mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-20 10:50:01 +07:00
03896ef1f0
Change the names of the validation functions to better reflect what they are doing. The uppermost ones are reading entries from the rings and only the bottom ones validate entries. So xskq_cons_read_ is a better prefix name. Also change the xskq_cons_read_ functions to return a bool as the the descriptor or address is already returned by reference in the parameters. Everyone is using the return value as a bool anyway. Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/1576759171-28550-9-git-send-email-magnus.karlsson@intel.com
368 lines
9.2 KiB
C
368 lines
9.2 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/* XDP user-space ring structure
|
|
* Copyright(c) 2018 Intel Corporation.
|
|
*/
|
|
|
|
#ifndef _LINUX_XSK_QUEUE_H
|
|
#define _LINUX_XSK_QUEUE_H
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/if_xdp.h>
|
|
#include <net/xdp_sock.h>
|
|
|
|
struct xdp_ring {
|
|
u32 producer ____cacheline_aligned_in_smp;
|
|
u32 consumer ____cacheline_aligned_in_smp;
|
|
u32 flags;
|
|
};
|
|
|
|
/* Used for the RX and TX queues for packets */
|
|
struct xdp_rxtx_ring {
|
|
struct xdp_ring ptrs;
|
|
struct xdp_desc desc[0] ____cacheline_aligned_in_smp;
|
|
};
|
|
|
|
/* Used for the fill and completion queues for buffers */
|
|
struct xdp_umem_ring {
|
|
struct xdp_ring ptrs;
|
|
u64 desc[0] ____cacheline_aligned_in_smp;
|
|
};
|
|
|
|
struct xsk_queue {
|
|
u64 chunk_mask;
|
|
u64 size;
|
|
u32 ring_mask;
|
|
u32 nentries;
|
|
u32 cached_prod;
|
|
u32 cached_cons;
|
|
struct xdp_ring *ring;
|
|
u64 invalid_descs;
|
|
};
|
|
|
|
/* The structure of the shared state of the rings are the same as the
|
|
* ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
|
|
* ring, the kernel is the producer and user space is the consumer. For
|
|
* the Tx and fill rings, the kernel is the consumer and user space is
|
|
* the producer.
|
|
*
|
|
* producer consumer
|
|
*
|
|
* if (LOAD ->consumer) { LOAD ->producer
|
|
* (A) smp_rmb() (C)
|
|
* STORE $data LOAD $data
|
|
* smp_wmb() (B) smp_mb() (D)
|
|
* STORE ->producer STORE ->consumer
|
|
* }
|
|
*
|
|
* (A) pairs with (D), and (B) pairs with (C).
|
|
*
|
|
* Starting with (B), it protects the data from being written after
|
|
* the producer pointer. If this barrier was missing, the consumer
|
|
* could observe the producer pointer being set and thus load the data
|
|
* before the producer has written the new data. The consumer would in
|
|
* this case load the old data.
|
|
*
|
|
* (C) protects the consumer from speculatively loading the data before
|
|
* the producer pointer actually has been read. If we do not have this
|
|
* barrier, some architectures could load old data as speculative loads
|
|
* are not discarded as the CPU does not know there is a dependency
|
|
* between ->producer and data.
|
|
*
|
|
* (A) is a control dependency that separates the load of ->consumer
|
|
* from the stores of $data. In case ->consumer indicates there is no
|
|
* room in the buffer to store $data we do not. So no barrier is needed.
|
|
*
|
|
* (D) protects the load of the data to be observed to happen after the
|
|
* store of the consumer pointer. If we did not have this memory
|
|
* barrier, the producer could observe the consumer pointer being set
|
|
* and overwrite the data with a new value before the consumer got the
|
|
* chance to read the old value. The consumer would thus miss reading
|
|
* the old entry and very likely read the new entry twice, once right
|
|
* now and again after circling through the ring.
|
|
*/
|
|
|
|
/* Common functions operating for both RXTX and umem queues */
|
|
|
|
static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
|
|
{
|
|
return q ? q->invalid_descs : 0;
|
|
}
|
|
|
|
static inline void __xskq_cons_release(struct xsk_queue *q)
|
|
{
|
|
smp_mb(); /* D, matches A */
|
|
WRITE_ONCE(q->ring->consumer, q->cached_cons);
|
|
}
|
|
|
|
static inline void __xskq_cons_peek(struct xsk_queue *q)
|
|
{
|
|
/* Refresh the local pointer */
|
|
q->cached_prod = READ_ONCE(q->ring->producer);
|
|
smp_rmb(); /* C, matches B */
|
|
}
|
|
|
|
static inline void xskq_cons_get_entries(struct xsk_queue *q)
|
|
{
|
|
__xskq_cons_release(q);
|
|
__xskq_cons_peek(q);
|
|
}
|
|
|
|
static inline bool xskq_prod_is_full(struct xsk_queue *q)
|
|
{
|
|
u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
|
|
|
|
if (free_entries)
|
|
return false;
|
|
|
|
/* Refresh the local tail pointer */
|
|
q->cached_cons = READ_ONCE(q->ring->consumer);
|
|
free_entries = q->nentries - (q->cached_prod - q->cached_cons);
|
|
|
|
return !free_entries;
|
|
}
|
|
|
|
static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
|
|
{
|
|
u32 entries = q->cached_prod - q->cached_cons;
|
|
|
|
if (entries >= cnt)
|
|
return true;
|
|
|
|
__xskq_cons_peek(q);
|
|
entries = q->cached_prod - q->cached_cons;
|
|
|
|
return entries >= cnt;
|
|
}
|
|
|
|
/* UMEM queue */
|
|
|
|
static inline bool xskq_cons_crosses_non_contig_pg(struct xdp_umem *umem,
|
|
u64 addr,
|
|
u64 length)
|
|
{
|
|
bool cross_pg = (addr & (PAGE_SIZE - 1)) + length > PAGE_SIZE;
|
|
bool next_pg_contig =
|
|
(unsigned long)umem->pages[(addr >> PAGE_SHIFT)].addr &
|
|
XSK_NEXT_PG_CONTIG_MASK;
|
|
|
|
return cross_pg && !next_pg_contig;
|
|
}
|
|
|
|
static inline bool xskq_cons_is_valid_addr(struct xsk_queue *q, u64 addr)
|
|
{
|
|
if (addr >= q->size) {
|
|
q->invalid_descs++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool xskq_cons_is_valid_unaligned(struct xsk_queue *q,
|
|
u64 addr,
|
|
u64 length,
|
|
struct xdp_umem *umem)
|
|
{
|
|
u64 base_addr = xsk_umem_extract_addr(addr);
|
|
|
|
addr = xsk_umem_add_offset_to_addr(addr);
|
|
if (base_addr >= q->size || addr >= q->size ||
|
|
xskq_cons_crosses_non_contig_pg(umem, addr, length)) {
|
|
q->invalid_descs++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool xskq_cons_read_addr(struct xsk_queue *q, u64 *addr,
|
|
struct xdp_umem *umem)
|
|
{
|
|
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
|
|
|
|
while (q->cached_cons != q->cached_prod) {
|
|
u32 idx = q->cached_cons & q->ring_mask;
|
|
|
|
*addr = READ_ONCE(ring->desc[idx]) & q->chunk_mask;
|
|
|
|
if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
|
|
if (xskq_cons_is_valid_unaligned(q, *addr,
|
|
umem->chunk_size_nohr,
|
|
umem))
|
|
return true;
|
|
goto out;
|
|
}
|
|
|
|
if (xskq_cons_is_valid_addr(q, *addr))
|
|
return true;
|
|
|
|
out:
|
|
q->cached_cons++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool xskq_cons_peek_addr(struct xsk_queue *q, u64 *addr,
|
|
struct xdp_umem *umem)
|
|
{
|
|
if (q->cached_prod == q->cached_cons)
|
|
xskq_cons_get_entries(q);
|
|
return xskq_cons_read_addr(q, addr, umem);
|
|
}
|
|
|
|
static inline void xskq_cons_release(struct xsk_queue *q)
|
|
{
|
|
/* To improve performance, only update local state here.
|
|
* Do the actual release operation when we get new entries
|
|
* from the ring in xskq_cons_get_entries() instead.
|
|
*/
|
|
q->cached_cons++;
|
|
}
|
|
|
|
static inline int xskq_prod_reserve(struct xsk_queue *q)
|
|
{
|
|
if (xskq_prod_is_full(q))
|
|
return -ENOSPC;
|
|
|
|
/* A, matches D */
|
|
q->cached_prod++;
|
|
return 0;
|
|
}
|
|
|
|
static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
|
|
{
|
|
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
|
|
|
|
if (xskq_prod_is_full(q))
|
|
return -ENOSPC;
|
|
|
|
/* A, matches D */
|
|
ring->desc[q->cached_prod++ & q->ring_mask] = addr;
|
|
return 0;
|
|
}
|
|
|
|
static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
|
|
{
|
|
/* Order producer and data */
|
|
smp_wmb(); /* B, matches C */
|
|
|
|
WRITE_ONCE(q->ring->producer, idx);
|
|
}
|
|
|
|
static inline void xskq_prod_submit(struct xsk_queue *q)
|
|
{
|
|
__xskq_prod_submit(q, q->cached_prod);
|
|
}
|
|
|
|
static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
|
|
{
|
|
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
|
|
u32 idx = q->ring->producer;
|
|
|
|
ring->desc[idx++ & q->ring_mask] = addr;
|
|
|
|
__xskq_prod_submit(q, idx);
|
|
}
|
|
|
|
static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
|
|
{
|
|
__xskq_prod_submit(q, q->ring->producer + nb_entries);
|
|
}
|
|
|
|
/* Rx/Tx queue */
|
|
|
|
static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
|
|
struct xdp_desc *d,
|
|
struct xdp_umem *umem)
|
|
{
|
|
if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
|
|
if (!xskq_cons_is_valid_unaligned(q, d->addr, d->len, umem))
|
|
return false;
|
|
|
|
if (d->len > umem->chunk_size_nohr || d->options) {
|
|
q->invalid_descs++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (!xskq_cons_is_valid_addr(q, d->addr))
|
|
return false;
|
|
|
|
if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) ||
|
|
d->options) {
|
|
q->invalid_descs++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool xskq_cons_read_desc(struct xsk_queue *q,
|
|
struct xdp_desc *desc,
|
|
struct xdp_umem *umem)
|
|
{
|
|
while (q->cached_cons != q->cached_prod) {
|
|
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
|
|
u32 idx = q->cached_cons & q->ring_mask;
|
|
|
|
*desc = READ_ONCE(ring->desc[idx]);
|
|
if (xskq_cons_is_valid_desc(q, desc, umem))
|
|
return true;
|
|
|
|
q->cached_cons++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
|
|
struct xdp_desc *desc,
|
|
struct xdp_umem *umem)
|
|
{
|
|
if (q->cached_prod == q->cached_cons)
|
|
xskq_cons_get_entries(q);
|
|
return xskq_cons_read_desc(q, desc, umem);
|
|
}
|
|
|
|
static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
|
|
u64 addr, u32 len)
|
|
{
|
|
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
|
|
u32 idx;
|
|
|
|
if (xskq_prod_is_full(q))
|
|
return -ENOSPC;
|
|
|
|
/* A, matches D */
|
|
idx = q->cached_prod++ & q->ring_mask;
|
|
ring->desc[idx].addr = addr;
|
|
ring->desc[idx].len = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool xskq_cons_is_full(struct xsk_queue *q)
|
|
{
|
|
/* No barriers needed since data is not accessed */
|
|
return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
|
|
q->nentries;
|
|
}
|
|
|
|
static inline bool xskq_prod_is_empty(struct xsk_queue *q)
|
|
{
|
|
/* No barriers needed since data is not accessed */
|
|
return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
|
|
}
|
|
|
|
void xskq_set_umem(struct xsk_queue *q, u64 size, u64 chunk_mask);
|
|
struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
|
|
void xskq_destroy(struct xsk_queue *q_ops);
|
|
|
|
/* Executed by the core when the entire UMEM gets freed */
|
|
void xsk_reuseq_destroy(struct xdp_umem *umem);
|
|
|
|
#endif /* _LINUX_XSK_QUEUE_H */
|