linux_dsm_epyc7002/arch/x86/kernel/kgdb.c
Thomas Gleixner 3e0a4e8580 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 118
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 or at your option any
  later version this program is distributed in the hope that it will
  be useful but without any warranty without even the implied warranty
  of merchantability or fitness for a particular purpose see the gnu
  general public license for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 44 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190523091651.032047323@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:39:02 +02:00

793 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*/
/*
* Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
* Copyright (C) 2000-2001 VERITAS Software Corporation.
* Copyright (C) 2002 Andi Kleen, SuSE Labs
* Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
* Copyright (C) 2007 MontaVista Software, Inc.
* Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
*/
/****************************************************************************
* Contributor: Lake Stevens Instrument Division$
* Written by: Glenn Engel $
* Updated by: Amit Kale<akale@veritas.com>
* Updated by: Tom Rini <trini@kernel.crashing.org>
* Updated by: Jason Wessel <jason.wessel@windriver.com>
* Modified for 386 by Jim Kingdon, Cygnus Support.
* Origianl kgdb, compatibility with 2.1.xx kernel by
* David Grothe <dave@gcom.com>
* Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
* X86_64 changes from Andi Kleen's patch merged by Jim Houston
*/
#include <linux/spinlock.h>
#include <linux/kdebug.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/kgdb.h>
#include <linux/smp.h>
#include <linux/nmi.h>
#include <linux/hw_breakpoint.h>
#include <linux/uaccess.h>
#include <linux/memory.h>
#include <asm/text-patching.h>
#include <asm/debugreg.h>
#include <asm/apicdef.h>
#include <asm/apic.h>
#include <asm/nmi.h>
#include <asm/switch_to.h>
struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
{
#ifdef CONFIG_X86_32
{ "ax", 4, offsetof(struct pt_regs, ax) },
{ "cx", 4, offsetof(struct pt_regs, cx) },
{ "dx", 4, offsetof(struct pt_regs, dx) },
{ "bx", 4, offsetof(struct pt_regs, bx) },
{ "sp", 4, offsetof(struct pt_regs, sp) },
{ "bp", 4, offsetof(struct pt_regs, bp) },
{ "si", 4, offsetof(struct pt_regs, si) },
{ "di", 4, offsetof(struct pt_regs, di) },
{ "ip", 4, offsetof(struct pt_regs, ip) },
{ "flags", 4, offsetof(struct pt_regs, flags) },
{ "cs", 4, offsetof(struct pt_regs, cs) },
{ "ss", 4, offsetof(struct pt_regs, ss) },
{ "ds", 4, offsetof(struct pt_regs, ds) },
{ "es", 4, offsetof(struct pt_regs, es) },
#else
{ "ax", 8, offsetof(struct pt_regs, ax) },
{ "bx", 8, offsetof(struct pt_regs, bx) },
{ "cx", 8, offsetof(struct pt_regs, cx) },
{ "dx", 8, offsetof(struct pt_regs, dx) },
{ "si", 8, offsetof(struct pt_regs, si) },
{ "di", 8, offsetof(struct pt_regs, di) },
{ "bp", 8, offsetof(struct pt_regs, bp) },
{ "sp", 8, offsetof(struct pt_regs, sp) },
{ "r8", 8, offsetof(struct pt_regs, r8) },
{ "r9", 8, offsetof(struct pt_regs, r9) },
{ "r10", 8, offsetof(struct pt_regs, r10) },
{ "r11", 8, offsetof(struct pt_regs, r11) },
{ "r12", 8, offsetof(struct pt_regs, r12) },
{ "r13", 8, offsetof(struct pt_regs, r13) },
{ "r14", 8, offsetof(struct pt_regs, r14) },
{ "r15", 8, offsetof(struct pt_regs, r15) },
{ "ip", 8, offsetof(struct pt_regs, ip) },
{ "flags", 4, offsetof(struct pt_regs, flags) },
{ "cs", 4, offsetof(struct pt_regs, cs) },
{ "ss", 4, offsetof(struct pt_regs, ss) },
{ "ds", 4, -1 },
{ "es", 4, -1 },
#endif
{ "fs", 4, -1 },
{ "gs", 4, -1 },
};
int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
{
if (
#ifdef CONFIG_X86_32
regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
#endif
regno == GDB_SP || regno == GDB_ORIG_AX)
return 0;
if (dbg_reg_def[regno].offset != -1)
memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
dbg_reg_def[regno].size);
return 0;
}
char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
{
if (regno == GDB_ORIG_AX) {
memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
return "orig_ax";
}
if (regno >= DBG_MAX_REG_NUM || regno < 0)
return NULL;
if (dbg_reg_def[regno].offset != -1)
memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
dbg_reg_def[regno].size);
#ifdef CONFIG_X86_32
switch (regno) {
case GDB_SS:
if (!user_mode(regs))
*(unsigned long *)mem = __KERNEL_DS;
break;
case GDB_SP:
if (!user_mode(regs))
*(unsigned long *)mem = kernel_stack_pointer(regs);
break;
case GDB_GS:
case GDB_FS:
*(unsigned long *)mem = 0xFFFF;
break;
}
#endif
return dbg_reg_def[regno].name;
}
/**
* sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
* @gdb_regs: A pointer to hold the registers in the order GDB wants.
* @p: The &struct task_struct of the desired process.
*
* Convert the register values of the sleeping process in @p to
* the format that GDB expects.
* This function is called when kgdb does not have access to the
* &struct pt_regs and therefore it should fill the gdb registers
* @gdb_regs with what has been saved in &struct thread_struct
* thread field during switch_to.
*/
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
#ifndef CONFIG_X86_32
u32 *gdb_regs32 = (u32 *)gdb_regs;
#endif
gdb_regs[GDB_AX] = 0;
gdb_regs[GDB_BX] = 0;
gdb_regs[GDB_CX] = 0;
gdb_regs[GDB_DX] = 0;
gdb_regs[GDB_SI] = 0;
gdb_regs[GDB_DI] = 0;
gdb_regs[GDB_BP] = ((struct inactive_task_frame *)p->thread.sp)->bp;
#ifdef CONFIG_X86_32
gdb_regs[GDB_DS] = __KERNEL_DS;
gdb_regs[GDB_ES] = __KERNEL_DS;
gdb_regs[GDB_PS] = 0;
gdb_regs[GDB_CS] = __KERNEL_CS;
gdb_regs[GDB_SS] = __KERNEL_DS;
gdb_regs[GDB_FS] = 0xFFFF;
gdb_regs[GDB_GS] = 0xFFFF;
#else
gdb_regs32[GDB_PS] = 0;
gdb_regs32[GDB_CS] = __KERNEL_CS;
gdb_regs32[GDB_SS] = __KERNEL_DS;
gdb_regs[GDB_R8] = 0;
gdb_regs[GDB_R9] = 0;
gdb_regs[GDB_R10] = 0;
gdb_regs[GDB_R11] = 0;
gdb_regs[GDB_R12] = 0;
gdb_regs[GDB_R13] = 0;
gdb_regs[GDB_R14] = 0;
gdb_regs[GDB_R15] = 0;
#endif
gdb_regs[GDB_PC] = 0;
gdb_regs[GDB_SP] = p->thread.sp;
}
static struct hw_breakpoint {
unsigned enabled;
unsigned long addr;
int len;
int type;
struct perf_event * __percpu *pev;
} breakinfo[HBP_NUM];
static unsigned long early_dr7;
static void kgdb_correct_hw_break(void)
{
int breakno;
for (breakno = 0; breakno < HBP_NUM; breakno++) {
struct perf_event *bp;
struct arch_hw_breakpoint *info;
int val;
int cpu = raw_smp_processor_id();
if (!breakinfo[breakno].enabled)
continue;
if (dbg_is_early) {
set_debugreg(breakinfo[breakno].addr, breakno);
early_dr7 |= encode_dr7(breakno,
breakinfo[breakno].len,
breakinfo[breakno].type);
set_debugreg(early_dr7, 7);
continue;
}
bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
info = counter_arch_bp(bp);
if (bp->attr.disabled != 1)
continue;
bp->attr.bp_addr = breakinfo[breakno].addr;
bp->attr.bp_len = breakinfo[breakno].len;
bp->attr.bp_type = breakinfo[breakno].type;
info->address = breakinfo[breakno].addr;
info->len = breakinfo[breakno].len;
info->type = breakinfo[breakno].type;
val = arch_install_hw_breakpoint(bp);
if (!val)
bp->attr.disabled = 0;
}
if (!dbg_is_early)
hw_breakpoint_restore();
}
static int hw_break_reserve_slot(int breakno)
{
int cpu;
int cnt = 0;
struct perf_event **pevent;
if (dbg_is_early)
return 0;
for_each_online_cpu(cpu) {
cnt++;
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
if (dbg_reserve_bp_slot(*pevent))
goto fail;
}
return 0;
fail:
for_each_online_cpu(cpu) {
cnt--;
if (!cnt)
break;
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
dbg_release_bp_slot(*pevent);
}
return -1;
}
static int hw_break_release_slot(int breakno)
{
struct perf_event **pevent;
int cpu;
if (dbg_is_early)
return 0;
for_each_online_cpu(cpu) {
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
if (dbg_release_bp_slot(*pevent))
/*
* The debugger is responsible for handing the retry on
* remove failure.
*/
return -1;
}
return 0;
}
static int
kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
int i;
for (i = 0; i < HBP_NUM; i++)
if (breakinfo[i].addr == addr && breakinfo[i].enabled)
break;
if (i == HBP_NUM)
return -1;
if (hw_break_release_slot(i)) {
printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
return -1;
}
breakinfo[i].enabled = 0;
return 0;
}
static void kgdb_remove_all_hw_break(void)
{
int i;
int cpu = raw_smp_processor_id();
struct perf_event *bp;
for (i = 0; i < HBP_NUM; i++) {
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (!bp->attr.disabled) {
arch_uninstall_hw_breakpoint(bp);
bp->attr.disabled = 1;
continue;
}
if (dbg_is_early)
early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
breakinfo[i].type);
else if (hw_break_release_slot(i))
printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
breakinfo[i].addr);
breakinfo[i].enabled = 0;
}
}
static int
kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
int i;
for (i = 0; i < HBP_NUM; i++)
if (!breakinfo[i].enabled)
break;
if (i == HBP_NUM)
return -1;
switch (bptype) {
case BP_HARDWARE_BREAKPOINT:
len = 1;
breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
break;
case BP_WRITE_WATCHPOINT:
breakinfo[i].type = X86_BREAKPOINT_WRITE;
break;
case BP_ACCESS_WATCHPOINT:
breakinfo[i].type = X86_BREAKPOINT_RW;
break;
default:
return -1;
}
switch (len) {
case 1:
breakinfo[i].len = X86_BREAKPOINT_LEN_1;
break;
case 2:
breakinfo[i].len = X86_BREAKPOINT_LEN_2;
break;
case 4:
breakinfo[i].len = X86_BREAKPOINT_LEN_4;
break;
#ifdef CONFIG_X86_64
case 8:
breakinfo[i].len = X86_BREAKPOINT_LEN_8;
break;
#endif
default:
return -1;
}
breakinfo[i].addr = addr;
if (hw_break_reserve_slot(i)) {
breakinfo[i].addr = 0;
return -1;
}
breakinfo[i].enabled = 1;
return 0;
}
/**
* kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
* @regs: Current &struct pt_regs.
*
* This function will be called if the particular architecture must
* disable hardware debugging while it is processing gdb packets or
* handling exception.
*/
static void kgdb_disable_hw_debug(struct pt_regs *regs)
{
int i;
int cpu = raw_smp_processor_id();
struct perf_event *bp;
/* Disable hardware debugging while we are in kgdb: */
set_debugreg(0UL, 7);
for (i = 0; i < HBP_NUM; i++) {
if (!breakinfo[i].enabled)
continue;
if (dbg_is_early) {
early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
breakinfo[i].type);
continue;
}
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (bp->attr.disabled == 1)
continue;
arch_uninstall_hw_breakpoint(bp);
bp->attr.disabled = 1;
}
}
#ifdef CONFIG_SMP
/**
* kgdb_roundup_cpus - Get other CPUs into a holding pattern
*
* On SMP systems, we need to get the attention of the other CPUs
* and get them be in a known state. This should do what is needed
* to get the other CPUs to call kgdb_wait(). Note that on some arches,
* the NMI approach is not used for rounding up all the CPUs. For example,
* in case of MIPS, smp_call_function() is used to roundup CPUs.
*
* On non-SMP systems, this is not called.
*/
void kgdb_roundup_cpus(void)
{
apic->send_IPI_allbutself(APIC_DM_NMI);
}
#endif
/**
* kgdb_arch_handle_exception - Handle architecture specific GDB packets.
* @e_vector: The error vector of the exception that happened.
* @signo: The signal number of the exception that happened.
* @err_code: The error code of the exception that happened.
* @remcomInBuffer: The buffer of the packet we have read.
* @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
* @linux_regs: The &struct pt_regs of the current process.
*
* This function MUST handle the 'c' and 's' command packets,
* as well packets to set / remove a hardware breakpoint, if used.
* If there are additional packets which the hardware needs to handle,
* they are handled here. The code should return -1 if it wants to
* process more packets, and a %0 or %1 if it wants to exit from the
* kgdb callback.
*/
int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
char *remcomInBuffer, char *remcomOutBuffer,
struct pt_regs *linux_regs)
{
unsigned long addr;
char *ptr;
switch (remcomInBuffer[0]) {
case 'c':
case 's':
/* try to read optional parameter, pc unchanged if no parm */
ptr = &remcomInBuffer[1];
if (kgdb_hex2long(&ptr, &addr))
linux_regs->ip = addr;
/* fall through */
case 'D':
case 'k':
/* clear the trace bit */
linux_regs->flags &= ~X86_EFLAGS_TF;
atomic_set(&kgdb_cpu_doing_single_step, -1);
/* set the trace bit if we're stepping */
if (remcomInBuffer[0] == 's') {
linux_regs->flags |= X86_EFLAGS_TF;
atomic_set(&kgdb_cpu_doing_single_step,
raw_smp_processor_id());
}
return 0;
}
/* this means that we do not want to exit from the handler: */
return -1;
}
static inline int
single_step_cont(struct pt_regs *regs, struct die_args *args)
{
/*
* Single step exception from kernel space to user space so
* eat the exception and continue the process:
*/
printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
"resuming...\n");
kgdb_arch_handle_exception(args->trapnr, args->signr,
args->err, "c", "", regs);
/*
* Reset the BS bit in dr6 (pointed by args->err) to
* denote completion of processing
*/
(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
return NOTIFY_STOP;
}
static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
{
int cpu;
switch (cmd) {
case NMI_LOCAL:
if (atomic_read(&kgdb_active) != -1) {
/* KGDB CPU roundup */
cpu = raw_smp_processor_id();
kgdb_nmicallback(cpu, regs);
set_bit(cpu, was_in_debug_nmi);
touch_nmi_watchdog();
return NMI_HANDLED;
}
break;
case NMI_UNKNOWN:
cpu = raw_smp_processor_id();
if (__test_and_clear_bit(cpu, was_in_debug_nmi))
return NMI_HANDLED;
break;
default:
/* do nothing */
break;
}
return NMI_DONE;
}
static int __kgdb_notify(struct die_args *args, unsigned long cmd)
{
struct pt_regs *regs = args->regs;
switch (cmd) {
case DIE_DEBUG:
if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
if (user_mode(regs))
return single_step_cont(regs, args);
break;
} else if (test_thread_flag(TIF_SINGLESTEP))
/* This means a user thread is single stepping
* a system call which should be ignored
*/
return NOTIFY_DONE;
/* fall through */
default:
if (user_mode(regs))
return NOTIFY_DONE;
}
if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
return NOTIFY_DONE;
/* Must touch watchdog before return to normal operation */
touch_nmi_watchdog();
return NOTIFY_STOP;
}
int kgdb_ll_trap(int cmd, const char *str,
struct pt_regs *regs, long err, int trap, int sig)
{
struct die_args args = {
.regs = regs,
.str = str,
.err = err,
.trapnr = trap,
.signr = sig,
};
if (!kgdb_io_module_registered)
return NOTIFY_DONE;
return __kgdb_notify(&args, cmd);
}
static int
kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
{
unsigned long flags;
int ret;
local_irq_save(flags);
ret = __kgdb_notify(ptr, cmd);
local_irq_restore(flags);
return ret;
}
static struct notifier_block kgdb_notifier = {
.notifier_call = kgdb_notify,
};
/**
* kgdb_arch_init - Perform any architecture specific initialization.
*
* This function will handle the initialization of any architecture
* specific callbacks.
*/
int kgdb_arch_init(void)
{
int retval;
retval = register_die_notifier(&kgdb_notifier);
if (retval)
goto out;
retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
0, "kgdb");
if (retval)
goto out1;
retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
0, "kgdb");
if (retval)
goto out2;
return retval;
out2:
unregister_nmi_handler(NMI_LOCAL, "kgdb");
out1:
unregister_die_notifier(&kgdb_notifier);
out:
return retval;
}
static void kgdb_hw_overflow_handler(struct perf_event *event,
struct perf_sample_data *data, struct pt_regs *regs)
{
struct task_struct *tsk = current;
int i;
for (i = 0; i < 4; i++)
if (breakinfo[i].enabled)
tsk->thread.debugreg6 |= (DR_TRAP0 << i);
}
void kgdb_arch_late(void)
{
int i, cpu;
struct perf_event_attr attr;
struct perf_event **pevent;
/*
* Pre-allocate the hw breakpoint structions in the non-atomic
* portion of kgdb because this operation requires mutexs to
* complete.
*/
hw_breakpoint_init(&attr);
attr.bp_addr = (unsigned long)kgdb_arch_init;
attr.bp_len = HW_BREAKPOINT_LEN_1;
attr.bp_type = HW_BREAKPOINT_W;
attr.disabled = 1;
for (i = 0; i < HBP_NUM; i++) {
if (breakinfo[i].pev)
continue;
breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
if (IS_ERR((void * __force)breakinfo[i].pev)) {
printk(KERN_ERR "kgdb: Could not allocate hw"
"breakpoints\nDisabling the kernel debugger\n");
breakinfo[i].pev = NULL;
kgdb_arch_exit();
return;
}
for_each_online_cpu(cpu) {
pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
pevent[0]->hw.sample_period = 1;
pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
if (pevent[0]->destroy != NULL) {
pevent[0]->destroy = NULL;
release_bp_slot(*pevent);
}
}
}
}
/**
* kgdb_arch_exit - Perform any architecture specific uninitalization.
*
* This function will handle the uninitalization of any architecture
* specific callbacks, for dynamic registration and unregistration.
*/
void kgdb_arch_exit(void)
{
int i;
for (i = 0; i < 4; i++) {
if (breakinfo[i].pev) {
unregister_wide_hw_breakpoint(breakinfo[i].pev);
breakinfo[i].pev = NULL;
}
}
unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
unregister_nmi_handler(NMI_LOCAL, "kgdb");
unregister_die_notifier(&kgdb_notifier);
}
/**
*
* kgdb_skipexception - Bail out of KGDB when we've been triggered.
* @exception: Exception vector number
* @regs: Current &struct pt_regs.
*
* On some architectures we need to skip a breakpoint exception when
* it occurs after a breakpoint has been removed.
*
* Skip an int3 exception when it occurs after a breakpoint has been
* removed. Backtrack eip by 1 since the int3 would have caused it to
* increment by 1.
*/
int kgdb_skipexception(int exception, struct pt_regs *regs)
{
if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
regs->ip -= 1;
return 1;
}
return 0;
}
unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
{
if (exception == 3)
return instruction_pointer(regs) - 1;
return instruction_pointer(regs);
}
void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
{
regs->ip = ip;
}
int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
{
int err;
bpt->type = BP_BREAKPOINT;
err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
BREAK_INSTR_SIZE);
if (err)
return err;
err = probe_kernel_write((char *)bpt->bpt_addr,
arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
if (!err)
return err;
/*
* It is safe to call text_poke_kgdb() because normal kernel execution
* is stopped on all cores, so long as the text_mutex is not locked.
*/
if (mutex_is_locked(&text_mutex))
return -EBUSY;
text_poke_kgdb((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
BREAK_INSTR_SIZE);
bpt->type = BP_POKE_BREAKPOINT;
return err;
}
int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
{
if (bpt->type != BP_POKE_BREAKPOINT)
goto knl_write;
/*
* It is safe to call text_poke_kgdb() because normal kernel execution
* is stopped on all cores, so long as the text_mutex is not locked.
*/
if (mutex_is_locked(&text_mutex))
goto knl_write;
text_poke_kgdb((void *)bpt->bpt_addr, bpt->saved_instr,
BREAK_INSTR_SIZE);
return 0;
knl_write:
return probe_kernel_write((char *)bpt->bpt_addr,
(char *)bpt->saved_instr, BREAK_INSTR_SIZE);
}
const struct kgdb_arch arch_kgdb_ops = {
/* Breakpoint instruction: */
.gdb_bpt_instr = { 0xcc },
.flags = KGDB_HW_BREAKPOINT,
.set_hw_breakpoint = kgdb_set_hw_break,
.remove_hw_breakpoint = kgdb_remove_hw_break,
.disable_hw_break = kgdb_disable_hw_debug,
.remove_all_hw_break = kgdb_remove_all_hw_break,
.correct_hw_break = kgdb_correct_hw_break,
};