mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 05:36:27 +07:00
80f232121b
Pull networking updates from David Miller: "Highlights: 1) Support AES128-CCM ciphers in kTLS, from Vakul Garg. 2) Add fib_sync_mem to control the amount of dirty memory we allow to queue up between synchronize RCU calls, from David Ahern. 3) Make flow classifier more lockless, from Vlad Buslov. 4) Add PHY downshift support to aquantia driver, from Heiner Kallweit. 5) Add SKB cache for TCP rx and tx, from Eric Dumazet. This reduces contention on SLAB spinlocks in heavy RPC workloads. 6) Partial GSO offload support in XFRM, from Boris Pismenny. 7) Add fast link down support to ethtool, from Heiner Kallweit. 8) Use siphash for IP ID generator, from Eric Dumazet. 9) Pull nexthops even further out from ipv4/ipv6 routes and FIB entries, from David Ahern. 10) Move skb->xmit_more into a per-cpu variable, from Florian Westphal. 11) Improve eBPF verifier speed and increase maximum program size, from Alexei Starovoitov. 12) Eliminate per-bucket spinlocks in rhashtable, and instead use bit spinlocks. From Neil Brown. 13) Allow tunneling with GUE encap in ipvs, from Jacky Hu. 14) Improve link partner cap detection in generic PHY code, from Heiner Kallweit. 15) Add layer 2 encap support to bpf_skb_adjust_room(), from Alan Maguire. 16) Remove SKB list implementation assumptions in SCTP, your's truly. 17) Various cleanups, optimizations, and simplifications in r8169 driver. From Heiner Kallweit. 18) Add memory accounting on TX and RX path of SCTP, from Xin Long. 19) Switch PHY drivers over to use dynamic featue detection, from Heiner Kallweit. 20) Support flow steering without masking in dpaa2-eth, from Ioana Ciocoi. 21) Implement ndo_get_devlink_port in netdevsim driver, from Jiri Pirko. 22) Increase the strict parsing of current and future netlink attributes, also export such policies to userspace. From Johannes Berg. 23) Allow DSA tag drivers to be modular, from Andrew Lunn. 24) Remove legacy DSA probing support, also from Andrew Lunn. 25) Allow ll_temac driver to be used on non-x86 platforms, from Esben Haabendal. 26) Add a generic tracepoint for TX queue timeouts to ease debugging, from Cong Wang. 27) More indirect call optimizations, from Paolo Abeni" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1763 commits) cxgb4: Fix error path in cxgb4_init_module net: phy: improve pause mode reporting in phy_print_status dt-bindings: net: Fix a typo in the phy-mode list for ethernet bindings net: macb: Change interrupt and napi enable order in open net: ll_temac: Improve error message on error IRQ net/sched: remove block pointer from common offload structure net: ethernet: support of_get_mac_address new ERR_PTR error net: usb: smsc: fix warning reported by kbuild test robot staging: octeon-ethernet: Fix of_get_mac_address ERR_PTR check net: dsa: support of_get_mac_address new ERR_PTR error net: dsa: sja1105: Fix status initialization in sja1105_get_ethtool_stats vrf: sit mtu should not be updated when vrf netdev is the link net: dsa: Fix error cleanup path in dsa_init_module l2tp: Fix possible NULL pointer dereference taprio: add null check on sched_nest to avoid potential null pointer dereference net: mvpp2: cls: fix less than zero check on a u32 variable net_sched: sch_fq: handle non connected flows net_sched: sch_fq: do not assume EDT packets are ordered net: hns3: use devm_kcalloc when allocating desc_cb net: hns3: some cleanup for struct hns3_enet_ring ...
3688 lines
104 KiB
C
3688 lines
104 KiB
C
/******************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2007 - 2015 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
|
* Copyright(c) 2018 - 2019 Intel Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called COPYING.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <linuxwifi@intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2005 - 2015 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
|
* Copyright(c) 2018 - 2019 Intel Corporation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*****************************************************************************/
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-aspm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/module.h>
|
|
#include <linux/wait.h>
|
|
|
|
#include "iwl-drv.h"
|
|
#include "iwl-trans.h"
|
|
#include "iwl-csr.h"
|
|
#include "iwl-prph.h"
|
|
#include "iwl-scd.h"
|
|
#include "iwl-agn-hw.h"
|
|
#include "fw/error-dump.h"
|
|
#include "fw/dbg.h"
|
|
#include "internal.h"
|
|
#include "iwl-fh.h"
|
|
|
|
/* extended range in FW SRAM */
|
|
#define IWL_FW_MEM_EXTENDED_START 0x40000
|
|
#define IWL_FW_MEM_EXTENDED_END 0x57FFF
|
|
|
|
void iwl_trans_pcie_dump_regs(struct iwl_trans *trans)
|
|
{
|
|
#define PCI_DUMP_SIZE 64
|
|
#define PREFIX_LEN 32
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct pci_dev *pdev = trans_pcie->pci_dev;
|
|
u32 i, pos, alloc_size, *ptr, *buf;
|
|
char *prefix;
|
|
|
|
if (trans_pcie->pcie_dbg_dumped_once)
|
|
return;
|
|
|
|
/* Should be a multiple of 4 */
|
|
BUILD_BUG_ON(PCI_DUMP_SIZE > 4096 || PCI_DUMP_SIZE & 0x3);
|
|
/* Alloc a max size buffer */
|
|
if (PCI_ERR_ROOT_ERR_SRC + 4 > PCI_DUMP_SIZE)
|
|
alloc_size = PCI_ERR_ROOT_ERR_SRC + 4 + PREFIX_LEN;
|
|
else
|
|
alloc_size = PCI_DUMP_SIZE + PREFIX_LEN;
|
|
buf = kmalloc(alloc_size, GFP_ATOMIC);
|
|
if (!buf)
|
|
return;
|
|
prefix = (char *)buf + alloc_size - PREFIX_LEN;
|
|
|
|
IWL_ERR(trans, "iwlwifi transaction failed, dumping registers\n");
|
|
|
|
/* Print wifi device registers */
|
|
sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
|
|
IWL_ERR(trans, "iwlwifi device config registers:\n");
|
|
for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
|
|
if (pci_read_config_dword(pdev, i, ptr))
|
|
goto err_read;
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
|
|
|
|
IWL_ERR(trans, "iwlwifi device memory mapped registers:\n");
|
|
for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
|
|
*ptr = iwl_read32(trans, i);
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
|
|
if (pos) {
|
|
IWL_ERR(trans, "iwlwifi device AER capability structure:\n");
|
|
for (i = 0, ptr = buf; i < PCI_ERR_ROOT_COMMAND; i += 4, ptr++)
|
|
if (pci_read_config_dword(pdev, pos + i, ptr))
|
|
goto err_read;
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
|
|
32, 4, buf, i, 0);
|
|
}
|
|
|
|
/* Print parent device registers next */
|
|
if (!pdev->bus->self)
|
|
goto out;
|
|
|
|
pdev = pdev->bus->self;
|
|
sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
|
|
|
|
IWL_ERR(trans, "iwlwifi parent port (%s) config registers:\n",
|
|
pci_name(pdev));
|
|
for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
|
|
if (pci_read_config_dword(pdev, i, ptr))
|
|
goto err_read;
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
|
|
|
|
/* Print root port AER registers */
|
|
pos = 0;
|
|
pdev = pcie_find_root_port(pdev);
|
|
if (pdev)
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
|
|
if (pos) {
|
|
IWL_ERR(trans, "iwlwifi root port (%s) AER cap structure:\n",
|
|
pci_name(pdev));
|
|
sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
|
|
for (i = 0, ptr = buf; i <= PCI_ERR_ROOT_ERR_SRC; i += 4, ptr++)
|
|
if (pci_read_config_dword(pdev, pos + i, ptr))
|
|
goto err_read;
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32,
|
|
4, buf, i, 0);
|
|
}
|
|
goto out;
|
|
|
|
err_read:
|
|
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
|
|
IWL_ERR(trans, "Read failed at 0x%X\n", i);
|
|
out:
|
|
trans_pcie->pcie_dbg_dumped_once = 1;
|
|
kfree(buf);
|
|
}
|
|
|
|
static void iwl_trans_pcie_sw_reset(struct iwl_trans *trans)
|
|
{
|
|
/* Reset entire device - do controller reset (results in SHRD_HW_RST) */
|
|
iwl_set_bit(trans, trans->cfg->csr->addr_sw_reset,
|
|
BIT(trans->cfg->csr->flag_sw_reset));
|
|
usleep_range(5000, 6000);
|
|
}
|
|
|
|
static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < trans->num_blocks; i++) {
|
|
dma_free_coherent(trans->dev, trans->fw_mon[i].size,
|
|
trans->fw_mon[i].block,
|
|
trans->fw_mon[i].physical);
|
|
trans->fw_mon[i].block = NULL;
|
|
trans->fw_mon[i].physical = 0;
|
|
trans->fw_mon[i].size = 0;
|
|
trans->num_blocks--;
|
|
}
|
|
}
|
|
|
|
static void iwl_pcie_alloc_fw_monitor_block(struct iwl_trans *trans,
|
|
u8 max_power, u8 min_power)
|
|
{
|
|
void *cpu_addr = NULL;
|
|
dma_addr_t phys = 0;
|
|
u32 size = 0;
|
|
u8 power;
|
|
|
|
for (power = max_power; power >= min_power; power--) {
|
|
size = BIT(power);
|
|
cpu_addr = dma_alloc_coherent(trans->dev, size, &phys,
|
|
GFP_KERNEL | __GFP_NOWARN |
|
|
__GFP_ZERO | __GFP_COMP);
|
|
if (!cpu_addr)
|
|
continue;
|
|
|
|
IWL_INFO(trans,
|
|
"Allocated 0x%08x bytes for firmware monitor.\n",
|
|
size);
|
|
break;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!cpu_addr))
|
|
return;
|
|
|
|
if (power != max_power)
|
|
IWL_ERR(trans,
|
|
"Sorry - debug buffer is only %luK while you requested %luK\n",
|
|
(unsigned long)BIT(power - 10),
|
|
(unsigned long)BIT(max_power - 10));
|
|
|
|
trans->fw_mon[trans->num_blocks].block = cpu_addr;
|
|
trans->fw_mon[trans->num_blocks].physical = phys;
|
|
trans->fw_mon[trans->num_blocks].size = size;
|
|
trans->num_blocks++;
|
|
}
|
|
|
|
void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power)
|
|
{
|
|
if (!max_power) {
|
|
/* default max_power is maximum */
|
|
max_power = 26;
|
|
} else {
|
|
max_power += 11;
|
|
}
|
|
|
|
if (WARN(max_power > 26,
|
|
"External buffer size for monitor is too big %d, check the FW TLV\n",
|
|
max_power))
|
|
return;
|
|
|
|
/*
|
|
* This function allocats the default fw monitor.
|
|
* The optional additional ones will be allocated in runtime
|
|
*/
|
|
if (trans->num_blocks)
|
|
return;
|
|
|
|
iwl_pcie_alloc_fw_monitor_block(trans, max_power, 11);
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg)
|
|
{
|
|
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
|
|
((reg & 0x0000ffff) | (2 << 28)));
|
|
return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val)
|
|
{
|
|
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val);
|
|
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
|
|
((reg & 0x0000ffff) | (3 << 28)));
|
|
}
|
|
|
|
static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux)
|
|
{
|
|
if (trans->cfg->apmg_not_supported)
|
|
return;
|
|
|
|
if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold))
|
|
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
|
|
APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
|
|
~APMG_PS_CTRL_MSK_PWR_SRC);
|
|
else
|
|
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
|
|
APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
|
|
~APMG_PS_CTRL_MSK_PWR_SRC);
|
|
}
|
|
|
|
/* PCI registers */
|
|
#define PCI_CFG_RETRY_TIMEOUT 0x041
|
|
|
|
void iwl_pcie_apm_config(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u16 lctl;
|
|
u16 cap;
|
|
|
|
/*
|
|
* HW bug W/A for instability in PCIe bus L0S->L1 transition.
|
|
* Check if BIOS (or OS) enabled L1-ASPM on this device.
|
|
* If so (likely), disable L0S, so device moves directly L0->L1;
|
|
* costs negligible amount of power savings.
|
|
* If not (unlikely), enable L0S, so there is at least some
|
|
* power savings, even without L1.
|
|
*/
|
|
pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl);
|
|
if (lctl & PCI_EXP_LNKCTL_ASPM_L1)
|
|
iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
else
|
|
iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
|
|
|
|
pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap);
|
|
trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN;
|
|
IWL_DEBUG_POWER(trans, "L1 %sabled - LTR %sabled\n",
|
|
(lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis",
|
|
trans->ltr_enabled ? "En" : "Dis");
|
|
}
|
|
|
|
/*
|
|
* Start up NIC's basic functionality after it has been reset
|
|
* (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop())
|
|
* NOTE: This does not load uCode nor start the embedded processor
|
|
*/
|
|
static int iwl_pcie_apm_init(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
|
|
IWL_DEBUG_INFO(trans, "Init card's basic functions\n");
|
|
|
|
/*
|
|
* Use "set_bit" below rather than "write", to preserve any hardware
|
|
* bits already set by default after reset.
|
|
*/
|
|
|
|
/* Disable L0S exit timer (platform NMI Work/Around) */
|
|
if (trans->cfg->device_family < IWL_DEVICE_FAMILY_8000)
|
|
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
|
|
CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
|
|
|
|
/*
|
|
* Disable L0s without affecting L1;
|
|
* don't wait for ICH L0s (ICH bug W/A)
|
|
*/
|
|
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
|
|
CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
|
|
|
|
/* Set FH wait threshold to maximum (HW error during stress W/A) */
|
|
iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
|
|
|
|
/*
|
|
* Enable HAP INTA (interrupt from management bus) to
|
|
* wake device's PCI Express link L1a -> L0s
|
|
*/
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
|
|
|
|
iwl_pcie_apm_config(trans);
|
|
|
|
/* Configure analog phase-lock-loop before activating to D0A */
|
|
if (trans->cfg->base_params->pll_cfg)
|
|
iwl_set_bit(trans, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL);
|
|
|
|
ret = iwl_finish_nic_init(trans);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (trans->cfg->host_interrupt_operation_mode) {
|
|
/*
|
|
* This is a bit of an abuse - This is needed for 7260 / 3160
|
|
* only check host_interrupt_operation_mode even if this is
|
|
* not related to host_interrupt_operation_mode.
|
|
*
|
|
* Enable the oscillator to count wake up time for L1 exit. This
|
|
* consumes slightly more power (100uA) - but allows to be sure
|
|
* that we wake up from L1 on time.
|
|
*
|
|
* This looks weird: read twice the same register, discard the
|
|
* value, set a bit, and yet again, read that same register
|
|
* just to discard the value. But that's the way the hardware
|
|
* seems to like it.
|
|
*/
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL);
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
iwl_read_prph(trans, OSC_CLK);
|
|
}
|
|
|
|
/*
|
|
* Enable DMA clock and wait for it to stabilize.
|
|
*
|
|
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0"
|
|
* bits do not disable clocks. This preserves any hardware
|
|
* bits already set by default in "CLK_CTRL_REG" after reset.
|
|
*/
|
|
if (!trans->cfg->apmg_not_supported) {
|
|
iwl_write_prph(trans, APMG_CLK_EN_REG,
|
|
APMG_CLK_VAL_DMA_CLK_RQT);
|
|
udelay(20);
|
|
|
|
/* Disable L1-Active */
|
|
iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
|
|
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
|
|
|
|
/* Clear the interrupt in APMG if the NIC is in RFKILL */
|
|
iwl_write_prph(trans, APMG_RTC_INT_STT_REG,
|
|
APMG_RTC_INT_STT_RFKILL);
|
|
}
|
|
|
|
set_bit(STATUS_DEVICE_ENABLED, &trans->status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enable LP XTAL to avoid HW bug where device may consume much power if
|
|
* FW is not loaded after device reset. LP XTAL is disabled by default
|
|
* after device HW reset. Do it only if XTAL is fed by internal source.
|
|
* Configure device's "persistence" mode to avoid resetting XTAL again when
|
|
* SHRD_HW_RST occurs in S3.
|
|
*/
|
|
static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
u32 apmg_gp1_reg;
|
|
u32 apmg_xtal_cfg_reg;
|
|
u32 dl_cfg_reg;
|
|
|
|
/* Force XTAL ON */
|
|
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
|
|
|
|
iwl_trans_pcie_sw_reset(trans);
|
|
|
|
ret = iwl_finish_nic_init(trans);
|
|
if (WARN_ON(ret)) {
|
|
/* Release XTAL ON request */
|
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clear "disable persistence" to avoid LP XTAL resetting when
|
|
* SHRD_HW_RST is applied in S3.
|
|
*/
|
|
iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG,
|
|
APMG_PCIDEV_STT_VAL_PERSIST_DIS);
|
|
|
|
/*
|
|
* Force APMG XTAL to be active to prevent its disabling by HW
|
|
* caused by APMG idle state.
|
|
*/
|
|
apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans,
|
|
SHR_APMG_XTAL_CFG_REG);
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
|
|
apmg_xtal_cfg_reg |
|
|
SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
|
|
|
|
iwl_trans_pcie_sw_reset(trans);
|
|
|
|
/* Enable LP XTAL by indirect access through CSR */
|
|
apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG);
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg |
|
|
SHR_APMG_GP1_WF_XTAL_LP_EN |
|
|
SHR_APMG_GP1_CHICKEN_BIT_SELECT);
|
|
|
|
/* Clear delay line clock power up */
|
|
dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG);
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg &
|
|
~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP);
|
|
|
|
/*
|
|
* Enable persistence mode to avoid LP XTAL resetting when
|
|
* SHRD_HW_RST is applied in S3.
|
|
*/
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
|
|
|
|
/*
|
|
* Clear "initialization complete" bit to move adapter from
|
|
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
|
|
*/
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_init_done));
|
|
|
|
/* Activates XTAL resources monitor */
|
|
__iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG,
|
|
CSR_MONITOR_XTAL_RESOURCES);
|
|
|
|
/* Release XTAL ON request */
|
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
|
|
udelay(10);
|
|
|
|
/* Release APMG XTAL */
|
|
iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
|
|
apmg_xtal_cfg_reg &
|
|
~SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
|
|
}
|
|
|
|
void iwl_pcie_apm_stop_master(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
|
|
/* stop device's busmaster DMA activity */
|
|
iwl_set_bit(trans, trans->cfg->csr->addr_sw_reset,
|
|
BIT(trans->cfg->csr->flag_stop_master));
|
|
|
|
ret = iwl_poll_bit(trans, trans->cfg->csr->addr_sw_reset,
|
|
BIT(trans->cfg->csr->flag_master_dis),
|
|
BIT(trans->cfg->csr->flag_master_dis), 100);
|
|
if (ret < 0)
|
|
IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n");
|
|
|
|
IWL_DEBUG_INFO(trans, "stop master\n");
|
|
}
|
|
|
|
static void iwl_pcie_apm_stop(struct iwl_trans *trans, bool op_mode_leave)
|
|
{
|
|
IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n");
|
|
|
|
if (op_mode_leave) {
|
|
if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
|
|
iwl_pcie_apm_init(trans);
|
|
|
|
/* inform ME that we are leaving */
|
|
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000)
|
|
iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
|
|
APMG_PCIDEV_STT_VAL_WAKE_ME);
|
|
else if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
|
|
iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
|
|
CSR_RESET_LINK_PWR_MGMT_DISABLED);
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PREPARE |
|
|
CSR_HW_IF_CONFIG_REG_ENABLE_PME);
|
|
mdelay(1);
|
|
iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
|
|
CSR_RESET_LINK_PWR_MGMT_DISABLED);
|
|
}
|
|
mdelay(5);
|
|
}
|
|
|
|
clear_bit(STATUS_DEVICE_ENABLED, &trans->status);
|
|
|
|
/* Stop device's DMA activity */
|
|
iwl_pcie_apm_stop_master(trans);
|
|
|
|
if (trans->cfg->lp_xtal_workaround) {
|
|
iwl_pcie_apm_lp_xtal_enable(trans);
|
|
return;
|
|
}
|
|
|
|
iwl_trans_pcie_sw_reset(trans);
|
|
|
|
/*
|
|
* Clear "initialization complete" bit to move adapter from
|
|
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
|
|
*/
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_init_done));
|
|
}
|
|
|
|
static int iwl_pcie_nic_init(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int ret;
|
|
|
|
/* nic_init */
|
|
spin_lock(&trans_pcie->irq_lock);
|
|
ret = iwl_pcie_apm_init(trans);
|
|
spin_unlock(&trans_pcie->irq_lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
iwl_pcie_set_pwr(trans, false);
|
|
|
|
iwl_op_mode_nic_config(trans->op_mode);
|
|
|
|
/* Allocate the RX queue, or reset if it is already allocated */
|
|
iwl_pcie_rx_init(trans);
|
|
|
|
/* Allocate or reset and init all Tx and Command queues */
|
|
if (iwl_pcie_tx_init(trans))
|
|
return -ENOMEM;
|
|
|
|
if (trans->cfg->base_params->shadow_reg_enable) {
|
|
/* enable shadow regs in HW */
|
|
iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF);
|
|
IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define HW_READY_TIMEOUT (50)
|
|
|
|
/* Note: returns poll_bit return value, which is >= 0 if success */
|
|
static int iwl_pcie_set_hw_ready(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
|
|
|
|
/* See if we got it */
|
|
ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
HW_READY_TIMEOUT);
|
|
|
|
if (ret >= 0)
|
|
iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE);
|
|
|
|
IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : "");
|
|
return ret;
|
|
}
|
|
|
|
/* Note: returns standard 0/-ERROR code */
|
|
int iwl_pcie_prepare_card_hw(struct iwl_trans *trans)
|
|
{
|
|
int ret;
|
|
int t = 0;
|
|
int iter;
|
|
|
|
IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n");
|
|
|
|
ret = iwl_pcie_set_hw_ready(trans);
|
|
/* If the card is ready, exit 0 */
|
|
if (ret >= 0)
|
|
return 0;
|
|
|
|
iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
|
|
CSR_RESET_LINK_PWR_MGMT_DISABLED);
|
|
usleep_range(1000, 2000);
|
|
|
|
for (iter = 0; iter < 10; iter++) {
|
|
/* If HW is not ready, prepare the conditions to check again */
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PREPARE);
|
|
|
|
do {
|
|
ret = iwl_pcie_set_hw_ready(trans);
|
|
if (ret >= 0)
|
|
return 0;
|
|
|
|
usleep_range(200, 1000);
|
|
t += 200;
|
|
} while (t < 150000);
|
|
msleep(25);
|
|
}
|
|
|
|
IWL_ERR(trans, "Couldn't prepare the card\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ucode
|
|
*/
|
|
static void iwl_pcie_load_firmware_chunk_fh(struct iwl_trans *trans,
|
|
u32 dst_addr, dma_addr_t phy_addr,
|
|
u32 byte_cnt)
|
|
{
|
|
iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
|
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
|
|
|
|
iwl_write32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL),
|
|
dst_addr);
|
|
|
|
iwl_write32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
|
|
phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
|
|
|
|
iwl_write32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
|
|
(iwl_get_dma_hi_addr(phy_addr)
|
|
<< FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
|
|
|
|
iwl_write32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
|
|
BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM) |
|
|
BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX) |
|
|
FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
|
|
|
|
iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
|
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
|
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
|
|
FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
|
|
}
|
|
|
|
static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans,
|
|
u32 dst_addr, dma_addr_t phy_addr,
|
|
u32 byte_cnt)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
trans_pcie->ucode_write_complete = false;
|
|
|
|
if (!iwl_trans_grab_nic_access(trans, &flags))
|
|
return -EIO;
|
|
|
|
iwl_pcie_load_firmware_chunk_fh(trans, dst_addr, phy_addr,
|
|
byte_cnt);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
|
|
ret = wait_event_timeout(trans_pcie->ucode_write_waitq,
|
|
trans_pcie->ucode_write_complete, 5 * HZ);
|
|
if (!ret) {
|
|
IWL_ERR(trans, "Failed to load firmware chunk!\n");
|
|
iwl_trans_pcie_dump_regs(trans);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num,
|
|
const struct fw_desc *section)
|
|
{
|
|
u8 *v_addr;
|
|
dma_addr_t p_addr;
|
|
u32 offset, chunk_sz = min_t(u32, FH_MEM_TB_MAX_LENGTH, section->len);
|
|
int ret = 0;
|
|
|
|
IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n",
|
|
section_num);
|
|
|
|
v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr,
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!v_addr) {
|
|
IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n");
|
|
chunk_sz = PAGE_SIZE;
|
|
v_addr = dma_alloc_coherent(trans->dev, chunk_sz,
|
|
&p_addr, GFP_KERNEL);
|
|
if (!v_addr)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (offset = 0; offset < section->len; offset += chunk_sz) {
|
|
u32 copy_size, dst_addr;
|
|
bool extended_addr = false;
|
|
|
|
copy_size = min_t(u32, chunk_sz, section->len - offset);
|
|
dst_addr = section->offset + offset;
|
|
|
|
if (dst_addr >= IWL_FW_MEM_EXTENDED_START &&
|
|
dst_addr <= IWL_FW_MEM_EXTENDED_END)
|
|
extended_addr = true;
|
|
|
|
if (extended_addr)
|
|
iwl_set_bits_prph(trans, LMPM_CHICK,
|
|
LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
|
|
memcpy(v_addr, (u8 *)section->data + offset, copy_size);
|
|
ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr,
|
|
copy_size);
|
|
|
|
if (extended_addr)
|
|
iwl_clear_bits_prph(trans, LMPM_CHICK,
|
|
LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
|
|
if (ret) {
|
|
IWL_ERR(trans,
|
|
"Could not load the [%d] uCode section\n",
|
|
section_num);
|
|
break;
|
|
}
|
|
}
|
|
|
|
dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr);
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_pcie_load_cpu_sections_8000(struct iwl_trans *trans,
|
|
const struct fw_img *image,
|
|
int cpu,
|
|
int *first_ucode_section)
|
|
{
|
|
int shift_param;
|
|
int i, ret = 0, sec_num = 0x1;
|
|
u32 val, last_read_idx = 0;
|
|
|
|
if (cpu == 1) {
|
|
shift_param = 0;
|
|
*first_ucode_section = 0;
|
|
} else {
|
|
shift_param = 16;
|
|
(*first_ucode_section)++;
|
|
}
|
|
|
|
for (i = *first_ucode_section; i < image->num_sec; i++) {
|
|
last_read_idx = i;
|
|
|
|
/*
|
|
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU1 to CPU2.
|
|
* PAGING_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU2 non paged to CPU2 paging sec.
|
|
*/
|
|
if (!image->sec[i].data ||
|
|
image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
|
|
image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
|
|
IWL_DEBUG_FW(trans,
|
|
"Break since Data not valid or Empty section, sec = %d\n",
|
|
i);
|
|
break;
|
|
}
|
|
|
|
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Notify ucode of loaded section number and status */
|
|
val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS);
|
|
val = val | (sec_num << shift_param);
|
|
iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val);
|
|
|
|
sec_num = (sec_num << 1) | 0x1;
|
|
}
|
|
|
|
*first_ucode_section = last_read_idx;
|
|
|
|
iwl_enable_interrupts(trans);
|
|
|
|
if (trans->cfg->use_tfh) {
|
|
if (cpu == 1)
|
|
iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS,
|
|
0xFFFF);
|
|
else
|
|
iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS,
|
|
0xFFFFFFFF);
|
|
} else {
|
|
if (cpu == 1)
|
|
iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS,
|
|
0xFFFF);
|
|
else
|
|
iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS,
|
|
0xFFFFFFFF);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans,
|
|
const struct fw_img *image,
|
|
int cpu,
|
|
int *first_ucode_section)
|
|
{
|
|
int i, ret = 0;
|
|
u32 last_read_idx = 0;
|
|
|
|
if (cpu == 1)
|
|
*first_ucode_section = 0;
|
|
else
|
|
(*first_ucode_section)++;
|
|
|
|
for (i = *first_ucode_section; i < image->num_sec; i++) {
|
|
last_read_idx = i;
|
|
|
|
/*
|
|
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU1 to CPU2.
|
|
* PAGING_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU2 non paged to CPU2 paging sec.
|
|
*/
|
|
if (!image->sec[i].data ||
|
|
image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
|
|
image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
|
|
IWL_DEBUG_FW(trans,
|
|
"Break since Data not valid or Empty section, sec = %d\n",
|
|
i);
|
|
break;
|
|
}
|
|
|
|
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
*first_ucode_section = last_read_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void iwl_pcie_apply_destination(struct iwl_trans *trans)
|
|
{
|
|
const struct iwl_fw_dbg_dest_tlv_v1 *dest = trans->dbg_dest_tlv;
|
|
int i;
|
|
|
|
if (trans->ini_valid) {
|
|
if (!trans->num_blocks)
|
|
return;
|
|
|
|
IWL_DEBUG_FW(trans,
|
|
"WRT: applying DRAM buffer[0] destination\n");
|
|
iwl_write_umac_prph(trans, MON_BUFF_BASE_ADDR_VER2,
|
|
trans->fw_mon[0].physical >>
|
|
MON_BUFF_SHIFT_VER2);
|
|
iwl_write_umac_prph(trans, MON_BUFF_END_ADDR_VER2,
|
|
(trans->fw_mon[0].physical +
|
|
trans->fw_mon[0].size - 256) >>
|
|
MON_BUFF_SHIFT_VER2);
|
|
return;
|
|
}
|
|
|
|
IWL_INFO(trans, "Applying debug destination %s\n",
|
|
get_fw_dbg_mode_string(dest->monitor_mode));
|
|
|
|
if (dest->monitor_mode == EXTERNAL_MODE)
|
|
iwl_pcie_alloc_fw_monitor(trans, dest->size_power);
|
|
else
|
|
IWL_WARN(trans, "PCI should have external buffer debug\n");
|
|
|
|
for (i = 0; i < trans->dbg_n_dest_reg; i++) {
|
|
u32 addr = le32_to_cpu(dest->reg_ops[i].addr);
|
|
u32 val = le32_to_cpu(dest->reg_ops[i].val);
|
|
|
|
switch (dest->reg_ops[i].op) {
|
|
case CSR_ASSIGN:
|
|
iwl_write32(trans, addr, val);
|
|
break;
|
|
case CSR_SETBIT:
|
|
iwl_set_bit(trans, addr, BIT(val));
|
|
break;
|
|
case CSR_CLEARBIT:
|
|
iwl_clear_bit(trans, addr, BIT(val));
|
|
break;
|
|
case PRPH_ASSIGN:
|
|
iwl_write_prph(trans, addr, val);
|
|
break;
|
|
case PRPH_SETBIT:
|
|
iwl_set_bits_prph(trans, addr, BIT(val));
|
|
break;
|
|
case PRPH_CLEARBIT:
|
|
iwl_clear_bits_prph(trans, addr, BIT(val));
|
|
break;
|
|
case PRPH_BLOCKBIT:
|
|
if (iwl_read_prph(trans, addr) & BIT(val)) {
|
|
IWL_ERR(trans,
|
|
"BIT(%u) in address 0x%x is 1, stopping FW configuration\n",
|
|
val, addr);
|
|
goto monitor;
|
|
}
|
|
break;
|
|
default:
|
|
IWL_ERR(trans, "FW debug - unknown OP %d\n",
|
|
dest->reg_ops[i].op);
|
|
break;
|
|
}
|
|
}
|
|
|
|
monitor:
|
|
if (dest->monitor_mode == EXTERNAL_MODE && trans->fw_mon[0].size) {
|
|
iwl_write_prph(trans, le32_to_cpu(dest->base_reg),
|
|
trans->fw_mon[0].physical >> dest->base_shift);
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
|
|
iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
|
|
(trans->fw_mon[0].physical +
|
|
trans->fw_mon[0].size - 256) >>
|
|
dest->end_shift);
|
|
else
|
|
iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
|
|
(trans->fw_mon[0].physical +
|
|
trans->fw_mon[0].size) >>
|
|
dest->end_shift);
|
|
}
|
|
}
|
|
|
|
static int iwl_pcie_load_given_ucode(struct iwl_trans *trans,
|
|
const struct fw_img *image)
|
|
{
|
|
int ret = 0;
|
|
int first_ucode_section;
|
|
|
|
IWL_DEBUG_FW(trans, "working with %s CPU\n",
|
|
image->is_dual_cpus ? "Dual" : "Single");
|
|
|
|
/* load to FW the binary non secured sections of CPU1 */
|
|
ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (image->is_dual_cpus) {
|
|
/* set CPU2 header address */
|
|
iwl_write_prph(trans,
|
|
LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
|
|
LMPM_SECURE_CPU2_HDR_MEM_SPACE);
|
|
|
|
/* load to FW the binary sections of CPU2 */
|
|
ret = iwl_pcie_load_cpu_sections(trans, image, 2,
|
|
&first_ucode_section);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* supported for 7000 only for the moment */
|
|
if (iwlwifi_mod_params.fw_monitor &&
|
|
trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
|
|
iwl_pcie_alloc_fw_monitor(trans, 0);
|
|
|
|
if (trans->fw_mon[0].size) {
|
|
iwl_write_prph(trans, MON_BUFF_BASE_ADDR,
|
|
trans->fw_mon[0].physical >> 4);
|
|
iwl_write_prph(trans, MON_BUFF_END_ADDR,
|
|
(trans->fw_mon[0].physical +
|
|
trans->fw_mon[0].size) >> 4);
|
|
}
|
|
} else if (iwl_pcie_dbg_on(trans)) {
|
|
iwl_pcie_apply_destination(trans);
|
|
}
|
|
|
|
iwl_enable_interrupts(trans);
|
|
|
|
/* release CPU reset */
|
|
iwl_write32(trans, CSR_RESET, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_pcie_load_given_ucode_8000(struct iwl_trans *trans,
|
|
const struct fw_img *image)
|
|
{
|
|
int ret = 0;
|
|
int first_ucode_section;
|
|
|
|
IWL_DEBUG_FW(trans, "working with %s CPU\n",
|
|
image->is_dual_cpus ? "Dual" : "Single");
|
|
|
|
if (iwl_pcie_dbg_on(trans))
|
|
iwl_pcie_apply_destination(trans);
|
|
|
|
IWL_DEBUG_POWER(trans, "Original WFPM value = 0x%08X\n",
|
|
iwl_read_prph(trans, WFPM_GP2));
|
|
|
|
/*
|
|
* Set default value. On resume reading the values that were
|
|
* zeored can provide debug data on the resume flow.
|
|
* This is for debugging only and has no functional impact.
|
|
*/
|
|
iwl_write_prph(trans, WFPM_GP2, 0x01010101);
|
|
|
|
/* configure the ucode to be ready to get the secured image */
|
|
/* release CPU reset */
|
|
iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT);
|
|
|
|
/* load to FW the binary Secured sections of CPU1 */
|
|
ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1,
|
|
&first_ucode_section);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* load to FW the binary sections of CPU2 */
|
|
return iwl_pcie_load_cpu_sections_8000(trans, image, 2,
|
|
&first_ucode_section);
|
|
}
|
|
|
|
bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
bool hw_rfkill = iwl_is_rfkill_set(trans);
|
|
bool prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
bool report;
|
|
|
|
if (hw_rfkill) {
|
|
set_bit(STATUS_RFKILL_HW, &trans->status);
|
|
set_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
} else {
|
|
clear_bit(STATUS_RFKILL_HW, &trans->status);
|
|
if (trans_pcie->opmode_down)
|
|
clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
}
|
|
|
|
report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
|
|
if (prev != report)
|
|
iwl_trans_pcie_rf_kill(trans, report);
|
|
|
|
return hw_rfkill;
|
|
}
|
|
|
|
struct iwl_causes_list {
|
|
u32 cause_num;
|
|
u32 mask_reg;
|
|
u8 addr;
|
|
};
|
|
|
|
static struct iwl_causes_list causes_list[] = {
|
|
{MSIX_FH_INT_CAUSES_D2S_CH0_NUM, CSR_MSIX_FH_INT_MASK_AD, 0},
|
|
{MSIX_FH_INT_CAUSES_D2S_CH1_NUM, CSR_MSIX_FH_INT_MASK_AD, 0x1},
|
|
{MSIX_FH_INT_CAUSES_S2D, CSR_MSIX_FH_INT_MASK_AD, 0x3},
|
|
{MSIX_FH_INT_CAUSES_FH_ERR, CSR_MSIX_FH_INT_MASK_AD, 0x5},
|
|
{MSIX_HW_INT_CAUSES_REG_ALIVE, CSR_MSIX_HW_INT_MASK_AD, 0x10},
|
|
{MSIX_HW_INT_CAUSES_REG_WAKEUP, CSR_MSIX_HW_INT_MASK_AD, 0x11},
|
|
{MSIX_HW_INT_CAUSES_REG_IML, CSR_MSIX_HW_INT_MASK_AD, 0x12},
|
|
{MSIX_HW_INT_CAUSES_REG_CT_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x16},
|
|
{MSIX_HW_INT_CAUSES_REG_RF_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x17},
|
|
{MSIX_HW_INT_CAUSES_REG_PERIODIC, CSR_MSIX_HW_INT_MASK_AD, 0x18},
|
|
{MSIX_HW_INT_CAUSES_REG_SW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x29},
|
|
{MSIX_HW_INT_CAUSES_REG_SCD, CSR_MSIX_HW_INT_MASK_AD, 0x2A},
|
|
{MSIX_HW_INT_CAUSES_REG_FH_TX, CSR_MSIX_HW_INT_MASK_AD, 0x2B},
|
|
{MSIX_HW_INT_CAUSES_REG_HW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x2D},
|
|
{MSIX_HW_INT_CAUSES_REG_HAP, CSR_MSIX_HW_INT_MASK_AD, 0x2E},
|
|
};
|
|
|
|
static struct iwl_causes_list causes_list_v2[] = {
|
|
{MSIX_FH_INT_CAUSES_D2S_CH0_NUM, CSR_MSIX_FH_INT_MASK_AD, 0},
|
|
{MSIX_FH_INT_CAUSES_D2S_CH1_NUM, CSR_MSIX_FH_INT_MASK_AD, 0x1},
|
|
{MSIX_FH_INT_CAUSES_S2D, CSR_MSIX_FH_INT_MASK_AD, 0x3},
|
|
{MSIX_FH_INT_CAUSES_FH_ERR, CSR_MSIX_FH_INT_MASK_AD, 0x5},
|
|
{MSIX_HW_INT_CAUSES_REG_ALIVE, CSR_MSIX_HW_INT_MASK_AD, 0x10},
|
|
{MSIX_HW_INT_CAUSES_REG_IPC, CSR_MSIX_HW_INT_MASK_AD, 0x11},
|
|
{MSIX_HW_INT_CAUSES_REG_SW_ERR_V2, CSR_MSIX_HW_INT_MASK_AD, 0x15},
|
|
{MSIX_HW_INT_CAUSES_REG_CT_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x16},
|
|
{MSIX_HW_INT_CAUSES_REG_RF_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x17},
|
|
{MSIX_HW_INT_CAUSES_REG_PERIODIC, CSR_MSIX_HW_INT_MASK_AD, 0x18},
|
|
{MSIX_HW_INT_CAUSES_REG_SCD, CSR_MSIX_HW_INT_MASK_AD, 0x2A},
|
|
{MSIX_HW_INT_CAUSES_REG_FH_TX, CSR_MSIX_HW_INT_MASK_AD, 0x2B},
|
|
{MSIX_HW_INT_CAUSES_REG_HW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x2D},
|
|
{MSIX_HW_INT_CAUSES_REG_HAP, CSR_MSIX_HW_INT_MASK_AD, 0x2E},
|
|
};
|
|
|
|
static void iwl_pcie_map_non_rx_causes(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int val = trans_pcie->def_irq | MSIX_NON_AUTO_CLEAR_CAUSE;
|
|
int i, arr_size =
|
|
(trans->cfg->device_family != IWL_DEVICE_FAMILY_22560) ?
|
|
ARRAY_SIZE(causes_list) : ARRAY_SIZE(causes_list_v2);
|
|
|
|
/*
|
|
* Access all non RX causes and map them to the default irq.
|
|
* In case we are missing at least one interrupt vector,
|
|
* the first interrupt vector will serve non-RX and FBQ causes.
|
|
*/
|
|
for (i = 0; i < arr_size; i++) {
|
|
struct iwl_causes_list *causes =
|
|
(trans->cfg->device_family != IWL_DEVICE_FAMILY_22560) ?
|
|
causes_list : causes_list_v2;
|
|
|
|
iwl_write8(trans, CSR_MSIX_IVAR(causes[i].addr), val);
|
|
iwl_clear_bit(trans, causes[i].mask_reg,
|
|
causes[i].cause_num);
|
|
}
|
|
}
|
|
|
|
static void iwl_pcie_map_rx_causes(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u32 offset =
|
|
trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
|
|
u32 val, idx;
|
|
|
|
/*
|
|
* The first RX queue - fallback queue, which is designated for
|
|
* management frame, command responses etc, is always mapped to the
|
|
* first interrupt vector. The other RX queues are mapped to
|
|
* the other (N - 2) interrupt vectors.
|
|
*/
|
|
val = BIT(MSIX_FH_INT_CAUSES_Q(0));
|
|
for (idx = 1; idx < trans->num_rx_queues; idx++) {
|
|
iwl_write8(trans, CSR_MSIX_RX_IVAR(idx),
|
|
MSIX_FH_INT_CAUSES_Q(idx - offset));
|
|
val |= BIT(MSIX_FH_INT_CAUSES_Q(idx));
|
|
}
|
|
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~val);
|
|
|
|
val = MSIX_FH_INT_CAUSES_Q(0);
|
|
if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
|
|
val |= MSIX_NON_AUTO_CLEAR_CAUSE;
|
|
iwl_write8(trans, CSR_MSIX_RX_IVAR(0), val);
|
|
|
|
if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
|
|
iwl_write8(trans, CSR_MSIX_RX_IVAR(1), val);
|
|
}
|
|
|
|
void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie)
|
|
{
|
|
struct iwl_trans *trans = trans_pcie->trans;
|
|
|
|
if (!trans_pcie->msix_enabled) {
|
|
if (trans->cfg->mq_rx_supported &&
|
|
test_bit(STATUS_DEVICE_ENABLED, &trans->status))
|
|
iwl_write_umac_prph(trans, UREG_CHICK,
|
|
UREG_CHICK_MSI_ENABLE);
|
|
return;
|
|
}
|
|
/*
|
|
* The IVAR table needs to be configured again after reset,
|
|
* but if the device is disabled, we can't write to
|
|
* prph.
|
|
*/
|
|
if (test_bit(STATUS_DEVICE_ENABLED, &trans->status))
|
|
iwl_write_umac_prph(trans, UREG_CHICK, UREG_CHICK_MSIX_ENABLE);
|
|
|
|
/*
|
|
* Each cause from the causes list above and the RX causes is
|
|
* represented as a byte in the IVAR table. The first nibble
|
|
* represents the bound interrupt vector of the cause, the second
|
|
* represents no auto clear for this cause. This will be set if its
|
|
* interrupt vector is bound to serve other causes.
|
|
*/
|
|
iwl_pcie_map_rx_causes(trans);
|
|
|
|
iwl_pcie_map_non_rx_causes(trans);
|
|
}
|
|
|
|
static void iwl_pcie_init_msix(struct iwl_trans_pcie *trans_pcie)
|
|
{
|
|
struct iwl_trans *trans = trans_pcie->trans;
|
|
|
|
iwl_pcie_conf_msix_hw(trans_pcie);
|
|
|
|
if (!trans_pcie->msix_enabled)
|
|
return;
|
|
|
|
trans_pcie->fh_init_mask = ~iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD);
|
|
trans_pcie->fh_mask = trans_pcie->fh_init_mask;
|
|
trans_pcie->hw_init_mask = ~iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD);
|
|
trans_pcie->hw_mask = trans_pcie->hw_init_mask;
|
|
}
|
|
|
|
static void _iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
lockdep_assert_held(&trans_pcie->mutex);
|
|
|
|
if (trans_pcie->is_down)
|
|
return;
|
|
|
|
trans_pcie->is_down = true;
|
|
|
|
/* Stop dbgc before stopping device */
|
|
_iwl_fw_dbg_stop_recording(trans, NULL);
|
|
|
|
/* tell the device to stop sending interrupts */
|
|
iwl_disable_interrupts(trans);
|
|
|
|
/* device going down, Stop using ICT table */
|
|
iwl_pcie_disable_ict(trans);
|
|
|
|
/*
|
|
* If a HW restart happens during firmware loading,
|
|
* then the firmware loading might call this function
|
|
* and later it might be called again due to the
|
|
* restart. So don't process again if the device is
|
|
* already dead.
|
|
*/
|
|
if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
|
|
IWL_DEBUG_INFO(trans,
|
|
"DEVICE_ENABLED bit was set and is now cleared\n");
|
|
iwl_pcie_tx_stop(trans);
|
|
iwl_pcie_rx_stop(trans);
|
|
|
|
/* Power-down device's busmaster DMA clocks */
|
|
if (!trans->cfg->apmg_not_supported) {
|
|
iwl_write_prph(trans, APMG_CLK_DIS_REG,
|
|
APMG_CLK_VAL_DMA_CLK_RQT);
|
|
udelay(5);
|
|
}
|
|
}
|
|
|
|
/* Make sure (redundant) we've released our request to stay awake */
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_mac_access_req));
|
|
|
|
/* Stop the device, and put it in low power state */
|
|
iwl_pcie_apm_stop(trans, false);
|
|
|
|
iwl_trans_pcie_sw_reset(trans);
|
|
|
|
/*
|
|
* Upon stop, the IVAR table gets erased, so msi-x won't
|
|
* work. This causes a bug in RF-KILL flows, since the interrupt
|
|
* that enables radio won't fire on the correct irq, and the
|
|
* driver won't be able to handle the interrupt.
|
|
* Configure the IVAR table again after reset.
|
|
*/
|
|
iwl_pcie_conf_msix_hw(trans_pcie);
|
|
|
|
/*
|
|
* Upon stop, the APM issues an interrupt if HW RF kill is set.
|
|
* This is a bug in certain verions of the hardware.
|
|
* Certain devices also keep sending HW RF kill interrupt all
|
|
* the time, unless the interrupt is ACKed even if the interrupt
|
|
* should be masked. Re-ACK all the interrupts here.
|
|
*/
|
|
iwl_disable_interrupts(trans);
|
|
|
|
/* clear all status bits */
|
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
|
clear_bit(STATUS_INT_ENABLED, &trans->status);
|
|
clear_bit(STATUS_TPOWER_PMI, &trans->status);
|
|
|
|
/*
|
|
* Even if we stop the HW, we still want the RF kill
|
|
* interrupt
|
|
*/
|
|
iwl_enable_rfkill_int(trans);
|
|
|
|
/* re-take ownership to prevent other users from stealing the device */
|
|
iwl_pcie_prepare_card_hw(trans);
|
|
}
|
|
|
|
void iwl_pcie_synchronize_irqs(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (trans_pcie->msix_enabled) {
|
|
int i;
|
|
|
|
for (i = 0; i < trans_pcie->alloc_vecs; i++)
|
|
synchronize_irq(trans_pcie->msix_entries[i].vector);
|
|
} else {
|
|
synchronize_irq(trans_pcie->pci_dev->irq);
|
|
}
|
|
}
|
|
|
|
static int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
|
|
const struct fw_img *fw, bool run_in_rfkill)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
bool hw_rfkill;
|
|
int ret;
|
|
|
|
/* This may fail if AMT took ownership of the device */
|
|
if (iwl_pcie_prepare_card_hw(trans)) {
|
|
IWL_WARN(trans, "Exit HW not ready\n");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
iwl_enable_rfkill_int(trans);
|
|
|
|
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* We enabled the RF-Kill interrupt and the handler may very
|
|
* well be running. Disable the interrupts to make sure no other
|
|
* interrupt can be fired.
|
|
*/
|
|
iwl_disable_interrupts(trans);
|
|
|
|
/* Make sure it finished running */
|
|
iwl_pcie_synchronize_irqs(trans);
|
|
|
|
mutex_lock(&trans_pcie->mutex);
|
|
|
|
/* If platform's RF_KILL switch is NOT set to KILL */
|
|
hw_rfkill = iwl_pcie_check_hw_rf_kill(trans);
|
|
if (hw_rfkill && !run_in_rfkill) {
|
|
ret = -ERFKILL;
|
|
goto out;
|
|
}
|
|
|
|
/* Someone called stop_device, don't try to start_fw */
|
|
if (trans_pcie->is_down) {
|
|
IWL_WARN(trans,
|
|
"Can't start_fw since the HW hasn't been started\n");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* make sure rfkill handshake bits are cleared */
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR,
|
|
CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
|
|
|
|
/* clear (again), then enable host interrupts */
|
|
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
|
|
|
|
ret = iwl_pcie_nic_init(trans);
|
|
if (ret) {
|
|
IWL_ERR(trans, "Unable to init nic\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Now, we load the firmware and don't want to be interrupted, even
|
|
* by the RF-Kill interrupt (hence mask all the interrupt besides the
|
|
* FH_TX interrupt which is needed to load the firmware). If the
|
|
* RF-Kill switch is toggled, we will find out after having loaded
|
|
* the firmware and return the proper value to the caller.
|
|
*/
|
|
iwl_enable_fw_load_int(trans);
|
|
|
|
/* really make sure rfkill handshake bits are cleared */
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
|
|
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
|
|
|
|
/* Load the given image to the HW */
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
|
|
ret = iwl_pcie_load_given_ucode_8000(trans, fw);
|
|
else
|
|
ret = iwl_pcie_load_given_ucode(trans, fw);
|
|
|
|
/* re-check RF-Kill state since we may have missed the interrupt */
|
|
hw_rfkill = iwl_pcie_check_hw_rf_kill(trans);
|
|
if (hw_rfkill && !run_in_rfkill)
|
|
ret = -ERFKILL;
|
|
|
|
out:
|
|
mutex_unlock(&trans_pcie->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr)
|
|
{
|
|
iwl_pcie_reset_ict(trans);
|
|
iwl_pcie_tx_start(trans, scd_addr);
|
|
}
|
|
|
|
void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
|
|
bool was_in_rfkill)
|
|
{
|
|
bool hw_rfkill;
|
|
|
|
/*
|
|
* Check again since the RF kill state may have changed while
|
|
* all the interrupts were disabled, in this case we couldn't
|
|
* receive the RF kill interrupt and update the state in the
|
|
* op_mode.
|
|
* Don't call the op_mode if the rkfill state hasn't changed.
|
|
* This allows the op_mode to call stop_device from the rfkill
|
|
* notification without endless recursion. Under very rare
|
|
* circumstances, we might have a small recursion if the rfkill
|
|
* state changed exactly now while we were called from stop_device.
|
|
* This is very unlikely but can happen and is supported.
|
|
*/
|
|
hw_rfkill = iwl_is_rfkill_set(trans);
|
|
if (hw_rfkill) {
|
|
set_bit(STATUS_RFKILL_HW, &trans->status);
|
|
set_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
} else {
|
|
clear_bit(STATUS_RFKILL_HW, &trans->status);
|
|
clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
}
|
|
if (hw_rfkill != was_in_rfkill)
|
|
iwl_trans_pcie_rf_kill(trans, hw_rfkill);
|
|
}
|
|
|
|
static void iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
bool was_in_rfkill;
|
|
|
|
mutex_lock(&trans_pcie->mutex);
|
|
trans_pcie->opmode_down = true;
|
|
was_in_rfkill = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
|
|
_iwl_trans_pcie_stop_device(trans, low_power);
|
|
iwl_trans_pcie_handle_stop_rfkill(trans, was_in_rfkill);
|
|
mutex_unlock(&trans_pcie->mutex);
|
|
}
|
|
|
|
void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state)
|
|
{
|
|
struct iwl_trans_pcie __maybe_unused *trans_pcie =
|
|
IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
lockdep_assert_held(&trans_pcie->mutex);
|
|
|
|
IWL_WARN(trans, "reporting RF_KILL (radio %s)\n",
|
|
state ? "disabled" : "enabled");
|
|
if (iwl_op_mode_hw_rf_kill(trans->op_mode, state)) {
|
|
if (trans->cfg->gen2)
|
|
_iwl_trans_pcie_gen2_stop_device(trans, true);
|
|
else
|
|
_iwl_trans_pcie_stop_device(trans, true);
|
|
}
|
|
}
|
|
|
|
static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test,
|
|
bool reset)
|
|
{
|
|
if (!reset) {
|
|
/* Enable persistence mode to avoid reset */
|
|
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
|
|
}
|
|
|
|
iwl_disable_interrupts(trans);
|
|
|
|
/*
|
|
* in testing mode, the host stays awake and the
|
|
* hardware won't be reset (not even partially)
|
|
*/
|
|
if (test)
|
|
return;
|
|
|
|
iwl_pcie_disable_ict(trans);
|
|
|
|
iwl_pcie_synchronize_irqs(trans);
|
|
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_mac_access_req));
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_init_done));
|
|
|
|
if (reset) {
|
|
/*
|
|
* reset TX queues -- some of their registers reset during S3
|
|
* so if we don't reset everything here the D3 image would try
|
|
* to execute some invalid memory upon resume
|
|
*/
|
|
iwl_trans_pcie_tx_reset(trans);
|
|
}
|
|
|
|
iwl_pcie_set_pwr(trans, true);
|
|
}
|
|
|
|
static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
|
|
enum iwl_d3_status *status,
|
|
bool test, bool reset)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u32 val;
|
|
int ret;
|
|
|
|
if (test) {
|
|
iwl_enable_interrupts(trans);
|
|
*status = IWL_D3_STATUS_ALIVE;
|
|
return 0;
|
|
}
|
|
|
|
iwl_set_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_mac_access_req));
|
|
|
|
ret = iwl_finish_nic_init(trans);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Reconfigure IVAR table in case of MSIX or reset ict table in
|
|
* MSI mode since HW reset erased it.
|
|
* Also enables interrupts - none will happen as
|
|
* the device doesn't know we're waking it up, only when
|
|
* the opmode actually tells it after this call.
|
|
*/
|
|
iwl_pcie_conf_msix_hw(trans_pcie);
|
|
if (!trans_pcie->msix_enabled)
|
|
iwl_pcie_reset_ict(trans);
|
|
iwl_enable_interrupts(trans);
|
|
|
|
iwl_pcie_set_pwr(trans, false);
|
|
|
|
if (!reset) {
|
|
iwl_clear_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_mac_access_req));
|
|
} else {
|
|
iwl_trans_pcie_tx_reset(trans);
|
|
|
|
ret = iwl_pcie_rx_init(trans);
|
|
if (ret) {
|
|
IWL_ERR(trans,
|
|
"Failed to resume the device (RX reset)\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
IWL_DEBUG_POWER(trans, "WFPM value upon resume = 0x%08X\n",
|
|
iwl_read_umac_prph(trans, WFPM_GP2));
|
|
|
|
val = iwl_read32(trans, CSR_RESET);
|
|
if (val & CSR_RESET_REG_FLAG_NEVO_RESET)
|
|
*status = IWL_D3_STATUS_RESET;
|
|
else
|
|
*status = IWL_D3_STATUS_ALIVE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_pcie_set_interrupt_capa(struct pci_dev *pdev,
|
|
struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int max_irqs, num_irqs, i, ret;
|
|
u16 pci_cmd;
|
|
|
|
if (!trans->cfg->mq_rx_supported)
|
|
goto enable_msi;
|
|
|
|
max_irqs = min_t(u32, num_online_cpus() + 2, IWL_MAX_RX_HW_QUEUES);
|
|
for (i = 0; i < max_irqs; i++)
|
|
trans_pcie->msix_entries[i].entry = i;
|
|
|
|
num_irqs = pci_enable_msix_range(pdev, trans_pcie->msix_entries,
|
|
MSIX_MIN_INTERRUPT_VECTORS,
|
|
max_irqs);
|
|
if (num_irqs < 0) {
|
|
IWL_DEBUG_INFO(trans,
|
|
"Failed to enable msi-x mode (ret %d). Moving to msi mode.\n",
|
|
num_irqs);
|
|
goto enable_msi;
|
|
}
|
|
trans_pcie->def_irq = (num_irqs == max_irqs) ? num_irqs - 1 : 0;
|
|
|
|
IWL_DEBUG_INFO(trans,
|
|
"MSI-X enabled. %d interrupt vectors were allocated\n",
|
|
num_irqs);
|
|
|
|
/*
|
|
* In case the OS provides fewer interrupts than requested, different
|
|
* causes will share the same interrupt vector as follows:
|
|
* One interrupt less: non rx causes shared with FBQ.
|
|
* Two interrupts less: non rx causes shared with FBQ and RSS.
|
|
* More than two interrupts: we will use fewer RSS queues.
|
|
*/
|
|
if (num_irqs <= max_irqs - 2) {
|
|
trans_pcie->trans->num_rx_queues = num_irqs + 1;
|
|
trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX |
|
|
IWL_SHARED_IRQ_FIRST_RSS;
|
|
} else if (num_irqs == max_irqs - 1) {
|
|
trans_pcie->trans->num_rx_queues = num_irqs;
|
|
trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX;
|
|
} else {
|
|
trans_pcie->trans->num_rx_queues = num_irqs - 1;
|
|
}
|
|
WARN_ON(trans_pcie->trans->num_rx_queues > IWL_MAX_RX_HW_QUEUES);
|
|
|
|
trans_pcie->alloc_vecs = num_irqs;
|
|
trans_pcie->msix_enabled = true;
|
|
return;
|
|
|
|
enable_msi:
|
|
ret = pci_enable_msi(pdev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "pci_enable_msi failed - %d\n", ret);
|
|
/* enable rfkill interrupt: hw bug w/a */
|
|
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
|
|
if (pci_cmd & PCI_COMMAND_INTX_DISABLE) {
|
|
pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
|
|
pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void iwl_pcie_irq_set_affinity(struct iwl_trans *trans)
|
|
{
|
|
int iter_rx_q, i, ret, cpu, offset;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
i = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 0 : 1;
|
|
iter_rx_q = trans_pcie->trans->num_rx_queues - 1 + i;
|
|
offset = 1 + i;
|
|
for (; i < iter_rx_q ; i++) {
|
|
/*
|
|
* Get the cpu prior to the place to search
|
|
* (i.e. return will be > i - 1).
|
|
*/
|
|
cpu = cpumask_next(i - offset, cpu_online_mask);
|
|
cpumask_set_cpu(cpu, &trans_pcie->affinity_mask[i]);
|
|
ret = irq_set_affinity_hint(trans_pcie->msix_entries[i].vector,
|
|
&trans_pcie->affinity_mask[i]);
|
|
if (ret)
|
|
IWL_ERR(trans_pcie->trans,
|
|
"Failed to set affinity mask for IRQ %d\n",
|
|
i);
|
|
}
|
|
}
|
|
|
|
static int iwl_pcie_init_msix_handler(struct pci_dev *pdev,
|
|
struct iwl_trans_pcie *trans_pcie)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < trans_pcie->alloc_vecs; i++) {
|
|
int ret;
|
|
struct msix_entry *msix_entry;
|
|
const char *qname = queue_name(&pdev->dev, trans_pcie, i);
|
|
|
|
if (!qname)
|
|
return -ENOMEM;
|
|
|
|
msix_entry = &trans_pcie->msix_entries[i];
|
|
ret = devm_request_threaded_irq(&pdev->dev,
|
|
msix_entry->vector,
|
|
iwl_pcie_msix_isr,
|
|
(i == trans_pcie->def_irq) ?
|
|
iwl_pcie_irq_msix_handler :
|
|
iwl_pcie_irq_rx_msix_handler,
|
|
IRQF_SHARED,
|
|
qname,
|
|
msix_entry);
|
|
if (ret) {
|
|
IWL_ERR(trans_pcie->trans,
|
|
"Error allocating IRQ %d\n", i);
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
iwl_pcie_irq_set_affinity(trans_pcie->trans);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u32 hpm;
|
|
int err;
|
|
|
|
lockdep_assert_held(&trans_pcie->mutex);
|
|
|
|
err = iwl_pcie_prepare_card_hw(trans);
|
|
if (err) {
|
|
IWL_ERR(trans, "Error while preparing HW: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
hpm = iwl_read_umac_prph_no_grab(trans, HPM_DEBUG);
|
|
if (hpm != 0xa5a5a5a0 && (hpm & PERSISTENCE_BIT)) {
|
|
int wfpm_val = iwl_read_umac_prph_no_grab(trans,
|
|
PREG_PRPH_WPROT_0);
|
|
|
|
if (wfpm_val & PREG_WFPM_ACCESS) {
|
|
IWL_ERR(trans,
|
|
"Error, can not clear persistence bit\n");
|
|
return -EPERM;
|
|
}
|
|
iwl_write_umac_prph_no_grab(trans, HPM_DEBUG,
|
|
hpm & ~PERSISTENCE_BIT);
|
|
}
|
|
|
|
iwl_trans_pcie_sw_reset(trans);
|
|
|
|
err = iwl_pcie_apm_init(trans);
|
|
if (err)
|
|
return err;
|
|
|
|
iwl_pcie_init_msix(trans_pcie);
|
|
|
|
/* From now on, the op_mode will be kept updated about RF kill state */
|
|
iwl_enable_rfkill_int(trans);
|
|
|
|
trans_pcie->opmode_down = false;
|
|
|
|
/* Set is_down to false here so that...*/
|
|
trans_pcie->is_down = false;
|
|
|
|
/* ...rfkill can call stop_device and set it false if needed */
|
|
iwl_pcie_check_hw_rf_kill(trans);
|
|
|
|
/* Make sure we sync here, because we'll need full access later */
|
|
if (low_power)
|
|
pm_runtime_resume(trans->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int ret;
|
|
|
|
mutex_lock(&trans_pcie->mutex);
|
|
ret = _iwl_trans_pcie_start_hw(trans, low_power);
|
|
mutex_unlock(&trans_pcie->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
mutex_lock(&trans_pcie->mutex);
|
|
|
|
/* disable interrupts - don't enable HW RF kill interrupt */
|
|
iwl_disable_interrupts(trans);
|
|
|
|
iwl_pcie_apm_stop(trans, true);
|
|
|
|
iwl_disable_interrupts(trans);
|
|
|
|
iwl_pcie_disable_ict(trans);
|
|
|
|
mutex_unlock(&trans_pcie->mutex);
|
|
|
|
iwl_pcie_synchronize_irqs(trans);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val)
|
|
{
|
|
writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val)
|
|
{
|
|
writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs)
|
|
{
|
|
return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_prph_msk(struct iwl_trans *trans)
|
|
{
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
|
|
return 0x00FFFFFF;
|
|
else
|
|
return 0x000FFFFF;
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg)
|
|
{
|
|
u32 mask = iwl_trans_pcie_prph_msk(trans);
|
|
|
|
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR,
|
|
((reg & mask) | (3 << 24)));
|
|
return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT);
|
|
}
|
|
|
|
static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr,
|
|
u32 val)
|
|
{
|
|
u32 mask = iwl_trans_pcie_prph_msk(trans);
|
|
|
|
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR,
|
|
((addr & mask) | (3 << 24)));
|
|
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val);
|
|
}
|
|
|
|
static void iwl_trans_pcie_configure(struct iwl_trans *trans,
|
|
const struct iwl_trans_config *trans_cfg)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
trans_pcie->cmd_queue = trans_cfg->cmd_queue;
|
|
trans_pcie->cmd_fifo = trans_cfg->cmd_fifo;
|
|
trans_pcie->cmd_q_wdg_timeout = trans_cfg->cmd_q_wdg_timeout;
|
|
if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS))
|
|
trans_pcie->n_no_reclaim_cmds = 0;
|
|
else
|
|
trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds;
|
|
if (trans_pcie->n_no_reclaim_cmds)
|
|
memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds,
|
|
trans_pcie->n_no_reclaim_cmds * sizeof(u8));
|
|
|
|
trans_pcie->rx_buf_size = trans_cfg->rx_buf_size;
|
|
trans_pcie->rx_page_order =
|
|
iwl_trans_get_rb_size_order(trans_pcie->rx_buf_size);
|
|
|
|
trans_pcie->bc_table_dword = trans_cfg->bc_table_dword;
|
|
trans_pcie->scd_set_active = trans_cfg->scd_set_active;
|
|
trans_pcie->sw_csum_tx = trans_cfg->sw_csum_tx;
|
|
|
|
trans_pcie->page_offs = trans_cfg->cb_data_offs;
|
|
trans_pcie->dev_cmd_offs = trans_cfg->cb_data_offs + sizeof(void *);
|
|
|
|
trans->command_groups = trans_cfg->command_groups;
|
|
trans->command_groups_size = trans_cfg->command_groups_size;
|
|
|
|
/* Initialize NAPI here - it should be before registering to mac80211
|
|
* in the opmode but after the HW struct is allocated.
|
|
* As this function may be called again in some corner cases don't
|
|
* do anything if NAPI was already initialized.
|
|
*/
|
|
if (trans_pcie->napi_dev.reg_state != NETREG_DUMMY)
|
|
init_dummy_netdev(&trans_pcie->napi_dev);
|
|
}
|
|
|
|
void iwl_trans_pcie_free(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int i;
|
|
|
|
iwl_pcie_synchronize_irqs(trans);
|
|
|
|
if (trans->cfg->gen2)
|
|
iwl_pcie_gen2_tx_free(trans);
|
|
else
|
|
iwl_pcie_tx_free(trans);
|
|
iwl_pcie_rx_free(trans);
|
|
|
|
if (trans_pcie->rba.alloc_wq) {
|
|
destroy_workqueue(trans_pcie->rba.alloc_wq);
|
|
trans_pcie->rba.alloc_wq = NULL;
|
|
}
|
|
|
|
if (trans_pcie->msix_enabled) {
|
|
for (i = 0; i < trans_pcie->alloc_vecs; i++) {
|
|
irq_set_affinity_hint(
|
|
trans_pcie->msix_entries[i].vector,
|
|
NULL);
|
|
}
|
|
|
|
trans_pcie->msix_enabled = false;
|
|
} else {
|
|
iwl_pcie_free_ict(trans);
|
|
}
|
|
|
|
iwl_pcie_free_fw_monitor(trans);
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct iwl_tso_hdr_page *p =
|
|
per_cpu_ptr(trans_pcie->tso_hdr_page, i);
|
|
|
|
if (p->page)
|
|
__free_page(p->page);
|
|
}
|
|
|
|
free_percpu(trans_pcie->tso_hdr_page);
|
|
mutex_destroy(&trans_pcie->mutex);
|
|
iwl_trans_free(trans);
|
|
}
|
|
|
|
static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state)
|
|
{
|
|
if (state)
|
|
set_bit(STATUS_TPOWER_PMI, &trans->status);
|
|
else
|
|
clear_bit(STATUS_TPOWER_PMI, &trans->status);
|
|
}
|
|
|
|
struct iwl_trans_pcie_removal {
|
|
struct pci_dev *pdev;
|
|
struct work_struct work;
|
|
};
|
|
|
|
static void iwl_trans_pcie_removal_wk(struct work_struct *wk)
|
|
{
|
|
struct iwl_trans_pcie_removal *removal =
|
|
container_of(wk, struct iwl_trans_pcie_removal, work);
|
|
struct pci_dev *pdev = removal->pdev;
|
|
static char *prop[] = {"EVENT=INACCESSIBLE", NULL};
|
|
|
|
dev_err(&pdev->dev, "Device gone - attempting removal\n");
|
|
kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, prop);
|
|
pci_lock_rescan_remove();
|
|
pci_dev_put(pdev);
|
|
pci_stop_and_remove_bus_device(pdev);
|
|
pci_unlock_rescan_remove();
|
|
|
|
kfree(removal);
|
|
module_put(THIS_MODULE);
|
|
}
|
|
|
|
static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans,
|
|
unsigned long *flags)
|
|
{
|
|
int ret;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
spin_lock_irqsave(&trans_pcie->reg_lock, *flags);
|
|
|
|
if (trans_pcie->cmd_hold_nic_awake)
|
|
goto out;
|
|
|
|
/* this bit wakes up the NIC */
|
|
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_mac_access_req));
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
|
|
udelay(2);
|
|
|
|
/*
|
|
* These bits say the device is running, and should keep running for
|
|
* at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
|
|
* but they do not indicate that embedded SRAM is restored yet;
|
|
* HW with volatile SRAM must save/restore contents to/from
|
|
* host DRAM when sleeping/waking for power-saving.
|
|
* Each direction takes approximately 1/4 millisecond; with this
|
|
* overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
|
|
* series of register accesses are expected (e.g. reading Event Log),
|
|
* to keep device from sleeping.
|
|
*
|
|
* CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
|
|
* SRAM is okay/restored. We don't check that here because this call
|
|
* is just for hardware register access; but GP1 MAC_SLEEP
|
|
* check is a good idea before accessing the SRAM of HW with
|
|
* volatile SRAM (e.g. reading Event Log).
|
|
*
|
|
* 5000 series and later (including 1000 series) have non-volatile SRAM,
|
|
* and do not save/restore SRAM when power cycling.
|
|
*/
|
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_val_mac_access_en),
|
|
(BIT(trans->cfg->csr->flag_mac_clock_ready) |
|
|
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
|
|
if (unlikely(ret < 0)) {
|
|
u32 cntrl = iwl_read32(trans, CSR_GP_CNTRL);
|
|
|
|
WARN_ONCE(1,
|
|
"Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n",
|
|
cntrl);
|
|
|
|
iwl_trans_pcie_dump_regs(trans);
|
|
|
|
if (iwlwifi_mod_params.remove_when_gone && cntrl == ~0U) {
|
|
struct iwl_trans_pcie_removal *removal;
|
|
|
|
if (test_bit(STATUS_TRANS_DEAD, &trans->status))
|
|
goto err;
|
|
|
|
IWL_ERR(trans, "Device gone - scheduling removal!\n");
|
|
|
|
/*
|
|
* get a module reference to avoid doing this
|
|
* while unloading anyway and to avoid
|
|
* scheduling a work with code that's being
|
|
* removed.
|
|
*/
|
|
if (!try_module_get(THIS_MODULE)) {
|
|
IWL_ERR(trans,
|
|
"Module is being unloaded - abort\n");
|
|
goto err;
|
|
}
|
|
|
|
removal = kzalloc(sizeof(*removal), GFP_ATOMIC);
|
|
if (!removal) {
|
|
module_put(THIS_MODULE);
|
|
goto err;
|
|
}
|
|
/*
|
|
* we don't need to clear this flag, because
|
|
* the trans will be freed and reallocated.
|
|
*/
|
|
set_bit(STATUS_TRANS_DEAD, &trans->status);
|
|
|
|
removal->pdev = to_pci_dev(trans->dev);
|
|
INIT_WORK(&removal->work, iwl_trans_pcie_removal_wk);
|
|
pci_dev_get(removal->pdev);
|
|
schedule_work(&removal->work);
|
|
} else {
|
|
iwl_write32(trans, CSR_RESET,
|
|
CSR_RESET_REG_FLAG_FORCE_NMI);
|
|
}
|
|
|
|
err:
|
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
|
|
return false;
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* Fool sparse by faking we release the lock - sparse will
|
|
* track nic_access anyway.
|
|
*/
|
|
__release(&trans_pcie->reg_lock);
|
|
return true;
|
|
}
|
|
|
|
static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans,
|
|
unsigned long *flags)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
lockdep_assert_held(&trans_pcie->reg_lock);
|
|
|
|
/*
|
|
* Fool sparse by faking we acquiring the lock - sparse will
|
|
* track nic_access anyway.
|
|
*/
|
|
__acquire(&trans_pcie->reg_lock);
|
|
|
|
if (trans_pcie->cmd_hold_nic_awake)
|
|
goto out;
|
|
|
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
|
BIT(trans->cfg->csr->flag_mac_access_req));
|
|
/*
|
|
* Above we read the CSR_GP_CNTRL register, which will flush
|
|
* any previous writes, but we need the write that clears the
|
|
* MAC_ACCESS_REQ bit to be performed before any other writes
|
|
* scheduled on different CPUs (after we drop reg_lock).
|
|
*/
|
|
out:
|
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
|
|
}
|
|
|
|
static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
|
|
void *buf, int dwords)
|
|
{
|
|
unsigned long flags;
|
|
int offs, ret = 0;
|
|
u32 *vals = buf;
|
|
|
|
if (iwl_trans_grab_nic_access(trans, &flags)) {
|
|
iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr);
|
|
for (offs = 0; offs < dwords; offs++)
|
|
vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
} else {
|
|
ret = -EBUSY;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
|
|
const void *buf, int dwords)
|
|
{
|
|
unsigned long flags;
|
|
int offs, ret = 0;
|
|
const u32 *vals = buf;
|
|
|
|
if (iwl_trans_grab_nic_access(trans, &flags)) {
|
|
iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr);
|
|
for (offs = 0; offs < dwords; offs++)
|
|
iwl_write32(trans, HBUS_TARG_MEM_WDAT,
|
|
vals ? vals[offs] : 0);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
} else {
|
|
ret = -EBUSY;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_trans_pcie_freeze_txq_timer(struct iwl_trans *trans,
|
|
unsigned long txqs,
|
|
bool freeze)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int queue;
|
|
|
|
for_each_set_bit(queue, &txqs, BITS_PER_LONG) {
|
|
struct iwl_txq *txq = trans_pcie->txq[queue];
|
|
unsigned long now;
|
|
|
|
spin_lock_bh(&txq->lock);
|
|
|
|
now = jiffies;
|
|
|
|
if (txq->frozen == freeze)
|
|
goto next_queue;
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n",
|
|
freeze ? "Freezing" : "Waking", queue);
|
|
|
|
txq->frozen = freeze;
|
|
|
|
if (txq->read_ptr == txq->write_ptr)
|
|
goto next_queue;
|
|
|
|
if (freeze) {
|
|
if (unlikely(time_after(now,
|
|
txq->stuck_timer.expires))) {
|
|
/*
|
|
* The timer should have fired, maybe it is
|
|
* spinning right now on the lock.
|
|
*/
|
|
goto next_queue;
|
|
}
|
|
/* remember how long until the timer fires */
|
|
txq->frozen_expiry_remainder =
|
|
txq->stuck_timer.expires - now;
|
|
del_timer(&txq->stuck_timer);
|
|
goto next_queue;
|
|
}
|
|
|
|
/*
|
|
* Wake a non-empty queue -> arm timer with the
|
|
* remainder before it froze
|
|
*/
|
|
mod_timer(&txq->stuck_timer,
|
|
now + txq->frozen_expiry_remainder);
|
|
|
|
next_queue:
|
|
spin_unlock_bh(&txq->lock);
|
|
}
|
|
}
|
|
|
|
static void iwl_trans_pcie_block_txq_ptrs(struct iwl_trans *trans, bool block)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int i;
|
|
|
|
for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
|
|
struct iwl_txq *txq = trans_pcie->txq[i];
|
|
|
|
if (i == trans_pcie->cmd_queue)
|
|
continue;
|
|
|
|
spin_lock_bh(&txq->lock);
|
|
|
|
if (!block && !(WARN_ON_ONCE(!txq->block))) {
|
|
txq->block--;
|
|
if (!txq->block) {
|
|
iwl_write32(trans, HBUS_TARG_WRPTR,
|
|
txq->write_ptr | (i << 8));
|
|
}
|
|
} else if (block) {
|
|
txq->block++;
|
|
}
|
|
|
|
spin_unlock_bh(&txq->lock);
|
|
}
|
|
}
|
|
|
|
#define IWL_FLUSH_WAIT_MS 2000
|
|
|
|
void iwl_trans_pcie_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq)
|
|
{
|
|
u32 txq_id = txq->id;
|
|
u32 status;
|
|
bool active;
|
|
u8 fifo;
|
|
|
|
if (trans->cfg->use_tfh) {
|
|
IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id,
|
|
txq->read_ptr, txq->write_ptr);
|
|
/* TODO: access new SCD registers and dump them */
|
|
return;
|
|
}
|
|
|
|
status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id));
|
|
fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7;
|
|
active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE));
|
|
|
|
IWL_ERR(trans,
|
|
"Queue %d is %sactive on fifo %d and stuck for %u ms. SW [%d, %d] HW [%d, %d] FH TRB=0x0%x\n",
|
|
txq_id, active ? "" : "in", fifo,
|
|
jiffies_to_msecs(txq->wd_timeout),
|
|
txq->read_ptr, txq->write_ptr,
|
|
iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) &
|
|
(trans->cfg->base_params->max_tfd_queue_size - 1),
|
|
iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) &
|
|
(trans->cfg->base_params->max_tfd_queue_size - 1),
|
|
iwl_read_direct32(trans, FH_TX_TRB_REG(fifo)));
|
|
}
|
|
|
|
static int iwl_trans_pcie_rxq_dma_data(struct iwl_trans *trans, int queue,
|
|
struct iwl_trans_rxq_dma_data *data)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (queue >= trans->num_rx_queues || !trans_pcie->rxq)
|
|
return -EINVAL;
|
|
|
|
data->fr_bd_cb = trans_pcie->rxq[queue].bd_dma;
|
|
data->urbd_stts_wrptr = trans_pcie->rxq[queue].rb_stts_dma;
|
|
data->ur_bd_cb = trans_pcie->rxq[queue].used_bd_dma;
|
|
data->fr_bd_wid = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq;
|
|
unsigned long now = jiffies;
|
|
bool overflow_tx;
|
|
u8 wr_ptr;
|
|
|
|
/* Make sure the NIC is still alive in the bus */
|
|
if (test_bit(STATUS_TRANS_DEAD, &trans->status))
|
|
return -ENODEV;
|
|
|
|
if (!test_bit(txq_idx, trans_pcie->queue_used))
|
|
return -EINVAL;
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", txq_idx);
|
|
txq = trans_pcie->txq[txq_idx];
|
|
|
|
spin_lock_bh(&txq->lock);
|
|
overflow_tx = txq->overflow_tx ||
|
|
!skb_queue_empty(&txq->overflow_q);
|
|
spin_unlock_bh(&txq->lock);
|
|
|
|
wr_ptr = READ_ONCE(txq->write_ptr);
|
|
|
|
while ((txq->read_ptr != READ_ONCE(txq->write_ptr) ||
|
|
overflow_tx) &&
|
|
!time_after(jiffies,
|
|
now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) {
|
|
u8 write_ptr = READ_ONCE(txq->write_ptr);
|
|
|
|
/*
|
|
* If write pointer moved during the wait, warn only
|
|
* if the TX came from op mode. In case TX came from
|
|
* trans layer (overflow TX) don't warn.
|
|
*/
|
|
if (WARN_ONCE(wr_ptr != write_ptr && !overflow_tx,
|
|
"WR pointer moved while flushing %d -> %d\n",
|
|
wr_ptr, write_ptr))
|
|
return -ETIMEDOUT;
|
|
wr_ptr = write_ptr;
|
|
|
|
usleep_range(1000, 2000);
|
|
|
|
spin_lock_bh(&txq->lock);
|
|
overflow_tx = txq->overflow_tx ||
|
|
!skb_queue_empty(&txq->overflow_q);
|
|
spin_unlock_bh(&txq->lock);
|
|
}
|
|
|
|
if (txq->read_ptr != txq->write_ptr) {
|
|
IWL_ERR(trans,
|
|
"fail to flush all tx fifo queues Q %d\n", txq_idx);
|
|
iwl_trans_pcie_log_scd_error(trans, txq);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", txq_idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int cnt;
|
|
int ret = 0;
|
|
|
|
/* waiting for all the tx frames complete might take a while */
|
|
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
|
|
|
|
if (cnt == trans_pcie->cmd_queue)
|
|
continue;
|
|
if (!test_bit(cnt, trans_pcie->queue_used))
|
|
continue;
|
|
if (!(BIT(cnt) & txq_bm))
|
|
continue;
|
|
|
|
ret = iwl_trans_pcie_wait_txq_empty(trans, cnt);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
|
|
u32 mask, u32 value)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&trans_pcie->reg_lock, flags);
|
|
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, value);
|
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
|
|
}
|
|
|
|
static void iwl_trans_pcie_ref(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (iwlwifi_mod_params.d0i3_disable)
|
|
return;
|
|
|
|
pm_runtime_get(&trans_pcie->pci_dev->dev);
|
|
|
|
#ifdef CONFIG_PM
|
|
IWL_DEBUG_RPM(trans, "runtime usage count: %d\n",
|
|
atomic_read(&trans_pcie->pci_dev->dev.power.usage_count));
|
|
#endif /* CONFIG_PM */
|
|
}
|
|
|
|
static void iwl_trans_pcie_unref(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (iwlwifi_mod_params.d0i3_disable)
|
|
return;
|
|
|
|
pm_runtime_mark_last_busy(&trans_pcie->pci_dev->dev);
|
|
pm_runtime_put_autosuspend(&trans_pcie->pci_dev->dev);
|
|
|
|
#ifdef CONFIG_PM
|
|
IWL_DEBUG_RPM(trans, "runtime usage count: %d\n",
|
|
atomic_read(&trans_pcie->pci_dev->dev.power.usage_count));
|
|
#endif /* CONFIG_PM */
|
|
}
|
|
|
|
static const char *get_csr_string(int cmd)
|
|
{
|
|
#define IWL_CMD(x) case x: return #x
|
|
switch (cmd) {
|
|
IWL_CMD(CSR_HW_IF_CONFIG_REG);
|
|
IWL_CMD(CSR_INT_COALESCING);
|
|
IWL_CMD(CSR_INT);
|
|
IWL_CMD(CSR_INT_MASK);
|
|
IWL_CMD(CSR_FH_INT_STATUS);
|
|
IWL_CMD(CSR_GPIO_IN);
|
|
IWL_CMD(CSR_RESET);
|
|
IWL_CMD(CSR_GP_CNTRL);
|
|
IWL_CMD(CSR_HW_REV);
|
|
IWL_CMD(CSR_EEPROM_REG);
|
|
IWL_CMD(CSR_EEPROM_GP);
|
|
IWL_CMD(CSR_OTP_GP_REG);
|
|
IWL_CMD(CSR_GIO_REG);
|
|
IWL_CMD(CSR_GP_UCODE_REG);
|
|
IWL_CMD(CSR_GP_DRIVER_REG);
|
|
IWL_CMD(CSR_UCODE_DRV_GP1);
|
|
IWL_CMD(CSR_UCODE_DRV_GP2);
|
|
IWL_CMD(CSR_LED_REG);
|
|
IWL_CMD(CSR_DRAM_INT_TBL_REG);
|
|
IWL_CMD(CSR_GIO_CHICKEN_BITS);
|
|
IWL_CMD(CSR_ANA_PLL_CFG);
|
|
IWL_CMD(CSR_HW_REV_WA_REG);
|
|
IWL_CMD(CSR_MONITOR_STATUS_REG);
|
|
IWL_CMD(CSR_DBG_HPET_MEM_REG);
|
|
default:
|
|
return "UNKNOWN";
|
|
}
|
|
#undef IWL_CMD
|
|
}
|
|
|
|
void iwl_pcie_dump_csr(struct iwl_trans *trans)
|
|
{
|
|
int i;
|
|
static const u32 csr_tbl[] = {
|
|
CSR_HW_IF_CONFIG_REG,
|
|
CSR_INT_COALESCING,
|
|
CSR_INT,
|
|
CSR_INT_MASK,
|
|
CSR_FH_INT_STATUS,
|
|
CSR_GPIO_IN,
|
|
CSR_RESET,
|
|
CSR_GP_CNTRL,
|
|
CSR_HW_REV,
|
|
CSR_EEPROM_REG,
|
|
CSR_EEPROM_GP,
|
|
CSR_OTP_GP_REG,
|
|
CSR_GIO_REG,
|
|
CSR_GP_UCODE_REG,
|
|
CSR_GP_DRIVER_REG,
|
|
CSR_UCODE_DRV_GP1,
|
|
CSR_UCODE_DRV_GP2,
|
|
CSR_LED_REG,
|
|
CSR_DRAM_INT_TBL_REG,
|
|
CSR_GIO_CHICKEN_BITS,
|
|
CSR_ANA_PLL_CFG,
|
|
CSR_MONITOR_STATUS_REG,
|
|
CSR_HW_REV_WA_REG,
|
|
CSR_DBG_HPET_MEM_REG
|
|
};
|
|
IWL_ERR(trans, "CSR values:\n");
|
|
IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is "
|
|
"CSR_INT_PERIODIC_REG)\n");
|
|
for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) {
|
|
IWL_ERR(trans, " %25s: 0X%08x\n",
|
|
get_csr_string(csr_tbl[i]),
|
|
iwl_read32(trans, csr_tbl[i]));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_IWLWIFI_DEBUGFS
|
|
/* create and remove of files */
|
|
#define DEBUGFS_ADD_FILE(name, parent, mode) do { \
|
|
debugfs_create_file(#name, mode, parent, trans, \
|
|
&iwl_dbgfs_##name##_ops); \
|
|
} while (0)
|
|
|
|
/* file operation */
|
|
#define DEBUGFS_READ_FILE_OPS(name) \
|
|
static const struct file_operations iwl_dbgfs_##name##_ops = { \
|
|
.read = iwl_dbgfs_##name##_read, \
|
|
.open = simple_open, \
|
|
.llseek = generic_file_llseek, \
|
|
};
|
|
|
|
#define DEBUGFS_WRITE_FILE_OPS(name) \
|
|
static const struct file_operations iwl_dbgfs_##name##_ops = { \
|
|
.write = iwl_dbgfs_##name##_write, \
|
|
.open = simple_open, \
|
|
.llseek = generic_file_llseek, \
|
|
};
|
|
|
|
#define DEBUGFS_READ_WRITE_FILE_OPS(name) \
|
|
static const struct file_operations iwl_dbgfs_##name##_ops = { \
|
|
.write = iwl_dbgfs_##name##_write, \
|
|
.read = iwl_dbgfs_##name##_read, \
|
|
.open = simple_open, \
|
|
.llseek = generic_file_llseek, \
|
|
};
|
|
|
|
static ssize_t iwl_dbgfs_tx_queue_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq;
|
|
char *buf;
|
|
int pos = 0;
|
|
int cnt;
|
|
int ret;
|
|
size_t bufsz;
|
|
|
|
bufsz = sizeof(char) * 75 * trans->cfg->base_params->num_of_queues;
|
|
|
|
if (!trans_pcie->txq_memory)
|
|
return -EAGAIN;
|
|
|
|
buf = kzalloc(bufsz, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
|
|
txq = trans_pcie->txq[cnt];
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d frozen=%d%s\n",
|
|
cnt, txq->read_ptr, txq->write_ptr,
|
|
!!test_bit(cnt, trans_pcie->queue_used),
|
|
!!test_bit(cnt, trans_pcie->queue_stopped),
|
|
txq->need_update, txq->frozen,
|
|
(cnt == trans_pcie->cmd_queue ? " HCMD" : ""));
|
|
}
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_rx_queue_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
char *buf;
|
|
int pos = 0, i, ret;
|
|
size_t bufsz = sizeof(buf);
|
|
|
|
bufsz = sizeof(char) * 121 * trans->num_rx_queues;
|
|
|
|
if (!trans_pcie->rxq)
|
|
return -EAGAIN;
|
|
|
|
buf = kzalloc(bufsz, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < trans->num_rx_queues && pos < bufsz; i++) {
|
|
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "queue#: %2d\n",
|
|
i);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\tread: %u\n",
|
|
rxq->read);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\twrite: %u\n",
|
|
rxq->write);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\twrite_actual: %u\n",
|
|
rxq->write_actual);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\tneed_update: %2d\n",
|
|
rxq->need_update);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "\tfree_count: %u\n",
|
|
rxq->free_count);
|
|
if (rxq->rb_stts) {
|
|
u32 r = __le16_to_cpu(iwl_get_closed_rb_stts(trans,
|
|
rxq));
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"\tclosed_rb_num: %u\n",
|
|
r & 0x0FFF);
|
|
} else {
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"\tclosed_rb_num: Not Allocated\n");
|
|
}
|
|
}
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
kfree(buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_interrupt_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
|
|
|
|
int pos = 0;
|
|
char *buf;
|
|
int bufsz = 24 * 64; /* 24 items * 64 char per item */
|
|
ssize_t ret;
|
|
|
|
buf = kzalloc(bufsz, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"Interrupt Statistics Report:\n");
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n",
|
|
isr_stats->hw);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n",
|
|
isr_stats->sw);
|
|
if (isr_stats->sw || isr_stats->hw) {
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"\tLast Restarting Code: 0x%X\n",
|
|
isr_stats->err_code);
|
|
}
|
|
#ifdef CONFIG_IWLWIFI_DEBUG
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n",
|
|
isr_stats->sch);
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n",
|
|
isr_stats->alive);
|
|
#endif
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n",
|
|
isr_stats->ctkill);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n",
|
|
isr_stats->wakeup);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos,
|
|
"Rx command responses:\t\t %u\n", isr_stats->rx);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n",
|
|
isr_stats->tx);
|
|
|
|
pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n",
|
|
isr_stats->unhandled);
|
|
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_interrupt_write(struct file *file,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
|
|
u32 reset_flag;
|
|
int ret;
|
|
|
|
ret = kstrtou32_from_user(user_buf, count, 16, &reset_flag);
|
|
if (ret)
|
|
return ret;
|
|
if (reset_flag == 0)
|
|
memset(isr_stats, 0, sizeof(*isr_stats));
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_csr_write(struct file *file,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
|
|
iwl_pcie_dump_csr(trans);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_fh_reg_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
char *buf = NULL;
|
|
ssize_t ret;
|
|
|
|
ret = iwl_dump_fh(trans, &buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!buf)
|
|
return -EINVAL;
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_rfkill_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
char buf[100];
|
|
int pos;
|
|
|
|
pos = scnprintf(buf, sizeof(buf), "debug: %d\nhw: %d\n",
|
|
trans_pcie->debug_rfkill,
|
|
!(iwl_read32(trans, CSR_GP_CNTRL) &
|
|
CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW));
|
|
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, pos);
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_rfkill_write(struct file *file,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
bool new_value;
|
|
int ret;
|
|
|
|
ret = kstrtobool_from_user(user_buf, count, &new_value);
|
|
if (ret)
|
|
return ret;
|
|
if (new_value == trans_pcie->debug_rfkill)
|
|
return count;
|
|
IWL_WARN(trans, "changing debug rfkill %d->%d\n",
|
|
trans_pcie->debug_rfkill, new_value);
|
|
trans_pcie->debug_rfkill = new_value;
|
|
iwl_pcie_handle_rfkill_irq(trans);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int iwl_dbgfs_monitor_data_open(struct inode *inode,
|
|
struct file *file)
|
|
{
|
|
struct iwl_trans *trans = inode->i_private;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (!trans->dbg_dest_tlv ||
|
|
trans->dbg_dest_tlv->monitor_mode != EXTERNAL_MODE) {
|
|
IWL_ERR(trans, "Debug destination is not set to DRAM\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (trans_pcie->fw_mon_data.state != IWL_FW_MON_DBGFS_STATE_CLOSED)
|
|
return -EBUSY;
|
|
|
|
trans_pcie->fw_mon_data.state = IWL_FW_MON_DBGFS_STATE_OPEN;
|
|
return simple_open(inode, file);
|
|
}
|
|
|
|
static int iwl_dbgfs_monitor_data_release(struct inode *inode,
|
|
struct file *file)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie =
|
|
IWL_TRANS_GET_PCIE_TRANS(inode->i_private);
|
|
|
|
if (trans_pcie->fw_mon_data.state == IWL_FW_MON_DBGFS_STATE_OPEN)
|
|
trans_pcie->fw_mon_data.state = IWL_FW_MON_DBGFS_STATE_CLOSED;
|
|
return 0;
|
|
}
|
|
|
|
static bool iwl_write_to_user_buf(char __user *user_buf, ssize_t count,
|
|
void *buf, ssize_t *size,
|
|
ssize_t *bytes_copied)
|
|
{
|
|
int buf_size_left = count - *bytes_copied;
|
|
|
|
buf_size_left = buf_size_left - (buf_size_left % sizeof(u32));
|
|
if (*size > buf_size_left)
|
|
*size = buf_size_left;
|
|
|
|
*size -= copy_to_user(user_buf, buf, *size);
|
|
*bytes_copied += *size;
|
|
|
|
if (buf_size_left == *size)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static ssize_t iwl_dbgfs_monitor_data_read(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iwl_trans *trans = file->private_data;
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
void *cpu_addr = (void *)trans->fw_mon[0].block, *curr_buf;
|
|
struct cont_rec *data = &trans_pcie->fw_mon_data;
|
|
u32 write_ptr_addr, wrap_cnt_addr, write_ptr, wrap_cnt;
|
|
ssize_t size, bytes_copied = 0;
|
|
bool b_full;
|
|
|
|
if (trans->dbg_dest_tlv) {
|
|
write_ptr_addr =
|
|
le32_to_cpu(trans->dbg_dest_tlv->write_ptr_reg);
|
|
wrap_cnt_addr = le32_to_cpu(trans->dbg_dest_tlv->wrap_count);
|
|
} else {
|
|
write_ptr_addr = MON_BUFF_WRPTR;
|
|
wrap_cnt_addr = MON_BUFF_CYCLE_CNT;
|
|
}
|
|
|
|
if (unlikely(!trans->dbg_rec_on))
|
|
return 0;
|
|
|
|
mutex_lock(&data->mutex);
|
|
if (data->state ==
|
|
IWL_FW_MON_DBGFS_STATE_DISABLED) {
|
|
mutex_unlock(&data->mutex);
|
|
return 0;
|
|
}
|
|
|
|
/* write_ptr position in bytes rather then DW */
|
|
write_ptr = iwl_read_prph(trans, write_ptr_addr) * sizeof(u32);
|
|
wrap_cnt = iwl_read_prph(trans, wrap_cnt_addr);
|
|
|
|
if (data->prev_wrap_cnt == wrap_cnt) {
|
|
size = write_ptr - data->prev_wr_ptr;
|
|
curr_buf = cpu_addr + data->prev_wr_ptr;
|
|
b_full = iwl_write_to_user_buf(user_buf, count,
|
|
curr_buf, &size,
|
|
&bytes_copied);
|
|
data->prev_wr_ptr += size;
|
|
|
|
} else if (data->prev_wrap_cnt == wrap_cnt - 1 &&
|
|
write_ptr < data->prev_wr_ptr) {
|
|
size = trans->fw_mon[0].size - data->prev_wr_ptr;
|
|
curr_buf = cpu_addr + data->prev_wr_ptr;
|
|
b_full = iwl_write_to_user_buf(user_buf, count,
|
|
curr_buf, &size,
|
|
&bytes_copied);
|
|
data->prev_wr_ptr += size;
|
|
|
|
if (!b_full) {
|
|
size = write_ptr;
|
|
b_full = iwl_write_to_user_buf(user_buf, count,
|
|
cpu_addr, &size,
|
|
&bytes_copied);
|
|
data->prev_wr_ptr = size;
|
|
data->prev_wrap_cnt++;
|
|
}
|
|
} else {
|
|
if (data->prev_wrap_cnt == wrap_cnt - 1 &&
|
|
write_ptr > data->prev_wr_ptr)
|
|
IWL_WARN(trans,
|
|
"write pointer passed previous write pointer, start copying from the beginning\n");
|
|
else if (!unlikely(data->prev_wrap_cnt == 0 &&
|
|
data->prev_wr_ptr == 0))
|
|
IWL_WARN(trans,
|
|
"monitor data is out of sync, start copying from the beginning\n");
|
|
|
|
size = write_ptr;
|
|
b_full = iwl_write_to_user_buf(user_buf, count,
|
|
cpu_addr, &size,
|
|
&bytes_copied);
|
|
data->prev_wr_ptr = size;
|
|
data->prev_wrap_cnt = wrap_cnt;
|
|
}
|
|
|
|
mutex_unlock(&data->mutex);
|
|
|
|
return bytes_copied;
|
|
}
|
|
|
|
DEBUGFS_READ_WRITE_FILE_OPS(interrupt);
|
|
DEBUGFS_READ_FILE_OPS(fh_reg);
|
|
DEBUGFS_READ_FILE_OPS(rx_queue);
|
|
DEBUGFS_READ_FILE_OPS(tx_queue);
|
|
DEBUGFS_WRITE_FILE_OPS(csr);
|
|
DEBUGFS_READ_WRITE_FILE_OPS(rfkill);
|
|
|
|
static const struct file_operations iwl_dbgfs_monitor_data_ops = {
|
|
.read = iwl_dbgfs_monitor_data_read,
|
|
.open = iwl_dbgfs_monitor_data_open,
|
|
.release = iwl_dbgfs_monitor_data_release,
|
|
};
|
|
|
|
/* Create the debugfs files and directories */
|
|
void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans)
|
|
{
|
|
struct dentry *dir = trans->dbgfs_dir;
|
|
|
|
DEBUGFS_ADD_FILE(rx_queue, dir, 0400);
|
|
DEBUGFS_ADD_FILE(tx_queue, dir, 0400);
|
|
DEBUGFS_ADD_FILE(interrupt, dir, 0600);
|
|
DEBUGFS_ADD_FILE(csr, dir, 0200);
|
|
DEBUGFS_ADD_FILE(fh_reg, dir, 0400);
|
|
DEBUGFS_ADD_FILE(rfkill, dir, 0600);
|
|
DEBUGFS_ADD_FILE(monitor_data, dir, 0400);
|
|
}
|
|
|
|
static void iwl_trans_pcie_debugfs_cleanup(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct cont_rec *data = &trans_pcie->fw_mon_data;
|
|
|
|
mutex_lock(&data->mutex);
|
|
data->state = IWL_FW_MON_DBGFS_STATE_DISABLED;
|
|
mutex_unlock(&data->mutex);
|
|
}
|
|
#endif /*CONFIG_IWLWIFI_DEBUGFS */
|
|
|
|
static u32 iwl_trans_pcie_get_cmdlen(struct iwl_trans *trans, void *tfd)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
u32 cmdlen = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < trans_pcie->max_tbs; i++)
|
|
cmdlen += iwl_pcie_tfd_tb_get_len(trans, tfd, i);
|
|
|
|
return cmdlen;
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_dump_rbs(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data,
|
|
int allocated_rb_nums)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
|
|
/* Dump RBs is supported only for pre-9000 devices (1 queue) */
|
|
struct iwl_rxq *rxq = &trans_pcie->rxq[0];
|
|
u32 i, r, j, rb_len = 0;
|
|
|
|
spin_lock(&rxq->lock);
|
|
|
|
r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
|
|
|
|
for (i = rxq->read, j = 0;
|
|
i != r && j < allocated_rb_nums;
|
|
i = (i + 1) & RX_QUEUE_MASK, j++) {
|
|
struct iwl_rx_mem_buffer *rxb = rxq->queue[i];
|
|
struct iwl_fw_error_dump_rb *rb;
|
|
|
|
dma_unmap_page(trans->dev, rxb->page_dma, max_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
rb_len += sizeof(**data) + sizeof(*rb) + max_len;
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_RB);
|
|
(*data)->len = cpu_to_le32(sizeof(*rb) + max_len);
|
|
rb = (void *)(*data)->data;
|
|
rb->index = cpu_to_le32(i);
|
|
memcpy(rb->data, page_address(rxb->page), max_len);
|
|
/* remap the page for the free benefit */
|
|
rxb->page_dma = dma_map_page(trans->dev, rxb->page, 0,
|
|
max_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
*data = iwl_fw_error_next_data(*data);
|
|
}
|
|
|
|
spin_unlock(&rxq->lock);
|
|
|
|
return rb_len;
|
|
}
|
|
#define IWL_CSR_TO_DUMP (0x250)
|
|
|
|
static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data)
|
|
{
|
|
u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP;
|
|
__le32 *val;
|
|
int i;
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR);
|
|
(*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP);
|
|
val = (void *)(*data)->data;
|
|
|
|
for (i = 0; i < IWL_CSR_TO_DUMP; i += 4)
|
|
*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
|
|
|
|
*data = iwl_fw_error_next_data(*data);
|
|
|
|
return csr_len;
|
|
}
|
|
|
|
static u32 iwl_trans_pcie_fh_regs_dump(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data)
|
|
{
|
|
u32 fh_regs_len = FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND;
|
|
unsigned long flags;
|
|
__le32 *val;
|
|
int i;
|
|
|
|
if (!iwl_trans_grab_nic_access(trans, &flags))
|
|
return 0;
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FH_REGS);
|
|
(*data)->len = cpu_to_le32(fh_regs_len);
|
|
val = (void *)(*data)->data;
|
|
|
|
if (!trans->cfg->gen2)
|
|
for (i = FH_MEM_LOWER_BOUND; i < FH_MEM_UPPER_BOUND;
|
|
i += sizeof(u32))
|
|
*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
|
|
else
|
|
for (i = iwl_umac_prph(trans, FH_MEM_LOWER_BOUND_GEN2);
|
|
i < iwl_umac_prph(trans, FH_MEM_UPPER_BOUND_GEN2);
|
|
i += sizeof(u32))
|
|
*val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans,
|
|
i));
|
|
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
|
|
*data = iwl_fw_error_next_data(*data);
|
|
|
|
return sizeof(**data) + fh_regs_len;
|
|
}
|
|
|
|
static u32
|
|
iwl_trans_pci_dump_marbh_monitor(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_fw_mon *fw_mon_data,
|
|
u32 monitor_len)
|
|
{
|
|
u32 buf_size_in_dwords = (monitor_len >> 2);
|
|
u32 *buffer = (u32 *)fw_mon_data->data;
|
|
unsigned long flags;
|
|
u32 i;
|
|
|
|
if (!iwl_trans_grab_nic_access(trans, &flags))
|
|
return 0;
|
|
|
|
iwl_write_umac_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x1);
|
|
for (i = 0; i < buf_size_in_dwords; i++)
|
|
buffer[i] = iwl_read_umac_prph_no_grab(trans,
|
|
MON_DMARB_RD_DATA_ADDR);
|
|
iwl_write_umac_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x0);
|
|
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
|
|
return monitor_len;
|
|
}
|
|
|
|
static void
|
|
iwl_trans_pcie_dump_pointers(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_fw_mon *fw_mon_data)
|
|
{
|
|
u32 base, base_high, write_ptr, write_ptr_val, wrap_cnt;
|
|
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
|
base = DBGC_CUR_DBGBUF_BASE_ADDR_LSB;
|
|
base_high = DBGC_CUR_DBGBUF_BASE_ADDR_MSB;
|
|
write_ptr = DBGC_CUR_DBGBUF_STATUS;
|
|
wrap_cnt = DBGC_DBGBUF_WRAP_AROUND;
|
|
} else if (trans->ini_valid) {
|
|
base = iwl_umac_prph(trans, MON_BUFF_BASE_ADDR_VER2);
|
|
write_ptr = iwl_umac_prph(trans, MON_BUFF_WRPTR_VER2);
|
|
wrap_cnt = iwl_umac_prph(trans, MON_BUFF_CYCLE_CNT_VER2);
|
|
} else if (trans->dbg_dest_tlv) {
|
|
write_ptr = le32_to_cpu(trans->dbg_dest_tlv->write_ptr_reg);
|
|
wrap_cnt = le32_to_cpu(trans->dbg_dest_tlv->wrap_count);
|
|
base = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
|
|
} else {
|
|
base = MON_BUFF_BASE_ADDR;
|
|
write_ptr = MON_BUFF_WRPTR;
|
|
wrap_cnt = MON_BUFF_CYCLE_CNT;
|
|
}
|
|
|
|
write_ptr_val = iwl_read_prph(trans, write_ptr);
|
|
fw_mon_data->fw_mon_cycle_cnt =
|
|
cpu_to_le32(iwl_read_prph(trans, wrap_cnt));
|
|
fw_mon_data->fw_mon_base_ptr =
|
|
cpu_to_le32(iwl_read_prph(trans, base));
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
|
fw_mon_data->fw_mon_base_high_ptr =
|
|
cpu_to_le32(iwl_read_prph(trans, base_high));
|
|
write_ptr_val &= DBGC_CUR_DBGBUF_STATUS_OFFSET_MSK;
|
|
}
|
|
fw_mon_data->fw_mon_wr_ptr = cpu_to_le32(write_ptr_val);
|
|
}
|
|
|
|
static u32
|
|
iwl_trans_pcie_dump_monitor(struct iwl_trans *trans,
|
|
struct iwl_fw_error_dump_data **data,
|
|
u32 monitor_len)
|
|
{
|
|
u32 len = 0;
|
|
|
|
if ((trans->num_blocks &&
|
|
(trans->cfg->device_family == IWL_DEVICE_FAMILY_7000 ||
|
|
trans->cfg->device_family >= IWL_DEVICE_FAMILY_AX210 ||
|
|
trans->ini_valid)) ||
|
|
(trans->dbg_dest_tlv && !trans->ini_valid)) {
|
|
struct iwl_fw_error_dump_fw_mon *fw_mon_data;
|
|
|
|
(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR);
|
|
fw_mon_data = (void *)(*data)->data;
|
|
|
|
iwl_trans_pcie_dump_pointers(trans, fw_mon_data);
|
|
|
|
len += sizeof(**data) + sizeof(*fw_mon_data);
|
|
if (trans->num_blocks) {
|
|
memcpy(fw_mon_data->data,
|
|
trans->fw_mon[0].block,
|
|
trans->fw_mon[0].size);
|
|
|
|
monitor_len = trans->fw_mon[0].size;
|
|
} else if (trans->dbg_dest_tlv->monitor_mode == SMEM_MODE) {
|
|
u32 base = le32_to_cpu(fw_mon_data->fw_mon_base_ptr);
|
|
/*
|
|
* Update pointers to reflect actual values after
|
|
* shifting
|
|
*/
|
|
if (trans->dbg_dest_tlv->version) {
|
|
base = (iwl_read_prph(trans, base) &
|
|
IWL_LDBG_M2S_BUF_BA_MSK) <<
|
|
trans->dbg_dest_tlv->base_shift;
|
|
base *= IWL_M2S_UNIT_SIZE;
|
|
base += trans->cfg->smem_offset;
|
|
} else {
|
|
base = iwl_read_prph(trans, base) <<
|
|
trans->dbg_dest_tlv->base_shift;
|
|
}
|
|
|
|
iwl_trans_read_mem(trans, base, fw_mon_data->data,
|
|
monitor_len / sizeof(u32));
|
|
} else if (trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) {
|
|
monitor_len =
|
|
iwl_trans_pci_dump_marbh_monitor(trans,
|
|
fw_mon_data,
|
|
monitor_len);
|
|
} else {
|
|
/* Didn't match anything - output no monitor data */
|
|
monitor_len = 0;
|
|
}
|
|
|
|
len += monitor_len;
|
|
(*data)->len = cpu_to_le32(monitor_len + sizeof(*fw_mon_data));
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static int iwl_trans_get_fw_monitor_len(struct iwl_trans *trans, u32 *len)
|
|
{
|
|
if (trans->num_blocks) {
|
|
*len += sizeof(struct iwl_fw_error_dump_data) +
|
|
sizeof(struct iwl_fw_error_dump_fw_mon) +
|
|
trans->fw_mon[0].size;
|
|
return trans->fw_mon[0].size;
|
|
} else if (trans->dbg_dest_tlv) {
|
|
u32 base, end, cfg_reg, monitor_len;
|
|
|
|
if (trans->dbg_dest_tlv->version == 1) {
|
|
cfg_reg = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
|
|
cfg_reg = iwl_read_prph(trans, cfg_reg);
|
|
base = (cfg_reg & IWL_LDBG_M2S_BUF_BA_MSK) <<
|
|
trans->dbg_dest_tlv->base_shift;
|
|
base *= IWL_M2S_UNIT_SIZE;
|
|
base += trans->cfg->smem_offset;
|
|
|
|
monitor_len =
|
|
(cfg_reg & IWL_LDBG_M2S_BUF_SIZE_MSK) >>
|
|
trans->dbg_dest_tlv->end_shift;
|
|
monitor_len *= IWL_M2S_UNIT_SIZE;
|
|
} else {
|
|
base = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
|
|
end = le32_to_cpu(trans->dbg_dest_tlv->end_reg);
|
|
|
|
base = iwl_read_prph(trans, base) <<
|
|
trans->dbg_dest_tlv->base_shift;
|
|
end = iwl_read_prph(trans, end) <<
|
|
trans->dbg_dest_tlv->end_shift;
|
|
|
|
/* Make "end" point to the actual end */
|
|
if (trans->cfg->device_family >=
|
|
IWL_DEVICE_FAMILY_8000 ||
|
|
trans->dbg_dest_tlv->monitor_mode == MARBH_MODE)
|
|
end += (1 << trans->dbg_dest_tlv->end_shift);
|
|
monitor_len = end - base;
|
|
}
|
|
*len += sizeof(struct iwl_fw_error_dump_data) +
|
|
sizeof(struct iwl_fw_error_dump_fw_mon) +
|
|
monitor_len;
|
|
return monitor_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct iwl_trans_dump_data
|
|
*iwl_trans_pcie_dump_data(struct iwl_trans *trans,
|
|
u32 dump_mask)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_fw_error_dump_data *data;
|
|
struct iwl_txq *cmdq = trans_pcie->txq[trans_pcie->cmd_queue];
|
|
struct iwl_fw_error_dump_txcmd *txcmd;
|
|
struct iwl_trans_dump_data *dump_data;
|
|
u32 len, num_rbs = 0, monitor_len = 0;
|
|
int i, ptr;
|
|
bool dump_rbs = test_bit(STATUS_FW_ERROR, &trans->status) &&
|
|
!trans->cfg->mq_rx_supported &&
|
|
dump_mask & BIT(IWL_FW_ERROR_DUMP_RB);
|
|
|
|
if (!dump_mask)
|
|
return NULL;
|
|
|
|
/* transport dump header */
|
|
len = sizeof(*dump_data);
|
|
|
|
/* host commands */
|
|
if (dump_mask & BIT(IWL_FW_ERROR_DUMP_TXCMD))
|
|
len += sizeof(*data) +
|
|
cmdq->n_window * (sizeof(*txcmd) +
|
|
TFD_MAX_PAYLOAD_SIZE);
|
|
|
|
/* FW monitor */
|
|
if (dump_mask & BIT(IWL_FW_ERROR_DUMP_FW_MONITOR))
|
|
monitor_len = iwl_trans_get_fw_monitor_len(trans, &len);
|
|
|
|
/* CSR registers */
|
|
if (dump_mask & BIT(IWL_FW_ERROR_DUMP_CSR))
|
|
len += sizeof(*data) + IWL_CSR_TO_DUMP;
|
|
|
|
/* FH registers */
|
|
if (dump_mask & BIT(IWL_FW_ERROR_DUMP_FH_REGS)) {
|
|
if (trans->cfg->gen2)
|
|
len += sizeof(*data) +
|
|
(iwl_umac_prph(trans, FH_MEM_UPPER_BOUND_GEN2) -
|
|
iwl_umac_prph(trans, FH_MEM_LOWER_BOUND_GEN2));
|
|
else
|
|
len += sizeof(*data) +
|
|
(FH_MEM_UPPER_BOUND -
|
|
FH_MEM_LOWER_BOUND);
|
|
}
|
|
|
|
if (dump_rbs) {
|
|
/* Dump RBs is supported only for pre-9000 devices (1 queue) */
|
|
struct iwl_rxq *rxq = &trans_pcie->rxq[0];
|
|
/* RBs */
|
|
num_rbs =
|
|
le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq))
|
|
& 0x0FFF;
|
|
num_rbs = (num_rbs - rxq->read) & RX_QUEUE_MASK;
|
|
len += num_rbs * (sizeof(*data) +
|
|
sizeof(struct iwl_fw_error_dump_rb) +
|
|
(PAGE_SIZE << trans_pcie->rx_page_order));
|
|
}
|
|
|
|
/* Paged memory for gen2 HW */
|
|
if (trans->cfg->gen2 && dump_mask & BIT(IWL_FW_ERROR_DUMP_PAGING))
|
|
for (i = 0; i < trans->init_dram.paging_cnt; i++)
|
|
len += sizeof(*data) +
|
|
sizeof(struct iwl_fw_error_dump_paging) +
|
|
trans->init_dram.paging[i].size;
|
|
|
|
dump_data = vzalloc(len);
|
|
if (!dump_data)
|
|
return NULL;
|
|
|
|
len = 0;
|
|
data = (void *)dump_data->data;
|
|
|
|
if (dump_mask & BIT(IWL_FW_ERROR_DUMP_TXCMD)) {
|
|
u16 tfd_size = trans_pcie->tfd_size;
|
|
|
|
data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD);
|
|
txcmd = (void *)data->data;
|
|
spin_lock_bh(&cmdq->lock);
|
|
ptr = cmdq->write_ptr;
|
|
for (i = 0; i < cmdq->n_window; i++) {
|
|
u8 idx = iwl_pcie_get_cmd_index(cmdq, ptr);
|
|
u32 caplen, cmdlen;
|
|
|
|
cmdlen = iwl_trans_pcie_get_cmdlen(trans,
|
|
cmdq->tfds +
|
|
tfd_size * ptr);
|
|
caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen);
|
|
|
|
if (cmdlen) {
|
|
len += sizeof(*txcmd) + caplen;
|
|
txcmd->cmdlen = cpu_to_le32(cmdlen);
|
|
txcmd->caplen = cpu_to_le32(caplen);
|
|
memcpy(txcmd->data, cmdq->entries[idx].cmd,
|
|
caplen);
|
|
txcmd = (void *)((u8 *)txcmd->data + caplen);
|
|
}
|
|
|
|
ptr = iwl_queue_dec_wrap(trans, ptr);
|
|
}
|
|
spin_unlock_bh(&cmdq->lock);
|
|
|
|
data->len = cpu_to_le32(len);
|
|
len += sizeof(*data);
|
|
data = iwl_fw_error_next_data(data);
|
|
}
|
|
|
|
if (dump_mask & BIT(IWL_FW_ERROR_DUMP_CSR))
|
|
len += iwl_trans_pcie_dump_csr(trans, &data);
|
|
if (dump_mask & BIT(IWL_FW_ERROR_DUMP_FH_REGS))
|
|
len += iwl_trans_pcie_fh_regs_dump(trans, &data);
|
|
if (dump_rbs)
|
|
len += iwl_trans_pcie_dump_rbs(trans, &data, num_rbs);
|
|
|
|
/* Paged memory for gen2 HW */
|
|
if (trans->cfg->gen2 && dump_mask & BIT(IWL_FW_ERROR_DUMP_PAGING)) {
|
|
for (i = 0; i < trans->init_dram.paging_cnt; i++) {
|
|
struct iwl_fw_error_dump_paging *paging;
|
|
u32 page_len = trans->init_dram.paging[i].size;
|
|
|
|
data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PAGING);
|
|
data->len = cpu_to_le32(sizeof(*paging) + page_len);
|
|
paging = (void *)data->data;
|
|
paging->index = cpu_to_le32(i);
|
|
memcpy(paging->data,
|
|
trans->init_dram.paging[i].block, page_len);
|
|
data = iwl_fw_error_next_data(data);
|
|
|
|
len += sizeof(*data) + sizeof(*paging) + page_len;
|
|
}
|
|
}
|
|
if (dump_mask & BIT(IWL_FW_ERROR_DUMP_FW_MONITOR))
|
|
len += iwl_trans_pcie_dump_monitor(trans, &data, monitor_len);
|
|
|
|
dump_data->len = len;
|
|
|
|
return dump_data;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int iwl_trans_pcie_suspend(struct iwl_trans *trans)
|
|
{
|
|
if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 &&
|
|
(trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3))
|
|
return iwl_pci_fw_enter_d0i3(trans);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_trans_pcie_resume(struct iwl_trans *trans)
|
|
{
|
|
if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 &&
|
|
(trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3))
|
|
iwl_pci_fw_exit_d0i3(trans);
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
#define IWL_TRANS_COMMON_OPS \
|
|
.op_mode_leave = iwl_trans_pcie_op_mode_leave, \
|
|
.write8 = iwl_trans_pcie_write8, \
|
|
.write32 = iwl_trans_pcie_write32, \
|
|
.read32 = iwl_trans_pcie_read32, \
|
|
.read_prph = iwl_trans_pcie_read_prph, \
|
|
.write_prph = iwl_trans_pcie_write_prph, \
|
|
.read_mem = iwl_trans_pcie_read_mem, \
|
|
.write_mem = iwl_trans_pcie_write_mem, \
|
|
.configure = iwl_trans_pcie_configure, \
|
|
.set_pmi = iwl_trans_pcie_set_pmi, \
|
|
.sw_reset = iwl_trans_pcie_sw_reset, \
|
|
.grab_nic_access = iwl_trans_pcie_grab_nic_access, \
|
|
.release_nic_access = iwl_trans_pcie_release_nic_access, \
|
|
.set_bits_mask = iwl_trans_pcie_set_bits_mask, \
|
|
.ref = iwl_trans_pcie_ref, \
|
|
.unref = iwl_trans_pcie_unref, \
|
|
.dump_data = iwl_trans_pcie_dump_data, \
|
|
.d3_suspend = iwl_trans_pcie_d3_suspend, \
|
|
.d3_resume = iwl_trans_pcie_d3_resume, \
|
|
.sync_nmi = iwl_trans_pcie_sync_nmi
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
#define IWL_TRANS_PM_OPS \
|
|
.suspend = iwl_trans_pcie_suspend, \
|
|
.resume = iwl_trans_pcie_resume,
|
|
#else
|
|
#define IWL_TRANS_PM_OPS
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static const struct iwl_trans_ops trans_ops_pcie = {
|
|
IWL_TRANS_COMMON_OPS,
|
|
IWL_TRANS_PM_OPS
|
|
.start_hw = iwl_trans_pcie_start_hw,
|
|
.fw_alive = iwl_trans_pcie_fw_alive,
|
|
.start_fw = iwl_trans_pcie_start_fw,
|
|
.stop_device = iwl_trans_pcie_stop_device,
|
|
|
|
.send_cmd = iwl_trans_pcie_send_hcmd,
|
|
|
|
.tx = iwl_trans_pcie_tx,
|
|
.reclaim = iwl_trans_pcie_reclaim,
|
|
|
|
.txq_disable = iwl_trans_pcie_txq_disable,
|
|
.txq_enable = iwl_trans_pcie_txq_enable,
|
|
|
|
.txq_set_shared_mode = iwl_trans_pcie_txq_set_shared_mode,
|
|
|
|
.wait_tx_queues_empty = iwl_trans_pcie_wait_txqs_empty,
|
|
|
|
.freeze_txq_timer = iwl_trans_pcie_freeze_txq_timer,
|
|
.block_txq_ptrs = iwl_trans_pcie_block_txq_ptrs,
|
|
#ifdef CONFIG_IWLWIFI_DEBUGFS
|
|
.debugfs_cleanup = iwl_trans_pcie_debugfs_cleanup,
|
|
#endif
|
|
};
|
|
|
|
static const struct iwl_trans_ops trans_ops_pcie_gen2 = {
|
|
IWL_TRANS_COMMON_OPS,
|
|
IWL_TRANS_PM_OPS
|
|
.start_hw = iwl_trans_pcie_start_hw,
|
|
.fw_alive = iwl_trans_pcie_gen2_fw_alive,
|
|
.start_fw = iwl_trans_pcie_gen2_start_fw,
|
|
.stop_device = iwl_trans_pcie_gen2_stop_device,
|
|
|
|
.send_cmd = iwl_trans_pcie_gen2_send_hcmd,
|
|
|
|
.tx = iwl_trans_pcie_gen2_tx,
|
|
.reclaim = iwl_trans_pcie_reclaim,
|
|
|
|
.txq_alloc = iwl_trans_pcie_dyn_txq_alloc,
|
|
.txq_free = iwl_trans_pcie_dyn_txq_free,
|
|
.wait_txq_empty = iwl_trans_pcie_wait_txq_empty,
|
|
.rxq_dma_data = iwl_trans_pcie_rxq_dma_data,
|
|
#ifdef CONFIG_IWLWIFI_DEBUGFS
|
|
.debugfs_cleanup = iwl_trans_pcie_debugfs_cleanup,
|
|
#endif
|
|
};
|
|
|
|
struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent,
|
|
const struct iwl_cfg *cfg)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie;
|
|
struct iwl_trans *trans;
|
|
int ret, addr_size;
|
|
|
|
ret = pcim_enable_device(pdev);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
if (cfg->gen2)
|
|
trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie),
|
|
&pdev->dev, cfg, &trans_ops_pcie_gen2);
|
|
else
|
|
trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie),
|
|
&pdev->dev, cfg, &trans_ops_pcie);
|
|
if (!trans)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
trans_pcie->trans = trans;
|
|
trans_pcie->opmode_down = true;
|
|
spin_lock_init(&trans_pcie->irq_lock);
|
|
spin_lock_init(&trans_pcie->reg_lock);
|
|
mutex_init(&trans_pcie->mutex);
|
|
init_waitqueue_head(&trans_pcie->ucode_write_waitq);
|
|
trans_pcie->tso_hdr_page = alloc_percpu(struct iwl_tso_hdr_page);
|
|
if (!trans_pcie->tso_hdr_page) {
|
|
ret = -ENOMEM;
|
|
goto out_no_pci;
|
|
}
|
|
trans_pcie->debug_rfkill = -1;
|
|
|
|
if (!cfg->base_params->pcie_l1_allowed) {
|
|
/*
|
|
* W/A - seems to solve weird behavior. We need to remove this
|
|
* if we don't want to stay in L1 all the time. This wastes a
|
|
* lot of power.
|
|
*/
|
|
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S |
|
|
PCIE_LINK_STATE_L1 |
|
|
PCIE_LINK_STATE_CLKPM);
|
|
}
|
|
|
|
trans_pcie->def_rx_queue = 0;
|
|
|
|
if (cfg->use_tfh) {
|
|
addr_size = 64;
|
|
trans_pcie->max_tbs = IWL_TFH_NUM_TBS;
|
|
trans_pcie->tfd_size = sizeof(struct iwl_tfh_tfd);
|
|
} else {
|
|
addr_size = 36;
|
|
trans_pcie->max_tbs = IWL_NUM_OF_TBS;
|
|
trans_pcie->tfd_size = sizeof(struct iwl_tfd);
|
|
}
|
|
trans->max_skb_frags = IWL_PCIE_MAX_FRAGS(trans_pcie);
|
|
|
|
pci_set_master(pdev);
|
|
|
|
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(addr_size));
|
|
if (!ret)
|
|
ret = pci_set_consistent_dma_mask(pdev,
|
|
DMA_BIT_MASK(addr_size));
|
|
if (ret) {
|
|
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (!ret)
|
|
ret = pci_set_consistent_dma_mask(pdev,
|
|
DMA_BIT_MASK(32));
|
|
/* both attempts failed: */
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "No suitable DMA available\n");
|
|
goto out_no_pci;
|
|
}
|
|
}
|
|
|
|
ret = pcim_iomap_regions_request_all(pdev, BIT(0), DRV_NAME);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "pcim_iomap_regions_request_all failed\n");
|
|
goto out_no_pci;
|
|
}
|
|
|
|
trans_pcie->hw_base = pcim_iomap_table(pdev)[0];
|
|
if (!trans_pcie->hw_base) {
|
|
dev_err(&pdev->dev, "pcim_iomap_table failed\n");
|
|
ret = -ENODEV;
|
|
goto out_no_pci;
|
|
}
|
|
|
|
/* We disable the RETRY_TIMEOUT register (0x41) to keep
|
|
* PCI Tx retries from interfering with C3 CPU state */
|
|
pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
|
|
|
|
trans_pcie->pci_dev = pdev;
|
|
iwl_disable_interrupts(trans);
|
|
|
|
trans->hw_rev = iwl_read32(trans, CSR_HW_REV);
|
|
if (trans->hw_rev == 0xffffffff) {
|
|
dev_err(&pdev->dev, "HW_REV=0xFFFFFFFF, PCI issues?\n");
|
|
ret = -EIO;
|
|
goto out_no_pci;
|
|
}
|
|
|
|
/*
|
|
* In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
|
|
* changed, and now the revision step also includes bit 0-1 (no more
|
|
* "dash" value). To keep hw_rev backwards compatible - we'll store it
|
|
* in the old format.
|
|
*/
|
|
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
|
|
unsigned long flags;
|
|
|
|
trans->hw_rev = (trans->hw_rev & 0xfff0) |
|
|
(CSR_HW_REV_STEP(trans->hw_rev << 2) << 2);
|
|
|
|
ret = iwl_pcie_prepare_card_hw(trans);
|
|
if (ret) {
|
|
IWL_WARN(trans, "Exit HW not ready\n");
|
|
goto out_no_pci;
|
|
}
|
|
|
|
/*
|
|
* in-order to recognize C step driver should read chip version
|
|
* id located at the AUX bus MISC address space.
|
|
*/
|
|
ret = iwl_finish_nic_init(trans);
|
|
if (ret)
|
|
goto out_no_pci;
|
|
|
|
if (iwl_trans_grab_nic_access(trans, &flags)) {
|
|
u32 hw_step;
|
|
|
|
hw_step = iwl_read_umac_prph_no_grab(trans,
|
|
WFPM_CTRL_REG);
|
|
hw_step |= ENABLE_WFPM;
|
|
iwl_write_umac_prph_no_grab(trans, WFPM_CTRL_REG,
|
|
hw_step);
|
|
hw_step = iwl_read_prph_no_grab(trans, AUX_MISC_REG);
|
|
hw_step = (hw_step >> HW_STEP_LOCATION_BITS) & 0xF;
|
|
if (hw_step == 0x3)
|
|
trans->hw_rev = (trans->hw_rev & 0xFFFFFFF3) |
|
|
(SILICON_C_STEP << 2);
|
|
iwl_trans_release_nic_access(trans, &flags);
|
|
}
|
|
}
|
|
|
|
IWL_DEBUG_INFO(trans, "HW REV: 0x%0x\n", trans->hw_rev);
|
|
|
|
#if IS_ENABLED(CONFIG_IWLMVM)
|
|
trans->hw_rf_id = iwl_read32(trans, CSR_HW_RF_ID);
|
|
|
|
if (cfg == &iwlax210_2ax_cfg_so_hr_a0) {
|
|
if (trans->hw_rev == CSR_HW_REV_TYPE_TY) {
|
|
trans->cfg = &iwlax210_2ax_cfg_ty_gf_a0;
|
|
} else if (CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id) ==
|
|
CSR_HW_RF_ID_TYPE_CHIP_ID(CSR_HW_RF_ID_TYPE_JF)) {
|
|
trans->cfg = &iwlax210_2ax_cfg_so_jf_a0;
|
|
} else if (CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id) ==
|
|
CSR_HW_RF_ID_TYPE_CHIP_ID(CSR_HW_RF_ID_TYPE_GF)) {
|
|
trans->cfg = &iwlax210_2ax_cfg_so_gf_a0;
|
|
} else if (CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id) ==
|
|
CSR_HW_RF_ID_TYPE_CHIP_ID(CSR_HW_RF_ID_TYPE_GF4)) {
|
|
trans->cfg = &iwlax210_2ax_cfg_so_gf4_a0;
|
|
}
|
|
} else if (cfg == &iwl_ax101_cfg_qu_hr) {
|
|
if (CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id) ==
|
|
CSR_HW_RF_ID_TYPE_CHIP_ID(CSR_HW_RF_ID_TYPE_HR) &&
|
|
trans->hw_rev == CSR_HW_REV_TYPE_QNJ_B0) {
|
|
trans->cfg = &iwl22000_2ax_cfg_qnj_hr_b0;
|
|
} else if (CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id) ==
|
|
CSR_HW_RF_ID_TYPE_CHIP_ID(CSR_HW_RF_ID_TYPE_HR)) {
|
|
trans->cfg = &iwl_ax101_cfg_qu_hr;
|
|
} else if (CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id) ==
|
|
CSR_HW_RF_ID_TYPE_CHIP_ID(CSR_HW_RF_ID_TYPE_JF)) {
|
|
trans->cfg = &iwl22000_2ax_cfg_jf;
|
|
} else if (CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id) ==
|
|
CSR_HW_RF_ID_TYPE_CHIP_ID(CSR_HW_RF_ID_TYPE_HRCDB)) {
|
|
IWL_ERR(trans, "RF ID HRCDB is not supported\n");
|
|
ret = -EINVAL;
|
|
goto out_no_pci;
|
|
} else {
|
|
IWL_ERR(trans, "Unrecognized RF ID 0x%08x\n",
|
|
CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id));
|
|
ret = -EINVAL;
|
|
goto out_no_pci;
|
|
}
|
|
} else if (CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id) ==
|
|
CSR_HW_RF_ID_TYPE_CHIP_ID(CSR_HW_RF_ID_TYPE_HR) &&
|
|
(trans->cfg != &iwl_ax200_cfg_cc ||
|
|
trans->hw_rev == CSR_HW_REV_TYPE_QNJ_B0)) {
|
|
u32 hw_status;
|
|
|
|
hw_status = iwl_read_prph(trans, UMAG_GEN_HW_STATUS);
|
|
if (CSR_HW_RF_STEP(trans->hw_rf_id) == SILICON_B_STEP)
|
|
/*
|
|
* b step fw is the same for physical card and fpga
|
|
*/
|
|
trans->cfg = &iwl22000_2ax_cfg_qnj_hr_b0;
|
|
else if ((hw_status & UMAG_GEN_HW_IS_FPGA) &&
|
|
CSR_HW_RF_STEP(trans->hw_rf_id) == SILICON_A_STEP) {
|
|
trans->cfg = &iwl22000_2ax_cfg_qnj_hr_a0_f0;
|
|
} else {
|
|
/*
|
|
* a step no FPGA
|
|
*/
|
|
trans->cfg = &iwl22000_2ac_cfg_hr;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
iwl_pcie_set_interrupt_capa(pdev, trans);
|
|
trans->hw_id = (pdev->device << 16) + pdev->subsystem_device;
|
|
snprintf(trans->hw_id_str, sizeof(trans->hw_id_str),
|
|
"PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device);
|
|
|
|
/* Initialize the wait queue for commands */
|
|
init_waitqueue_head(&trans_pcie->wait_command_queue);
|
|
|
|
init_waitqueue_head(&trans_pcie->d0i3_waitq);
|
|
|
|
if (trans_pcie->msix_enabled) {
|
|
ret = iwl_pcie_init_msix_handler(pdev, trans_pcie);
|
|
if (ret)
|
|
goto out_no_pci;
|
|
} else {
|
|
ret = iwl_pcie_alloc_ict(trans);
|
|
if (ret)
|
|
goto out_no_pci;
|
|
|
|
ret = devm_request_threaded_irq(&pdev->dev, pdev->irq,
|
|
iwl_pcie_isr,
|
|
iwl_pcie_irq_handler,
|
|
IRQF_SHARED, DRV_NAME, trans);
|
|
if (ret) {
|
|
IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq);
|
|
goto out_free_ict;
|
|
}
|
|
trans_pcie->inta_mask = CSR_INI_SET_MASK;
|
|
}
|
|
|
|
trans_pcie->rba.alloc_wq = alloc_workqueue("rb_allocator",
|
|
WQ_HIGHPRI | WQ_UNBOUND, 1);
|
|
INIT_WORK(&trans_pcie->rba.rx_alloc, iwl_pcie_rx_allocator_work);
|
|
|
|
#ifdef CONFIG_IWLWIFI_PCIE_RTPM
|
|
trans->runtime_pm_mode = IWL_PLAT_PM_MODE_D0I3;
|
|
#else
|
|
trans->runtime_pm_mode = IWL_PLAT_PM_MODE_DISABLED;
|
|
#endif /* CONFIG_IWLWIFI_PCIE_RTPM */
|
|
|
|
#ifdef CONFIG_IWLWIFI_DEBUGFS
|
|
trans_pcie->fw_mon_data.state = IWL_FW_MON_DBGFS_STATE_CLOSED;
|
|
mutex_init(&trans_pcie->fw_mon_data.mutex);
|
|
#endif
|
|
|
|
return trans;
|
|
|
|
out_free_ict:
|
|
iwl_pcie_free_ict(trans);
|
|
out_no_pci:
|
|
free_percpu(trans_pcie->tso_hdr_page);
|
|
iwl_trans_free(trans);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
void iwl_trans_pcie_sync_nmi(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
unsigned long timeout = jiffies + IWL_TRANS_NMI_TIMEOUT;
|
|
u32 inta_addr, sw_err_bit;
|
|
|
|
if (trans_pcie->msix_enabled) {
|
|
inta_addr = CSR_MSIX_HW_INT_CAUSES_AD;
|
|
sw_err_bit = MSIX_HW_INT_CAUSES_REG_SW_ERR;
|
|
} else {
|
|
inta_addr = CSR_INT;
|
|
sw_err_bit = CSR_INT_BIT_SW_ERR;
|
|
}
|
|
|
|
iwl_disable_interrupts(trans);
|
|
iwl_force_nmi(trans);
|
|
while (time_after(timeout, jiffies)) {
|
|
u32 inta_hw = iwl_read32(trans, inta_addr);
|
|
|
|
/* Error detected by uCode */
|
|
if (inta_hw & sw_err_bit) {
|
|
/* Clear causes register */
|
|
iwl_write32(trans, inta_addr, inta_hw & sw_err_bit);
|
|
break;
|
|
}
|
|
|
|
mdelay(1);
|
|
}
|
|
iwl_enable_interrupts(trans);
|
|
iwl_trans_fw_error(trans);
|
|
}
|