"htt rx start rx ba session sta %pM tid %hu size %hhu\n",
|
|
peer->addr, tid, ev->window_size);
|
|
|
|
ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
|
|
spin_unlock_bh(&ar->data_lock);
|
|
}
|
|
|
|
static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
|
|
{
|
|
struct htt_rx_delba *ev = &resp->rx_delba;
|
|
struct ath10k_peer *peer;
|
|
struct ath10k_vif *arvif;
|
|
u16 info0, tid, peer_id;
|
|
|
|
info0 = __le16_to_cpu(ev->info0);
|
|
tid = MS(info0, HTT_RX_BA_INFO0_TID);
|
|
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT,
|
|
"htt rx delba tid %hu peer_id %hu\n",
|
|
tid, peer_id);
|
|
|
|
spin_lock_bh(&ar->data_lock);
|
|
peer = ath10k_peer_find_by_id(ar, peer_id);
|
|
if (!peer) {
|
|
ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
|
|
peer_id);
|
|
spin_unlock_bh(&ar->data_lock);
|
|
return;
|
|
}
|
|
|
|
arvif = ath10k_get_arvif(ar, peer->vdev_id);
|
|
if (!arvif) {
|
|
ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
|
|
peer->vdev_id);
|
|
spin_unlock_bh(&ar->data_lock);
|
|
return;
|
|
}
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT,
|
|
"htt rx stop rx ba session sta %pM tid %hu\n",
|
|
peer->addr, tid);
|
|
|
|
ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
|
|
spin_unlock_bh(&ar->data_lock);
|
|
}
|
|
|
|
static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
|
|
struct sk_buff_head *amsdu)
|
|
{
|
|
struct sk_buff *msdu;
|
|
struct htt_rx_desc *rxd;
|
|
|
|
if (skb_queue_empty(list))
|
|
return -ENOBUFS;
|
|
|
|
if (WARN_ON(!skb_queue_empty(amsdu)))
|
|
return -EINVAL;
|
|
|
|
while ((msdu = __skb_dequeue(list))) {
|
|
__skb_queue_tail(amsdu, msdu);
|
|
|
|
rxd = (void *)msdu->data - sizeof(*rxd);
|
|
if (rxd->msdu_end.common.info0 &
|
|
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
|
|
break;
|
|
}
|
|
|
|
msdu = skb_peek_tail(amsdu);
|
|
rxd = (void *)msdu->data - sizeof(*rxd);
|
|
if (!(rxd->msdu_end.common.info0 &
|
|
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
|
|
skb_queue_splice_init(amsdu, list);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
|
|
if (!ieee80211_has_protected(hdr->frame_control))
|
|
return;
|
|
|
|
/* Offloaded frames are already decrypted but firmware insists they are
|
|
* protected in the 802.11 header. Strip the flag. Otherwise mac80211
|
|
* will drop the frame.
|
|
*/
|
|
|
|
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
|
|
status->flag |= RX_FLAG_DECRYPTED |
|
|
RX_FLAG_IV_STRIPPED |
|
|
RX_FLAG_MMIC_STRIPPED;
|
|
}
|
|
|
|
static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
|
|
struct sk_buff_head *list)
|
|
{
|
|
struct ath10k_htt *htt = &ar->htt;
|
|
struct ieee80211_rx_status *status = &htt->rx_status;
|
|
struct htt_rx_offload_msdu *rx;
|
|
struct sk_buff *msdu;
|
|
size_t offset;
|
|
|
|
while ((msdu = __skb_dequeue(list))) {
|
|
/* Offloaded frames don't have Rx descriptor. Instead they have
|
|
* a short meta information header.
|
|
*/
|
|
|
|
rx = (void *)msdu->data;
|
|
|
|
skb_put(msdu, sizeof(*rx));
|
|
skb_pull(msdu, sizeof(*rx));
|
|
|
|
if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
|
|
ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
|
|
dev_kfree_skb_any(msdu);
|
|
continue;
|
|
}
|
|
|
|
skb_put(msdu, __le16_to_cpu(rx->msdu_len));
|
|
|
|
/* Offloaded rx header length isn't multiple of 2 nor 4 so the
|
|
* actual payload is unaligned. Align the frame. Otherwise
|
|
* mac80211 complains. This shouldn't reduce performance much
|
|
* because these offloaded frames are rare.
|
|
*/
|
|
offset = 4 - ((unsigned long)msdu->data & 3);
|
|
skb_put(msdu, offset);
|
|
memmove(msdu->data + offset, msdu->data, msdu->len);
|
|
skb_pull(msdu, offset);
|
|
|
|
/* FIXME: The frame is NWifi. Re-construct QoS Control
|
|
* if possible later.
|
|
*/
|
|
|
|
memset(status, 0, sizeof(*status));
|
|
status->flag |= RX_FLAG_NO_SIGNAL_VAL;
|
|
|
|
ath10k_htt_rx_h_rx_offload_prot(status, msdu);
|
|
ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
|
|
ath10k_process_rx(ar, status, msdu);
|
|
}
|
|
}
|
|
|
|
static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
|
|
{
|
|
struct ath10k_htt *htt = &ar->htt;
|
|
struct htt_resp *resp = (void *)skb->data;
|
|
struct ieee80211_rx_status *status = &htt->rx_status;
|
|
struct sk_buff_head list;
|
|
struct sk_buff_head amsdu;
|
|
u16 peer_id;
|
|
u16 msdu_count;
|
|
u8 vdev_id;
|
|
u8 tid;
|
|
bool offload;
|
|
bool frag;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
|
|
if (htt->rx_confused)
|
|
return;
|
|
|
|
skb_pull(skb, sizeof(resp->hdr));
|
|
skb_pull(skb, sizeof(resp->rx_in_ord_ind));
|
|
|
|
peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
|
|
msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
|
|
vdev_id = resp->rx_in_ord_ind.vdev_id;
|
|
tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
|
|
offload = !!(resp->rx_in_ord_ind.info &
|
|
HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
|
|
frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT,
|
|
"htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
|
|
vdev_id, peer_id, tid, offload, frag, msdu_count);
|
|
|
|
if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
|
|
ath10k_warn(ar, "dropping invalid in order rx indication\n");
|
|
return;
|
|
}
|
|
|
|
/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
|
|
* extracted and processed.
|
|
*/
|
|
__skb_queue_head_init(&list);
|
|
ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
|
|
if (ret < 0) {
|
|
ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
|
|
htt->rx_confused = true;
|
|
return;
|
|
}
|
|
|
|
/* Offloaded frames are very different and need to be handled
|
|
* separately.
|
|
*/
|
|
if (offload)
|
|
ath10k_htt_rx_h_rx_offload(ar, &list);
|
|
|
|
while (!skb_queue_empty(&list)) {
|
|
__skb_queue_head_init(&amsdu);
|
|
ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
|
|
switch (ret) {
|
|
case 0:
|
|
/* Note: The in-order indication may report interleaved
|
|
* frames from different PPDUs meaning reported rx rate
|
|
* to mac80211 isn't accurate/reliable. It's still
|
|
* better to report something than nothing though. This
|
|
* should still give an idea about rx rate to the user.
|
|
*/
|
|
ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
|
|
ath10k_htt_rx_h_filter(ar, &amsdu, status);
|
|
ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
|
|
ath10k_htt_rx_h_deliver(ar, &amsdu, status);
|
|
break;
|
|
case -EAGAIN:
|
|
/* fall through */
|
|
default:
|
|
/* Should not happen. */
|
|
ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
|
|
htt->rx_confused = true;
|
|
__skb_queue_purge(&list);
|
|
return;
|
|
}
|
|
}
|
|
|
|
tasklet_schedule(&htt->rx_replenish_task);
|
|
}
|
|
|
|
static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
|
|
const __le32 *resp_ids,
|
|
int num_resp_ids)
|
|
{
|
|
int i;
|
|
u32 resp_id;
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
|
|
num_resp_ids);
|
|
|
|
for (i = 0; i < num_resp_ids; i++) {
|
|
resp_id = le32_to_cpu(resp_ids[i]);
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
|
|
resp_id);
|
|
|
|
/* TODO: free resp_id */
|
|
}
|
|
}
|
|
|
|
static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_hw *hw = ar->hw;
|
|
struct ieee80211_txq *txq;
|
|
struct htt_resp *resp = (struct htt_resp *)skb->data;
|
|
struct htt_tx_fetch_record *record;
|
|
size_t len;
|
|
size_t max_num_bytes;
|
|
size_t max_num_msdus;
|
|
size_t num_bytes;
|
|
size_t num_msdus;
|
|
const __le32 *resp_ids;
|
|
u16 num_records;
|
|
u16 num_resp_ids;
|
|
u16 peer_id;
|
|
u8 tid;
|
|
int ret;
|
|
int i;
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
|
|
|
|
len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
|
|
if (unlikely(skb->len < len)) {
|
|
ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
|
|
return;
|
|
}
|
|
|
|
num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
|
|
num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
|
|
|
|
len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
|
|
len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
|
|
|
|
if (unlikely(skb->len < len)) {
|
|
ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
|
|
return;
|
|
}
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
|
|
num_records, num_resp_ids,
|
|
le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
|
|
|
|
if (!ar->htt.tx_q_state.enabled) {
|
|
ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
|
|
return;
|
|
}
|
|
|
|
if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
|
|
ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
|
|
return;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
|
|
for (i = 0; i < num_records; i++) {
|
|
record = &resp->tx_fetch_ind.records[i];
|
|
peer_id = MS(le16_to_cpu(record->info),
|
|
HTT_TX_FETCH_RECORD_INFO_PEER_ID);
|
|
tid = MS(le16_to_cpu(record->info),
|
|
HTT_TX_FETCH_RECORD_INFO_TID);
|
|
max_num_msdus = le16_to_cpu(record->num_msdus);
|
|
max_num_bytes = le32_to_cpu(record->num_bytes);
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
|
|
i, peer_id, tid, max_num_msdus, max_num_bytes);
|
|
|
|
if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
|
|
unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
|
|
ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
|
|
peer_id, tid);
|
|
continue;
|
|
}
|
|
|
|
spin_lock_bh(&ar->data_lock);
|
|
txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
|
|
spin_unlock_bh(&ar->data_lock);
|
|
|
|
/* It is okay to release the lock and use txq because RCU read
|
|
* lock is held.
|
|
*/
|
|
|
|
if (unlikely(!txq)) {
|
|
ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
|
|
peer_id, tid);
|
|
continue;
|
|
}
|
|
|
|
num_msdus = 0;
|
|
num_bytes = 0;
|
|
|
|
while (num_msdus < max_num_msdus &&
|
|
num_bytes < max_num_bytes) {
|
|
ret = ath10k_mac_tx_push_txq(hw, txq);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
num_msdus++;
|
|
num_bytes += ret;
|
|
}
|
|
|
|
record->num_msdus = cpu_to_le16(num_msdus);
|
|
record->num_bytes = cpu_to_le32(num_bytes);
|
|
|
|
ath10k_htt_tx_txq_recalc(hw, txq);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
|
|
ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
|
|
|
|
ret = ath10k_htt_tx_fetch_resp(ar,
|
|
resp->tx_fetch_ind.token,
|
|
resp->tx_fetch_ind.fetch_seq_num,
|
|
resp->tx_fetch_ind.records,
|
|
num_records);
|
|
if (unlikely(ret)) {
|
|
ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
|
|
le32_to_cpu(resp->tx_fetch_ind.token), ret);
|
|
/* FIXME: request fw restart */
|
|
}
|
|
|
|
ath10k_htt_tx_txq_sync(ar);
|
|
}
|
|
|
|
static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
|
|
struct sk_buff *skb)
|
|
{
|
|
const struct htt_resp *resp = (void *)skb->data;
|
|
size_t len;
|
|
int num_resp_ids;
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
|
|
|
|
len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
|
|
if (unlikely(skb->len < len)) {
|
|
ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
|
|
return;
|
|
}
|
|
|
|
num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
|
|
len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
|
|
|
|
if (unlikely(skb->len < len)) {
|
|
ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
|
|
return;
|
|
}
|
|
|
|
ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
|
|
resp->tx_fetch_confirm.resp_ids,
|
|
num_resp_ids);
|
|
}
|
|
|
|
static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
|
|
struct sk_buff *skb)
|
|
{
|
|
const struct htt_resp *resp = (void *)skb->data;
|
|
const struct htt_tx_mode_switch_record *record;
|
|
struct ieee80211_txq *txq;
|
|
struct ath10k_txq *artxq;
|
|
size_t len;
|
|
size_t num_records;
|
|
enum htt_tx_mode_switch_mode mode;
|
|
bool enable;
|
|
u16 info0;
|
|
u16 info1;
|
|
u16 threshold;
|
|
u16 peer_id;
|
|
u8 tid;
|
|
int i;
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
|
|
|
|
len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
|
|
if (unlikely(skb->len < len)) {
|
|
ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
|
|
return;
|
|
}
|
|
|
|
info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
|
|
info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
|
|
|
|
enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
|
|
num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
|
|
mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
|
|
threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT,
|
|
"htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
|
|
info0, info1, enable, num_records, mode, threshold);
|
|
|
|
len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
|
|
|
|
if (unlikely(skb->len < len)) {
|
|
ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
|
|
return;
|
|
}
|
|
|
|
switch (mode) {
|
|
case HTT_TX_MODE_SWITCH_PUSH:
|
|
case HTT_TX_MODE_SWITCH_PUSH_PULL:
|
|
break;
|
|
default:
|
|
ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
|
|
mode);
|
|
return;
|
|
}
|
|
|
|
if (!enable)
|
|
return;
|
|
|
|
ar->htt.tx_q_state.enabled = enable;
|
|
ar->htt.tx_q_state.mode = mode;
|
|
ar->htt.tx_q_state.num_push_allowed = threshold;
|
|
|
|
rcu_read_lock();
|
|
|
|
for (i = 0; i < num_records; i++) {
|
|
record = &resp->tx_mode_switch_ind.records[i];
|
|
info0 = le16_to_cpu(record->info0);
|
|
peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
|
|
tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
|
|
|
|
if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
|
|
unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
|
|
ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
|
|
peer_id, tid);
|
|
continue;
|
|
}
|
|
|
|
spin_lock_bh(&ar->data_lock);
|
|
txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
|
|
spin_unlock_bh(&ar->data_lock);
|
|
|
|
/* It is okay to release the lock and use txq because RCU read
|
|
* lock is held.
|
|
*/
|
|
|
|
if (unlikely(!txq)) {
|
|
ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
|
|
peer_id, tid);
|
|
continue;
|
|
}
|
|
|
|
spin_lock_bh(&ar->htt.tx_lock);
|
|
artxq = (void *)txq->drv_priv;
|
|
artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
|
|
spin_unlock_bh(&ar->htt.tx_lock);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
ath10k_mac_tx_push_pending(ar);
|
|
}
|
|
|
|
static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
|
|
{
|
|
enum ieee80211_band band;
|
|
|
|
switch (phy_mode) {
|
|
case MODE_11A:
|
|
case MODE_11NA_HT20:
|
|
case MODE_11NA_HT40:
|
|
case MODE_11AC_VHT20:
|
|
case MODE_11AC_VHT40:
|
|
case MODE_11AC_VHT80:
|
|
band = IEEE80211_BAND_5GHZ;
|
|
break;
|
|
case MODE_11G:
|
|
case MODE_11B:
|
|
case MODE_11GONLY:
|
|
case MODE_11NG_HT20:
|
|
case MODE_11NG_HT40:
|
|
case MODE_11AC_VHT20_2G:
|
|
case MODE_11AC_VHT40_2G:
|
|
case MODE_11AC_VHT80_2G:
|
|
default:
|
|
band = IEEE80211_BAND_2GHZ;
|
|
}
|
|
|
|
return band;
|
|
}
|
|
|
|
void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
|
|
{
|
|
struct ath10k_htt *htt = &ar->htt;
|
|
struct htt_resp *resp = (struct htt_resp *)skb->data;
|
|
enum htt_t2h_msg_type type;
|
|
|
|
/* confirm alignment */
|
|
if (!IS_ALIGNED((unsigned long)skb->data, 4))
|
|
ath10k_warn(ar, "unaligned htt message, expect trouble\n");
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
|
|
resp->hdr.msg_type);
|
|
|
|
if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
|
|
resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
|
|
dev_kfree_skb_any(skb);
|
|
return;
|
|
}
|
|
type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
|
|
|
|
switch (type) {
|
|
case HTT_T2H_MSG_TYPE_VERSION_CONF: {
|
|
htt->target_version_major = resp->ver_resp.major;
|
|
htt->target_version_minor = resp->ver_resp.minor;
|
|
complete(&htt->target_version_received);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_RX_IND:
|
|
skb_queue_tail(&htt->rx_compl_q, skb);
|
|
tasklet_schedule(&htt->txrx_compl_task);
|
|
return;
|
|
case HTT_T2H_MSG_TYPE_PEER_MAP: {
|
|
struct htt_peer_map_event ev = {
|
|
.vdev_id = resp->peer_map.vdev_id,
|
|
.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
|
|
};
|
|
memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
|
|
ath10k_peer_map_event(htt, &ev);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
|
|
struct htt_peer_unmap_event ev = {
|
|
.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
|
|
};
|
|
ath10k_peer_unmap_event(htt, &ev);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
|
|
struct htt_tx_done tx_done = {};
|
|
int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
|
|
|
|
tx_done.msdu_id =
|
|
__le32_to_cpu(resp->mgmt_tx_completion.desc_id);
|
|
|
|
switch (status) {
|
|
case HTT_MGMT_TX_STATUS_OK:
|
|
tx_done.success = true;
|
|
break;
|
|
case HTT_MGMT_TX_STATUS_RETRY:
|
|
tx_done.no_ack = true;
|
|
break;
|
|
case HTT_MGMT_TX_STATUS_DROP:
|
|
tx_done.discard = true;
|
|
break;
|
|
}
|
|
|
|
status = ath10k_txrx_tx_unref(htt, &tx_done);
|
|
if (!status) {
|
|
spin_lock_bh(&htt->tx_lock);
|
|
ath10k_htt_tx_mgmt_dec_pending(htt);
|
|
spin_unlock_bh(&htt->tx_lock);
|
|
}
|
|
ath10k_mac_tx_push_pending(ar);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
|
|
skb_queue_tail(&htt->tx_compl_q, skb);
|
|
tasklet_schedule(&htt->txrx_compl_task);
|
|
return;
|
|
case HTT_T2H_MSG_TYPE_SEC_IND: {
|
|
struct ath10k *ar = htt->ar;
|
|
struct htt_security_indication *ev = &resp->security_indication;
|
|
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT,
|
|
"sec ind peer_id %d unicast %d type %d\n",
|
|
__le16_to_cpu(ev->peer_id),
|
|
!!(ev->flags & HTT_SECURITY_IS_UNICAST),
|
|
MS(ev->flags, HTT_SECURITY_TYPE));
|
|
complete(&ar->install_key_done);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
|
|
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
|
|
skb->data, skb->len);
|
|
ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_TEST:
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_STATS_CONF:
|
|
trace_ath10k_htt_stats(ar, skb->data, skb->len);
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
|
|
/* Firmware can return tx frames if it's unable to fully
|
|
* process them and suspects host may be able to fix it. ath10k
|
|
* sends all tx frames as already inspected so this shouldn't
|
|
* happen unless fw has a bug.
|
|
*/
|
|
ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_RX_ADDBA:
|
|
ath10k_htt_rx_addba(ar, resp);
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_RX_DELBA:
|
|
ath10k_htt_rx_delba(ar, resp);
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_PKTLOG: {
|
|
struct ath10k_pktlog_hdr *hdr =
|
|
(struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
|
|
|
|
trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
|
|
sizeof(*hdr) +
|
|
__le16_to_cpu(hdr->size));
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_RX_FLUSH: {
|
|
/* Ignore this event because mac80211 takes care of Rx
|
|
* aggregation reordering.
|
|
*/
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
|
|
skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
|
|
tasklet_schedule(&htt->txrx_compl_task);
|
|
return;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
|
|
u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
|
|
u32 freq = __le32_to_cpu(resp->chan_change.freq);
|
|
|
|
ar->tgt_oper_chan =
|
|
__ieee80211_get_channel(ar->hw->wiphy, freq);
|
|
ath10k_dbg(ar, ATH10K_DBG_HTT,
|
|
"htt chan change freq %u phymode %s\n",
|
|
freq, ath10k_wmi_phymode_str(phymode));
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_AGGR_CONF:
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_TX_FETCH_IND:
|
|
skb_queue_tail(&htt->tx_fetch_ind_q, skb);
|
|
tasklet_schedule(&htt->txrx_compl_task);
|
|
return;
|
|
case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
|
|
ath10k_htt_rx_tx_fetch_confirm(ar, skb);
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
|
|
ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_EN_STATS:
|
|
default:
|
|
ath10k_warn(ar, "htt event (%d) not handled\n",
|
|
resp->hdr.msg_type);
|
|
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
|
|
skb->data, skb->len);
|
|
break;
|
|
};
|
|
|
|
/* Free the indication buffer */
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
|
|
|
|
void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
|
|
struct sk_buff *skb)
|
|
{
|
|
trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
|
|
|
|
static void ath10k_htt_txrx_compl_task(unsigned long ptr)
|
|
{
|
|
struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
|
|
struct ath10k *ar = htt->ar;
|
|
struct sk_buff_head tx_q;
|
|
struct sk_buff_head rx_q;
|
|
struct sk_buff_head rx_ind_q;
|
|
struct sk_buff_head tx_ind_q;
|
|
struct htt_resp *resp;
|
|
struct sk_buff *skb;
|
|
unsigned long flags;
|
|
|
|
__skb_queue_head_init(&tx_q);
|
|
__skb_queue_head_init(&rx_q);
|
|
__skb_queue_head_init(&rx_ind_q);
|
|
__skb_queue_head_init(&tx_ind_q);
|
|
|
|
spin_lock_irqsave(&htt->tx_compl_q.lock, flags);
|
|
skb_queue_splice_init(&htt->tx_compl_q, &tx_q);
|
|
spin_unlock_irqrestore(&htt->tx_compl_q.lock, flags);
|
|
|
|
spin_lock_irqsave(&htt->rx_compl_q.lock, flags);
|
|
skb_queue_splice_init(&htt->rx_compl_q, &rx_q);
|
|
spin_unlock_irqrestore(&htt->rx_compl_q.lock, flags);
|
|
|
|
spin_lock_irqsave(&htt->rx_in_ord_compl_q.lock, flags);
|
|
skb_queue_splice_init(&htt->rx_in_ord_compl_q, &rx_ind_q);
|
|
spin_unlock_irqrestore(&htt->rx_in_ord_compl_q.lock, flags);
|
|
|
|
spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
|
|
skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
|
|
spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
|
|
|
|
while ((skb = __skb_dequeue(&tx_q))) {
|
|
ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
while ((skb = __skb_dequeue(&tx_ind_q))) {
|
|
ath10k_htt_rx_tx_fetch_ind(ar, skb);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
ath10k_mac_tx_push_pending(ar);
|
|
|
|
while ((skb = __skb_dequeue(&rx_q))) {
|
|
resp = (struct htt_resp *)skb->data;
|
|
spin_lock_bh(&htt->rx_ring.lock);
|
|
ath10k_htt_rx_handler(htt, &resp->rx_ind);
|
|
spin_unlock_bh(&htt->rx_ring.lock);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
while ((skb = __skb_dequeue(&rx_ind_q))) {
|
|
spin_lock_bh(&htt->rx_ring.lock);
|
|
ath10k_htt_rx_in_ord_ind(ar, skb);
|
|
spin_unlock_bh(&htt->rx_ring.lock);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
}
|