mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
8cc6b6cd87
Commit f5c57710dd
("powerpc/eeh: Use
partial hotplug for EEH unaware drivers") introduces eeh_rmv_device,
which may grab a reference to a driver, but not release it.
That prevents a driver from being removed after it has gone through EEH
recovery.
This patch drops the reference if it was taken.
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com>
Acked-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
760 lines
20 KiB
C
760 lines
20 KiB
C
/*
|
|
* PCI Error Recovery Driver for RPA-compliant PPC64 platform.
|
|
* Copyright IBM Corp. 2004 2005
|
|
* Copyright Linas Vepstas <linas@linas.org> 2004, 2005
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Send comments and feedback to Linas Vepstas <linas@austin.ibm.com>
|
|
*/
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <asm/eeh.h>
|
|
#include <asm/eeh_event.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
|
|
/**
|
|
* eeh_pcid_name - Retrieve name of PCI device driver
|
|
* @pdev: PCI device
|
|
*
|
|
* This routine is used to retrieve the name of PCI device driver
|
|
* if that's valid.
|
|
*/
|
|
static inline const char *eeh_pcid_name(struct pci_dev *pdev)
|
|
{
|
|
if (pdev && pdev->dev.driver)
|
|
return pdev->dev.driver->name;
|
|
return "";
|
|
}
|
|
|
|
/**
|
|
* eeh_pcid_get - Get the PCI device driver
|
|
* @pdev: PCI device
|
|
*
|
|
* The function is used to retrieve the PCI device driver for
|
|
* the indicated PCI device. Besides, we will increase the reference
|
|
* of the PCI device driver to prevent that being unloaded on
|
|
* the fly. Otherwise, kernel crash would be seen.
|
|
*/
|
|
static inline struct pci_driver *eeh_pcid_get(struct pci_dev *pdev)
|
|
{
|
|
if (!pdev || !pdev->driver)
|
|
return NULL;
|
|
|
|
if (!try_module_get(pdev->driver->driver.owner))
|
|
return NULL;
|
|
|
|
return pdev->driver;
|
|
}
|
|
|
|
/**
|
|
* eeh_pcid_put - Dereference on the PCI device driver
|
|
* @pdev: PCI device
|
|
*
|
|
* The function is called to do dereference on the PCI device
|
|
* driver of the indicated PCI device.
|
|
*/
|
|
static inline void eeh_pcid_put(struct pci_dev *pdev)
|
|
{
|
|
if (!pdev || !pdev->driver)
|
|
return;
|
|
|
|
module_put(pdev->driver->driver.owner);
|
|
}
|
|
|
|
#if 0
|
|
static void print_device_node_tree(struct pci_dn *pdn, int dent)
|
|
{
|
|
int i;
|
|
struct device_node *pc;
|
|
|
|
if (!pdn)
|
|
return;
|
|
for (i = 0; i < dent; i++)
|
|
printk(" ");
|
|
printk("dn=%s mode=%x \tcfg_addr=%x pe_addr=%x \tfull=%s\n",
|
|
pdn->node->name, pdn->eeh_mode, pdn->eeh_config_addr,
|
|
pdn->eeh_pe_config_addr, pdn->node->full_name);
|
|
dent += 3;
|
|
pc = pdn->node->child;
|
|
while (pc) {
|
|
print_device_node_tree(PCI_DN(pc), dent);
|
|
pc = pc->sibling;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* eeh_disable_irq - Disable interrupt for the recovering device
|
|
* @dev: PCI device
|
|
*
|
|
* This routine must be called when reporting temporary or permanent
|
|
* error to the particular PCI device to disable interrupt of that
|
|
* device. If the device has enabled MSI or MSI-X interrupt, we needn't
|
|
* do real work because EEH should freeze DMA transfers for those PCI
|
|
* devices encountering EEH errors, which includes MSI or MSI-X.
|
|
*/
|
|
static void eeh_disable_irq(struct pci_dev *dev)
|
|
{
|
|
struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
|
|
|
|
/* Don't disable MSI and MSI-X interrupts. They are
|
|
* effectively disabled by the DMA Stopped state
|
|
* when an EEH error occurs.
|
|
*/
|
|
if (dev->msi_enabled || dev->msix_enabled)
|
|
return;
|
|
|
|
if (!irq_has_action(dev->irq))
|
|
return;
|
|
|
|
edev->mode |= EEH_DEV_IRQ_DISABLED;
|
|
disable_irq_nosync(dev->irq);
|
|
}
|
|
|
|
/**
|
|
* eeh_enable_irq - Enable interrupt for the recovering device
|
|
* @dev: PCI device
|
|
*
|
|
* This routine must be called to enable interrupt while failed
|
|
* device could be resumed.
|
|
*/
|
|
static void eeh_enable_irq(struct pci_dev *dev)
|
|
{
|
|
struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
|
|
struct irq_desc *desc;
|
|
|
|
if ((edev->mode) & EEH_DEV_IRQ_DISABLED) {
|
|
edev->mode &= ~EEH_DEV_IRQ_DISABLED;
|
|
|
|
desc = irq_to_desc(dev->irq);
|
|
if (desc && desc->depth > 0)
|
|
enable_irq(dev->irq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* eeh_report_error - Report pci error to each device driver
|
|
* @data: eeh device
|
|
* @userdata: return value
|
|
*
|
|
* Report an EEH error to each device driver, collect up and
|
|
* merge the device driver responses. Cumulative response
|
|
* passed back in "userdata".
|
|
*/
|
|
static void *eeh_report_error(void *data, void *userdata)
|
|
{
|
|
struct eeh_dev *edev = (struct eeh_dev *)data;
|
|
struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
|
|
enum pci_ers_result rc, *res = userdata;
|
|
struct pci_driver *driver;
|
|
|
|
/* We might not have the associated PCI device,
|
|
* then we should continue for next one.
|
|
*/
|
|
if (!dev) return NULL;
|
|
dev->error_state = pci_channel_io_frozen;
|
|
|
|
driver = eeh_pcid_get(dev);
|
|
if (!driver) return NULL;
|
|
|
|
eeh_disable_irq(dev);
|
|
|
|
if (!driver->err_handler ||
|
|
!driver->err_handler->error_detected) {
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
rc = driver->err_handler->error_detected(dev, pci_channel_io_frozen);
|
|
|
|
/* A driver that needs a reset trumps all others */
|
|
if (rc == PCI_ERS_RESULT_NEED_RESET) *res = rc;
|
|
if (*res == PCI_ERS_RESULT_NONE) *res = rc;
|
|
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_report_mmio_enabled - Tell drivers that MMIO has been enabled
|
|
* @data: eeh device
|
|
* @userdata: return value
|
|
*
|
|
* Tells each device driver that IO ports, MMIO and config space I/O
|
|
* are now enabled. Collects up and merges the device driver responses.
|
|
* Cumulative response passed back in "userdata".
|
|
*/
|
|
static void *eeh_report_mmio_enabled(void *data, void *userdata)
|
|
{
|
|
struct eeh_dev *edev = (struct eeh_dev *)data;
|
|
struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
|
|
enum pci_ers_result rc, *res = userdata;
|
|
struct pci_driver *driver;
|
|
|
|
driver = eeh_pcid_get(dev);
|
|
if (!driver) return NULL;
|
|
|
|
if (!driver->err_handler ||
|
|
!driver->err_handler->mmio_enabled ||
|
|
(edev->mode & EEH_DEV_NO_HANDLER)) {
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
rc = driver->err_handler->mmio_enabled(dev);
|
|
|
|
/* A driver that needs a reset trumps all others */
|
|
if (rc == PCI_ERS_RESULT_NEED_RESET) *res = rc;
|
|
if (*res == PCI_ERS_RESULT_NONE) *res = rc;
|
|
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_report_reset - Tell device that slot has been reset
|
|
* @data: eeh device
|
|
* @userdata: return value
|
|
*
|
|
* This routine must be called while EEH tries to reset particular
|
|
* PCI device so that the associated PCI device driver could take
|
|
* some actions, usually to save data the driver needs so that the
|
|
* driver can work again while the device is recovered.
|
|
*/
|
|
static void *eeh_report_reset(void *data, void *userdata)
|
|
{
|
|
struct eeh_dev *edev = (struct eeh_dev *)data;
|
|
struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
|
|
enum pci_ers_result rc, *res = userdata;
|
|
struct pci_driver *driver;
|
|
|
|
if (!dev) return NULL;
|
|
dev->error_state = pci_channel_io_normal;
|
|
|
|
driver = eeh_pcid_get(dev);
|
|
if (!driver) return NULL;
|
|
|
|
eeh_enable_irq(dev);
|
|
|
|
if (!driver->err_handler ||
|
|
!driver->err_handler->slot_reset ||
|
|
(edev->mode & EEH_DEV_NO_HANDLER)) {
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
rc = driver->err_handler->slot_reset(dev);
|
|
if ((*res == PCI_ERS_RESULT_NONE) ||
|
|
(*res == PCI_ERS_RESULT_RECOVERED)) *res = rc;
|
|
if (*res == PCI_ERS_RESULT_DISCONNECT &&
|
|
rc == PCI_ERS_RESULT_NEED_RESET) *res = rc;
|
|
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_report_resume - Tell device to resume normal operations
|
|
* @data: eeh device
|
|
* @userdata: return value
|
|
*
|
|
* This routine must be called to notify the device driver that it
|
|
* could resume so that the device driver can do some initialization
|
|
* to make the recovered device work again.
|
|
*/
|
|
static void *eeh_report_resume(void *data, void *userdata)
|
|
{
|
|
struct eeh_dev *edev = (struct eeh_dev *)data;
|
|
struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
|
|
struct pci_driver *driver;
|
|
|
|
if (!dev) return NULL;
|
|
dev->error_state = pci_channel_io_normal;
|
|
|
|
driver = eeh_pcid_get(dev);
|
|
if (!driver) return NULL;
|
|
|
|
eeh_enable_irq(dev);
|
|
|
|
if (!driver->err_handler ||
|
|
!driver->err_handler->resume ||
|
|
(edev->mode & EEH_DEV_NO_HANDLER)) {
|
|
edev->mode &= ~EEH_DEV_NO_HANDLER;
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
driver->err_handler->resume(dev);
|
|
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_report_failure - Tell device driver that device is dead.
|
|
* @data: eeh device
|
|
* @userdata: return value
|
|
*
|
|
* This informs the device driver that the device is permanently
|
|
* dead, and that no further recovery attempts will be made on it.
|
|
*/
|
|
static void *eeh_report_failure(void *data, void *userdata)
|
|
{
|
|
struct eeh_dev *edev = (struct eeh_dev *)data;
|
|
struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
|
|
struct pci_driver *driver;
|
|
|
|
if (!dev) return NULL;
|
|
dev->error_state = pci_channel_io_perm_failure;
|
|
|
|
driver = eeh_pcid_get(dev);
|
|
if (!driver) return NULL;
|
|
|
|
eeh_disable_irq(dev);
|
|
|
|
if (!driver->err_handler ||
|
|
!driver->err_handler->error_detected) {
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
driver->err_handler->error_detected(dev, pci_channel_io_perm_failure);
|
|
|
|
eeh_pcid_put(dev);
|
|
return NULL;
|
|
}
|
|
|
|
static void *eeh_rmv_device(void *data, void *userdata)
|
|
{
|
|
struct pci_driver *driver;
|
|
struct eeh_dev *edev = (struct eeh_dev *)data;
|
|
struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
|
|
int *removed = (int *)userdata;
|
|
|
|
/*
|
|
* Actually, we should remove the PCI bridges as well.
|
|
* However, that's lots of complexity to do that,
|
|
* particularly some of devices under the bridge might
|
|
* support EEH. So we just care about PCI devices for
|
|
* simplicity here.
|
|
*/
|
|
if (!dev || (dev->hdr_type & PCI_HEADER_TYPE_BRIDGE))
|
|
return NULL;
|
|
|
|
driver = eeh_pcid_get(dev);
|
|
if (driver) {
|
|
eeh_pcid_put(dev);
|
|
if (driver->err_handler)
|
|
return NULL;
|
|
}
|
|
|
|
/* Remove it from PCI subsystem */
|
|
pr_debug("EEH: Removing %s without EEH sensitive driver\n",
|
|
pci_name(dev));
|
|
edev->bus = dev->bus;
|
|
edev->mode |= EEH_DEV_DISCONNECTED;
|
|
(*removed)++;
|
|
|
|
pci_lock_rescan_remove();
|
|
pci_stop_and_remove_bus_device(dev);
|
|
pci_unlock_rescan_remove();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *eeh_pe_detach_dev(void *data, void *userdata)
|
|
{
|
|
struct eeh_pe *pe = (struct eeh_pe *)data;
|
|
struct eeh_dev *edev, *tmp;
|
|
|
|
eeh_pe_for_each_dev(pe, edev, tmp) {
|
|
if (!(edev->mode & EEH_DEV_DISCONNECTED))
|
|
continue;
|
|
|
|
edev->mode &= ~(EEH_DEV_DISCONNECTED | EEH_DEV_IRQ_DISABLED);
|
|
eeh_rmv_from_parent_pe(edev);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_reset_device - Perform actual reset of a pci slot
|
|
* @pe: EEH PE
|
|
* @bus: PCI bus corresponding to the isolcated slot
|
|
*
|
|
* This routine must be called to do reset on the indicated PE.
|
|
* During the reset, udev might be invoked because those affected
|
|
* PCI devices will be removed and then added.
|
|
*/
|
|
static int eeh_reset_device(struct eeh_pe *pe, struct pci_bus *bus)
|
|
{
|
|
struct pci_bus *frozen_bus = eeh_pe_bus_get(pe);
|
|
struct timeval tstamp;
|
|
int cnt, rc, removed = 0;
|
|
|
|
/* pcibios will clear the counter; save the value */
|
|
cnt = pe->freeze_count;
|
|
tstamp = pe->tstamp;
|
|
|
|
/*
|
|
* We don't remove the corresponding PE instances because
|
|
* we need the information afterwords. The attached EEH
|
|
* devices are expected to be attached soon when calling
|
|
* into pcibios_add_pci_devices().
|
|
*/
|
|
eeh_pe_state_mark(pe, EEH_PE_KEEP);
|
|
if (bus) {
|
|
pci_lock_rescan_remove();
|
|
pcibios_remove_pci_devices(bus);
|
|
pci_unlock_rescan_remove();
|
|
} else if (frozen_bus) {
|
|
eeh_pe_dev_traverse(pe, eeh_rmv_device, &removed);
|
|
}
|
|
|
|
/* Reset the pci controller. (Asserts RST#; resets config space).
|
|
* Reconfigure bridges and devices. Don't try to bring the system
|
|
* up if the reset failed for some reason.
|
|
*/
|
|
rc = eeh_reset_pe(pe);
|
|
if (rc)
|
|
return rc;
|
|
|
|
pci_lock_rescan_remove();
|
|
|
|
/* Restore PE */
|
|
eeh_ops->configure_bridge(pe);
|
|
eeh_pe_restore_bars(pe);
|
|
|
|
/* Give the system 5 seconds to finish running the user-space
|
|
* hotplug shutdown scripts, e.g. ifdown for ethernet. Yes,
|
|
* this is a hack, but if we don't do this, and try to bring
|
|
* the device up before the scripts have taken it down,
|
|
* potentially weird things happen.
|
|
*/
|
|
if (bus) {
|
|
pr_info("EEH: Sleep 5s ahead of complete hotplug\n");
|
|
ssleep(5);
|
|
|
|
/*
|
|
* The EEH device is still connected with its parent
|
|
* PE. We should disconnect it so the binding can be
|
|
* rebuilt when adding PCI devices.
|
|
*/
|
|
eeh_pe_traverse(pe, eeh_pe_detach_dev, NULL);
|
|
pcibios_add_pci_devices(bus);
|
|
} else if (frozen_bus && removed) {
|
|
pr_info("EEH: Sleep 5s ahead of partial hotplug\n");
|
|
ssleep(5);
|
|
|
|
eeh_pe_traverse(pe, eeh_pe_detach_dev, NULL);
|
|
pcibios_add_pci_devices(frozen_bus);
|
|
}
|
|
eeh_pe_state_clear(pe, EEH_PE_KEEP);
|
|
|
|
pe->tstamp = tstamp;
|
|
pe->freeze_count = cnt;
|
|
|
|
pci_unlock_rescan_remove();
|
|
return 0;
|
|
}
|
|
|
|
/* The longest amount of time to wait for a pci device
|
|
* to come back on line, in seconds.
|
|
*/
|
|
#define MAX_WAIT_FOR_RECOVERY 300
|
|
|
|
static void eeh_handle_normal_event(struct eeh_pe *pe)
|
|
{
|
|
struct pci_bus *frozen_bus;
|
|
int rc = 0;
|
|
enum pci_ers_result result = PCI_ERS_RESULT_NONE;
|
|
|
|
frozen_bus = eeh_pe_bus_get(pe);
|
|
if (!frozen_bus) {
|
|
pr_err("%s: Cannot find PCI bus for PHB#%d-PE#%x\n",
|
|
__func__, pe->phb->global_number, pe->addr);
|
|
return;
|
|
}
|
|
|
|
eeh_pe_update_time_stamp(pe);
|
|
pe->freeze_count++;
|
|
if (pe->freeze_count > EEH_MAX_ALLOWED_FREEZES)
|
|
goto excess_failures;
|
|
pr_warning("EEH: This PCI device has failed %d times in the last hour\n",
|
|
pe->freeze_count);
|
|
|
|
/* Walk the various device drivers attached to this slot through
|
|
* a reset sequence, giving each an opportunity to do what it needs
|
|
* to accomplish the reset. Each child gets a report of the
|
|
* status ... if any child can't handle the reset, then the entire
|
|
* slot is dlpar removed and added.
|
|
*/
|
|
pr_info("EEH: Notify device drivers to shutdown\n");
|
|
eeh_pe_dev_traverse(pe, eeh_report_error, &result);
|
|
|
|
/* Get the current PCI slot state. This can take a long time,
|
|
* sometimes over 3 seconds for certain systems.
|
|
*/
|
|
rc = eeh_ops->wait_state(pe, MAX_WAIT_FOR_RECOVERY*1000);
|
|
if (rc < 0 || rc == EEH_STATE_NOT_SUPPORT) {
|
|
pr_warning("EEH: Permanent failure\n");
|
|
goto hard_fail;
|
|
}
|
|
|
|
/* Since rtas may enable MMIO when posting the error log,
|
|
* don't post the error log until after all dev drivers
|
|
* have been informed.
|
|
*/
|
|
pr_info("EEH: Collect temporary log\n");
|
|
eeh_slot_error_detail(pe, EEH_LOG_TEMP);
|
|
|
|
/* If all device drivers were EEH-unaware, then shut
|
|
* down all of the device drivers, and hope they
|
|
* go down willingly, without panicing the system.
|
|
*/
|
|
if (result == PCI_ERS_RESULT_NONE) {
|
|
pr_info("EEH: Reset with hotplug activity\n");
|
|
rc = eeh_reset_device(pe, frozen_bus);
|
|
if (rc) {
|
|
pr_warning("%s: Unable to reset, err=%d\n",
|
|
__func__, rc);
|
|
goto hard_fail;
|
|
}
|
|
}
|
|
|
|
/* If all devices reported they can proceed, then re-enable MMIO */
|
|
if (result == PCI_ERS_RESULT_CAN_RECOVER) {
|
|
pr_info("EEH: Enable I/O for affected devices\n");
|
|
rc = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
|
|
|
|
if (rc < 0)
|
|
goto hard_fail;
|
|
if (rc) {
|
|
result = PCI_ERS_RESULT_NEED_RESET;
|
|
} else {
|
|
pr_info("EEH: Notify device drivers to resume I/O\n");
|
|
result = PCI_ERS_RESULT_NONE;
|
|
eeh_pe_dev_traverse(pe, eeh_report_mmio_enabled, &result);
|
|
}
|
|
}
|
|
|
|
/* If all devices reported they can proceed, then re-enable DMA */
|
|
if (result == PCI_ERS_RESULT_CAN_RECOVER) {
|
|
pr_info("EEH: Enabled DMA for affected devices\n");
|
|
rc = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
|
|
|
|
if (rc < 0)
|
|
goto hard_fail;
|
|
if (rc)
|
|
result = PCI_ERS_RESULT_NEED_RESET;
|
|
else
|
|
result = PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
/* If any device has a hard failure, then shut off everything. */
|
|
if (result == PCI_ERS_RESULT_DISCONNECT) {
|
|
pr_warning("EEH: Device driver gave up\n");
|
|
goto hard_fail;
|
|
}
|
|
|
|
/* If any device called out for a reset, then reset the slot */
|
|
if (result == PCI_ERS_RESULT_NEED_RESET) {
|
|
pr_info("EEH: Reset without hotplug activity\n");
|
|
rc = eeh_reset_device(pe, NULL);
|
|
if (rc) {
|
|
pr_warning("%s: Cannot reset, err=%d\n",
|
|
__func__, rc);
|
|
goto hard_fail;
|
|
}
|
|
|
|
pr_info("EEH: Notify device drivers "
|
|
"the completion of reset\n");
|
|
result = PCI_ERS_RESULT_NONE;
|
|
eeh_pe_dev_traverse(pe, eeh_report_reset, &result);
|
|
}
|
|
|
|
/* All devices should claim they have recovered by now. */
|
|
if ((result != PCI_ERS_RESULT_RECOVERED) &&
|
|
(result != PCI_ERS_RESULT_NONE)) {
|
|
pr_warning("EEH: Not recovered\n");
|
|
goto hard_fail;
|
|
}
|
|
|
|
/* Tell all device drivers that they can resume operations */
|
|
pr_info("EEH: Notify device driver to resume\n");
|
|
eeh_pe_dev_traverse(pe, eeh_report_resume, NULL);
|
|
|
|
return;
|
|
|
|
excess_failures:
|
|
/*
|
|
* About 90% of all real-life EEH failures in the field
|
|
* are due to poorly seated PCI cards. Only 10% or so are
|
|
* due to actual, failed cards.
|
|
*/
|
|
pr_err("EEH: PHB#%d-PE#%x has failed %d times in the\n"
|
|
"last hour and has been permanently disabled.\n"
|
|
"Please try reseating or replacing it.\n",
|
|
pe->phb->global_number, pe->addr,
|
|
pe->freeze_count);
|
|
goto perm_error;
|
|
|
|
hard_fail:
|
|
pr_err("EEH: Unable to recover from failure from PHB#%d-PE#%x.\n"
|
|
"Please try reseating or replacing it\n",
|
|
pe->phb->global_number, pe->addr);
|
|
|
|
perm_error:
|
|
eeh_slot_error_detail(pe, EEH_LOG_PERM);
|
|
|
|
/* Notify all devices that they're about to go down. */
|
|
eeh_pe_dev_traverse(pe, eeh_report_failure, NULL);
|
|
|
|
/* Shut down the device drivers for good. */
|
|
if (frozen_bus) {
|
|
pci_lock_rescan_remove();
|
|
pcibios_remove_pci_devices(frozen_bus);
|
|
pci_unlock_rescan_remove();
|
|
}
|
|
}
|
|
|
|
static void eeh_handle_special_event(void)
|
|
{
|
|
struct eeh_pe *pe, *phb_pe;
|
|
struct pci_bus *bus;
|
|
struct pci_controller *hose;
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
|
|
do {
|
|
rc = eeh_ops->next_error(&pe);
|
|
|
|
switch (rc) {
|
|
case EEH_NEXT_ERR_DEAD_IOC:
|
|
/* Mark all PHBs in dead state */
|
|
eeh_serialize_lock(&flags);
|
|
|
|
/* Purge all events */
|
|
eeh_remove_event(NULL);
|
|
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
phb_pe = eeh_phb_pe_get(hose);
|
|
if (!phb_pe) continue;
|
|
|
|
eeh_pe_state_mark(phb_pe,
|
|
EEH_PE_ISOLATED | EEH_PE_PHB_DEAD);
|
|
}
|
|
|
|
eeh_serialize_unlock(flags);
|
|
|
|
break;
|
|
case EEH_NEXT_ERR_FROZEN_PE:
|
|
case EEH_NEXT_ERR_FENCED_PHB:
|
|
case EEH_NEXT_ERR_DEAD_PHB:
|
|
/* Mark the PE in fenced state */
|
|
eeh_serialize_lock(&flags);
|
|
|
|
/* Purge all events of the PHB */
|
|
eeh_remove_event(pe);
|
|
|
|
if (rc == EEH_NEXT_ERR_DEAD_PHB)
|
|
eeh_pe_state_mark(pe,
|
|
EEH_PE_ISOLATED | EEH_PE_PHB_DEAD);
|
|
else
|
|
eeh_pe_state_mark(pe,
|
|
EEH_PE_ISOLATED | EEH_PE_RECOVERING);
|
|
|
|
eeh_serialize_unlock(flags);
|
|
|
|
break;
|
|
case EEH_NEXT_ERR_NONE:
|
|
return;
|
|
default:
|
|
pr_warn("%s: Invalid value %d from next_error()\n",
|
|
__func__, rc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* For fenced PHB and frozen PE, it's handled as normal
|
|
* event. We have to remove the affected PHBs for dead
|
|
* PHB and IOC
|
|
*/
|
|
if (rc == EEH_NEXT_ERR_FROZEN_PE ||
|
|
rc == EEH_NEXT_ERR_FENCED_PHB) {
|
|
eeh_handle_normal_event(pe);
|
|
} else {
|
|
pci_lock_rescan_remove();
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
phb_pe = eeh_phb_pe_get(hose);
|
|
if (!phb_pe ||
|
|
!(phb_pe->state & EEH_PE_PHB_DEAD))
|
|
continue;
|
|
|
|
/* Notify all devices to be down */
|
|
bus = eeh_pe_bus_get(phb_pe);
|
|
eeh_pe_dev_traverse(pe,
|
|
eeh_report_failure, NULL);
|
|
pcibios_remove_pci_devices(bus);
|
|
}
|
|
pci_unlock_rescan_remove();
|
|
}
|
|
|
|
/*
|
|
* If we have detected dead IOC, we needn't proceed
|
|
* any more since all PHBs would have been removed
|
|
*/
|
|
if (rc == EEH_NEXT_ERR_DEAD_IOC)
|
|
break;
|
|
} while (rc != EEH_NEXT_ERR_NONE);
|
|
}
|
|
|
|
/**
|
|
* eeh_handle_event - Reset a PCI device after hard lockup.
|
|
* @pe: EEH PE
|
|
*
|
|
* While PHB detects address or data parity errors on particular PCI
|
|
* slot, the associated PE will be frozen. Besides, DMA's occurring
|
|
* to wild addresses (which usually happen due to bugs in device
|
|
* drivers or in PCI adapter firmware) can cause EEH error. #SERR,
|
|
* #PERR or other misc PCI-related errors also can trigger EEH errors.
|
|
*
|
|
* Recovery process consists of unplugging the device driver (which
|
|
* generated hotplug events to userspace), then issuing a PCI #RST to
|
|
* the device, then reconfiguring the PCI config space for all bridges
|
|
* & devices under this slot, and then finally restarting the device
|
|
* drivers (which cause a second set of hotplug events to go out to
|
|
* userspace).
|
|
*/
|
|
void eeh_handle_event(struct eeh_pe *pe)
|
|
{
|
|
if (pe)
|
|
eeh_handle_normal_event(pe);
|
|
else
|
|
eeh_handle_special_event();
|
|
}
|