mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 21:25:33 +07:00
457c899653
Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
529 lines
18 KiB
C
529 lines
18 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* linux/percpu-defs.h - basic definitions for percpu areas
|
|
*
|
|
* DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
|
|
*
|
|
* This file is separate from linux/percpu.h to avoid cyclic inclusion
|
|
* dependency from arch header files. Only to be included from
|
|
* asm/percpu.h.
|
|
*
|
|
* This file includes macros necessary to declare percpu sections and
|
|
* variables, and definitions of percpu accessors and operations. It
|
|
* should provide enough percpu features to arch header files even when
|
|
* they can only include asm/percpu.h to avoid cyclic inclusion dependency.
|
|
*/
|
|
|
|
#ifndef _LINUX_PERCPU_DEFS_H
|
|
#define _LINUX_PERCPU_DEFS_H
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
#ifdef MODULE
|
|
#define PER_CPU_SHARED_ALIGNED_SECTION ""
|
|
#define PER_CPU_ALIGNED_SECTION ""
|
|
#else
|
|
#define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
|
|
#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
|
|
#endif
|
|
#define PER_CPU_FIRST_SECTION "..first"
|
|
|
|
#else
|
|
|
|
#define PER_CPU_SHARED_ALIGNED_SECTION ""
|
|
#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
|
|
#define PER_CPU_FIRST_SECTION ""
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Base implementations of per-CPU variable declarations and definitions, where
|
|
* the section in which the variable is to be placed is provided by the
|
|
* 'sec' argument. This may be used to affect the parameters governing the
|
|
* variable's storage.
|
|
*
|
|
* NOTE! The sections for the DECLARE and for the DEFINE must match, lest
|
|
* linkage errors occur due the compiler generating the wrong code to access
|
|
* that section.
|
|
*/
|
|
#define __PCPU_ATTRS(sec) \
|
|
__percpu __attribute__((section(PER_CPU_BASE_SECTION sec))) \
|
|
PER_CPU_ATTRIBUTES
|
|
|
|
#define __PCPU_DUMMY_ATTRS \
|
|
__attribute__((section(".discard"), unused))
|
|
|
|
/*
|
|
* s390 and alpha modules require percpu variables to be defined as
|
|
* weak to force the compiler to generate GOT based external
|
|
* references for them. This is necessary because percpu sections
|
|
* will be located outside of the usually addressable area.
|
|
*
|
|
* This definition puts the following two extra restrictions when
|
|
* defining percpu variables.
|
|
*
|
|
* 1. The symbol must be globally unique, even the static ones.
|
|
* 2. Static percpu variables cannot be defined inside a function.
|
|
*
|
|
* Archs which need weak percpu definitions should define
|
|
* ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
|
|
*
|
|
* To ensure that the generic code observes the above two
|
|
* restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
|
|
* definition is used for all cases.
|
|
*/
|
|
#if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
|
|
/*
|
|
* __pcpu_scope_* dummy variable is used to enforce scope. It
|
|
* receives the static modifier when it's used in front of
|
|
* DEFINE_PER_CPU() and will trigger build failure if
|
|
* DECLARE_PER_CPU() is used for the same variable.
|
|
*
|
|
* __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
|
|
* such that hidden weak symbol collision, which will cause unrelated
|
|
* variables to share the same address, can be detected during build.
|
|
*/
|
|
#define DECLARE_PER_CPU_SECTION(type, name, sec) \
|
|
extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \
|
|
extern __PCPU_ATTRS(sec) __typeof__(type) name
|
|
|
|
#define DEFINE_PER_CPU_SECTION(type, name, sec) \
|
|
__PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \
|
|
extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \
|
|
__PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \
|
|
extern __PCPU_ATTRS(sec) __typeof__(type) name; \
|
|
__PCPU_ATTRS(sec) __weak __typeof__(type) name
|
|
#else
|
|
/*
|
|
* Normal declaration and definition macros.
|
|
*/
|
|
#define DECLARE_PER_CPU_SECTION(type, name, sec) \
|
|
extern __PCPU_ATTRS(sec) __typeof__(type) name
|
|
|
|
#define DEFINE_PER_CPU_SECTION(type, name, sec) \
|
|
__PCPU_ATTRS(sec) __typeof__(type) name
|
|
#endif
|
|
|
|
/*
|
|
* Variant on the per-CPU variable declaration/definition theme used for
|
|
* ordinary per-CPU variables.
|
|
*/
|
|
#define DECLARE_PER_CPU(type, name) \
|
|
DECLARE_PER_CPU_SECTION(type, name, "")
|
|
|
|
#define DEFINE_PER_CPU(type, name) \
|
|
DEFINE_PER_CPU_SECTION(type, name, "")
|
|
|
|
/*
|
|
* Declaration/definition used for per-CPU variables that must come first in
|
|
* the set of variables.
|
|
*/
|
|
#define DECLARE_PER_CPU_FIRST(type, name) \
|
|
DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
|
|
|
|
#define DEFINE_PER_CPU_FIRST(type, name) \
|
|
DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
|
|
|
|
/*
|
|
* Declaration/definition used for per-CPU variables that must be cacheline
|
|
* aligned under SMP conditions so that, whilst a particular instance of the
|
|
* data corresponds to a particular CPU, inefficiencies due to direct access by
|
|
* other CPUs are reduced by preventing the data from unnecessarily spanning
|
|
* cachelines.
|
|
*
|
|
* An example of this would be statistical data, where each CPU's set of data
|
|
* is updated by that CPU alone, but the data from across all CPUs is collated
|
|
* by a CPU processing a read from a proc file.
|
|
*/
|
|
#define DECLARE_PER_CPU_SHARED_ALIGNED(type, name) \
|
|
DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
|
|
____cacheline_aligned_in_smp
|
|
|
|
#define DEFINE_PER_CPU_SHARED_ALIGNED(type, name) \
|
|
DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
|
|
____cacheline_aligned_in_smp
|
|
|
|
#define DECLARE_PER_CPU_ALIGNED(type, name) \
|
|
DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \
|
|
____cacheline_aligned
|
|
|
|
#define DEFINE_PER_CPU_ALIGNED(type, name) \
|
|
DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \
|
|
____cacheline_aligned
|
|
|
|
/*
|
|
* Declaration/definition used for per-CPU variables that must be page aligned.
|
|
*/
|
|
#define DECLARE_PER_CPU_PAGE_ALIGNED(type, name) \
|
|
DECLARE_PER_CPU_SECTION(type, name, "..page_aligned") \
|
|
__aligned(PAGE_SIZE)
|
|
|
|
#define DEFINE_PER_CPU_PAGE_ALIGNED(type, name) \
|
|
DEFINE_PER_CPU_SECTION(type, name, "..page_aligned") \
|
|
__aligned(PAGE_SIZE)
|
|
|
|
/*
|
|
* Declaration/definition used for per-CPU variables that must be read mostly.
|
|
*/
|
|
#define DECLARE_PER_CPU_READ_MOSTLY(type, name) \
|
|
DECLARE_PER_CPU_SECTION(type, name, "..read_mostly")
|
|
|
|
#define DEFINE_PER_CPU_READ_MOSTLY(type, name) \
|
|
DEFINE_PER_CPU_SECTION(type, name, "..read_mostly")
|
|
|
|
/*
|
|
* Declaration/definition used for per-CPU variables that should be accessed
|
|
* as decrypted when memory encryption is enabled in the guest.
|
|
*/
|
|
#if defined(CONFIG_VIRTUALIZATION) && defined(CONFIG_AMD_MEM_ENCRYPT)
|
|
|
|
#define DECLARE_PER_CPU_DECRYPTED(type, name) \
|
|
DECLARE_PER_CPU_SECTION(type, name, "..decrypted")
|
|
|
|
#define DEFINE_PER_CPU_DECRYPTED(type, name) \
|
|
DEFINE_PER_CPU_SECTION(type, name, "..decrypted")
|
|
#else
|
|
#define DEFINE_PER_CPU_DECRYPTED(type, name) DEFINE_PER_CPU(type, name)
|
|
#endif
|
|
|
|
/*
|
|
* Intermodule exports for per-CPU variables. sparse forgets about
|
|
* address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
|
|
* noop if __CHECKER__.
|
|
*/
|
|
#ifndef __CHECKER__
|
|
#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
|
|
#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
|
|
#else
|
|
#define EXPORT_PER_CPU_SYMBOL(var)
|
|
#define EXPORT_PER_CPU_SYMBOL_GPL(var)
|
|
#endif
|
|
|
|
/*
|
|
* Accessors and operations.
|
|
*/
|
|
#ifndef __ASSEMBLY__
|
|
|
|
/*
|
|
* __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating
|
|
* @ptr and is invoked once before a percpu area is accessed by all
|
|
* accessors and operations. This is performed in the generic part of
|
|
* percpu and arch overrides don't need to worry about it; however, if an
|
|
* arch wants to implement an arch-specific percpu accessor or operation,
|
|
* it may use __verify_pcpu_ptr() to verify the parameters.
|
|
*
|
|
* + 0 is required in order to convert the pointer type from a
|
|
* potential array type to a pointer to a single item of the array.
|
|
*/
|
|
#define __verify_pcpu_ptr(ptr) \
|
|
do { \
|
|
const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
|
|
(void)__vpp_verify; \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* Add an offset to a pointer but keep the pointer as-is. Use RELOC_HIDE()
|
|
* to prevent the compiler from making incorrect assumptions about the
|
|
* pointer value. The weird cast keeps both GCC and sparse happy.
|
|
*/
|
|
#define SHIFT_PERCPU_PTR(__p, __offset) \
|
|
RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))
|
|
|
|
#define per_cpu_ptr(ptr, cpu) \
|
|
({ \
|
|
__verify_pcpu_ptr(ptr); \
|
|
SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))); \
|
|
})
|
|
|
|
#define raw_cpu_ptr(ptr) \
|
|
({ \
|
|
__verify_pcpu_ptr(ptr); \
|
|
arch_raw_cpu_ptr(ptr); \
|
|
})
|
|
|
|
#ifdef CONFIG_DEBUG_PREEMPT
|
|
#define this_cpu_ptr(ptr) \
|
|
({ \
|
|
__verify_pcpu_ptr(ptr); \
|
|
SHIFT_PERCPU_PTR(ptr, my_cpu_offset); \
|
|
})
|
|
#else
|
|
#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
|
|
#endif
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
#define VERIFY_PERCPU_PTR(__p) \
|
|
({ \
|
|
__verify_pcpu_ptr(__p); \
|
|
(typeof(*(__p)) __kernel __force *)(__p); \
|
|
})
|
|
|
|
#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
|
|
#define raw_cpu_ptr(ptr) per_cpu_ptr(ptr, 0)
|
|
#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#define per_cpu(var, cpu) (*per_cpu_ptr(&(var), cpu))
|
|
|
|
/*
|
|
* Must be an lvalue. Since @var must be a simple identifier,
|
|
* we force a syntax error here if it isn't.
|
|
*/
|
|
#define get_cpu_var(var) \
|
|
(*({ \
|
|
preempt_disable(); \
|
|
this_cpu_ptr(&var); \
|
|
}))
|
|
|
|
/*
|
|
* The weird & is necessary because sparse considers (void)(var) to be
|
|
* a direct dereference of percpu variable (var).
|
|
*/
|
|
#define put_cpu_var(var) \
|
|
do { \
|
|
(void)&(var); \
|
|
preempt_enable(); \
|
|
} while (0)
|
|
|
|
#define get_cpu_ptr(var) \
|
|
({ \
|
|
preempt_disable(); \
|
|
this_cpu_ptr(var); \
|
|
})
|
|
|
|
#define put_cpu_ptr(var) \
|
|
do { \
|
|
(void)(var); \
|
|
preempt_enable(); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Branching function to split up a function into a set of functions that
|
|
* are called for different scalar sizes of the objects handled.
|
|
*/
|
|
|
|
extern void __bad_size_call_parameter(void);
|
|
|
|
#ifdef CONFIG_DEBUG_PREEMPT
|
|
extern void __this_cpu_preempt_check(const char *op);
|
|
#else
|
|
static inline void __this_cpu_preempt_check(const char *op) { }
|
|
#endif
|
|
|
|
#define __pcpu_size_call_return(stem, variable) \
|
|
({ \
|
|
typeof(variable) pscr_ret__; \
|
|
__verify_pcpu_ptr(&(variable)); \
|
|
switch(sizeof(variable)) { \
|
|
case 1: pscr_ret__ = stem##1(variable); break; \
|
|
case 2: pscr_ret__ = stem##2(variable); break; \
|
|
case 4: pscr_ret__ = stem##4(variable); break; \
|
|
case 8: pscr_ret__ = stem##8(variable); break; \
|
|
default: \
|
|
__bad_size_call_parameter(); break; \
|
|
} \
|
|
pscr_ret__; \
|
|
})
|
|
|
|
#define __pcpu_size_call_return2(stem, variable, ...) \
|
|
({ \
|
|
typeof(variable) pscr2_ret__; \
|
|
__verify_pcpu_ptr(&(variable)); \
|
|
switch(sizeof(variable)) { \
|
|
case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
|
|
case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
|
|
case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
|
|
case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
|
|
default: \
|
|
__bad_size_call_parameter(); break; \
|
|
} \
|
|
pscr2_ret__; \
|
|
})
|
|
|
|
/*
|
|
* Special handling for cmpxchg_double. cmpxchg_double is passed two
|
|
* percpu variables. The first has to be aligned to a double word
|
|
* boundary and the second has to follow directly thereafter.
|
|
* We enforce this on all architectures even if they don't support
|
|
* a double cmpxchg instruction, since it's a cheap requirement, and it
|
|
* avoids breaking the requirement for architectures with the instruction.
|
|
*/
|
|
#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
|
|
({ \
|
|
bool pdcrb_ret__; \
|
|
__verify_pcpu_ptr(&(pcp1)); \
|
|
BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
|
|
VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1))); \
|
|
VM_BUG_ON((unsigned long)(&(pcp2)) != \
|
|
(unsigned long)(&(pcp1)) + sizeof(pcp1)); \
|
|
switch(sizeof(pcp1)) { \
|
|
case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
|
|
case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
|
|
case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
|
|
case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
|
|
default: \
|
|
__bad_size_call_parameter(); break; \
|
|
} \
|
|
pdcrb_ret__; \
|
|
})
|
|
|
|
#define __pcpu_size_call(stem, variable, ...) \
|
|
do { \
|
|
__verify_pcpu_ptr(&(variable)); \
|
|
switch(sizeof(variable)) { \
|
|
case 1: stem##1(variable, __VA_ARGS__);break; \
|
|
case 2: stem##2(variable, __VA_ARGS__);break; \
|
|
case 4: stem##4(variable, __VA_ARGS__);break; \
|
|
case 8: stem##8(variable, __VA_ARGS__);break; \
|
|
default: \
|
|
__bad_size_call_parameter();break; \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
|
|
*
|
|
* Optimized manipulation for memory allocated through the per cpu
|
|
* allocator or for addresses of per cpu variables.
|
|
*
|
|
* These operation guarantee exclusivity of access for other operations
|
|
* on the *same* processor. The assumption is that per cpu data is only
|
|
* accessed by a single processor instance (the current one).
|
|
*
|
|
* The arch code can provide optimized implementation by defining macros
|
|
* for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
|
|
* cpu atomic operations for 2 byte sized RMW actions. If arch code does
|
|
* not provide operations for a scalar size then the fallback in the
|
|
* generic code will be used.
|
|
*
|
|
* cmpxchg_double replaces two adjacent scalars at once. The first two
|
|
* parameters are per cpu variables which have to be of the same size. A
|
|
* truth value is returned to indicate success or failure (since a double
|
|
* register result is difficult to handle). There is very limited hardware
|
|
* support for these operations, so only certain sizes may work.
|
|
*/
|
|
|
|
/*
|
|
* Operations for contexts where we do not want to do any checks for
|
|
* preemptions. Unless strictly necessary, always use [__]this_cpu_*()
|
|
* instead.
|
|
*
|
|
* If there is no other protection through preempt disable and/or disabling
|
|
* interupts then one of these RMW operations can show unexpected behavior
|
|
* because the execution thread was rescheduled on another processor or an
|
|
* interrupt occurred and the same percpu variable was modified from the
|
|
* interrupt context.
|
|
*/
|
|
#define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, pcp)
|
|
#define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, pcp, val)
|
|
#define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, pcp, val)
|
|
#define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, pcp, val)
|
|
#define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, pcp, val)
|
|
#define raw_cpu_add_return(pcp, val) __pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
|
|
#define raw_cpu_xchg(pcp, nval) __pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
|
|
#define raw_cpu_cmpxchg(pcp, oval, nval) \
|
|
__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
|
|
#define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
|
|
#define raw_cpu_sub(pcp, val) raw_cpu_add(pcp, -(val))
|
|
#define raw_cpu_inc(pcp) raw_cpu_add(pcp, 1)
|
|
#define raw_cpu_dec(pcp) raw_cpu_sub(pcp, 1)
|
|
#define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val))
|
|
#define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1)
|
|
#define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1)
|
|
|
|
/*
|
|
* Operations for contexts that are safe from preemption/interrupts. These
|
|
* operations verify that preemption is disabled.
|
|
*/
|
|
#define __this_cpu_read(pcp) \
|
|
({ \
|
|
__this_cpu_preempt_check("read"); \
|
|
raw_cpu_read(pcp); \
|
|
})
|
|
|
|
#define __this_cpu_write(pcp, val) \
|
|
({ \
|
|
__this_cpu_preempt_check("write"); \
|
|
raw_cpu_write(pcp, val); \
|
|
})
|
|
|
|
#define __this_cpu_add(pcp, val) \
|
|
({ \
|
|
__this_cpu_preempt_check("add"); \
|
|
raw_cpu_add(pcp, val); \
|
|
})
|
|
|
|
#define __this_cpu_and(pcp, val) \
|
|
({ \
|
|
__this_cpu_preempt_check("and"); \
|
|
raw_cpu_and(pcp, val); \
|
|
})
|
|
|
|
#define __this_cpu_or(pcp, val) \
|
|
({ \
|
|
__this_cpu_preempt_check("or"); \
|
|
raw_cpu_or(pcp, val); \
|
|
})
|
|
|
|
#define __this_cpu_add_return(pcp, val) \
|
|
({ \
|
|
__this_cpu_preempt_check("add_return"); \
|
|
raw_cpu_add_return(pcp, val); \
|
|
})
|
|
|
|
#define __this_cpu_xchg(pcp, nval) \
|
|
({ \
|
|
__this_cpu_preempt_check("xchg"); \
|
|
raw_cpu_xchg(pcp, nval); \
|
|
})
|
|
|
|
#define __this_cpu_cmpxchg(pcp, oval, nval) \
|
|
({ \
|
|
__this_cpu_preempt_check("cmpxchg"); \
|
|
raw_cpu_cmpxchg(pcp, oval, nval); \
|
|
})
|
|
|
|
#define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
({ __this_cpu_preempt_check("cmpxchg_double"); \
|
|
raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2); \
|
|
})
|
|
|
|
#define __this_cpu_sub(pcp, val) __this_cpu_add(pcp, -(typeof(pcp))(val))
|
|
#define __this_cpu_inc(pcp) __this_cpu_add(pcp, 1)
|
|
#define __this_cpu_dec(pcp) __this_cpu_sub(pcp, 1)
|
|
#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
|
|
#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
|
|
#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
|
|
|
|
/*
|
|
* Operations with implied preemption/interrupt protection. These
|
|
* operations can be used without worrying about preemption or interrupt.
|
|
*/
|
|
#define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, pcp)
|
|
#define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, pcp, val)
|
|
#define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, pcp, val)
|
|
#define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, pcp, val)
|
|
#define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, pcp, val)
|
|
#define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
|
|
#define this_cpu_xchg(pcp, nval) __pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
|
|
#define this_cpu_cmpxchg(pcp, oval, nval) \
|
|
__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
|
|
#define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
|
|
#define this_cpu_sub(pcp, val) this_cpu_add(pcp, -(typeof(pcp))(val))
|
|
#define this_cpu_inc(pcp) this_cpu_add(pcp, 1)
|
|
#define this_cpu_dec(pcp) this_cpu_sub(pcp, 1)
|
|
#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
|
|
#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
|
|
#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
#endif /* _LINUX_PERCPU_DEFS_H */
|