mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-01 03:56:41 +07:00
20d9207849
* 'x86/uv' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86: UV BAU distribution and payload MMRs x86: UV: BAU partition-relative distribution map x86, uv: add Kconfig dependency on NUMA for UV systems x86: prevent /sys/firmware/sgi_uv from being created on non-uv systems x86, UV: Fix for nodes with memory and no cpus x86, UV: system table in bios accessed after unmap x86: UV BAU messaging timeouts x86: UV BAU and nodes with no memory
863 lines
23 KiB
C
863 lines
23 KiB
C
/*
|
|
* SGI UltraViolet TLB flush routines.
|
|
*
|
|
* (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
|
|
*
|
|
* This code is released under the GNU General Public License version 2 or
|
|
* later.
|
|
*/
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <asm/uv/uv_mmrs.h>
|
|
#include <asm/uv/uv_hub.h>
|
|
#include <asm/uv/uv_bau.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/tsc.h>
|
|
#include <asm/irq_vectors.h>
|
|
|
|
static struct bau_control **uv_bau_table_bases __read_mostly;
|
|
static int uv_bau_retry_limit __read_mostly;
|
|
|
|
/* position of pnode (which is nasid>>1): */
|
|
static int uv_nshift __read_mostly;
|
|
/* base pnode in this partition */
|
|
static int uv_partition_base_pnode __read_mostly;
|
|
|
|
static unsigned long uv_mmask __read_mostly;
|
|
|
|
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
|
|
static DEFINE_PER_CPU(struct bau_control, bau_control);
|
|
|
|
/*
|
|
* Determine the first node on a blade.
|
|
*/
|
|
static int __init blade_to_first_node(int blade)
|
|
{
|
|
int node, b;
|
|
|
|
for_each_online_node(node) {
|
|
b = uv_node_to_blade_id(node);
|
|
if (blade == b)
|
|
return node;
|
|
}
|
|
return -1; /* shouldn't happen */
|
|
}
|
|
|
|
/*
|
|
* Determine the apicid of the first cpu on a blade.
|
|
*/
|
|
static int __init blade_to_first_apicid(int blade)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu)
|
|
if (blade == uv_cpu_to_blade_id(cpu))
|
|
return per_cpu(x86_cpu_to_apicid, cpu);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Free a software acknowledge hardware resource by clearing its Pending
|
|
* bit. This will return a reply to the sender.
|
|
* If the message has timed out, a reply has already been sent by the
|
|
* hardware but the resource has not been released. In that case our
|
|
* clear of the Timeout bit (as well) will free the resource. No reply will
|
|
* be sent (the hardware will only do one reply per message).
|
|
*/
|
|
static void uv_reply_to_message(int resource,
|
|
struct bau_payload_queue_entry *msg,
|
|
struct bau_msg_status *msp)
|
|
{
|
|
unsigned long dw;
|
|
|
|
dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
|
|
msg->replied_to = 1;
|
|
msg->sw_ack_vector = 0;
|
|
if (msp)
|
|
msp->seen_by.bits = 0;
|
|
uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
|
|
}
|
|
|
|
/*
|
|
* Do all the things a cpu should do for a TLB shootdown message.
|
|
* Other cpu's may come here at the same time for this message.
|
|
*/
|
|
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
|
|
int msg_slot, int sw_ack_slot)
|
|
{
|
|
unsigned long this_cpu_mask;
|
|
struct bau_msg_status *msp;
|
|
int cpu;
|
|
|
|
msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
|
|
cpu = uv_blade_processor_id();
|
|
msg->number_of_cpus =
|
|
uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
|
|
this_cpu_mask = 1UL << cpu;
|
|
if (msp->seen_by.bits & this_cpu_mask)
|
|
return;
|
|
atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
|
|
|
|
if (msg->replied_to == 1)
|
|
return;
|
|
|
|
if (msg->address == TLB_FLUSH_ALL) {
|
|
local_flush_tlb();
|
|
__get_cpu_var(ptcstats).alltlb++;
|
|
} else {
|
|
__flush_tlb_one(msg->address);
|
|
__get_cpu_var(ptcstats).onetlb++;
|
|
}
|
|
|
|
__get_cpu_var(ptcstats).requestee++;
|
|
|
|
atomic_inc_short(&msg->acknowledge_count);
|
|
if (msg->number_of_cpus == msg->acknowledge_count)
|
|
uv_reply_to_message(sw_ack_slot, msg, msp);
|
|
}
|
|
|
|
/*
|
|
* Examine the payload queue on one distribution node to see
|
|
* which messages have not been seen, and which cpu(s) have not seen them.
|
|
*
|
|
* Returns the number of cpu's that have not responded.
|
|
*/
|
|
static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
|
|
{
|
|
struct bau_payload_queue_entry *msg;
|
|
struct bau_msg_status *msp;
|
|
int count = 0;
|
|
int i;
|
|
int j;
|
|
|
|
for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
|
|
msg++, i++) {
|
|
if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
|
|
msp = bau_tablesp->msg_statuses + i;
|
|
printk(KERN_DEBUG
|
|
"blade %d: address:%#lx %d of %d, not cpu(s): ",
|
|
i, msg->address, msg->acknowledge_count,
|
|
msg->number_of_cpus);
|
|
for (j = 0; j < msg->number_of_cpus; j++) {
|
|
if (!((1L << j) & msp->seen_by.bits)) {
|
|
count++;
|
|
printk("%d ", j);
|
|
}
|
|
}
|
|
printk("\n");
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Examine the payload queue on all the distribution nodes to see
|
|
* which messages have not been seen, and which cpu(s) have not seen them.
|
|
*
|
|
* Returns the number of cpu's that have not responded.
|
|
*/
|
|
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
|
|
{
|
|
int sender;
|
|
int i;
|
|
int count = 0;
|
|
|
|
sender = smp_processor_id();
|
|
for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
|
|
if (!bau_node_isset(i, distribution))
|
|
continue;
|
|
count += uv_examine_destination(uv_bau_table_bases[i], sender);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* wait for completion of a broadcast message
|
|
*
|
|
* return COMPLETE, RETRY or GIVEUP
|
|
*/
|
|
static int uv_wait_completion(struct bau_desc *bau_desc,
|
|
unsigned long mmr_offset, int right_shift)
|
|
{
|
|
int exams = 0;
|
|
long destination_timeouts = 0;
|
|
long source_timeouts = 0;
|
|
unsigned long descriptor_status;
|
|
|
|
while ((descriptor_status = (((unsigned long)
|
|
uv_read_local_mmr(mmr_offset) >>
|
|
right_shift) & UV_ACT_STATUS_MASK)) !=
|
|
DESC_STATUS_IDLE) {
|
|
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
|
|
source_timeouts++;
|
|
if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
|
|
source_timeouts = 0;
|
|
__get_cpu_var(ptcstats).s_retry++;
|
|
return FLUSH_RETRY;
|
|
}
|
|
/*
|
|
* spin here looking for progress at the destinations
|
|
*/
|
|
if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
|
|
destination_timeouts++;
|
|
if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
|
|
/*
|
|
* returns number of cpus not responding
|
|
*/
|
|
if (uv_examine_destinations
|
|
(&bau_desc->distribution) == 0) {
|
|
__get_cpu_var(ptcstats).d_retry++;
|
|
return FLUSH_RETRY;
|
|
}
|
|
exams++;
|
|
if (exams >= uv_bau_retry_limit) {
|
|
printk(KERN_DEBUG
|
|
"uv_flush_tlb_others");
|
|
printk("giving up on cpu %d\n",
|
|
smp_processor_id());
|
|
return FLUSH_GIVEUP;
|
|
}
|
|
/*
|
|
* delays can hang the simulator
|
|
udelay(1000);
|
|
*/
|
|
destination_timeouts = 0;
|
|
}
|
|
}
|
|
cpu_relax();
|
|
}
|
|
return FLUSH_COMPLETE;
|
|
}
|
|
|
|
/**
|
|
* uv_flush_send_and_wait
|
|
*
|
|
* Send a broadcast and wait for a broadcast message to complete.
|
|
*
|
|
* The flush_mask contains the cpus the broadcast was sent to.
|
|
*
|
|
* Returns NULL if all remote flushing was done. The mask is zeroed.
|
|
* Returns @flush_mask if some remote flushing remains to be done. The
|
|
* mask will have some bits still set.
|
|
*/
|
|
const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
|
|
struct bau_desc *bau_desc,
|
|
struct cpumask *flush_mask)
|
|
{
|
|
int completion_status = 0;
|
|
int right_shift;
|
|
int tries = 0;
|
|
int pnode;
|
|
int bit;
|
|
unsigned long mmr_offset;
|
|
unsigned long index;
|
|
cycles_t time1;
|
|
cycles_t time2;
|
|
|
|
if (cpu < UV_CPUS_PER_ACT_STATUS) {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
|
|
right_shift = cpu * UV_ACT_STATUS_SIZE;
|
|
} else {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
|
|
right_shift =
|
|
((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
|
|
}
|
|
time1 = get_cycles();
|
|
do {
|
|
tries++;
|
|
index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
|
|
cpu;
|
|
uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
|
|
completion_status = uv_wait_completion(bau_desc, mmr_offset,
|
|
right_shift);
|
|
} while (completion_status == FLUSH_RETRY);
|
|
time2 = get_cycles();
|
|
__get_cpu_var(ptcstats).sflush += (time2 - time1);
|
|
if (tries > 1)
|
|
__get_cpu_var(ptcstats).retriesok++;
|
|
|
|
if (completion_status == FLUSH_GIVEUP) {
|
|
/*
|
|
* Cause the caller to do an IPI-style TLB shootdown on
|
|
* the cpu's, all of which are still in the mask.
|
|
*/
|
|
__get_cpu_var(ptcstats).ptc_i++;
|
|
return flush_mask;
|
|
}
|
|
|
|
/*
|
|
* Success, so clear the remote cpu's from the mask so we don't
|
|
* use the IPI method of shootdown on them.
|
|
*/
|
|
for_each_cpu(bit, flush_mask) {
|
|
pnode = uv_cpu_to_pnode(bit);
|
|
if (pnode == this_pnode)
|
|
continue;
|
|
cpumask_clear_cpu(bit, flush_mask);
|
|
}
|
|
if (!cpumask_empty(flush_mask))
|
|
return flush_mask;
|
|
return NULL;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
|
|
|
|
/**
|
|
* uv_flush_tlb_others - globally purge translation cache of a virtual
|
|
* address or all TLB's
|
|
* @cpumask: mask of all cpu's in which the address is to be removed
|
|
* @mm: mm_struct containing virtual address range
|
|
* @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
|
|
* @cpu: the current cpu
|
|
*
|
|
* This is the entry point for initiating any UV global TLB shootdown.
|
|
*
|
|
* Purges the translation caches of all specified processors of the given
|
|
* virtual address, or purges all TLB's on specified processors.
|
|
*
|
|
* The caller has derived the cpumask from the mm_struct. This function
|
|
* is called only if there are bits set in the mask. (e.g. flush_tlb_page())
|
|
*
|
|
* The cpumask is converted into a nodemask of the nodes containing
|
|
* the cpus.
|
|
*
|
|
* Note that this function should be called with preemption disabled.
|
|
*
|
|
* Returns NULL if all remote flushing was done.
|
|
* Returns pointer to cpumask if some remote flushing remains to be
|
|
* done. The returned pointer is valid till preemption is re-enabled.
|
|
*/
|
|
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
|
|
struct mm_struct *mm,
|
|
unsigned long va, unsigned int cpu)
|
|
{
|
|
struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
|
|
int i;
|
|
int bit;
|
|
int pnode;
|
|
int uv_cpu;
|
|
int this_pnode;
|
|
int locals = 0;
|
|
struct bau_desc *bau_desc;
|
|
|
|
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
|
|
|
|
uv_cpu = uv_blade_processor_id();
|
|
this_pnode = uv_hub_info->pnode;
|
|
bau_desc = __get_cpu_var(bau_control).descriptor_base;
|
|
bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
|
|
|
|
bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
|
|
|
|
i = 0;
|
|
for_each_cpu(bit, flush_mask) {
|
|
pnode = uv_cpu_to_pnode(bit);
|
|
BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
|
|
if (pnode == this_pnode) {
|
|
locals++;
|
|
continue;
|
|
}
|
|
bau_node_set(pnode - uv_partition_base_pnode,
|
|
&bau_desc->distribution);
|
|
i++;
|
|
}
|
|
if (i == 0) {
|
|
/*
|
|
* no off_node flushing; return status for local node
|
|
*/
|
|
if (locals)
|
|
return flush_mask;
|
|
else
|
|
return NULL;
|
|
}
|
|
__get_cpu_var(ptcstats).requestor++;
|
|
__get_cpu_var(ptcstats).ntargeted += i;
|
|
|
|
bau_desc->payload.address = va;
|
|
bau_desc->payload.sending_cpu = cpu;
|
|
|
|
return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
|
|
}
|
|
|
|
/*
|
|
* The BAU message interrupt comes here. (registered by set_intr_gate)
|
|
* See entry_64.S
|
|
*
|
|
* We received a broadcast assist message.
|
|
*
|
|
* Interrupts may have been disabled; this interrupt could represent
|
|
* the receipt of several messages.
|
|
*
|
|
* All cores/threads on this node get this interrupt.
|
|
* The last one to see it does the s/w ack.
|
|
* (the resource will not be freed until noninterruptable cpus see this
|
|
* interrupt; hardware will timeout the s/w ack and reply ERROR)
|
|
*/
|
|
void uv_bau_message_interrupt(struct pt_regs *regs)
|
|
{
|
|
struct bau_payload_queue_entry *va_queue_first;
|
|
struct bau_payload_queue_entry *va_queue_last;
|
|
struct bau_payload_queue_entry *msg;
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
cycles_t time1;
|
|
cycles_t time2;
|
|
int msg_slot;
|
|
int sw_ack_slot;
|
|
int fw;
|
|
int count = 0;
|
|
unsigned long local_pnode;
|
|
|
|
ack_APIC_irq();
|
|
exit_idle();
|
|
irq_enter();
|
|
|
|
time1 = get_cycles();
|
|
|
|
local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
|
|
|
|
va_queue_first = __get_cpu_var(bau_control).va_queue_first;
|
|
va_queue_last = __get_cpu_var(bau_control).va_queue_last;
|
|
|
|
msg = __get_cpu_var(bau_control).bau_msg_head;
|
|
while (msg->sw_ack_vector) {
|
|
count++;
|
|
fw = msg->sw_ack_vector;
|
|
msg_slot = msg - va_queue_first;
|
|
sw_ack_slot = ffs(fw) - 1;
|
|
|
|
uv_bau_process_message(msg, msg_slot, sw_ack_slot);
|
|
|
|
msg++;
|
|
if (msg > va_queue_last)
|
|
msg = va_queue_first;
|
|
__get_cpu_var(bau_control).bau_msg_head = msg;
|
|
}
|
|
if (!count)
|
|
__get_cpu_var(ptcstats).nomsg++;
|
|
else if (count > 1)
|
|
__get_cpu_var(ptcstats).multmsg++;
|
|
|
|
time2 = get_cycles();
|
|
__get_cpu_var(ptcstats).dflush += (time2 - time1);
|
|
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
/*
|
|
* uv_enable_timeouts
|
|
*
|
|
* Each target blade (i.e. blades that have cpu's) needs to have
|
|
* shootdown message timeouts enabled. The timeout does not cause
|
|
* an interrupt, but causes an error message to be returned to
|
|
* the sender.
|
|
*/
|
|
static void uv_enable_timeouts(void)
|
|
{
|
|
int blade;
|
|
int nblades;
|
|
int pnode;
|
|
unsigned long mmr_image;
|
|
|
|
nblades = uv_num_possible_blades();
|
|
|
|
for (blade = 0; blade < nblades; blade++) {
|
|
if (!uv_blade_nr_possible_cpus(blade))
|
|
continue;
|
|
|
|
pnode = uv_blade_to_pnode(blade);
|
|
mmr_image =
|
|
uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
|
|
/*
|
|
* Set the timeout period and then lock it in, in three
|
|
* steps; captures and locks in the period.
|
|
*
|
|
* To program the period, the SOFT_ACK_MODE must be off.
|
|
*/
|
|
mmr_image &= ~((unsigned long)1 <<
|
|
UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
|
|
uv_write_global_mmr64
|
|
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
|
|
/*
|
|
* Set the 4-bit period.
|
|
*/
|
|
mmr_image &= ~((unsigned long)0xf <<
|
|
UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
|
|
mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
|
|
UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
|
|
uv_write_global_mmr64
|
|
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
|
|
/*
|
|
* Subsequent reversals of the timebase bit (3) cause an
|
|
* immediate timeout of one or all INTD resources as
|
|
* indicated in bits 2:0 (7 causes all of them to timeout).
|
|
*/
|
|
mmr_image |= ((unsigned long)1 <<
|
|
UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
|
|
uv_write_global_mmr64
|
|
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
|
|
}
|
|
}
|
|
|
|
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
|
|
{
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
|
|
{
|
|
(*offset)++;
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Display the statistics thru /proc
|
|
* data points to the cpu number
|
|
*/
|
|
static int uv_ptc_seq_show(struct seq_file *file, void *data)
|
|
{
|
|
struct ptc_stats *stat;
|
|
int cpu;
|
|
|
|
cpu = *(loff_t *)data;
|
|
|
|
if (!cpu) {
|
|
seq_printf(file,
|
|
"# cpu requestor requestee one all sretry dretry ptc_i ");
|
|
seq_printf(file,
|
|
"sw_ack sflush dflush sok dnomsg dmult starget\n");
|
|
}
|
|
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
|
|
stat = &per_cpu(ptcstats, cpu);
|
|
seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
|
|
cpu, stat->requestor,
|
|
stat->requestee, stat->onetlb, stat->alltlb,
|
|
stat->s_retry, stat->d_retry, stat->ptc_i);
|
|
seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
|
|
uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
|
|
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
|
|
stat->sflush, stat->dflush,
|
|
stat->retriesok, stat->nomsg,
|
|
stat->multmsg, stat->ntargeted);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 0: display meaning of the statistics
|
|
* >0: retry limit
|
|
*/
|
|
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
|
|
size_t count, loff_t *data)
|
|
{
|
|
long newmode;
|
|
char optstr[64];
|
|
|
|
if (count == 0 || count > sizeof(optstr))
|
|
return -EINVAL;
|
|
if (copy_from_user(optstr, user, count))
|
|
return -EFAULT;
|
|
optstr[count - 1] = '\0';
|
|
if (strict_strtoul(optstr, 10, &newmode) < 0) {
|
|
printk(KERN_DEBUG "%s is invalid\n", optstr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (newmode == 0) {
|
|
printk(KERN_DEBUG "# cpu: cpu number\n");
|
|
printk(KERN_DEBUG
|
|
"requestor: times this cpu was the flush requestor\n");
|
|
printk(KERN_DEBUG
|
|
"requestee: times this cpu was requested to flush its TLBs\n");
|
|
printk(KERN_DEBUG
|
|
"one: times requested to flush a single address\n");
|
|
printk(KERN_DEBUG
|
|
"all: times requested to flush all TLB's\n");
|
|
printk(KERN_DEBUG
|
|
"sretry: number of retries of source-side timeouts\n");
|
|
printk(KERN_DEBUG
|
|
"dretry: number of retries of destination-side timeouts\n");
|
|
printk(KERN_DEBUG
|
|
"ptc_i: times UV fell through to IPI-style flushes\n");
|
|
printk(KERN_DEBUG
|
|
"sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
|
|
printk(KERN_DEBUG
|
|
"sflush_us: cycles spent in uv_flush_tlb_others()\n");
|
|
printk(KERN_DEBUG
|
|
"dflush_us: cycles spent in handling flush requests\n");
|
|
printk(KERN_DEBUG "sok: successes on retry\n");
|
|
printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
|
|
printk(KERN_DEBUG
|
|
"dmult: interrupts with multiple messages\n");
|
|
printk(KERN_DEBUG "starget: nodes targeted\n");
|
|
} else {
|
|
uv_bau_retry_limit = newmode;
|
|
printk(KERN_DEBUG "timeout retry limit:%d\n",
|
|
uv_bau_retry_limit);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct seq_operations uv_ptc_seq_ops = {
|
|
.start = uv_ptc_seq_start,
|
|
.next = uv_ptc_seq_next,
|
|
.stop = uv_ptc_seq_stop,
|
|
.show = uv_ptc_seq_show
|
|
};
|
|
|
|
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &uv_ptc_seq_ops);
|
|
}
|
|
|
|
static const struct file_operations proc_uv_ptc_operations = {
|
|
.open = uv_ptc_proc_open,
|
|
.read = seq_read,
|
|
.write = uv_ptc_proc_write,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static int __init uv_ptc_init(void)
|
|
{
|
|
struct proc_dir_entry *proc_uv_ptc;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
|
|
if (!proc_uv_ptc) {
|
|
printk(KERN_ERR "unable to create %s proc entry\n",
|
|
UV_PTC_BASENAME);
|
|
return -EINVAL;
|
|
}
|
|
proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* begin the initialization of the per-blade control structures
|
|
*/
|
|
static struct bau_control * __init uv_table_bases_init(int blade, int node)
|
|
{
|
|
int i;
|
|
struct bau_msg_status *msp;
|
|
struct bau_control *bau_tabp;
|
|
|
|
bau_tabp =
|
|
kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
|
|
BUG_ON(!bau_tabp);
|
|
|
|
bau_tabp->msg_statuses =
|
|
kmalloc_node(sizeof(struct bau_msg_status) *
|
|
DEST_Q_SIZE, GFP_KERNEL, node);
|
|
BUG_ON(!bau_tabp->msg_statuses);
|
|
|
|
for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
|
|
bau_cpubits_clear(&msp->seen_by, (int)
|
|
uv_blade_nr_possible_cpus(blade));
|
|
|
|
uv_bau_table_bases[blade] = bau_tabp;
|
|
|
|
return bau_tabp;
|
|
}
|
|
|
|
/*
|
|
* finish the initialization of the per-blade control structures
|
|
*/
|
|
static void __init
|
|
uv_table_bases_finish(int blade,
|
|
struct bau_control *bau_tablesp,
|
|
struct bau_desc *adp)
|
|
{
|
|
struct bau_control *bcp;
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
if (blade != uv_cpu_to_blade_id(cpu))
|
|
continue;
|
|
|
|
bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
|
|
bcp->bau_msg_head = bau_tablesp->va_queue_first;
|
|
bcp->va_queue_first = bau_tablesp->va_queue_first;
|
|
bcp->va_queue_last = bau_tablesp->va_queue_last;
|
|
bcp->msg_statuses = bau_tablesp->msg_statuses;
|
|
bcp->descriptor_base = adp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize the sending side's sending buffers
|
|
*/
|
|
static struct bau_desc * __init
|
|
uv_activation_descriptor_init(int node, int pnode)
|
|
{
|
|
int i;
|
|
unsigned long pa;
|
|
unsigned long m;
|
|
unsigned long n;
|
|
unsigned long mmr_image;
|
|
struct bau_desc *adp;
|
|
struct bau_desc *ad2;
|
|
|
|
adp = (struct bau_desc *)kmalloc_node(16384, GFP_KERNEL, node);
|
|
BUG_ON(!adp);
|
|
|
|
pa = uv_gpa(adp); /* need the real nasid*/
|
|
n = pa >> uv_nshift;
|
|
m = pa & uv_mmask;
|
|
|
|
mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
|
|
if (mmr_image) {
|
|
uv_write_global_mmr64(pnode, (unsigned long)
|
|
UVH_LB_BAU_SB_DESCRIPTOR_BASE,
|
|
(n << UV_DESC_BASE_PNODE_SHIFT | m));
|
|
}
|
|
|
|
for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
|
|
memset(ad2, 0, sizeof(struct bau_desc));
|
|
ad2->header.sw_ack_flag = 1;
|
|
/*
|
|
* base_dest_nodeid is the first node in the partition, so
|
|
* the bit map will indicate partition-relative node numbers.
|
|
* note that base_dest_nodeid is actually a nasid.
|
|
*/
|
|
ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
|
|
ad2->header.command = UV_NET_ENDPOINT_INTD;
|
|
ad2->header.int_both = 1;
|
|
/*
|
|
* all others need to be set to zero:
|
|
* fairness chaining multilevel count replied_to
|
|
*/
|
|
}
|
|
return adp;
|
|
}
|
|
|
|
/*
|
|
* initialize the destination side's receiving buffers
|
|
*/
|
|
static struct bau_payload_queue_entry * __init
|
|
uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
|
|
{
|
|
struct bau_payload_queue_entry *pqp;
|
|
unsigned long pa;
|
|
int pn;
|
|
char *cp;
|
|
|
|
pqp = (struct bau_payload_queue_entry *) kmalloc_node(
|
|
(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
|
|
GFP_KERNEL, node);
|
|
BUG_ON(!pqp);
|
|
|
|
cp = (char *)pqp + 31;
|
|
pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
|
|
bau_tablesp->va_queue_first = pqp;
|
|
/*
|
|
* need the pnode of where the memory was really allocated
|
|
*/
|
|
pa = uv_gpa(pqp);
|
|
pn = pa >> uv_nshift;
|
|
uv_write_global_mmr64(pnode,
|
|
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
|
|
((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
|
|
uv_physnodeaddr(pqp));
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
|
|
uv_physnodeaddr(pqp));
|
|
bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
|
|
(unsigned long)
|
|
uv_physnodeaddr(bau_tablesp->va_queue_last));
|
|
memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
|
|
|
|
return pqp;
|
|
}
|
|
|
|
/*
|
|
* Initialization of each UV blade's structures
|
|
*/
|
|
static int __init uv_init_blade(int blade)
|
|
{
|
|
int node;
|
|
int pnode;
|
|
unsigned long pa;
|
|
unsigned long apicid;
|
|
struct bau_desc *adp;
|
|
struct bau_payload_queue_entry *pqp;
|
|
struct bau_control *bau_tablesp;
|
|
|
|
node = blade_to_first_node(blade);
|
|
bau_tablesp = uv_table_bases_init(blade, node);
|
|
pnode = uv_blade_to_pnode(blade);
|
|
adp = uv_activation_descriptor_init(node, pnode);
|
|
pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
|
|
uv_table_bases_finish(blade, bau_tablesp, adp);
|
|
/*
|
|
* the below initialization can't be in firmware because the
|
|
* messaging IRQ will be determined by the OS
|
|
*/
|
|
apicid = blade_to_first_apicid(blade);
|
|
pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
|
|
if ((pa & 0xff) != UV_BAU_MESSAGE) {
|
|
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
|
|
((apicid << 32) | UV_BAU_MESSAGE));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialization of BAU-related structures
|
|
*/
|
|
static int __init uv_bau_init(void)
|
|
{
|
|
int blade;
|
|
int nblades;
|
|
int cur_cpu;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
for_each_possible_cpu(cur_cpu)
|
|
alloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
|
|
GFP_KERNEL, cpu_to_node(cur_cpu));
|
|
|
|
uv_bau_retry_limit = 1;
|
|
uv_nshift = uv_hub_info->n_val;
|
|
uv_mmask = (1UL << uv_hub_info->n_val) - 1;
|
|
nblades = uv_num_possible_blades();
|
|
|
|
uv_bau_table_bases = (struct bau_control **)
|
|
kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
|
|
BUG_ON(!uv_bau_table_bases);
|
|
|
|
uv_partition_base_pnode = 0x7fffffff;
|
|
for (blade = 0; blade < nblades; blade++)
|
|
if (uv_blade_nr_possible_cpus(blade) &&
|
|
(uv_blade_to_pnode(blade) < uv_partition_base_pnode))
|
|
uv_partition_base_pnode = uv_blade_to_pnode(blade);
|
|
for (blade = 0; blade < nblades; blade++)
|
|
if (uv_blade_nr_possible_cpus(blade))
|
|
uv_init_blade(blade);
|
|
|
|
alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
|
|
uv_enable_timeouts();
|
|
|
|
return 0;
|
|
}
|
|
__initcall(uv_bau_init);
|
|
__initcall(uv_ptc_init);
|