mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 07:06:28 +07:00
8e586137e6
Let caller know the result of adding/removing vlan id to/from vlan filter. In some drivers I make those functions to just return 0. But in those where there is able to see if hw setup went correctly, return value is set appropriately. Signed-off-by: Jiri Pirko <jpirko@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
7133 lines
194 KiB
C
7133 lines
194 KiB
C
/*******************************************************************************
|
|
|
|
Intel(R) Gigabit Ethernet Linux driver
|
|
Copyright(c) 2007-2011 Intel Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms and conditions of the GNU General Public License,
|
|
version 2, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
The full GNU General Public License is included in this distribution in
|
|
the file called "COPYING".
|
|
|
|
Contact Information:
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/slab.h>
|
|
#include <net/checksum.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include <linux/net_tstamp.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-aspm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/aer.h>
|
|
#include <linux/prefetch.h>
|
|
#ifdef CONFIG_IGB_DCA
|
|
#include <linux/dca.h>
|
|
#endif
|
|
#include "igb.h"
|
|
|
|
#define MAJ 3
|
|
#define MIN 2
|
|
#define BUILD 10
|
|
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
|
|
__stringify(BUILD) "-k"
|
|
char igb_driver_name[] = "igb";
|
|
char igb_driver_version[] = DRV_VERSION;
|
|
static const char igb_driver_string[] =
|
|
"Intel(R) Gigabit Ethernet Network Driver";
|
|
static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
|
|
|
|
static const struct e1000_info *igb_info_tbl[] = {
|
|
[board_82575] = &e1000_82575_info,
|
|
};
|
|
|
|
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
|
|
/* required last entry */
|
|
{0, }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
|
|
|
|
void igb_reset(struct igb_adapter *);
|
|
static int igb_setup_all_tx_resources(struct igb_adapter *);
|
|
static int igb_setup_all_rx_resources(struct igb_adapter *);
|
|
static void igb_free_all_tx_resources(struct igb_adapter *);
|
|
static void igb_free_all_rx_resources(struct igb_adapter *);
|
|
static void igb_setup_mrqc(struct igb_adapter *);
|
|
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
|
|
static void __devexit igb_remove(struct pci_dev *pdev);
|
|
static void igb_init_hw_timer(struct igb_adapter *adapter);
|
|
static int igb_sw_init(struct igb_adapter *);
|
|
static int igb_open(struct net_device *);
|
|
static int igb_close(struct net_device *);
|
|
static void igb_configure_tx(struct igb_adapter *);
|
|
static void igb_configure_rx(struct igb_adapter *);
|
|
static void igb_clean_all_tx_rings(struct igb_adapter *);
|
|
static void igb_clean_all_rx_rings(struct igb_adapter *);
|
|
static void igb_clean_tx_ring(struct igb_ring *);
|
|
static void igb_clean_rx_ring(struct igb_ring *);
|
|
static void igb_set_rx_mode(struct net_device *);
|
|
static void igb_update_phy_info(unsigned long);
|
|
static void igb_watchdog(unsigned long);
|
|
static void igb_watchdog_task(struct work_struct *);
|
|
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
|
|
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
|
|
struct rtnl_link_stats64 *stats);
|
|
static int igb_change_mtu(struct net_device *, int);
|
|
static int igb_set_mac(struct net_device *, void *);
|
|
static void igb_set_uta(struct igb_adapter *adapter);
|
|
static irqreturn_t igb_intr(int irq, void *);
|
|
static irqreturn_t igb_intr_msi(int irq, void *);
|
|
static irqreturn_t igb_msix_other(int irq, void *);
|
|
static irqreturn_t igb_msix_ring(int irq, void *);
|
|
#ifdef CONFIG_IGB_DCA
|
|
static void igb_update_dca(struct igb_q_vector *);
|
|
static void igb_setup_dca(struct igb_adapter *);
|
|
#endif /* CONFIG_IGB_DCA */
|
|
static int igb_poll(struct napi_struct *, int);
|
|
static bool igb_clean_tx_irq(struct igb_q_vector *);
|
|
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
|
|
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
|
|
static void igb_tx_timeout(struct net_device *);
|
|
static void igb_reset_task(struct work_struct *);
|
|
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
|
|
static int igb_vlan_rx_add_vid(struct net_device *, u16);
|
|
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
|
|
static void igb_restore_vlan(struct igb_adapter *);
|
|
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
|
|
static void igb_ping_all_vfs(struct igb_adapter *);
|
|
static void igb_msg_task(struct igb_adapter *);
|
|
static void igb_vmm_control(struct igb_adapter *);
|
|
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
|
|
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
|
|
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
|
|
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
|
|
int vf, u16 vlan, u8 qos);
|
|
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
|
|
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
|
|
struct ifla_vf_info *ivi);
|
|
static void igb_check_vf_rate_limit(struct igb_adapter *);
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
|
|
static int igb_find_enabled_vfs(struct igb_adapter *adapter);
|
|
static int igb_check_vf_assignment(struct igb_adapter *adapter);
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
static int igb_suspend(struct pci_dev *, pm_message_t);
|
|
static int igb_resume(struct pci_dev *);
|
|
#endif
|
|
static void igb_shutdown(struct pci_dev *);
|
|
#ifdef CONFIG_IGB_DCA
|
|
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
|
|
static struct notifier_block dca_notifier = {
|
|
.notifier_call = igb_notify_dca,
|
|
.next = NULL,
|
|
.priority = 0
|
|
};
|
|
#endif
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/* for netdump / net console */
|
|
static void igb_netpoll(struct net_device *);
|
|
#endif
|
|
#ifdef CONFIG_PCI_IOV
|
|
static unsigned int max_vfs = 0;
|
|
module_param(max_vfs, uint, 0);
|
|
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
|
|
"per physical function");
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
|
|
pci_channel_state_t);
|
|
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
|
|
static void igb_io_resume(struct pci_dev *);
|
|
|
|
static struct pci_error_handlers igb_err_handler = {
|
|
.error_detected = igb_io_error_detected,
|
|
.slot_reset = igb_io_slot_reset,
|
|
.resume = igb_io_resume,
|
|
};
|
|
|
|
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
|
|
|
|
static struct pci_driver igb_driver = {
|
|
.name = igb_driver_name,
|
|
.id_table = igb_pci_tbl,
|
|
.probe = igb_probe,
|
|
.remove = __devexit_p(igb_remove),
|
|
#ifdef CONFIG_PM
|
|
/* Power Management Hooks */
|
|
.suspend = igb_suspend,
|
|
.resume = igb_resume,
|
|
#endif
|
|
.shutdown = igb_shutdown,
|
|
.err_handler = &igb_err_handler
|
|
};
|
|
|
|
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
|
|
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
struct igb_reg_info {
|
|
u32 ofs;
|
|
char *name;
|
|
};
|
|
|
|
static const struct igb_reg_info igb_reg_info_tbl[] = {
|
|
|
|
/* General Registers */
|
|
{E1000_CTRL, "CTRL"},
|
|
{E1000_STATUS, "STATUS"},
|
|
{E1000_CTRL_EXT, "CTRL_EXT"},
|
|
|
|
/* Interrupt Registers */
|
|
{E1000_ICR, "ICR"},
|
|
|
|
/* RX Registers */
|
|
{E1000_RCTL, "RCTL"},
|
|
{E1000_RDLEN(0), "RDLEN"},
|
|
{E1000_RDH(0), "RDH"},
|
|
{E1000_RDT(0), "RDT"},
|
|
{E1000_RXDCTL(0), "RXDCTL"},
|
|
{E1000_RDBAL(0), "RDBAL"},
|
|
{E1000_RDBAH(0), "RDBAH"},
|
|
|
|
/* TX Registers */
|
|
{E1000_TCTL, "TCTL"},
|
|
{E1000_TDBAL(0), "TDBAL"},
|
|
{E1000_TDBAH(0), "TDBAH"},
|
|
{E1000_TDLEN(0), "TDLEN"},
|
|
{E1000_TDH(0), "TDH"},
|
|
{E1000_TDT(0), "TDT"},
|
|
{E1000_TXDCTL(0), "TXDCTL"},
|
|
{E1000_TDFH, "TDFH"},
|
|
{E1000_TDFT, "TDFT"},
|
|
{E1000_TDFHS, "TDFHS"},
|
|
{E1000_TDFPC, "TDFPC"},
|
|
|
|
/* List Terminator */
|
|
{}
|
|
};
|
|
|
|
/*
|
|
* igb_regdump - register printout routine
|
|
*/
|
|
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
|
|
{
|
|
int n = 0;
|
|
char rname[16];
|
|
u32 regs[8];
|
|
|
|
switch (reginfo->ofs) {
|
|
case E1000_RDLEN(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_RDLEN(n));
|
|
break;
|
|
case E1000_RDH(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_RDH(n));
|
|
break;
|
|
case E1000_RDT(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_RDT(n));
|
|
break;
|
|
case E1000_RXDCTL(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_RXDCTL(n));
|
|
break;
|
|
case E1000_RDBAL(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_RDBAL(n));
|
|
break;
|
|
case E1000_RDBAH(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_RDBAH(n));
|
|
break;
|
|
case E1000_TDBAL(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_RDBAL(n));
|
|
break;
|
|
case E1000_TDBAH(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_TDBAH(n));
|
|
break;
|
|
case E1000_TDLEN(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_TDLEN(n));
|
|
break;
|
|
case E1000_TDH(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_TDH(n));
|
|
break;
|
|
case E1000_TDT(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_TDT(n));
|
|
break;
|
|
case E1000_TXDCTL(0):
|
|
for (n = 0; n < 4; n++)
|
|
regs[n] = rd32(E1000_TXDCTL(n));
|
|
break;
|
|
default:
|
|
pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
|
|
return;
|
|
}
|
|
|
|
snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
|
|
pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
|
|
regs[2], regs[3]);
|
|
}
|
|
|
|
/*
|
|
* igb_dump - Print registers, tx-rings and rx-rings
|
|
*/
|
|
static void igb_dump(struct igb_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct igb_reg_info *reginfo;
|
|
struct igb_ring *tx_ring;
|
|
union e1000_adv_tx_desc *tx_desc;
|
|
struct my_u0 { u64 a; u64 b; } *u0;
|
|
struct igb_ring *rx_ring;
|
|
union e1000_adv_rx_desc *rx_desc;
|
|
u32 staterr;
|
|
u16 i, n;
|
|
|
|
if (!netif_msg_hw(adapter))
|
|
return;
|
|
|
|
/* Print netdevice Info */
|
|
if (netdev) {
|
|
dev_info(&adapter->pdev->dev, "Net device Info\n");
|
|
pr_info("Device Name state trans_start "
|
|
"last_rx\n");
|
|
pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
|
|
netdev->state, netdev->trans_start, netdev->last_rx);
|
|
}
|
|
|
|
/* Print Registers */
|
|
dev_info(&adapter->pdev->dev, "Register Dump\n");
|
|
pr_info(" Register Name Value\n");
|
|
for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
|
|
reginfo->name; reginfo++) {
|
|
igb_regdump(hw, reginfo);
|
|
}
|
|
|
|
/* Print TX Ring Summary */
|
|
if (!netdev || !netif_running(netdev))
|
|
goto exit;
|
|
|
|
dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
|
|
pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
|
|
for (n = 0; n < adapter->num_tx_queues; n++) {
|
|
struct igb_tx_buffer *buffer_info;
|
|
tx_ring = adapter->tx_ring[n];
|
|
buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
|
|
pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
|
|
n, tx_ring->next_to_use, tx_ring->next_to_clean,
|
|
(u64)buffer_info->dma,
|
|
buffer_info->length,
|
|
buffer_info->next_to_watch,
|
|
(u64)buffer_info->time_stamp);
|
|
}
|
|
|
|
/* Print TX Rings */
|
|
if (!netif_msg_tx_done(adapter))
|
|
goto rx_ring_summary;
|
|
|
|
dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
|
|
|
|
/* Transmit Descriptor Formats
|
|
*
|
|
* Advanced Transmit Descriptor
|
|
* +--------------------------------------------------------------+
|
|
* 0 | Buffer Address [63:0] |
|
|
* +--------------------------------------------------------------+
|
|
* 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
|
|
* +--------------------------------------------------------------+
|
|
* 63 46 45 40 39 38 36 35 32 31 24 15 0
|
|
*/
|
|
|
|
for (n = 0; n < adapter->num_tx_queues; n++) {
|
|
tx_ring = adapter->tx_ring[n];
|
|
pr_info("------------------------------------\n");
|
|
pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
|
|
pr_info("------------------------------------\n");
|
|
pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
|
|
"[bi->dma ] leng ntw timestamp "
|
|
"bi->skb\n");
|
|
|
|
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
|
|
const char *next_desc;
|
|
struct igb_tx_buffer *buffer_info;
|
|
tx_desc = IGB_TX_DESC(tx_ring, i);
|
|
buffer_info = &tx_ring->tx_buffer_info[i];
|
|
u0 = (struct my_u0 *)tx_desc;
|
|
if (i == tx_ring->next_to_use &&
|
|
i == tx_ring->next_to_clean)
|
|
next_desc = " NTC/U";
|
|
else if (i == tx_ring->next_to_use)
|
|
next_desc = " NTU";
|
|
else if (i == tx_ring->next_to_clean)
|
|
next_desc = " NTC";
|
|
else
|
|
next_desc = "";
|
|
|
|
pr_info("T [0x%03X] %016llX %016llX %016llX"
|
|
" %04X %p %016llX %p%s\n", i,
|
|
le64_to_cpu(u0->a),
|
|
le64_to_cpu(u0->b),
|
|
(u64)buffer_info->dma,
|
|
buffer_info->length,
|
|
buffer_info->next_to_watch,
|
|
(u64)buffer_info->time_stamp,
|
|
buffer_info->skb, next_desc);
|
|
|
|
if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
|
|
print_hex_dump(KERN_INFO, "",
|
|
DUMP_PREFIX_ADDRESS,
|
|
16, 1, phys_to_virt(buffer_info->dma),
|
|
buffer_info->length, true);
|
|
}
|
|
}
|
|
|
|
/* Print RX Rings Summary */
|
|
rx_ring_summary:
|
|
dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
|
|
pr_info("Queue [NTU] [NTC]\n");
|
|
for (n = 0; n < adapter->num_rx_queues; n++) {
|
|
rx_ring = adapter->rx_ring[n];
|
|
pr_info(" %5d %5X %5X\n",
|
|
n, rx_ring->next_to_use, rx_ring->next_to_clean);
|
|
}
|
|
|
|
/* Print RX Rings */
|
|
if (!netif_msg_rx_status(adapter))
|
|
goto exit;
|
|
|
|
dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
|
|
|
|
/* Advanced Receive Descriptor (Read) Format
|
|
* 63 1 0
|
|
* +-----------------------------------------------------+
|
|
* 0 | Packet Buffer Address [63:1] |A0/NSE|
|
|
* +----------------------------------------------+------+
|
|
* 8 | Header Buffer Address [63:1] | DD |
|
|
* +-----------------------------------------------------+
|
|
*
|
|
*
|
|
* Advanced Receive Descriptor (Write-Back) Format
|
|
*
|
|
* 63 48 47 32 31 30 21 20 17 16 4 3 0
|
|
* +------------------------------------------------------+
|
|
* 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
|
|
* | Checksum Ident | | | | Type | Type |
|
|
* +------------------------------------------------------+
|
|
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
|
|
* +------------------------------------------------------+
|
|
* 63 48 47 32 31 20 19 0
|
|
*/
|
|
|
|
for (n = 0; n < adapter->num_rx_queues; n++) {
|
|
rx_ring = adapter->rx_ring[n];
|
|
pr_info("------------------------------------\n");
|
|
pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
|
|
pr_info("------------------------------------\n");
|
|
pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
|
|
"[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
|
|
pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
|
|
"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
|
|
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
const char *next_desc;
|
|
struct igb_rx_buffer *buffer_info;
|
|
buffer_info = &rx_ring->rx_buffer_info[i];
|
|
rx_desc = IGB_RX_DESC(rx_ring, i);
|
|
u0 = (struct my_u0 *)rx_desc;
|
|
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
|
|
|
|
if (i == rx_ring->next_to_use)
|
|
next_desc = " NTU";
|
|
else if (i == rx_ring->next_to_clean)
|
|
next_desc = " NTC";
|
|
else
|
|
next_desc = "";
|
|
|
|
if (staterr & E1000_RXD_STAT_DD) {
|
|
/* Descriptor Done */
|
|
pr_info("%s[0x%03X] %016llX %016llX -------"
|
|
"--------- %p%s\n", "RWB", i,
|
|
le64_to_cpu(u0->a),
|
|
le64_to_cpu(u0->b),
|
|
buffer_info->skb, next_desc);
|
|
} else {
|
|
pr_info("%s[0x%03X] %016llX %016llX %016llX"
|
|
" %p%s\n", "R ", i,
|
|
le64_to_cpu(u0->a),
|
|
le64_to_cpu(u0->b),
|
|
(u64)buffer_info->dma,
|
|
buffer_info->skb, next_desc);
|
|
|
|
if (netif_msg_pktdata(adapter)) {
|
|
print_hex_dump(KERN_INFO, "",
|
|
DUMP_PREFIX_ADDRESS,
|
|
16, 1,
|
|
phys_to_virt(buffer_info->dma),
|
|
IGB_RX_HDR_LEN, true);
|
|
print_hex_dump(KERN_INFO, "",
|
|
DUMP_PREFIX_ADDRESS,
|
|
16, 1,
|
|
phys_to_virt(
|
|
buffer_info->page_dma +
|
|
buffer_info->page_offset),
|
|
PAGE_SIZE/2, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
exit:
|
|
return;
|
|
}
|
|
|
|
|
|
/**
|
|
* igb_read_clock - read raw cycle counter (to be used by time counter)
|
|
*/
|
|
static cycle_t igb_read_clock(const struct cyclecounter *tc)
|
|
{
|
|
struct igb_adapter *adapter =
|
|
container_of(tc, struct igb_adapter, cycles);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u64 stamp = 0;
|
|
int shift = 0;
|
|
|
|
/*
|
|
* The timestamp latches on lowest register read. For the 82580
|
|
* the lowest register is SYSTIMR instead of SYSTIML. However we never
|
|
* adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
|
|
*/
|
|
if (hw->mac.type >= e1000_82580) {
|
|
stamp = rd32(E1000_SYSTIMR) >> 8;
|
|
shift = IGB_82580_TSYNC_SHIFT;
|
|
}
|
|
|
|
stamp |= (u64)rd32(E1000_SYSTIML) << shift;
|
|
stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
|
|
return stamp;
|
|
}
|
|
|
|
/**
|
|
* igb_get_hw_dev - return device
|
|
* used by hardware layer to print debugging information
|
|
**/
|
|
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
|
|
{
|
|
struct igb_adapter *adapter = hw->back;
|
|
return adapter->netdev;
|
|
}
|
|
|
|
/**
|
|
* igb_init_module - Driver Registration Routine
|
|
*
|
|
* igb_init_module is the first routine called when the driver is
|
|
* loaded. All it does is register with the PCI subsystem.
|
|
**/
|
|
static int __init igb_init_module(void)
|
|
{
|
|
int ret;
|
|
pr_info("%s - version %s\n",
|
|
igb_driver_string, igb_driver_version);
|
|
|
|
pr_info("%s\n", igb_copyright);
|
|
|
|
#ifdef CONFIG_IGB_DCA
|
|
dca_register_notify(&dca_notifier);
|
|
#endif
|
|
ret = pci_register_driver(&igb_driver);
|
|
return ret;
|
|
}
|
|
|
|
module_init(igb_init_module);
|
|
|
|
/**
|
|
* igb_exit_module - Driver Exit Cleanup Routine
|
|
*
|
|
* igb_exit_module is called just before the driver is removed
|
|
* from memory.
|
|
**/
|
|
static void __exit igb_exit_module(void)
|
|
{
|
|
#ifdef CONFIG_IGB_DCA
|
|
dca_unregister_notify(&dca_notifier);
|
|
#endif
|
|
pci_unregister_driver(&igb_driver);
|
|
}
|
|
|
|
module_exit(igb_exit_module);
|
|
|
|
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
|
|
/**
|
|
* igb_cache_ring_register - Descriptor ring to register mapping
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* Once we know the feature-set enabled for the device, we'll cache
|
|
* the register offset the descriptor ring is assigned to.
|
|
**/
|
|
static void igb_cache_ring_register(struct igb_adapter *adapter)
|
|
{
|
|
int i = 0, j = 0;
|
|
u32 rbase_offset = adapter->vfs_allocated_count;
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82576:
|
|
/* The queues are allocated for virtualization such that VF 0
|
|
* is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
|
|
* In order to avoid collision we start at the first free queue
|
|
* and continue consuming queues in the same sequence
|
|
*/
|
|
if (adapter->vfs_allocated_count) {
|
|
for (; i < adapter->rss_queues; i++)
|
|
adapter->rx_ring[i]->reg_idx = rbase_offset +
|
|
Q_IDX_82576(i);
|
|
}
|
|
case e1000_82575:
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
default:
|
|
for (; i < adapter->num_rx_queues; i++)
|
|
adapter->rx_ring[i]->reg_idx = rbase_offset + i;
|
|
for (; j < adapter->num_tx_queues; j++)
|
|
adapter->tx_ring[j]->reg_idx = rbase_offset + j;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void igb_free_queues(struct igb_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
kfree(adapter->tx_ring[i]);
|
|
adapter->tx_ring[i] = NULL;
|
|
}
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
kfree(adapter->rx_ring[i]);
|
|
adapter->rx_ring[i] = NULL;
|
|
}
|
|
adapter->num_rx_queues = 0;
|
|
adapter->num_tx_queues = 0;
|
|
}
|
|
|
|
/**
|
|
* igb_alloc_queues - Allocate memory for all rings
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* We allocate one ring per queue at run-time since we don't know the
|
|
* number of queues at compile-time.
|
|
**/
|
|
static int igb_alloc_queues(struct igb_adapter *adapter)
|
|
{
|
|
struct igb_ring *ring;
|
|
int i;
|
|
int orig_node = adapter->node;
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
if (orig_node == -1) {
|
|
int cur_node = next_online_node(adapter->node);
|
|
if (cur_node == MAX_NUMNODES)
|
|
cur_node = first_online_node;
|
|
adapter->node = cur_node;
|
|
}
|
|
ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
|
|
adapter->node);
|
|
if (!ring)
|
|
ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
|
|
if (!ring)
|
|
goto err;
|
|
ring->count = adapter->tx_ring_count;
|
|
ring->queue_index = i;
|
|
ring->dev = &adapter->pdev->dev;
|
|
ring->netdev = adapter->netdev;
|
|
ring->numa_node = adapter->node;
|
|
/* For 82575, context index must be unique per ring. */
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
|
|
adapter->tx_ring[i] = ring;
|
|
}
|
|
/* Restore the adapter's original node */
|
|
adapter->node = orig_node;
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
if (orig_node == -1) {
|
|
int cur_node = next_online_node(adapter->node);
|
|
if (cur_node == MAX_NUMNODES)
|
|
cur_node = first_online_node;
|
|
adapter->node = cur_node;
|
|
}
|
|
ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
|
|
adapter->node);
|
|
if (!ring)
|
|
ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
|
|
if (!ring)
|
|
goto err;
|
|
ring->count = adapter->rx_ring_count;
|
|
ring->queue_index = i;
|
|
ring->dev = &adapter->pdev->dev;
|
|
ring->netdev = adapter->netdev;
|
|
ring->numa_node = adapter->node;
|
|
/* set flag indicating ring supports SCTP checksum offload */
|
|
if (adapter->hw.mac.type >= e1000_82576)
|
|
set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
|
|
|
|
/* On i350, loopback VLAN packets have the tag byte-swapped. */
|
|
if (adapter->hw.mac.type == e1000_i350)
|
|
set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
|
|
|
|
adapter->rx_ring[i] = ring;
|
|
}
|
|
/* Restore the adapter's original node */
|
|
adapter->node = orig_node;
|
|
|
|
igb_cache_ring_register(adapter);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
/* Restore the adapter's original node */
|
|
adapter->node = orig_node;
|
|
igb_free_queues(adapter);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* igb_write_ivar - configure ivar for given MSI-X vector
|
|
* @hw: pointer to the HW structure
|
|
* @msix_vector: vector number we are allocating to a given ring
|
|
* @index: row index of IVAR register to write within IVAR table
|
|
* @offset: column offset of in IVAR, should be multiple of 8
|
|
*
|
|
* This function is intended to handle the writing of the IVAR register
|
|
* for adapters 82576 and newer. The IVAR table consists of 2 columns,
|
|
* each containing an cause allocation for an Rx and Tx ring, and a
|
|
* variable number of rows depending on the number of queues supported.
|
|
**/
|
|
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
|
|
int index, int offset)
|
|
{
|
|
u32 ivar = array_rd32(E1000_IVAR0, index);
|
|
|
|
/* clear any bits that are currently set */
|
|
ivar &= ~((u32)0xFF << offset);
|
|
|
|
/* write vector and valid bit */
|
|
ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
|
|
|
|
array_wr32(E1000_IVAR0, index, ivar);
|
|
}
|
|
|
|
#define IGB_N0_QUEUE -1
|
|
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
|
|
{
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int rx_queue = IGB_N0_QUEUE;
|
|
int tx_queue = IGB_N0_QUEUE;
|
|
u32 msixbm = 0;
|
|
|
|
if (q_vector->rx.ring)
|
|
rx_queue = q_vector->rx.ring->reg_idx;
|
|
if (q_vector->tx.ring)
|
|
tx_queue = q_vector->tx.ring->reg_idx;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82575:
|
|
/* The 82575 assigns vectors using a bitmask, which matches the
|
|
bitmask for the EICR/EIMS/EIMC registers. To assign one
|
|
or more queues to a vector, we write the appropriate bits
|
|
into the MSIXBM register for that vector. */
|
|
if (rx_queue > IGB_N0_QUEUE)
|
|
msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
|
|
if (tx_queue > IGB_N0_QUEUE)
|
|
msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
|
|
if (!adapter->msix_entries && msix_vector == 0)
|
|
msixbm |= E1000_EIMS_OTHER;
|
|
array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
|
|
q_vector->eims_value = msixbm;
|
|
break;
|
|
case e1000_82576:
|
|
/*
|
|
* 82576 uses a table that essentially consists of 2 columns
|
|
* with 8 rows. The ordering is column-major so we use the
|
|
* lower 3 bits as the row index, and the 4th bit as the
|
|
* column offset.
|
|
*/
|
|
if (rx_queue > IGB_N0_QUEUE)
|
|
igb_write_ivar(hw, msix_vector,
|
|
rx_queue & 0x7,
|
|
(rx_queue & 0x8) << 1);
|
|
if (tx_queue > IGB_N0_QUEUE)
|
|
igb_write_ivar(hw, msix_vector,
|
|
tx_queue & 0x7,
|
|
((tx_queue & 0x8) << 1) + 8);
|
|
q_vector->eims_value = 1 << msix_vector;
|
|
break;
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
/*
|
|
* On 82580 and newer adapters the scheme is similar to 82576
|
|
* however instead of ordering column-major we have things
|
|
* ordered row-major. So we traverse the table by using
|
|
* bit 0 as the column offset, and the remaining bits as the
|
|
* row index.
|
|
*/
|
|
if (rx_queue > IGB_N0_QUEUE)
|
|
igb_write_ivar(hw, msix_vector,
|
|
rx_queue >> 1,
|
|
(rx_queue & 0x1) << 4);
|
|
if (tx_queue > IGB_N0_QUEUE)
|
|
igb_write_ivar(hw, msix_vector,
|
|
tx_queue >> 1,
|
|
((tx_queue & 0x1) << 4) + 8);
|
|
q_vector->eims_value = 1 << msix_vector;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
/* add q_vector eims value to global eims_enable_mask */
|
|
adapter->eims_enable_mask |= q_vector->eims_value;
|
|
|
|
/* configure q_vector to set itr on first interrupt */
|
|
q_vector->set_itr = 1;
|
|
}
|
|
|
|
/**
|
|
* igb_configure_msix - Configure MSI-X hardware
|
|
*
|
|
* igb_configure_msix sets up the hardware to properly
|
|
* generate MSI-X interrupts.
|
|
**/
|
|
static void igb_configure_msix(struct igb_adapter *adapter)
|
|
{
|
|
u32 tmp;
|
|
int i, vector = 0;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
adapter->eims_enable_mask = 0;
|
|
|
|
/* set vector for other causes, i.e. link changes */
|
|
switch (hw->mac.type) {
|
|
case e1000_82575:
|
|
tmp = rd32(E1000_CTRL_EXT);
|
|
/* enable MSI-X PBA support*/
|
|
tmp |= E1000_CTRL_EXT_PBA_CLR;
|
|
|
|
/* Auto-Mask interrupts upon ICR read. */
|
|
tmp |= E1000_CTRL_EXT_EIAME;
|
|
tmp |= E1000_CTRL_EXT_IRCA;
|
|
|
|
wr32(E1000_CTRL_EXT, tmp);
|
|
|
|
/* enable msix_other interrupt */
|
|
array_wr32(E1000_MSIXBM(0), vector++,
|
|
E1000_EIMS_OTHER);
|
|
adapter->eims_other = E1000_EIMS_OTHER;
|
|
|
|
break;
|
|
|
|
case e1000_82576:
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
/* Turn on MSI-X capability first, or our settings
|
|
* won't stick. And it will take days to debug. */
|
|
wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
|
|
E1000_GPIE_PBA | E1000_GPIE_EIAME |
|
|
E1000_GPIE_NSICR);
|
|
|
|
/* enable msix_other interrupt */
|
|
adapter->eims_other = 1 << vector;
|
|
tmp = (vector++ | E1000_IVAR_VALID) << 8;
|
|
|
|
wr32(E1000_IVAR_MISC, tmp);
|
|
break;
|
|
default:
|
|
/* do nothing, since nothing else supports MSI-X */
|
|
break;
|
|
} /* switch (hw->mac.type) */
|
|
|
|
adapter->eims_enable_mask |= adapter->eims_other;
|
|
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
|
igb_assign_vector(adapter->q_vector[i], vector++);
|
|
|
|
wrfl();
|
|
}
|
|
|
|
/**
|
|
* igb_request_msix - Initialize MSI-X interrupts
|
|
*
|
|
* igb_request_msix allocates MSI-X vectors and requests interrupts from the
|
|
* kernel.
|
|
**/
|
|
static int igb_request_msix(struct igb_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int i, err = 0, vector = 0;
|
|
|
|
err = request_irq(adapter->msix_entries[vector].vector,
|
|
igb_msix_other, 0, netdev->name, adapter);
|
|
if (err)
|
|
goto out;
|
|
vector++;
|
|
|
|
for (i = 0; i < adapter->num_q_vectors; i++) {
|
|
struct igb_q_vector *q_vector = adapter->q_vector[i];
|
|
|
|
q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
|
|
|
|
if (q_vector->rx.ring && q_vector->tx.ring)
|
|
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
|
|
q_vector->rx.ring->queue_index);
|
|
else if (q_vector->tx.ring)
|
|
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
|
|
q_vector->tx.ring->queue_index);
|
|
else if (q_vector->rx.ring)
|
|
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
|
|
q_vector->rx.ring->queue_index);
|
|
else
|
|
sprintf(q_vector->name, "%s-unused", netdev->name);
|
|
|
|
err = request_irq(adapter->msix_entries[vector].vector,
|
|
igb_msix_ring, 0, q_vector->name,
|
|
q_vector);
|
|
if (err)
|
|
goto out;
|
|
vector++;
|
|
}
|
|
|
|
igb_configure_msix(adapter);
|
|
return 0;
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
|
|
{
|
|
if (adapter->msix_entries) {
|
|
pci_disable_msix(adapter->pdev);
|
|
kfree(adapter->msix_entries);
|
|
adapter->msix_entries = NULL;
|
|
} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
|
|
pci_disable_msi(adapter->pdev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_free_q_vectors - Free memory allocated for interrupt vectors
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* This function frees the memory allocated to the q_vectors. In addition if
|
|
* NAPI is enabled it will delete any references to the NAPI struct prior
|
|
* to freeing the q_vector.
|
|
**/
|
|
static void igb_free_q_vectors(struct igb_adapter *adapter)
|
|
{
|
|
int v_idx;
|
|
|
|
for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
|
|
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
|
|
adapter->q_vector[v_idx] = NULL;
|
|
if (!q_vector)
|
|
continue;
|
|
netif_napi_del(&q_vector->napi);
|
|
kfree(q_vector);
|
|
}
|
|
adapter->num_q_vectors = 0;
|
|
}
|
|
|
|
/**
|
|
* igb_clear_interrupt_scheme - reset the device to a state of no interrupts
|
|
*
|
|
* This function resets the device so that it has 0 rx queues, tx queues, and
|
|
* MSI-X interrupts allocated.
|
|
*/
|
|
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
|
|
{
|
|
igb_free_queues(adapter);
|
|
igb_free_q_vectors(adapter);
|
|
igb_reset_interrupt_capability(adapter);
|
|
}
|
|
|
|
/**
|
|
* igb_set_interrupt_capability - set MSI or MSI-X if supported
|
|
*
|
|
* Attempt to configure interrupts using the best available
|
|
* capabilities of the hardware and kernel.
|
|
**/
|
|
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
|
|
{
|
|
int err;
|
|
int numvecs, i;
|
|
|
|
/* Number of supported queues. */
|
|
adapter->num_rx_queues = adapter->rss_queues;
|
|
if (adapter->vfs_allocated_count)
|
|
adapter->num_tx_queues = 1;
|
|
else
|
|
adapter->num_tx_queues = adapter->rss_queues;
|
|
|
|
/* start with one vector for every rx queue */
|
|
numvecs = adapter->num_rx_queues;
|
|
|
|
/* if tx handler is separate add 1 for every tx queue */
|
|
if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
|
|
numvecs += adapter->num_tx_queues;
|
|
|
|
/* store the number of vectors reserved for queues */
|
|
adapter->num_q_vectors = numvecs;
|
|
|
|
/* add 1 vector for link status interrupts */
|
|
numvecs++;
|
|
adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
|
|
GFP_KERNEL);
|
|
if (!adapter->msix_entries)
|
|
goto msi_only;
|
|
|
|
for (i = 0; i < numvecs; i++)
|
|
adapter->msix_entries[i].entry = i;
|
|
|
|
err = pci_enable_msix(adapter->pdev,
|
|
adapter->msix_entries,
|
|
numvecs);
|
|
if (err == 0)
|
|
goto out;
|
|
|
|
igb_reset_interrupt_capability(adapter);
|
|
|
|
/* If we can't do MSI-X, try MSI */
|
|
msi_only:
|
|
#ifdef CONFIG_PCI_IOV
|
|
/* disable SR-IOV for non MSI-X configurations */
|
|
if (adapter->vf_data) {
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
/* disable iov and allow time for transactions to clear */
|
|
pci_disable_sriov(adapter->pdev);
|
|
msleep(500);
|
|
|
|
kfree(adapter->vf_data);
|
|
adapter->vf_data = NULL;
|
|
wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
|
|
wrfl();
|
|
msleep(100);
|
|
dev_info(&adapter->pdev->dev, "IOV Disabled\n");
|
|
}
|
|
#endif
|
|
adapter->vfs_allocated_count = 0;
|
|
adapter->rss_queues = 1;
|
|
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
|
|
adapter->num_rx_queues = 1;
|
|
adapter->num_tx_queues = 1;
|
|
adapter->num_q_vectors = 1;
|
|
if (!pci_enable_msi(adapter->pdev))
|
|
adapter->flags |= IGB_FLAG_HAS_MSI;
|
|
out:
|
|
/* Notify the stack of the (possibly) reduced queue counts. */
|
|
netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
|
|
return netif_set_real_num_rx_queues(adapter->netdev,
|
|
adapter->num_rx_queues);
|
|
}
|
|
|
|
/**
|
|
* igb_alloc_q_vectors - Allocate memory for interrupt vectors
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* We allocate one q_vector per queue interrupt. If allocation fails we
|
|
* return -ENOMEM.
|
|
**/
|
|
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
|
|
{
|
|
struct igb_q_vector *q_vector;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int v_idx;
|
|
int orig_node = adapter->node;
|
|
|
|
for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
|
|
if ((adapter->num_q_vectors == (adapter->num_rx_queues +
|
|
adapter->num_tx_queues)) &&
|
|
(adapter->num_rx_queues == v_idx))
|
|
adapter->node = orig_node;
|
|
if (orig_node == -1) {
|
|
int cur_node = next_online_node(adapter->node);
|
|
if (cur_node == MAX_NUMNODES)
|
|
cur_node = first_online_node;
|
|
adapter->node = cur_node;
|
|
}
|
|
q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
|
|
adapter->node);
|
|
if (!q_vector)
|
|
q_vector = kzalloc(sizeof(struct igb_q_vector),
|
|
GFP_KERNEL);
|
|
if (!q_vector)
|
|
goto err_out;
|
|
q_vector->adapter = adapter;
|
|
q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
|
|
q_vector->itr_val = IGB_START_ITR;
|
|
netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
|
|
adapter->q_vector[v_idx] = q_vector;
|
|
}
|
|
/* Restore the adapter's original node */
|
|
adapter->node = orig_node;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
/* Restore the adapter's original node */
|
|
adapter->node = orig_node;
|
|
igb_free_q_vectors(adapter);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
|
|
int ring_idx, int v_idx)
|
|
{
|
|
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
|
|
|
|
q_vector->rx.ring = adapter->rx_ring[ring_idx];
|
|
q_vector->rx.ring->q_vector = q_vector;
|
|
q_vector->rx.count++;
|
|
q_vector->itr_val = adapter->rx_itr_setting;
|
|
if (q_vector->itr_val && q_vector->itr_val <= 3)
|
|
q_vector->itr_val = IGB_START_ITR;
|
|
}
|
|
|
|
static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
|
|
int ring_idx, int v_idx)
|
|
{
|
|
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
|
|
|
|
q_vector->tx.ring = adapter->tx_ring[ring_idx];
|
|
q_vector->tx.ring->q_vector = q_vector;
|
|
q_vector->tx.count++;
|
|
q_vector->itr_val = adapter->tx_itr_setting;
|
|
q_vector->tx.work_limit = adapter->tx_work_limit;
|
|
if (q_vector->itr_val && q_vector->itr_val <= 3)
|
|
q_vector->itr_val = IGB_START_ITR;
|
|
}
|
|
|
|
/**
|
|
* igb_map_ring_to_vector - maps allocated queues to vectors
|
|
*
|
|
* This function maps the recently allocated queues to vectors.
|
|
**/
|
|
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
|
|
{
|
|
int i;
|
|
int v_idx = 0;
|
|
|
|
if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
|
|
(adapter->num_q_vectors < adapter->num_tx_queues))
|
|
return -ENOMEM;
|
|
|
|
if (adapter->num_q_vectors >=
|
|
(adapter->num_rx_queues + adapter->num_tx_queues)) {
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
igb_map_rx_ring_to_vector(adapter, i, v_idx++);
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
|
igb_map_tx_ring_to_vector(adapter, i, v_idx++);
|
|
} else {
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
if (i < adapter->num_tx_queues)
|
|
igb_map_tx_ring_to_vector(adapter, i, v_idx);
|
|
igb_map_rx_ring_to_vector(adapter, i, v_idx++);
|
|
}
|
|
for (; i < adapter->num_tx_queues; i++)
|
|
igb_map_tx_ring_to_vector(adapter, i, v_idx++);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
|
|
*
|
|
* This function initializes the interrupts and allocates all of the queues.
|
|
**/
|
|
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int err;
|
|
|
|
err = igb_set_interrupt_capability(adapter);
|
|
if (err)
|
|
return err;
|
|
|
|
err = igb_alloc_q_vectors(adapter);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
|
|
goto err_alloc_q_vectors;
|
|
}
|
|
|
|
err = igb_alloc_queues(adapter);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
|
|
goto err_alloc_queues;
|
|
}
|
|
|
|
err = igb_map_ring_to_vector(adapter);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
|
|
goto err_map_queues;
|
|
}
|
|
|
|
|
|
return 0;
|
|
err_map_queues:
|
|
igb_free_queues(adapter);
|
|
err_alloc_queues:
|
|
igb_free_q_vectors(adapter);
|
|
err_alloc_q_vectors:
|
|
igb_reset_interrupt_capability(adapter);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* igb_request_irq - initialize interrupts
|
|
*
|
|
* Attempts to configure interrupts using the best available
|
|
* capabilities of the hardware and kernel.
|
|
**/
|
|
static int igb_request_irq(struct igb_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int err = 0;
|
|
|
|
if (adapter->msix_entries) {
|
|
err = igb_request_msix(adapter);
|
|
if (!err)
|
|
goto request_done;
|
|
/* fall back to MSI */
|
|
igb_clear_interrupt_scheme(adapter);
|
|
if (!pci_enable_msi(pdev))
|
|
adapter->flags |= IGB_FLAG_HAS_MSI;
|
|
igb_free_all_tx_resources(adapter);
|
|
igb_free_all_rx_resources(adapter);
|
|
adapter->num_tx_queues = 1;
|
|
adapter->num_rx_queues = 1;
|
|
adapter->num_q_vectors = 1;
|
|
err = igb_alloc_q_vectors(adapter);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"Unable to allocate memory for vectors\n");
|
|
goto request_done;
|
|
}
|
|
err = igb_alloc_queues(adapter);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"Unable to allocate memory for queues\n");
|
|
igb_free_q_vectors(adapter);
|
|
goto request_done;
|
|
}
|
|
igb_setup_all_tx_resources(adapter);
|
|
igb_setup_all_rx_resources(adapter);
|
|
}
|
|
|
|
igb_assign_vector(adapter->q_vector[0], 0);
|
|
|
|
if (adapter->flags & IGB_FLAG_HAS_MSI) {
|
|
err = request_irq(pdev->irq, igb_intr_msi, 0,
|
|
netdev->name, adapter);
|
|
if (!err)
|
|
goto request_done;
|
|
|
|
/* fall back to legacy interrupts */
|
|
igb_reset_interrupt_capability(adapter);
|
|
adapter->flags &= ~IGB_FLAG_HAS_MSI;
|
|
}
|
|
|
|
err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
|
|
netdev->name, adapter);
|
|
|
|
if (err)
|
|
dev_err(&pdev->dev, "Error %d getting interrupt\n",
|
|
err);
|
|
|
|
request_done:
|
|
return err;
|
|
}
|
|
|
|
static void igb_free_irq(struct igb_adapter *adapter)
|
|
{
|
|
if (adapter->msix_entries) {
|
|
int vector = 0, i;
|
|
|
|
free_irq(adapter->msix_entries[vector++].vector, adapter);
|
|
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
|
free_irq(adapter->msix_entries[vector++].vector,
|
|
adapter->q_vector[i]);
|
|
} else {
|
|
free_irq(adapter->pdev->irq, adapter);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_irq_disable - Mask off interrupt generation on the NIC
|
|
* @adapter: board private structure
|
|
**/
|
|
static void igb_irq_disable(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
/*
|
|
* we need to be careful when disabling interrupts. The VFs are also
|
|
* mapped into these registers and so clearing the bits can cause
|
|
* issues on the VF drivers so we only need to clear what we set
|
|
*/
|
|
if (adapter->msix_entries) {
|
|
u32 regval = rd32(E1000_EIAM);
|
|
wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
|
|
wr32(E1000_EIMC, adapter->eims_enable_mask);
|
|
regval = rd32(E1000_EIAC);
|
|
wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
|
|
}
|
|
|
|
wr32(E1000_IAM, 0);
|
|
wr32(E1000_IMC, ~0);
|
|
wrfl();
|
|
if (adapter->msix_entries) {
|
|
int i;
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
|
synchronize_irq(adapter->msix_entries[i].vector);
|
|
} else {
|
|
synchronize_irq(adapter->pdev->irq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_irq_enable - Enable default interrupt generation settings
|
|
* @adapter: board private structure
|
|
**/
|
|
static void igb_irq_enable(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
if (adapter->msix_entries) {
|
|
u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
|
|
u32 regval = rd32(E1000_EIAC);
|
|
wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
|
|
regval = rd32(E1000_EIAM);
|
|
wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
|
|
wr32(E1000_EIMS, adapter->eims_enable_mask);
|
|
if (adapter->vfs_allocated_count) {
|
|
wr32(E1000_MBVFIMR, 0xFF);
|
|
ims |= E1000_IMS_VMMB;
|
|
}
|
|
wr32(E1000_IMS, ims);
|
|
} else {
|
|
wr32(E1000_IMS, IMS_ENABLE_MASK |
|
|
E1000_IMS_DRSTA);
|
|
wr32(E1000_IAM, IMS_ENABLE_MASK |
|
|
E1000_IMS_DRSTA);
|
|
}
|
|
}
|
|
|
|
static void igb_update_mng_vlan(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u16 vid = adapter->hw.mng_cookie.vlan_id;
|
|
u16 old_vid = adapter->mng_vlan_id;
|
|
|
|
if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
|
|
/* add VID to filter table */
|
|
igb_vfta_set(hw, vid, true);
|
|
adapter->mng_vlan_id = vid;
|
|
} else {
|
|
adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
|
|
}
|
|
|
|
if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
|
|
(vid != old_vid) &&
|
|
!test_bit(old_vid, adapter->active_vlans)) {
|
|
/* remove VID from filter table */
|
|
igb_vfta_set(hw, old_vid, false);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_release_hw_control - release control of the h/w to f/w
|
|
* @adapter: address of board private structure
|
|
*
|
|
* igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that the
|
|
* driver is no longer loaded.
|
|
*
|
|
**/
|
|
static void igb_release_hw_control(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl_ext;
|
|
|
|
/* Let firmware take over control of h/w */
|
|
ctrl_ext = rd32(E1000_CTRL_EXT);
|
|
wr32(E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
/**
|
|
* igb_get_hw_control - get control of the h/w from f/w
|
|
* @adapter: address of board private structure
|
|
*
|
|
* igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that
|
|
* the driver is loaded.
|
|
*
|
|
**/
|
|
static void igb_get_hw_control(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl_ext;
|
|
|
|
/* Let firmware know the driver has taken over */
|
|
ctrl_ext = rd32(E1000_CTRL_EXT);
|
|
wr32(E1000_CTRL_EXT,
|
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
/**
|
|
* igb_configure - configure the hardware for RX and TX
|
|
* @adapter: private board structure
|
|
**/
|
|
static void igb_configure(struct igb_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
int i;
|
|
|
|
igb_get_hw_control(adapter);
|
|
igb_set_rx_mode(netdev);
|
|
|
|
igb_restore_vlan(adapter);
|
|
|
|
igb_setup_tctl(adapter);
|
|
igb_setup_mrqc(adapter);
|
|
igb_setup_rctl(adapter);
|
|
|
|
igb_configure_tx(adapter);
|
|
igb_configure_rx(adapter);
|
|
|
|
igb_rx_fifo_flush_82575(&adapter->hw);
|
|
|
|
/* call igb_desc_unused which always leaves
|
|
* at least 1 descriptor unused to make sure
|
|
* next_to_use != next_to_clean */
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
struct igb_ring *ring = adapter->rx_ring[i];
|
|
igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_power_up_link - Power up the phy/serdes link
|
|
* @adapter: address of board private structure
|
|
**/
|
|
void igb_power_up_link(struct igb_adapter *adapter)
|
|
{
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper)
|
|
igb_power_up_phy_copper(&adapter->hw);
|
|
else
|
|
igb_power_up_serdes_link_82575(&adapter->hw);
|
|
}
|
|
|
|
/**
|
|
* igb_power_down_link - Power down the phy/serdes link
|
|
* @adapter: address of board private structure
|
|
*/
|
|
static void igb_power_down_link(struct igb_adapter *adapter)
|
|
{
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper)
|
|
igb_power_down_phy_copper_82575(&adapter->hw);
|
|
else
|
|
igb_shutdown_serdes_link_82575(&adapter->hw);
|
|
}
|
|
|
|
/**
|
|
* igb_up - Open the interface and prepare it to handle traffic
|
|
* @adapter: board private structure
|
|
**/
|
|
int igb_up(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int i;
|
|
|
|
/* hardware has been reset, we need to reload some things */
|
|
igb_configure(adapter);
|
|
|
|
clear_bit(__IGB_DOWN, &adapter->state);
|
|
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
|
napi_enable(&(adapter->q_vector[i]->napi));
|
|
|
|
if (adapter->msix_entries)
|
|
igb_configure_msix(adapter);
|
|
else
|
|
igb_assign_vector(adapter->q_vector[0], 0);
|
|
|
|
/* Clear any pending interrupts. */
|
|
rd32(E1000_ICR);
|
|
igb_irq_enable(adapter);
|
|
|
|
/* notify VFs that reset has been completed */
|
|
if (adapter->vfs_allocated_count) {
|
|
u32 reg_data = rd32(E1000_CTRL_EXT);
|
|
reg_data |= E1000_CTRL_EXT_PFRSTD;
|
|
wr32(E1000_CTRL_EXT, reg_data);
|
|
}
|
|
|
|
netif_tx_start_all_queues(adapter->netdev);
|
|
|
|
/* start the watchdog. */
|
|
hw->mac.get_link_status = 1;
|
|
schedule_work(&adapter->watchdog_task);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void igb_down(struct igb_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 tctl, rctl;
|
|
int i;
|
|
|
|
/* signal that we're down so the interrupt handler does not
|
|
* reschedule our watchdog timer */
|
|
set_bit(__IGB_DOWN, &adapter->state);
|
|
|
|
/* disable receives in the hardware */
|
|
rctl = rd32(E1000_RCTL);
|
|
wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
/* flush and sleep below */
|
|
|
|
netif_tx_stop_all_queues(netdev);
|
|
|
|
/* disable transmits in the hardware */
|
|
tctl = rd32(E1000_TCTL);
|
|
tctl &= ~E1000_TCTL_EN;
|
|
wr32(E1000_TCTL, tctl);
|
|
/* flush both disables and wait for them to finish */
|
|
wrfl();
|
|
msleep(10);
|
|
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
|
napi_disable(&(adapter->q_vector[i]->napi));
|
|
|
|
igb_irq_disable(adapter);
|
|
|
|
del_timer_sync(&adapter->watchdog_timer);
|
|
del_timer_sync(&adapter->phy_info_timer);
|
|
|
|
netif_carrier_off(netdev);
|
|
|
|
/* record the stats before reset*/
|
|
spin_lock(&adapter->stats64_lock);
|
|
igb_update_stats(adapter, &adapter->stats64);
|
|
spin_unlock(&adapter->stats64_lock);
|
|
|
|
adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
|
|
if (!pci_channel_offline(adapter->pdev))
|
|
igb_reset(adapter);
|
|
igb_clean_all_tx_rings(adapter);
|
|
igb_clean_all_rx_rings(adapter);
|
|
#ifdef CONFIG_IGB_DCA
|
|
|
|
/* since we reset the hardware DCA settings were cleared */
|
|
igb_setup_dca(adapter);
|
|
#endif
|
|
}
|
|
|
|
void igb_reinit_locked(struct igb_adapter *adapter)
|
|
{
|
|
WARN_ON(in_interrupt());
|
|
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
|
|
msleep(1);
|
|
igb_down(adapter);
|
|
igb_up(adapter);
|
|
clear_bit(__IGB_RESETTING, &adapter->state);
|
|
}
|
|
|
|
void igb_reset(struct igb_adapter *adapter)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
struct e1000_fc_info *fc = &hw->fc;
|
|
u32 pba = 0, tx_space, min_tx_space, min_rx_space;
|
|
u16 hwm;
|
|
|
|
/* Repartition Pba for greater than 9k mtu
|
|
* To take effect CTRL.RST is required.
|
|
*/
|
|
switch (mac->type) {
|
|
case e1000_i350:
|
|
case e1000_82580:
|
|
pba = rd32(E1000_RXPBS);
|
|
pba = igb_rxpbs_adjust_82580(pba);
|
|
break;
|
|
case e1000_82576:
|
|
pba = rd32(E1000_RXPBS);
|
|
pba &= E1000_RXPBS_SIZE_MASK_82576;
|
|
break;
|
|
case e1000_82575:
|
|
default:
|
|
pba = E1000_PBA_34K;
|
|
break;
|
|
}
|
|
|
|
if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
|
|
(mac->type < e1000_82576)) {
|
|
/* adjust PBA for jumbo frames */
|
|
wr32(E1000_PBA, pba);
|
|
|
|
/* To maintain wire speed transmits, the Tx FIFO should be
|
|
* large enough to accommodate two full transmit packets,
|
|
* rounded up to the next 1KB and expressed in KB. Likewise,
|
|
* the Rx FIFO should be large enough to accommodate at least
|
|
* one full receive packet and is similarly rounded up and
|
|
* expressed in KB. */
|
|
pba = rd32(E1000_PBA);
|
|
/* upper 16 bits has Tx packet buffer allocation size in KB */
|
|
tx_space = pba >> 16;
|
|
/* lower 16 bits has Rx packet buffer allocation size in KB */
|
|
pba &= 0xffff;
|
|
/* the tx fifo also stores 16 bytes of information about the tx
|
|
* but don't include ethernet FCS because hardware appends it */
|
|
min_tx_space = (adapter->max_frame_size +
|
|
sizeof(union e1000_adv_tx_desc) -
|
|
ETH_FCS_LEN) * 2;
|
|
min_tx_space = ALIGN(min_tx_space, 1024);
|
|
min_tx_space >>= 10;
|
|
/* software strips receive CRC, so leave room for it */
|
|
min_rx_space = adapter->max_frame_size;
|
|
min_rx_space = ALIGN(min_rx_space, 1024);
|
|
min_rx_space >>= 10;
|
|
|
|
/* If current Tx allocation is less than the min Tx FIFO size,
|
|
* and the min Tx FIFO size is less than the current Rx FIFO
|
|
* allocation, take space away from current Rx allocation */
|
|
if (tx_space < min_tx_space &&
|
|
((min_tx_space - tx_space) < pba)) {
|
|
pba = pba - (min_tx_space - tx_space);
|
|
|
|
/* if short on rx space, rx wins and must trump tx
|
|
* adjustment */
|
|
if (pba < min_rx_space)
|
|
pba = min_rx_space;
|
|
}
|
|
wr32(E1000_PBA, pba);
|
|
}
|
|
|
|
/* flow control settings */
|
|
/* The high water mark must be low enough to fit one full frame
|
|
* (or the size used for early receive) above it in the Rx FIFO.
|
|
* Set it to the lower of:
|
|
* - 90% of the Rx FIFO size, or
|
|
* - the full Rx FIFO size minus one full frame */
|
|
hwm = min(((pba << 10) * 9 / 10),
|
|
((pba << 10) - 2 * adapter->max_frame_size));
|
|
|
|
fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
|
|
fc->low_water = fc->high_water - 16;
|
|
fc->pause_time = 0xFFFF;
|
|
fc->send_xon = 1;
|
|
fc->current_mode = fc->requested_mode;
|
|
|
|
/* disable receive for all VFs and wait one second */
|
|
if (adapter->vfs_allocated_count) {
|
|
int i;
|
|
for (i = 0 ; i < adapter->vfs_allocated_count; i++)
|
|
adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
|
|
|
|
/* ping all the active vfs to let them know we are going down */
|
|
igb_ping_all_vfs(adapter);
|
|
|
|
/* disable transmits and receives */
|
|
wr32(E1000_VFRE, 0);
|
|
wr32(E1000_VFTE, 0);
|
|
}
|
|
|
|
/* Allow time for pending master requests to run */
|
|
hw->mac.ops.reset_hw(hw);
|
|
wr32(E1000_WUC, 0);
|
|
|
|
if (hw->mac.ops.init_hw(hw))
|
|
dev_err(&pdev->dev, "Hardware Error\n");
|
|
|
|
igb_init_dmac(adapter, pba);
|
|
if (!netif_running(adapter->netdev))
|
|
igb_power_down_link(adapter);
|
|
|
|
igb_update_mng_vlan(adapter);
|
|
|
|
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
|
|
wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
|
|
|
|
igb_get_phy_info(hw);
|
|
}
|
|
|
|
static netdev_features_t igb_fix_features(struct net_device *netdev,
|
|
netdev_features_t features)
|
|
{
|
|
/*
|
|
* Since there is no support for separate rx/tx vlan accel
|
|
* enable/disable make sure tx flag is always in same state as rx.
|
|
*/
|
|
if (features & NETIF_F_HW_VLAN_RX)
|
|
features |= NETIF_F_HW_VLAN_TX;
|
|
else
|
|
features &= ~NETIF_F_HW_VLAN_TX;
|
|
|
|
return features;
|
|
}
|
|
|
|
static int igb_set_features(struct net_device *netdev,
|
|
netdev_features_t features)
|
|
{
|
|
netdev_features_t changed = netdev->features ^ features;
|
|
|
|
if (changed & NETIF_F_HW_VLAN_RX)
|
|
igb_vlan_mode(netdev, features);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct net_device_ops igb_netdev_ops = {
|
|
.ndo_open = igb_open,
|
|
.ndo_stop = igb_close,
|
|
.ndo_start_xmit = igb_xmit_frame,
|
|
.ndo_get_stats64 = igb_get_stats64,
|
|
.ndo_set_rx_mode = igb_set_rx_mode,
|
|
.ndo_set_mac_address = igb_set_mac,
|
|
.ndo_change_mtu = igb_change_mtu,
|
|
.ndo_do_ioctl = igb_ioctl,
|
|
.ndo_tx_timeout = igb_tx_timeout,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
|
|
.ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
|
|
.ndo_set_vf_mac = igb_ndo_set_vf_mac,
|
|
.ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
|
|
.ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
|
|
.ndo_get_vf_config = igb_ndo_get_vf_config,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = igb_netpoll,
|
|
#endif
|
|
.ndo_fix_features = igb_fix_features,
|
|
.ndo_set_features = igb_set_features,
|
|
};
|
|
|
|
/**
|
|
* igb_probe - Device Initialization Routine
|
|
* @pdev: PCI device information struct
|
|
* @ent: entry in igb_pci_tbl
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
*
|
|
* igb_probe initializes an adapter identified by a pci_dev structure.
|
|
* The OS initialization, configuring of the adapter private structure,
|
|
* and a hardware reset occur.
|
|
**/
|
|
static int __devinit igb_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *netdev;
|
|
struct igb_adapter *adapter;
|
|
struct e1000_hw *hw;
|
|
u16 eeprom_data = 0;
|
|
s32 ret_val;
|
|
static int global_quad_port_a; /* global quad port a indication */
|
|
const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
|
|
unsigned long mmio_start, mmio_len;
|
|
int err, pci_using_dac;
|
|
u16 eeprom_apme_mask = IGB_EEPROM_APME;
|
|
u8 part_str[E1000_PBANUM_LENGTH];
|
|
|
|
/* Catch broken hardware that put the wrong VF device ID in
|
|
* the PCIe SR-IOV capability.
|
|
*/
|
|
if (pdev->is_virtfn) {
|
|
WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
|
|
pci_name(pdev), pdev->vendor, pdev->device);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = pci_enable_device_mem(pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
pci_using_dac = 0;
|
|
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
|
|
if (!err) {
|
|
err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
|
|
if (!err)
|
|
pci_using_dac = 1;
|
|
} else {
|
|
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
|
|
if (err) {
|
|
err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
|
|
if (err) {
|
|
dev_err(&pdev->dev, "No usable DMA "
|
|
"configuration, aborting\n");
|
|
goto err_dma;
|
|
}
|
|
}
|
|
}
|
|
|
|
err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
|
|
IORESOURCE_MEM),
|
|
igb_driver_name);
|
|
if (err)
|
|
goto err_pci_reg;
|
|
|
|
pci_enable_pcie_error_reporting(pdev);
|
|
|
|
pci_set_master(pdev);
|
|
pci_save_state(pdev);
|
|
|
|
err = -ENOMEM;
|
|
netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
|
|
IGB_MAX_TX_QUEUES);
|
|
if (!netdev)
|
|
goto err_alloc_etherdev;
|
|
|
|
SET_NETDEV_DEV(netdev, &pdev->dev);
|
|
|
|
pci_set_drvdata(pdev, netdev);
|
|
adapter = netdev_priv(netdev);
|
|
adapter->netdev = netdev;
|
|
adapter->pdev = pdev;
|
|
hw = &adapter->hw;
|
|
hw->back = adapter;
|
|
adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
|
|
|
|
mmio_start = pci_resource_start(pdev, 0);
|
|
mmio_len = pci_resource_len(pdev, 0);
|
|
|
|
err = -EIO;
|
|
hw->hw_addr = ioremap(mmio_start, mmio_len);
|
|
if (!hw->hw_addr)
|
|
goto err_ioremap;
|
|
|
|
netdev->netdev_ops = &igb_netdev_ops;
|
|
igb_set_ethtool_ops(netdev);
|
|
netdev->watchdog_timeo = 5 * HZ;
|
|
|
|
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
|
|
|
|
netdev->mem_start = mmio_start;
|
|
netdev->mem_end = mmio_start + mmio_len;
|
|
|
|
/* PCI config space info */
|
|
hw->vendor_id = pdev->vendor;
|
|
hw->device_id = pdev->device;
|
|
hw->revision_id = pdev->revision;
|
|
hw->subsystem_vendor_id = pdev->subsystem_vendor;
|
|
hw->subsystem_device_id = pdev->subsystem_device;
|
|
|
|
/* Copy the default MAC, PHY and NVM function pointers */
|
|
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
|
|
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
|
|
memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
|
|
/* Initialize skew-specific constants */
|
|
err = ei->get_invariants(hw);
|
|
if (err)
|
|
goto err_sw_init;
|
|
|
|
/* setup the private structure */
|
|
err = igb_sw_init(adapter);
|
|
if (err)
|
|
goto err_sw_init;
|
|
|
|
igb_get_bus_info_pcie(hw);
|
|
|
|
hw->phy.autoneg_wait_to_complete = false;
|
|
|
|
/* Copper options */
|
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
|
hw->phy.mdix = AUTO_ALL_MODES;
|
|
hw->phy.disable_polarity_correction = false;
|
|
hw->phy.ms_type = e1000_ms_hw_default;
|
|
}
|
|
|
|
if (igb_check_reset_block(hw))
|
|
dev_info(&pdev->dev,
|
|
"PHY reset is blocked due to SOL/IDER session.\n");
|
|
|
|
/*
|
|
* features is initialized to 0 in allocation, it might have bits
|
|
* set by igb_sw_init so we should use an or instead of an
|
|
* assignment.
|
|
*/
|
|
netdev->features |= NETIF_F_SG |
|
|
NETIF_F_IP_CSUM |
|
|
NETIF_F_IPV6_CSUM |
|
|
NETIF_F_TSO |
|
|
NETIF_F_TSO6 |
|
|
NETIF_F_RXHASH |
|
|
NETIF_F_RXCSUM |
|
|
NETIF_F_HW_VLAN_RX |
|
|
NETIF_F_HW_VLAN_TX;
|
|
|
|
/* copy netdev features into list of user selectable features */
|
|
netdev->hw_features |= netdev->features;
|
|
|
|
/* set this bit last since it cannot be part of hw_features */
|
|
netdev->features |= NETIF_F_HW_VLAN_FILTER;
|
|
|
|
netdev->vlan_features |= NETIF_F_TSO |
|
|
NETIF_F_TSO6 |
|
|
NETIF_F_IP_CSUM |
|
|
NETIF_F_IPV6_CSUM |
|
|
NETIF_F_SG;
|
|
|
|
if (pci_using_dac) {
|
|
netdev->features |= NETIF_F_HIGHDMA;
|
|
netdev->vlan_features |= NETIF_F_HIGHDMA;
|
|
}
|
|
|
|
if (hw->mac.type >= e1000_82576) {
|
|
netdev->hw_features |= NETIF_F_SCTP_CSUM;
|
|
netdev->features |= NETIF_F_SCTP_CSUM;
|
|
}
|
|
|
|
netdev->priv_flags |= IFF_UNICAST_FLT;
|
|
|
|
adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
|
|
|
|
/* before reading the NVM, reset the controller to put the device in a
|
|
* known good starting state */
|
|
hw->mac.ops.reset_hw(hw);
|
|
|
|
/* make sure the NVM is good */
|
|
if (hw->nvm.ops.validate(hw) < 0) {
|
|
dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
|
|
err = -EIO;
|
|
goto err_eeprom;
|
|
}
|
|
|
|
/* copy the MAC address out of the NVM */
|
|
if (hw->mac.ops.read_mac_addr(hw))
|
|
dev_err(&pdev->dev, "NVM Read Error\n");
|
|
|
|
memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
|
|
memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
|
|
|
|
if (!is_valid_ether_addr(netdev->perm_addr)) {
|
|
dev_err(&pdev->dev, "Invalid MAC Address\n");
|
|
err = -EIO;
|
|
goto err_eeprom;
|
|
}
|
|
|
|
setup_timer(&adapter->watchdog_timer, igb_watchdog,
|
|
(unsigned long) adapter);
|
|
setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
|
|
(unsigned long) adapter);
|
|
|
|
INIT_WORK(&adapter->reset_task, igb_reset_task);
|
|
INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
|
|
|
|
/* Initialize link properties that are user-changeable */
|
|
adapter->fc_autoneg = true;
|
|
hw->mac.autoneg = true;
|
|
hw->phy.autoneg_advertised = 0x2f;
|
|
|
|
hw->fc.requested_mode = e1000_fc_default;
|
|
hw->fc.current_mode = e1000_fc_default;
|
|
|
|
igb_validate_mdi_setting(hw);
|
|
|
|
/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
|
|
* enable the ACPI Magic Packet filter
|
|
*/
|
|
|
|
if (hw->bus.func == 0)
|
|
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
|
else if (hw->mac.type >= e1000_82580)
|
|
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
|
|
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
|
|
&eeprom_data);
|
|
else if (hw->bus.func == 1)
|
|
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
|
|
|
if (eeprom_data & eeprom_apme_mask)
|
|
adapter->eeprom_wol |= E1000_WUFC_MAG;
|
|
|
|
/* now that we have the eeprom settings, apply the special cases where
|
|
* the eeprom may be wrong or the board simply won't support wake on
|
|
* lan on a particular port */
|
|
switch (pdev->device) {
|
|
case E1000_DEV_ID_82575GB_QUAD_COPPER:
|
|
adapter->eeprom_wol = 0;
|
|
break;
|
|
case E1000_DEV_ID_82575EB_FIBER_SERDES:
|
|
case E1000_DEV_ID_82576_FIBER:
|
|
case E1000_DEV_ID_82576_SERDES:
|
|
/* Wake events only supported on port A for dual fiber
|
|
* regardless of eeprom setting */
|
|
if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
|
|
adapter->eeprom_wol = 0;
|
|
break;
|
|
case E1000_DEV_ID_82576_QUAD_COPPER:
|
|
case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
|
|
/* if quad port adapter, disable WoL on all but port A */
|
|
if (global_quad_port_a != 0)
|
|
adapter->eeprom_wol = 0;
|
|
else
|
|
adapter->flags |= IGB_FLAG_QUAD_PORT_A;
|
|
/* Reset for multiple quad port adapters */
|
|
if (++global_quad_port_a == 4)
|
|
global_quad_port_a = 0;
|
|
break;
|
|
}
|
|
|
|
/* initialize the wol settings based on the eeprom settings */
|
|
adapter->wol = adapter->eeprom_wol;
|
|
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
|
|
|
|
/* reset the hardware with the new settings */
|
|
igb_reset(adapter);
|
|
|
|
/* let the f/w know that the h/w is now under the control of the
|
|
* driver. */
|
|
igb_get_hw_control(adapter);
|
|
|
|
strcpy(netdev->name, "eth%d");
|
|
err = register_netdev(netdev);
|
|
if (err)
|
|
goto err_register;
|
|
|
|
/* carrier off reporting is important to ethtool even BEFORE open */
|
|
netif_carrier_off(netdev);
|
|
|
|
#ifdef CONFIG_IGB_DCA
|
|
if (dca_add_requester(&pdev->dev) == 0) {
|
|
adapter->flags |= IGB_FLAG_DCA_ENABLED;
|
|
dev_info(&pdev->dev, "DCA enabled\n");
|
|
igb_setup_dca(adapter);
|
|
}
|
|
|
|
#endif
|
|
/* do hw tstamp init after resetting */
|
|
igb_init_hw_timer(adapter);
|
|
|
|
dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
|
|
/* print bus type/speed/width info */
|
|
dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
|
|
netdev->name,
|
|
((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
|
|
(hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
|
|
"unknown"),
|
|
((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
|
|
(hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
|
|
(hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
|
|
"unknown"),
|
|
netdev->dev_addr);
|
|
|
|
ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
|
|
if (ret_val)
|
|
strcpy(part_str, "Unknown");
|
|
dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
|
|
dev_info(&pdev->dev,
|
|
"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
|
|
adapter->msix_entries ? "MSI-X" :
|
|
(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
|
|
adapter->num_rx_queues, adapter->num_tx_queues);
|
|
switch (hw->mac.type) {
|
|
case e1000_i350:
|
|
igb_set_eee_i350(hw);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
|
|
err_register:
|
|
igb_release_hw_control(adapter);
|
|
err_eeprom:
|
|
if (!igb_check_reset_block(hw))
|
|
igb_reset_phy(hw);
|
|
|
|
if (hw->flash_address)
|
|
iounmap(hw->flash_address);
|
|
err_sw_init:
|
|
igb_clear_interrupt_scheme(adapter);
|
|
iounmap(hw->hw_addr);
|
|
err_ioremap:
|
|
free_netdev(netdev);
|
|
err_alloc_etherdev:
|
|
pci_release_selected_regions(pdev,
|
|
pci_select_bars(pdev, IORESOURCE_MEM));
|
|
err_pci_reg:
|
|
err_dma:
|
|
pci_disable_device(pdev);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* igb_remove - Device Removal Routine
|
|
* @pdev: PCI device information struct
|
|
*
|
|
* igb_remove is called by the PCI subsystem to alert the driver
|
|
* that it should release a PCI device. The could be caused by a
|
|
* Hot-Plug event, or because the driver is going to be removed from
|
|
* memory.
|
|
**/
|
|
static void __devexit igb_remove(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
/*
|
|
* The watchdog timer may be rescheduled, so explicitly
|
|
* disable watchdog from being rescheduled.
|
|
*/
|
|
set_bit(__IGB_DOWN, &adapter->state);
|
|
del_timer_sync(&adapter->watchdog_timer);
|
|
del_timer_sync(&adapter->phy_info_timer);
|
|
|
|
cancel_work_sync(&adapter->reset_task);
|
|
cancel_work_sync(&adapter->watchdog_task);
|
|
|
|
#ifdef CONFIG_IGB_DCA
|
|
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
|
|
dev_info(&pdev->dev, "DCA disabled\n");
|
|
dca_remove_requester(&pdev->dev);
|
|
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
|
|
wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
|
|
}
|
|
#endif
|
|
|
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
|
* would have already happened in close and is redundant. */
|
|
igb_release_hw_control(adapter);
|
|
|
|
unregister_netdev(netdev);
|
|
|
|
igb_clear_interrupt_scheme(adapter);
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
/* reclaim resources allocated to VFs */
|
|
if (adapter->vf_data) {
|
|
/* disable iov and allow time for transactions to clear */
|
|
if (!igb_check_vf_assignment(adapter)) {
|
|
pci_disable_sriov(pdev);
|
|
msleep(500);
|
|
} else {
|
|
dev_info(&pdev->dev, "VF(s) assigned to guests!\n");
|
|
}
|
|
|
|
kfree(adapter->vf_data);
|
|
adapter->vf_data = NULL;
|
|
wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
|
|
wrfl();
|
|
msleep(100);
|
|
dev_info(&pdev->dev, "IOV Disabled\n");
|
|
}
|
|
#endif
|
|
|
|
iounmap(hw->hw_addr);
|
|
if (hw->flash_address)
|
|
iounmap(hw->flash_address);
|
|
pci_release_selected_regions(pdev,
|
|
pci_select_bars(pdev, IORESOURCE_MEM));
|
|
|
|
kfree(adapter->shadow_vfta);
|
|
free_netdev(netdev);
|
|
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
|
|
pci_disable_device(pdev);
|
|
}
|
|
|
|
/**
|
|
* igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* This function initializes the vf specific data storage and then attempts to
|
|
* allocate the VFs. The reason for ordering it this way is because it is much
|
|
* mor expensive time wise to disable SR-IOV than it is to allocate and free
|
|
* the memory for the VFs.
|
|
**/
|
|
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
|
|
{
|
|
#ifdef CONFIG_PCI_IOV
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int old_vfs = igb_find_enabled_vfs(adapter);
|
|
int i;
|
|
|
|
if (old_vfs) {
|
|
dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
|
|
"max_vfs setting of %d\n", old_vfs, max_vfs);
|
|
adapter->vfs_allocated_count = old_vfs;
|
|
}
|
|
|
|
if (!adapter->vfs_allocated_count)
|
|
return;
|
|
|
|
adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
|
|
sizeof(struct vf_data_storage), GFP_KERNEL);
|
|
/* if allocation failed then we do not support SR-IOV */
|
|
if (!adapter->vf_data) {
|
|
adapter->vfs_allocated_count = 0;
|
|
dev_err(&pdev->dev, "Unable to allocate memory for VF "
|
|
"Data Storage\n");
|
|
goto out;
|
|
}
|
|
|
|
if (!old_vfs) {
|
|
if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
|
|
goto err_out;
|
|
}
|
|
dev_info(&pdev->dev, "%d VFs allocated\n",
|
|
adapter->vfs_allocated_count);
|
|
for (i = 0; i < adapter->vfs_allocated_count; i++)
|
|
igb_vf_configure(adapter, i);
|
|
|
|
/* DMA Coalescing is not supported in IOV mode. */
|
|
adapter->flags &= ~IGB_FLAG_DMAC;
|
|
goto out;
|
|
err_out:
|
|
kfree(adapter->vf_data);
|
|
adapter->vf_data = NULL;
|
|
adapter->vfs_allocated_count = 0;
|
|
out:
|
|
return;
|
|
#endif /* CONFIG_PCI_IOV */
|
|
}
|
|
|
|
/**
|
|
* igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* igb_init_hw_timer initializes the function pointer and values for the hw
|
|
* timer found in hardware.
|
|
**/
|
|
static void igb_init_hw_timer(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_i350:
|
|
case e1000_82580:
|
|
memset(&adapter->cycles, 0, sizeof(adapter->cycles));
|
|
adapter->cycles.read = igb_read_clock;
|
|
adapter->cycles.mask = CLOCKSOURCE_MASK(64);
|
|
adapter->cycles.mult = 1;
|
|
/*
|
|
* The 82580 timesync updates the system timer every 8ns by 8ns
|
|
* and the value cannot be shifted. Instead we need to shift
|
|
* the registers to generate a 64bit timer value. As a result
|
|
* SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
|
|
* 24 in order to generate a larger value for synchronization.
|
|
*/
|
|
adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
|
|
/* disable system timer temporarily by setting bit 31 */
|
|
wr32(E1000_TSAUXC, 0x80000000);
|
|
wrfl();
|
|
|
|
/* Set registers so that rollover occurs soon to test this. */
|
|
wr32(E1000_SYSTIMR, 0x00000000);
|
|
wr32(E1000_SYSTIML, 0x80000000);
|
|
wr32(E1000_SYSTIMH, 0x000000FF);
|
|
wrfl();
|
|
|
|
/* enable system timer by clearing bit 31 */
|
|
wr32(E1000_TSAUXC, 0x0);
|
|
wrfl();
|
|
|
|
timecounter_init(&adapter->clock,
|
|
&adapter->cycles,
|
|
ktime_to_ns(ktime_get_real()));
|
|
/*
|
|
* Synchronize our NIC clock against system wall clock. NIC
|
|
* time stamp reading requires ~3us per sample, each sample
|
|
* was pretty stable even under load => only require 10
|
|
* samples for each offset comparison.
|
|
*/
|
|
memset(&adapter->compare, 0, sizeof(adapter->compare));
|
|
adapter->compare.source = &adapter->clock;
|
|
adapter->compare.target = ktime_get_real;
|
|
adapter->compare.num_samples = 10;
|
|
timecompare_update(&adapter->compare, 0);
|
|
break;
|
|
case e1000_82576:
|
|
/*
|
|
* Initialize hardware timer: we keep it running just in case
|
|
* that some program needs it later on.
|
|
*/
|
|
memset(&adapter->cycles, 0, sizeof(adapter->cycles));
|
|
adapter->cycles.read = igb_read_clock;
|
|
adapter->cycles.mask = CLOCKSOURCE_MASK(64);
|
|
adapter->cycles.mult = 1;
|
|
/**
|
|
* Scale the NIC clock cycle by a large factor so that
|
|
* relatively small clock corrections can be added or
|
|
* subtracted at each clock tick. The drawbacks of a large
|
|
* factor are a) that the clock register overflows more quickly
|
|
* (not such a big deal) and b) that the increment per tick has
|
|
* to fit into 24 bits. As a result we need to use a shift of
|
|
* 19 so we can fit a value of 16 into the TIMINCA register.
|
|
*/
|
|
adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
|
|
wr32(E1000_TIMINCA,
|
|
(1 << E1000_TIMINCA_16NS_SHIFT) |
|
|
(16 << IGB_82576_TSYNC_SHIFT));
|
|
|
|
/* Set registers so that rollover occurs soon to test this. */
|
|
wr32(E1000_SYSTIML, 0x00000000);
|
|
wr32(E1000_SYSTIMH, 0xFF800000);
|
|
wrfl();
|
|
|
|
timecounter_init(&adapter->clock,
|
|
&adapter->cycles,
|
|
ktime_to_ns(ktime_get_real()));
|
|
/*
|
|
* Synchronize our NIC clock against system wall clock. NIC
|
|
* time stamp reading requires ~3us per sample, each sample
|
|
* was pretty stable even under load => only require 10
|
|
* samples for each offset comparison.
|
|
*/
|
|
memset(&adapter->compare, 0, sizeof(adapter->compare));
|
|
adapter->compare.source = &adapter->clock;
|
|
adapter->compare.target = ktime_get_real;
|
|
adapter->compare.num_samples = 10;
|
|
timecompare_update(&adapter->compare, 0);
|
|
break;
|
|
case e1000_82575:
|
|
/* 82575 does not support timesync */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* igb_sw_init - Initialize general software structures (struct igb_adapter)
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* igb_sw_init initializes the Adapter private data structure.
|
|
* Fields are initialized based on PCI device information and
|
|
* OS network device settings (MTU size).
|
|
**/
|
|
static int __devinit igb_sw_init(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
|
|
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
|
|
|
|
/* set default ring sizes */
|
|
adapter->tx_ring_count = IGB_DEFAULT_TXD;
|
|
adapter->rx_ring_count = IGB_DEFAULT_RXD;
|
|
|
|
/* set default ITR values */
|
|
adapter->rx_itr_setting = IGB_DEFAULT_ITR;
|
|
adapter->tx_itr_setting = IGB_DEFAULT_ITR;
|
|
|
|
/* set default work limits */
|
|
adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
|
|
|
|
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
|
|
VLAN_HLEN;
|
|
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
|
|
|
|
adapter->node = -1;
|
|
|
|
spin_lock_init(&adapter->stats64_lock);
|
|
#ifdef CONFIG_PCI_IOV
|
|
switch (hw->mac.type) {
|
|
case e1000_82576:
|
|
case e1000_i350:
|
|
if (max_vfs > 7) {
|
|
dev_warn(&pdev->dev,
|
|
"Maximum of 7 VFs per PF, using max\n");
|
|
adapter->vfs_allocated_count = 7;
|
|
} else
|
|
adapter->vfs_allocated_count = max_vfs;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
|
|
/* i350 cannot do RSS and SR-IOV at the same time */
|
|
if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
|
|
adapter->rss_queues = 1;
|
|
|
|
/*
|
|
* if rss_queues > 4 or vfs are going to be allocated with rss_queues
|
|
* then we should combine the queues into a queue pair in order to
|
|
* conserve interrupts due to limited supply
|
|
*/
|
|
if ((adapter->rss_queues > 4) ||
|
|
((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
|
|
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
|
|
|
|
/* Setup and initialize a copy of the hw vlan table array */
|
|
adapter->shadow_vfta = kzalloc(sizeof(u32) *
|
|
E1000_VLAN_FILTER_TBL_SIZE,
|
|
GFP_ATOMIC);
|
|
|
|
/* This call may decrease the number of queues */
|
|
if (igb_init_interrupt_scheme(adapter)) {
|
|
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
igb_probe_vfs(adapter);
|
|
|
|
/* Explicitly disable IRQ since the NIC can be in any state. */
|
|
igb_irq_disable(adapter);
|
|
|
|
if (hw->mac.type == e1000_i350)
|
|
adapter->flags &= ~IGB_FLAG_DMAC;
|
|
|
|
set_bit(__IGB_DOWN, &adapter->state);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_open - Called when a network interface is made active
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns 0 on success, negative value on failure
|
|
*
|
|
* The open entry point is called when a network interface is made
|
|
* active by the system (IFF_UP). At this point all resources needed
|
|
* for transmit and receive operations are allocated, the interrupt
|
|
* handler is registered with the OS, the watchdog timer is started,
|
|
* and the stack is notified that the interface is ready.
|
|
**/
|
|
static int igb_open(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int err;
|
|
int i;
|
|
|
|
/* disallow open during test */
|
|
if (test_bit(__IGB_TESTING, &adapter->state))
|
|
return -EBUSY;
|
|
|
|
netif_carrier_off(netdev);
|
|
|
|
/* allocate transmit descriptors */
|
|
err = igb_setup_all_tx_resources(adapter);
|
|
if (err)
|
|
goto err_setup_tx;
|
|
|
|
/* allocate receive descriptors */
|
|
err = igb_setup_all_rx_resources(adapter);
|
|
if (err)
|
|
goto err_setup_rx;
|
|
|
|
igb_power_up_link(adapter);
|
|
|
|
/* before we allocate an interrupt, we must be ready to handle it.
|
|
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
|
|
* as soon as we call pci_request_irq, so we have to setup our
|
|
* clean_rx handler before we do so. */
|
|
igb_configure(adapter);
|
|
|
|
err = igb_request_irq(adapter);
|
|
if (err)
|
|
goto err_req_irq;
|
|
|
|
/* From here on the code is the same as igb_up() */
|
|
clear_bit(__IGB_DOWN, &adapter->state);
|
|
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
|
napi_enable(&(adapter->q_vector[i]->napi));
|
|
|
|
/* Clear any pending interrupts. */
|
|
rd32(E1000_ICR);
|
|
|
|
igb_irq_enable(adapter);
|
|
|
|
/* notify VFs that reset has been completed */
|
|
if (adapter->vfs_allocated_count) {
|
|
u32 reg_data = rd32(E1000_CTRL_EXT);
|
|
reg_data |= E1000_CTRL_EXT_PFRSTD;
|
|
wr32(E1000_CTRL_EXT, reg_data);
|
|
}
|
|
|
|
netif_tx_start_all_queues(netdev);
|
|
|
|
/* start the watchdog. */
|
|
hw->mac.get_link_status = 1;
|
|
schedule_work(&adapter->watchdog_task);
|
|
|
|
return 0;
|
|
|
|
err_req_irq:
|
|
igb_release_hw_control(adapter);
|
|
igb_power_down_link(adapter);
|
|
igb_free_all_rx_resources(adapter);
|
|
err_setup_rx:
|
|
igb_free_all_tx_resources(adapter);
|
|
err_setup_tx:
|
|
igb_reset(adapter);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* igb_close - Disables a network interface
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns 0, this is not allowed to fail
|
|
*
|
|
* The close entry point is called when an interface is de-activated
|
|
* by the OS. The hardware is still under the driver's control, but
|
|
* needs to be disabled. A global MAC reset is issued to stop the
|
|
* hardware, and all transmit and receive resources are freed.
|
|
**/
|
|
static int igb_close(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
|
|
WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
|
|
igb_down(adapter);
|
|
|
|
igb_free_irq(adapter);
|
|
|
|
igb_free_all_tx_resources(adapter);
|
|
igb_free_all_rx_resources(adapter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_setup_tx_resources - allocate Tx resources (Descriptors)
|
|
* @tx_ring: tx descriptor ring (for a specific queue) to setup
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
int igb_setup_tx_resources(struct igb_ring *tx_ring)
|
|
{
|
|
struct device *dev = tx_ring->dev;
|
|
int orig_node = dev_to_node(dev);
|
|
int size;
|
|
|
|
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
|
|
tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
|
|
if (!tx_ring->tx_buffer_info)
|
|
tx_ring->tx_buffer_info = vzalloc(size);
|
|
if (!tx_ring->tx_buffer_info)
|
|
goto err;
|
|
|
|
/* round up to nearest 4K */
|
|
tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
|
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
|
|
|
set_dev_node(dev, tx_ring->numa_node);
|
|
tx_ring->desc = dma_alloc_coherent(dev,
|
|
tx_ring->size,
|
|
&tx_ring->dma,
|
|
GFP_KERNEL);
|
|
set_dev_node(dev, orig_node);
|
|
if (!tx_ring->desc)
|
|
tx_ring->desc = dma_alloc_coherent(dev,
|
|
tx_ring->size,
|
|
&tx_ring->dma,
|
|
GFP_KERNEL);
|
|
|
|
if (!tx_ring->desc)
|
|
goto err;
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
vfree(tx_ring->tx_buffer_info);
|
|
dev_err(dev,
|
|
"Unable to allocate memory for the transmit descriptor ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* igb_setup_all_tx_resources - wrapper to allocate Tx resources
|
|
* (Descriptors) for all queues
|
|
* @adapter: board private structure
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
err = igb_setup_tx_resources(adapter->tx_ring[i]);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"Allocation for Tx Queue %u failed\n", i);
|
|
for (i--; i >= 0; i--)
|
|
igb_free_tx_resources(adapter->tx_ring[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* igb_setup_tctl - configure the transmit control registers
|
|
* @adapter: Board private structure
|
|
**/
|
|
void igb_setup_tctl(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 tctl;
|
|
|
|
/* disable queue 0 which is enabled by default on 82575 and 82576 */
|
|
wr32(E1000_TXDCTL(0), 0);
|
|
|
|
/* Program the Transmit Control Register */
|
|
tctl = rd32(E1000_TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
|
|
|
igb_config_collision_dist(hw);
|
|
|
|
/* Enable transmits */
|
|
tctl |= E1000_TCTL_EN;
|
|
|
|
wr32(E1000_TCTL, tctl);
|
|
}
|
|
|
|
/**
|
|
* igb_configure_tx_ring - Configure transmit ring after Reset
|
|
* @adapter: board private structure
|
|
* @ring: tx ring to configure
|
|
*
|
|
* Configure a transmit ring after a reset.
|
|
**/
|
|
void igb_configure_tx_ring(struct igb_adapter *adapter,
|
|
struct igb_ring *ring)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 txdctl = 0;
|
|
u64 tdba = ring->dma;
|
|
int reg_idx = ring->reg_idx;
|
|
|
|
/* disable the queue */
|
|
wr32(E1000_TXDCTL(reg_idx), 0);
|
|
wrfl();
|
|
mdelay(10);
|
|
|
|
wr32(E1000_TDLEN(reg_idx),
|
|
ring->count * sizeof(union e1000_adv_tx_desc));
|
|
wr32(E1000_TDBAL(reg_idx),
|
|
tdba & 0x00000000ffffffffULL);
|
|
wr32(E1000_TDBAH(reg_idx), tdba >> 32);
|
|
|
|
ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
|
|
wr32(E1000_TDH(reg_idx), 0);
|
|
writel(0, ring->tail);
|
|
|
|
txdctl |= IGB_TX_PTHRESH;
|
|
txdctl |= IGB_TX_HTHRESH << 8;
|
|
txdctl |= IGB_TX_WTHRESH << 16;
|
|
|
|
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
|
|
wr32(E1000_TXDCTL(reg_idx), txdctl);
|
|
}
|
|
|
|
/**
|
|
* igb_configure_tx - Configure transmit Unit after Reset
|
|
* @adapter: board private structure
|
|
*
|
|
* Configure the Tx unit of the MAC after a reset.
|
|
**/
|
|
static void igb_configure_tx(struct igb_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
|
igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
|
|
}
|
|
|
|
/**
|
|
* igb_setup_rx_resources - allocate Rx resources (Descriptors)
|
|
* @rx_ring: rx descriptor ring (for a specific queue) to setup
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
int igb_setup_rx_resources(struct igb_ring *rx_ring)
|
|
{
|
|
struct device *dev = rx_ring->dev;
|
|
int orig_node = dev_to_node(dev);
|
|
int size, desc_len;
|
|
|
|
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
|
|
rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
|
|
if (!rx_ring->rx_buffer_info)
|
|
rx_ring->rx_buffer_info = vzalloc(size);
|
|
if (!rx_ring->rx_buffer_info)
|
|
goto err;
|
|
|
|
desc_len = sizeof(union e1000_adv_rx_desc);
|
|
|
|
/* Round up to nearest 4K */
|
|
rx_ring->size = rx_ring->count * desc_len;
|
|
rx_ring->size = ALIGN(rx_ring->size, 4096);
|
|
|
|
set_dev_node(dev, rx_ring->numa_node);
|
|
rx_ring->desc = dma_alloc_coherent(dev,
|
|
rx_ring->size,
|
|
&rx_ring->dma,
|
|
GFP_KERNEL);
|
|
set_dev_node(dev, orig_node);
|
|
if (!rx_ring->desc)
|
|
rx_ring->desc = dma_alloc_coherent(dev,
|
|
rx_ring->size,
|
|
&rx_ring->dma,
|
|
GFP_KERNEL);
|
|
|
|
if (!rx_ring->desc)
|
|
goto err;
|
|
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
vfree(rx_ring->rx_buffer_info);
|
|
rx_ring->rx_buffer_info = NULL;
|
|
dev_err(dev, "Unable to allocate memory for the receive descriptor"
|
|
" ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* igb_setup_all_rx_resources - wrapper to allocate Rx resources
|
|
* (Descriptors) for all queues
|
|
* @adapter: board private structure
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
err = igb_setup_rx_resources(adapter->rx_ring[i]);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"Allocation for Rx Queue %u failed\n", i);
|
|
for (i--; i >= 0; i--)
|
|
igb_free_rx_resources(adapter->rx_ring[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* igb_setup_mrqc - configure the multiple receive queue control registers
|
|
* @adapter: Board private structure
|
|
**/
|
|
static void igb_setup_mrqc(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 mrqc, rxcsum;
|
|
u32 j, num_rx_queues, shift = 0, shift2 = 0;
|
|
union e1000_reta {
|
|
u32 dword;
|
|
u8 bytes[4];
|
|
} reta;
|
|
static const u8 rsshash[40] = {
|
|
0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
|
|
0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
|
|
0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
|
|
0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
|
|
|
|
/* Fill out hash function seeds */
|
|
for (j = 0; j < 10; j++) {
|
|
u32 rsskey = rsshash[(j * 4)];
|
|
rsskey |= rsshash[(j * 4) + 1] << 8;
|
|
rsskey |= rsshash[(j * 4) + 2] << 16;
|
|
rsskey |= rsshash[(j * 4) + 3] << 24;
|
|
array_wr32(E1000_RSSRK(0), j, rsskey);
|
|
}
|
|
|
|
num_rx_queues = adapter->rss_queues;
|
|
|
|
if (adapter->vfs_allocated_count) {
|
|
/* 82575 and 82576 supports 2 RSS queues for VMDq */
|
|
switch (hw->mac.type) {
|
|
case e1000_i350:
|
|
case e1000_82580:
|
|
num_rx_queues = 1;
|
|
shift = 0;
|
|
break;
|
|
case e1000_82576:
|
|
shift = 3;
|
|
num_rx_queues = 2;
|
|
break;
|
|
case e1000_82575:
|
|
shift = 2;
|
|
shift2 = 6;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
if (hw->mac.type == e1000_82575)
|
|
shift = 6;
|
|
}
|
|
|
|
for (j = 0; j < (32 * 4); j++) {
|
|
reta.bytes[j & 3] = (j % num_rx_queues) << shift;
|
|
if (shift2)
|
|
reta.bytes[j & 3] |= num_rx_queues << shift2;
|
|
if ((j & 3) == 3)
|
|
wr32(E1000_RETA(j >> 2), reta.dword);
|
|
}
|
|
|
|
/*
|
|
* Disable raw packet checksumming so that RSS hash is placed in
|
|
* descriptor on writeback. No need to enable TCP/UDP/IP checksum
|
|
* offloads as they are enabled by default
|
|
*/
|
|
rxcsum = rd32(E1000_RXCSUM);
|
|
rxcsum |= E1000_RXCSUM_PCSD;
|
|
|
|
if (adapter->hw.mac.type >= e1000_82576)
|
|
/* Enable Receive Checksum Offload for SCTP */
|
|
rxcsum |= E1000_RXCSUM_CRCOFL;
|
|
|
|
/* Don't need to set TUOFL or IPOFL, they default to 1 */
|
|
wr32(E1000_RXCSUM, rxcsum);
|
|
|
|
/* If VMDq is enabled then we set the appropriate mode for that, else
|
|
* we default to RSS so that an RSS hash is calculated per packet even
|
|
* if we are only using one queue */
|
|
if (adapter->vfs_allocated_count) {
|
|
if (hw->mac.type > e1000_82575) {
|
|
/* Set the default pool for the PF's first queue */
|
|
u32 vtctl = rd32(E1000_VT_CTL);
|
|
vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
|
|
E1000_VT_CTL_DISABLE_DEF_POOL);
|
|
vtctl |= adapter->vfs_allocated_count <<
|
|
E1000_VT_CTL_DEFAULT_POOL_SHIFT;
|
|
wr32(E1000_VT_CTL, vtctl);
|
|
}
|
|
if (adapter->rss_queues > 1)
|
|
mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
|
|
else
|
|
mrqc = E1000_MRQC_ENABLE_VMDQ;
|
|
} else {
|
|
mrqc = E1000_MRQC_ENABLE_RSS_4Q;
|
|
}
|
|
igb_vmm_control(adapter);
|
|
|
|
/*
|
|
* Generate RSS hash based on TCP port numbers and/or
|
|
* IPv4/v6 src and dst addresses since UDP cannot be
|
|
* hashed reliably due to IP fragmentation
|
|
*/
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
|
|
E1000_MRQC_RSS_FIELD_IPV4_TCP |
|
|
E1000_MRQC_RSS_FIELD_IPV6 |
|
|
E1000_MRQC_RSS_FIELD_IPV6_TCP |
|
|
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
|
|
|
|
wr32(E1000_MRQC, mrqc);
|
|
}
|
|
|
|
/**
|
|
* igb_setup_rctl - configure the receive control registers
|
|
* @adapter: Board private structure
|
|
**/
|
|
void igb_setup_rctl(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 rctl;
|
|
|
|
rctl = rd32(E1000_RCTL);
|
|
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
|
|
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
|
|
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
/*
|
|
* enable stripping of CRC. It's unlikely this will break BMC
|
|
* redirection as it did with e1000. Newer features require
|
|
* that the HW strips the CRC.
|
|
*/
|
|
rctl |= E1000_RCTL_SECRC;
|
|
|
|
/* disable store bad packets and clear size bits. */
|
|
rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
|
|
|
|
/* enable LPE to prevent packets larger than max_frame_size */
|
|
rctl |= E1000_RCTL_LPE;
|
|
|
|
/* disable queue 0 to prevent tail write w/o re-config */
|
|
wr32(E1000_RXDCTL(0), 0);
|
|
|
|
/* Attention!!! For SR-IOV PF driver operations you must enable
|
|
* queue drop for all VF and PF queues to prevent head of line blocking
|
|
* if an un-trusted VF does not provide descriptors to hardware.
|
|
*/
|
|
if (adapter->vfs_allocated_count) {
|
|
/* set all queue drop enable bits */
|
|
wr32(E1000_QDE, ALL_QUEUES);
|
|
}
|
|
|
|
wr32(E1000_RCTL, rctl);
|
|
}
|
|
|
|
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
|
|
int vfn)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 vmolr;
|
|
|
|
/* if it isn't the PF check to see if VFs are enabled and
|
|
* increase the size to support vlan tags */
|
|
if (vfn < adapter->vfs_allocated_count &&
|
|
adapter->vf_data[vfn].vlans_enabled)
|
|
size += VLAN_TAG_SIZE;
|
|
|
|
vmolr = rd32(E1000_VMOLR(vfn));
|
|
vmolr &= ~E1000_VMOLR_RLPML_MASK;
|
|
vmolr |= size | E1000_VMOLR_LPE;
|
|
wr32(E1000_VMOLR(vfn), vmolr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_rlpml_set - set maximum receive packet size
|
|
* @adapter: board private structure
|
|
*
|
|
* Configure maximum receivable packet size.
|
|
**/
|
|
static void igb_rlpml_set(struct igb_adapter *adapter)
|
|
{
|
|
u32 max_frame_size = adapter->max_frame_size;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u16 pf_id = adapter->vfs_allocated_count;
|
|
|
|
if (pf_id) {
|
|
igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
|
|
/*
|
|
* If we're in VMDQ or SR-IOV mode, then set global RLPML
|
|
* to our max jumbo frame size, in case we need to enable
|
|
* jumbo frames on one of the rings later.
|
|
* This will not pass over-length frames into the default
|
|
* queue because it's gated by the VMOLR.RLPML.
|
|
*/
|
|
max_frame_size = MAX_JUMBO_FRAME_SIZE;
|
|
}
|
|
|
|
wr32(E1000_RLPML, max_frame_size);
|
|
}
|
|
|
|
static inline void igb_set_vmolr(struct igb_adapter *adapter,
|
|
int vfn, bool aupe)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 vmolr;
|
|
|
|
/*
|
|
* This register exists only on 82576 and newer so if we are older then
|
|
* we should exit and do nothing
|
|
*/
|
|
if (hw->mac.type < e1000_82576)
|
|
return;
|
|
|
|
vmolr = rd32(E1000_VMOLR(vfn));
|
|
vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
|
|
if (aupe)
|
|
vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
|
|
else
|
|
vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
|
|
|
|
/* clear all bits that might not be set */
|
|
vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
|
|
|
|
if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
|
|
vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
|
|
/*
|
|
* for VMDq only allow the VFs and pool 0 to accept broadcast and
|
|
* multicast packets
|
|
*/
|
|
if (vfn <= adapter->vfs_allocated_count)
|
|
vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
|
|
|
|
wr32(E1000_VMOLR(vfn), vmolr);
|
|
}
|
|
|
|
/**
|
|
* igb_configure_rx_ring - Configure a receive ring after Reset
|
|
* @adapter: board private structure
|
|
* @ring: receive ring to be configured
|
|
*
|
|
* Configure the Rx unit of the MAC after a reset.
|
|
**/
|
|
void igb_configure_rx_ring(struct igb_adapter *adapter,
|
|
struct igb_ring *ring)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u64 rdba = ring->dma;
|
|
int reg_idx = ring->reg_idx;
|
|
u32 srrctl = 0, rxdctl = 0;
|
|
|
|
/* disable the queue */
|
|
wr32(E1000_RXDCTL(reg_idx), 0);
|
|
|
|
/* Set DMA base address registers */
|
|
wr32(E1000_RDBAL(reg_idx),
|
|
rdba & 0x00000000ffffffffULL);
|
|
wr32(E1000_RDBAH(reg_idx), rdba >> 32);
|
|
wr32(E1000_RDLEN(reg_idx),
|
|
ring->count * sizeof(union e1000_adv_rx_desc));
|
|
|
|
/* initialize head and tail */
|
|
ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
|
|
wr32(E1000_RDH(reg_idx), 0);
|
|
writel(0, ring->tail);
|
|
|
|
/* set descriptor configuration */
|
|
srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
|
|
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
|
|
srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
|
|
#else
|
|
srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
|
|
#endif
|
|
srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
|
|
if (hw->mac.type >= e1000_82580)
|
|
srrctl |= E1000_SRRCTL_TIMESTAMP;
|
|
/* Only set Drop Enable if we are supporting multiple queues */
|
|
if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
|
|
srrctl |= E1000_SRRCTL_DROP_EN;
|
|
|
|
wr32(E1000_SRRCTL(reg_idx), srrctl);
|
|
|
|
/* set filtering for VMDQ pools */
|
|
igb_set_vmolr(adapter, reg_idx & 0x7, true);
|
|
|
|
rxdctl |= IGB_RX_PTHRESH;
|
|
rxdctl |= IGB_RX_HTHRESH << 8;
|
|
rxdctl |= IGB_RX_WTHRESH << 16;
|
|
|
|
/* enable receive descriptor fetching */
|
|
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
|
|
wr32(E1000_RXDCTL(reg_idx), rxdctl);
|
|
}
|
|
|
|
/**
|
|
* igb_configure_rx - Configure receive Unit after Reset
|
|
* @adapter: board private structure
|
|
*
|
|
* Configure the Rx unit of the MAC after a reset.
|
|
**/
|
|
static void igb_configure_rx(struct igb_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
/* set UTA to appropriate mode */
|
|
igb_set_uta(adapter);
|
|
|
|
/* set the correct pool for the PF default MAC address in entry 0 */
|
|
igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
|
|
adapter->vfs_allocated_count);
|
|
|
|
/* Setup the HW Rx Head and Tail Descriptor Pointers and
|
|
* the Base and Length of the Rx Descriptor Ring */
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
|
|
}
|
|
|
|
/**
|
|
* igb_free_tx_resources - Free Tx Resources per Queue
|
|
* @tx_ring: Tx descriptor ring for a specific queue
|
|
*
|
|
* Free all transmit software resources
|
|
**/
|
|
void igb_free_tx_resources(struct igb_ring *tx_ring)
|
|
{
|
|
igb_clean_tx_ring(tx_ring);
|
|
|
|
vfree(tx_ring->tx_buffer_info);
|
|
tx_ring->tx_buffer_info = NULL;
|
|
|
|
/* if not set, then don't free */
|
|
if (!tx_ring->desc)
|
|
return;
|
|
|
|
dma_free_coherent(tx_ring->dev, tx_ring->size,
|
|
tx_ring->desc, tx_ring->dma);
|
|
|
|
tx_ring->desc = NULL;
|
|
}
|
|
|
|
/**
|
|
* igb_free_all_tx_resources - Free Tx Resources for All Queues
|
|
* @adapter: board private structure
|
|
*
|
|
* Free all transmit software resources
|
|
**/
|
|
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
|
igb_free_tx_resources(adapter->tx_ring[i]);
|
|
}
|
|
|
|
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
|
|
struct igb_tx_buffer *tx_buffer)
|
|
{
|
|
if (tx_buffer->skb) {
|
|
dev_kfree_skb_any(tx_buffer->skb);
|
|
if (tx_buffer->dma)
|
|
dma_unmap_single(ring->dev,
|
|
tx_buffer->dma,
|
|
tx_buffer->length,
|
|
DMA_TO_DEVICE);
|
|
} else if (tx_buffer->dma) {
|
|
dma_unmap_page(ring->dev,
|
|
tx_buffer->dma,
|
|
tx_buffer->length,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
tx_buffer->next_to_watch = NULL;
|
|
tx_buffer->skb = NULL;
|
|
tx_buffer->dma = 0;
|
|
/* buffer_info must be completely set up in the transmit path */
|
|
}
|
|
|
|
/**
|
|
* igb_clean_tx_ring - Free Tx Buffers
|
|
* @tx_ring: ring to be cleaned
|
|
**/
|
|
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
|
|
{
|
|
struct igb_tx_buffer *buffer_info;
|
|
unsigned long size;
|
|
u16 i;
|
|
|
|
if (!tx_ring->tx_buffer_info)
|
|
return;
|
|
/* Free all the Tx ring sk_buffs */
|
|
|
|
for (i = 0; i < tx_ring->count; i++) {
|
|
buffer_info = &tx_ring->tx_buffer_info[i];
|
|
igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
|
|
}
|
|
|
|
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
|
|
memset(tx_ring->tx_buffer_info, 0, size);
|
|
|
|
/* Zero out the descriptor ring */
|
|
memset(tx_ring->desc, 0, tx_ring->size);
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
}
|
|
|
|
/**
|
|
* igb_clean_all_tx_rings - Free Tx Buffers for all queues
|
|
* @adapter: board private structure
|
|
**/
|
|
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
|
igb_clean_tx_ring(adapter->tx_ring[i]);
|
|
}
|
|
|
|
/**
|
|
* igb_free_rx_resources - Free Rx Resources
|
|
* @rx_ring: ring to clean the resources from
|
|
*
|
|
* Free all receive software resources
|
|
**/
|
|
void igb_free_rx_resources(struct igb_ring *rx_ring)
|
|
{
|
|
igb_clean_rx_ring(rx_ring);
|
|
|
|
vfree(rx_ring->rx_buffer_info);
|
|
rx_ring->rx_buffer_info = NULL;
|
|
|
|
/* if not set, then don't free */
|
|
if (!rx_ring->desc)
|
|
return;
|
|
|
|
dma_free_coherent(rx_ring->dev, rx_ring->size,
|
|
rx_ring->desc, rx_ring->dma);
|
|
|
|
rx_ring->desc = NULL;
|
|
}
|
|
|
|
/**
|
|
* igb_free_all_rx_resources - Free Rx Resources for All Queues
|
|
* @adapter: board private structure
|
|
*
|
|
* Free all receive software resources
|
|
**/
|
|
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
igb_free_rx_resources(adapter->rx_ring[i]);
|
|
}
|
|
|
|
/**
|
|
* igb_clean_rx_ring - Free Rx Buffers per Queue
|
|
* @rx_ring: ring to free buffers from
|
|
**/
|
|
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
|
|
{
|
|
unsigned long size;
|
|
u16 i;
|
|
|
|
if (!rx_ring->rx_buffer_info)
|
|
return;
|
|
|
|
/* Free all the Rx ring sk_buffs */
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
|
|
if (buffer_info->dma) {
|
|
dma_unmap_single(rx_ring->dev,
|
|
buffer_info->dma,
|
|
IGB_RX_HDR_LEN,
|
|
DMA_FROM_DEVICE);
|
|
buffer_info->dma = 0;
|
|
}
|
|
|
|
if (buffer_info->skb) {
|
|
dev_kfree_skb(buffer_info->skb);
|
|
buffer_info->skb = NULL;
|
|
}
|
|
if (buffer_info->page_dma) {
|
|
dma_unmap_page(rx_ring->dev,
|
|
buffer_info->page_dma,
|
|
PAGE_SIZE / 2,
|
|
DMA_FROM_DEVICE);
|
|
buffer_info->page_dma = 0;
|
|
}
|
|
if (buffer_info->page) {
|
|
put_page(buffer_info->page);
|
|
buffer_info->page = NULL;
|
|
buffer_info->page_offset = 0;
|
|
}
|
|
}
|
|
|
|
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
|
|
memset(rx_ring->rx_buffer_info, 0, size);
|
|
|
|
/* Zero out the descriptor ring */
|
|
memset(rx_ring->desc, 0, rx_ring->size);
|
|
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
}
|
|
|
|
/**
|
|
* igb_clean_all_rx_rings - Free Rx Buffers for all queues
|
|
* @adapter: board private structure
|
|
**/
|
|
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
igb_clean_rx_ring(adapter->rx_ring[i]);
|
|
}
|
|
|
|
/**
|
|
* igb_set_mac - Change the Ethernet Address of the NIC
|
|
* @netdev: network interface device structure
|
|
* @p: pointer to an address structure
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
static int igb_set_mac(struct net_device *netdev, void *p)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct sockaddr *addr = p;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
|
|
memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
|
|
|
|
/* set the correct pool for the new PF MAC address in entry 0 */
|
|
igb_rar_set_qsel(adapter, hw->mac.addr, 0,
|
|
adapter->vfs_allocated_count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_write_mc_addr_list - write multicast addresses to MTA
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Writes multicast address list to the MTA hash table.
|
|
* Returns: -ENOMEM on failure
|
|
* 0 on no addresses written
|
|
* X on writing X addresses to MTA
|
|
**/
|
|
static int igb_write_mc_addr_list(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct netdev_hw_addr *ha;
|
|
u8 *mta_list;
|
|
int i;
|
|
|
|
if (netdev_mc_empty(netdev)) {
|
|
/* nothing to program, so clear mc list */
|
|
igb_update_mc_addr_list(hw, NULL, 0);
|
|
igb_restore_vf_multicasts(adapter);
|
|
return 0;
|
|
}
|
|
|
|
mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
|
|
if (!mta_list)
|
|
return -ENOMEM;
|
|
|
|
/* The shared function expects a packed array of only addresses. */
|
|
i = 0;
|
|
netdev_for_each_mc_addr(ha, netdev)
|
|
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
|
|
|
|
igb_update_mc_addr_list(hw, mta_list, i);
|
|
kfree(mta_list);
|
|
|
|
return netdev_mc_count(netdev);
|
|
}
|
|
|
|
/**
|
|
* igb_write_uc_addr_list - write unicast addresses to RAR table
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Writes unicast address list to the RAR table.
|
|
* Returns: -ENOMEM on failure/insufficient address space
|
|
* 0 on no addresses written
|
|
* X on writing X addresses to the RAR table
|
|
**/
|
|
static int igb_write_uc_addr_list(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
unsigned int vfn = adapter->vfs_allocated_count;
|
|
unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
|
|
int count = 0;
|
|
|
|
/* return ENOMEM indicating insufficient memory for addresses */
|
|
if (netdev_uc_count(netdev) > rar_entries)
|
|
return -ENOMEM;
|
|
|
|
if (!netdev_uc_empty(netdev) && rar_entries) {
|
|
struct netdev_hw_addr *ha;
|
|
|
|
netdev_for_each_uc_addr(ha, netdev) {
|
|
if (!rar_entries)
|
|
break;
|
|
igb_rar_set_qsel(adapter, ha->addr,
|
|
rar_entries--,
|
|
vfn);
|
|
count++;
|
|
}
|
|
}
|
|
/* write the addresses in reverse order to avoid write combining */
|
|
for (; rar_entries > 0 ; rar_entries--) {
|
|
wr32(E1000_RAH(rar_entries), 0);
|
|
wr32(E1000_RAL(rar_entries), 0);
|
|
}
|
|
wrfl();
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
|
|
* @netdev: network interface device structure
|
|
*
|
|
* The set_rx_mode entry point is called whenever the unicast or multicast
|
|
* address lists or the network interface flags are updated. This routine is
|
|
* responsible for configuring the hardware for proper unicast, multicast,
|
|
* promiscuous mode, and all-multi behavior.
|
|
**/
|
|
static void igb_set_rx_mode(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
unsigned int vfn = adapter->vfs_allocated_count;
|
|
u32 rctl, vmolr = 0;
|
|
int count;
|
|
|
|
/* Check for Promiscuous and All Multicast modes */
|
|
rctl = rd32(E1000_RCTL);
|
|
|
|
/* clear the effected bits */
|
|
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
|
|
|
|
if (netdev->flags & IFF_PROMISC) {
|
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
|
|
} else {
|
|
if (netdev->flags & IFF_ALLMULTI) {
|
|
rctl |= E1000_RCTL_MPE;
|
|
vmolr |= E1000_VMOLR_MPME;
|
|
} else {
|
|
/*
|
|
* Write addresses to the MTA, if the attempt fails
|
|
* then we should just turn on promiscuous mode so
|
|
* that we can at least receive multicast traffic
|
|
*/
|
|
count = igb_write_mc_addr_list(netdev);
|
|
if (count < 0) {
|
|
rctl |= E1000_RCTL_MPE;
|
|
vmolr |= E1000_VMOLR_MPME;
|
|
} else if (count) {
|
|
vmolr |= E1000_VMOLR_ROMPE;
|
|
}
|
|
}
|
|
/*
|
|
* Write addresses to available RAR registers, if there is not
|
|
* sufficient space to store all the addresses then enable
|
|
* unicast promiscuous mode
|
|
*/
|
|
count = igb_write_uc_addr_list(netdev);
|
|
if (count < 0) {
|
|
rctl |= E1000_RCTL_UPE;
|
|
vmolr |= E1000_VMOLR_ROPE;
|
|
}
|
|
rctl |= E1000_RCTL_VFE;
|
|
}
|
|
wr32(E1000_RCTL, rctl);
|
|
|
|
/*
|
|
* In order to support SR-IOV and eventually VMDq it is necessary to set
|
|
* the VMOLR to enable the appropriate modes. Without this workaround
|
|
* we will have issues with VLAN tag stripping not being done for frames
|
|
* that are only arriving because we are the default pool
|
|
*/
|
|
if (hw->mac.type < e1000_82576)
|
|
return;
|
|
|
|
vmolr |= rd32(E1000_VMOLR(vfn)) &
|
|
~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
|
|
wr32(E1000_VMOLR(vfn), vmolr);
|
|
igb_restore_vf_multicasts(adapter);
|
|
}
|
|
|
|
static void igb_check_wvbr(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 wvbr = 0;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82576:
|
|
case e1000_i350:
|
|
if (!(wvbr = rd32(E1000_WVBR)))
|
|
return;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
adapter->wvbr |= wvbr;
|
|
}
|
|
|
|
#define IGB_STAGGERED_QUEUE_OFFSET 8
|
|
|
|
static void igb_spoof_check(struct igb_adapter *adapter)
|
|
{
|
|
int j;
|
|
|
|
if (!adapter->wvbr)
|
|
return;
|
|
|
|
for(j = 0; j < adapter->vfs_allocated_count; j++) {
|
|
if (adapter->wvbr & (1 << j) ||
|
|
adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
|
|
dev_warn(&adapter->pdev->dev,
|
|
"Spoof event(s) detected on VF %d\n", j);
|
|
adapter->wvbr &=
|
|
~((1 << j) |
|
|
(1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Need to wait a few seconds after link up to get diagnostic information from
|
|
* the phy */
|
|
static void igb_update_phy_info(unsigned long data)
|
|
{
|
|
struct igb_adapter *adapter = (struct igb_adapter *) data;
|
|
igb_get_phy_info(&adapter->hw);
|
|
}
|
|
|
|
/**
|
|
* igb_has_link - check shared code for link and determine up/down
|
|
* @adapter: pointer to driver private info
|
|
**/
|
|
bool igb_has_link(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
bool link_active = false;
|
|
s32 ret_val = 0;
|
|
|
|
/* get_link_status is set on LSC (link status) interrupt or
|
|
* rx sequence error interrupt. get_link_status will stay
|
|
* false until the e1000_check_for_link establishes link
|
|
* for copper adapters ONLY
|
|
*/
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
if (hw->mac.get_link_status) {
|
|
ret_val = hw->mac.ops.check_for_link(hw);
|
|
link_active = !hw->mac.get_link_status;
|
|
} else {
|
|
link_active = true;
|
|
}
|
|
break;
|
|
case e1000_media_type_internal_serdes:
|
|
ret_val = hw->mac.ops.check_for_link(hw);
|
|
link_active = hw->mac.serdes_has_link;
|
|
break;
|
|
default:
|
|
case e1000_media_type_unknown:
|
|
break;
|
|
}
|
|
|
|
return link_active;
|
|
}
|
|
|
|
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
|
|
{
|
|
bool ret = false;
|
|
u32 ctrl_ext, thstat;
|
|
|
|
/* check for thermal sensor event on i350, copper only */
|
|
if (hw->mac.type == e1000_i350) {
|
|
thstat = rd32(E1000_THSTAT);
|
|
ctrl_ext = rd32(E1000_CTRL_EXT);
|
|
|
|
if ((hw->phy.media_type == e1000_media_type_copper) &&
|
|
!(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
|
|
ret = !!(thstat & event);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* igb_watchdog - Timer Call-back
|
|
* @data: pointer to adapter cast into an unsigned long
|
|
**/
|
|
static void igb_watchdog(unsigned long data)
|
|
{
|
|
struct igb_adapter *adapter = (struct igb_adapter *)data;
|
|
/* Do the rest outside of interrupt context */
|
|
schedule_work(&adapter->watchdog_task);
|
|
}
|
|
|
|
static void igb_watchdog_task(struct work_struct *work)
|
|
{
|
|
struct igb_adapter *adapter = container_of(work,
|
|
struct igb_adapter,
|
|
watchdog_task);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct net_device *netdev = adapter->netdev;
|
|
u32 link;
|
|
int i;
|
|
|
|
link = igb_has_link(adapter);
|
|
if (link) {
|
|
if (!netif_carrier_ok(netdev)) {
|
|
u32 ctrl;
|
|
hw->mac.ops.get_speed_and_duplex(hw,
|
|
&adapter->link_speed,
|
|
&adapter->link_duplex);
|
|
|
|
ctrl = rd32(E1000_CTRL);
|
|
/* Links status message must follow this format */
|
|
printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
|
|
"Duplex, Flow Control: %s\n",
|
|
netdev->name,
|
|
adapter->link_speed,
|
|
adapter->link_duplex == FULL_DUPLEX ?
|
|
"Full" : "Half",
|
|
(ctrl & E1000_CTRL_TFCE) &&
|
|
(ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
|
|
(ctrl & E1000_CTRL_RFCE) ? "RX" :
|
|
(ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
|
|
|
|
/* check for thermal sensor event */
|
|
if (igb_thermal_sensor_event(hw,
|
|
E1000_THSTAT_LINK_THROTTLE)) {
|
|
netdev_info(netdev, "The network adapter link "
|
|
"speed was downshifted because it "
|
|
"overheated\n");
|
|
}
|
|
|
|
/* adjust timeout factor according to speed/duplex */
|
|
adapter->tx_timeout_factor = 1;
|
|
switch (adapter->link_speed) {
|
|
case SPEED_10:
|
|
adapter->tx_timeout_factor = 14;
|
|
break;
|
|
case SPEED_100:
|
|
/* maybe add some timeout factor ? */
|
|
break;
|
|
}
|
|
|
|
netif_carrier_on(netdev);
|
|
|
|
igb_ping_all_vfs(adapter);
|
|
igb_check_vf_rate_limit(adapter);
|
|
|
|
/* link state has changed, schedule phy info update */
|
|
if (!test_bit(__IGB_DOWN, &adapter->state))
|
|
mod_timer(&adapter->phy_info_timer,
|
|
round_jiffies(jiffies + 2 * HZ));
|
|
}
|
|
} else {
|
|
if (netif_carrier_ok(netdev)) {
|
|
adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
|
|
/* check for thermal sensor event */
|
|
if (igb_thermal_sensor_event(hw,
|
|
E1000_THSTAT_PWR_DOWN)) {
|
|
netdev_err(netdev, "The network adapter was "
|
|
"stopped because it overheated\n");
|
|
}
|
|
|
|
/* Links status message must follow this format */
|
|
printk(KERN_INFO "igb: %s NIC Link is Down\n",
|
|
netdev->name);
|
|
netif_carrier_off(netdev);
|
|
|
|
igb_ping_all_vfs(adapter);
|
|
|
|
/* link state has changed, schedule phy info update */
|
|
if (!test_bit(__IGB_DOWN, &adapter->state))
|
|
mod_timer(&adapter->phy_info_timer,
|
|
round_jiffies(jiffies + 2 * HZ));
|
|
}
|
|
}
|
|
|
|
spin_lock(&adapter->stats64_lock);
|
|
igb_update_stats(adapter, &adapter->stats64);
|
|
spin_unlock(&adapter->stats64_lock);
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
struct igb_ring *tx_ring = adapter->tx_ring[i];
|
|
if (!netif_carrier_ok(netdev)) {
|
|
/* We've lost link, so the controller stops DMA,
|
|
* but we've got queued Tx work that's never going
|
|
* to get done, so reset controller to flush Tx.
|
|
* (Do the reset outside of interrupt context). */
|
|
if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
|
|
adapter->tx_timeout_count++;
|
|
schedule_work(&adapter->reset_task);
|
|
/* return immediately since reset is imminent */
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Force detection of hung controller every watchdog period */
|
|
set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
|
|
}
|
|
|
|
/* Cause software interrupt to ensure rx ring is cleaned */
|
|
if (adapter->msix_entries) {
|
|
u32 eics = 0;
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
|
eics |= adapter->q_vector[i]->eims_value;
|
|
wr32(E1000_EICS, eics);
|
|
} else {
|
|
wr32(E1000_ICS, E1000_ICS_RXDMT0);
|
|
}
|
|
|
|
igb_spoof_check(adapter);
|
|
|
|
/* Reset the timer */
|
|
if (!test_bit(__IGB_DOWN, &adapter->state))
|
|
mod_timer(&adapter->watchdog_timer,
|
|
round_jiffies(jiffies + 2 * HZ));
|
|
}
|
|
|
|
enum latency_range {
|
|
lowest_latency = 0,
|
|
low_latency = 1,
|
|
bulk_latency = 2,
|
|
latency_invalid = 255
|
|
};
|
|
|
|
/**
|
|
* igb_update_ring_itr - update the dynamic ITR value based on packet size
|
|
*
|
|
* Stores a new ITR value based on strictly on packet size. This
|
|
* algorithm is less sophisticated than that used in igb_update_itr,
|
|
* due to the difficulty of synchronizing statistics across multiple
|
|
* receive rings. The divisors and thresholds used by this function
|
|
* were determined based on theoretical maximum wire speed and testing
|
|
* data, in order to minimize response time while increasing bulk
|
|
* throughput.
|
|
* This functionality is controlled by the InterruptThrottleRate module
|
|
* parameter (see igb_param.c)
|
|
* NOTE: This function is called only when operating in a multiqueue
|
|
* receive environment.
|
|
* @q_vector: pointer to q_vector
|
|
**/
|
|
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
|
|
{
|
|
int new_val = q_vector->itr_val;
|
|
int avg_wire_size = 0;
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
unsigned int packets;
|
|
|
|
/* For non-gigabit speeds, just fix the interrupt rate at 4000
|
|
* ints/sec - ITR timer value of 120 ticks.
|
|
*/
|
|
if (adapter->link_speed != SPEED_1000) {
|
|
new_val = IGB_4K_ITR;
|
|
goto set_itr_val;
|
|
}
|
|
|
|
packets = q_vector->rx.total_packets;
|
|
if (packets)
|
|
avg_wire_size = q_vector->rx.total_bytes / packets;
|
|
|
|
packets = q_vector->tx.total_packets;
|
|
if (packets)
|
|
avg_wire_size = max_t(u32, avg_wire_size,
|
|
q_vector->tx.total_bytes / packets);
|
|
|
|
/* if avg_wire_size isn't set no work was done */
|
|
if (!avg_wire_size)
|
|
goto clear_counts;
|
|
|
|
/* Add 24 bytes to size to account for CRC, preamble, and gap */
|
|
avg_wire_size += 24;
|
|
|
|
/* Don't starve jumbo frames */
|
|
avg_wire_size = min(avg_wire_size, 3000);
|
|
|
|
/* Give a little boost to mid-size frames */
|
|
if ((avg_wire_size > 300) && (avg_wire_size < 1200))
|
|
new_val = avg_wire_size / 3;
|
|
else
|
|
new_val = avg_wire_size / 2;
|
|
|
|
/* conservative mode (itr 3) eliminates the lowest_latency setting */
|
|
if (new_val < IGB_20K_ITR &&
|
|
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
|
|
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
|
|
new_val = IGB_20K_ITR;
|
|
|
|
set_itr_val:
|
|
if (new_val != q_vector->itr_val) {
|
|
q_vector->itr_val = new_val;
|
|
q_vector->set_itr = 1;
|
|
}
|
|
clear_counts:
|
|
q_vector->rx.total_bytes = 0;
|
|
q_vector->rx.total_packets = 0;
|
|
q_vector->tx.total_bytes = 0;
|
|
q_vector->tx.total_packets = 0;
|
|
}
|
|
|
|
/**
|
|
* igb_update_itr - update the dynamic ITR value based on statistics
|
|
* Stores a new ITR value based on packets and byte
|
|
* counts during the last interrupt. The advantage of per interrupt
|
|
* computation is faster updates and more accurate ITR for the current
|
|
* traffic pattern. Constants in this function were computed
|
|
* based on theoretical maximum wire speed and thresholds were set based
|
|
* on testing data as well as attempting to minimize response time
|
|
* while increasing bulk throughput.
|
|
* this functionality is controlled by the InterruptThrottleRate module
|
|
* parameter (see igb_param.c)
|
|
* NOTE: These calculations are only valid when operating in a single-
|
|
* queue environment.
|
|
* @q_vector: pointer to q_vector
|
|
* @ring_container: ring info to update the itr for
|
|
**/
|
|
static void igb_update_itr(struct igb_q_vector *q_vector,
|
|
struct igb_ring_container *ring_container)
|
|
{
|
|
unsigned int packets = ring_container->total_packets;
|
|
unsigned int bytes = ring_container->total_bytes;
|
|
u8 itrval = ring_container->itr;
|
|
|
|
/* no packets, exit with status unchanged */
|
|
if (packets == 0)
|
|
return;
|
|
|
|
switch (itrval) {
|
|
case lowest_latency:
|
|
/* handle TSO and jumbo frames */
|
|
if (bytes/packets > 8000)
|
|
itrval = bulk_latency;
|
|
else if ((packets < 5) && (bytes > 512))
|
|
itrval = low_latency;
|
|
break;
|
|
case low_latency: /* 50 usec aka 20000 ints/s */
|
|
if (bytes > 10000) {
|
|
/* this if handles the TSO accounting */
|
|
if (bytes/packets > 8000) {
|
|
itrval = bulk_latency;
|
|
} else if ((packets < 10) || ((bytes/packets) > 1200)) {
|
|
itrval = bulk_latency;
|
|
} else if ((packets > 35)) {
|
|
itrval = lowest_latency;
|
|
}
|
|
} else if (bytes/packets > 2000) {
|
|
itrval = bulk_latency;
|
|
} else if (packets <= 2 && bytes < 512) {
|
|
itrval = lowest_latency;
|
|
}
|
|
break;
|
|
case bulk_latency: /* 250 usec aka 4000 ints/s */
|
|
if (bytes > 25000) {
|
|
if (packets > 35)
|
|
itrval = low_latency;
|
|
} else if (bytes < 1500) {
|
|
itrval = low_latency;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* clear work counters since we have the values we need */
|
|
ring_container->total_bytes = 0;
|
|
ring_container->total_packets = 0;
|
|
|
|
/* write updated itr to ring container */
|
|
ring_container->itr = itrval;
|
|
}
|
|
|
|
static void igb_set_itr(struct igb_q_vector *q_vector)
|
|
{
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
u32 new_itr = q_vector->itr_val;
|
|
u8 current_itr = 0;
|
|
|
|
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
|
|
if (adapter->link_speed != SPEED_1000) {
|
|
current_itr = 0;
|
|
new_itr = IGB_4K_ITR;
|
|
goto set_itr_now;
|
|
}
|
|
|
|
igb_update_itr(q_vector, &q_vector->tx);
|
|
igb_update_itr(q_vector, &q_vector->rx);
|
|
|
|
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
|
|
|
|
/* conservative mode (itr 3) eliminates the lowest_latency setting */
|
|
if (current_itr == lowest_latency &&
|
|
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
|
|
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
|
|
current_itr = low_latency;
|
|
|
|
switch (current_itr) {
|
|
/* counts and packets in update_itr are dependent on these numbers */
|
|
case lowest_latency:
|
|
new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
|
|
break;
|
|
case low_latency:
|
|
new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
|
|
break;
|
|
case bulk_latency:
|
|
new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
set_itr_now:
|
|
if (new_itr != q_vector->itr_val) {
|
|
/* this attempts to bias the interrupt rate towards Bulk
|
|
* by adding intermediate steps when interrupt rate is
|
|
* increasing */
|
|
new_itr = new_itr > q_vector->itr_val ?
|
|
max((new_itr * q_vector->itr_val) /
|
|
(new_itr + (q_vector->itr_val >> 2)),
|
|
new_itr) :
|
|
new_itr;
|
|
/* Don't write the value here; it resets the adapter's
|
|
* internal timer, and causes us to delay far longer than
|
|
* we should between interrupts. Instead, we write the ITR
|
|
* value at the beginning of the next interrupt so the timing
|
|
* ends up being correct.
|
|
*/
|
|
q_vector->itr_val = new_itr;
|
|
q_vector->set_itr = 1;
|
|
}
|
|
}
|
|
|
|
void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
|
|
u32 type_tucmd, u32 mss_l4len_idx)
|
|
{
|
|
struct e1000_adv_tx_context_desc *context_desc;
|
|
u16 i = tx_ring->next_to_use;
|
|
|
|
context_desc = IGB_TX_CTXTDESC(tx_ring, i);
|
|
|
|
i++;
|
|
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
|
|
|
|
/* set bits to identify this as an advanced context descriptor */
|
|
type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
|
|
|
|
/* For 82575, context index must be unique per ring. */
|
|
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
|
|
mss_l4len_idx |= tx_ring->reg_idx << 4;
|
|
|
|
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
|
|
context_desc->seqnum_seed = 0;
|
|
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
|
|
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
|
|
}
|
|
|
|
static int igb_tso(struct igb_ring *tx_ring,
|
|
struct igb_tx_buffer *first,
|
|
u8 *hdr_len)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
u32 vlan_macip_lens, type_tucmd;
|
|
u32 mss_l4len_idx, l4len;
|
|
|
|
if (!skb_is_gso(skb))
|
|
return 0;
|
|
|
|
if (skb_header_cloned(skb)) {
|
|
int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
|
|
type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
|
|
|
|
if (first->protocol == __constant_htons(ETH_P_IP)) {
|
|
struct iphdr *iph = ip_hdr(skb);
|
|
iph->tot_len = 0;
|
|
iph->check = 0;
|
|
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
|
|
iph->daddr, 0,
|
|
IPPROTO_TCP,
|
|
0);
|
|
type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
|
|
first->tx_flags |= IGB_TX_FLAGS_TSO |
|
|
IGB_TX_FLAGS_CSUM |
|
|
IGB_TX_FLAGS_IPV4;
|
|
} else if (skb_is_gso_v6(skb)) {
|
|
ipv6_hdr(skb)->payload_len = 0;
|
|
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
|
|
&ipv6_hdr(skb)->daddr,
|
|
0, IPPROTO_TCP, 0);
|
|
first->tx_flags |= IGB_TX_FLAGS_TSO |
|
|
IGB_TX_FLAGS_CSUM;
|
|
}
|
|
|
|
/* compute header lengths */
|
|
l4len = tcp_hdrlen(skb);
|
|
*hdr_len = skb_transport_offset(skb) + l4len;
|
|
|
|
/* update gso size and bytecount with header size */
|
|
first->gso_segs = skb_shinfo(skb)->gso_segs;
|
|
first->bytecount += (first->gso_segs - 1) * *hdr_len;
|
|
|
|
/* MSS L4LEN IDX */
|
|
mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
|
|
mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
|
|
|
|
/* VLAN MACLEN IPLEN */
|
|
vlan_macip_lens = skb_network_header_len(skb);
|
|
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
|
|
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
|
|
|
|
igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
u32 vlan_macip_lens = 0;
|
|
u32 mss_l4len_idx = 0;
|
|
u32 type_tucmd = 0;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL) {
|
|
if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
|
|
return;
|
|
} else {
|
|
u8 l4_hdr = 0;
|
|
switch (first->protocol) {
|
|
case __constant_htons(ETH_P_IP):
|
|
vlan_macip_lens |= skb_network_header_len(skb);
|
|
type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
|
|
l4_hdr = ip_hdr(skb)->protocol;
|
|
break;
|
|
case __constant_htons(ETH_P_IPV6):
|
|
vlan_macip_lens |= skb_network_header_len(skb);
|
|
l4_hdr = ipv6_hdr(skb)->nexthdr;
|
|
break;
|
|
default:
|
|
if (unlikely(net_ratelimit())) {
|
|
dev_warn(tx_ring->dev,
|
|
"partial checksum but proto=%x!\n",
|
|
first->protocol);
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (l4_hdr) {
|
|
case IPPROTO_TCP:
|
|
type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
|
|
mss_l4len_idx = tcp_hdrlen(skb) <<
|
|
E1000_ADVTXD_L4LEN_SHIFT;
|
|
break;
|
|
case IPPROTO_SCTP:
|
|
type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
|
|
mss_l4len_idx = sizeof(struct sctphdr) <<
|
|
E1000_ADVTXD_L4LEN_SHIFT;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
mss_l4len_idx = sizeof(struct udphdr) <<
|
|
E1000_ADVTXD_L4LEN_SHIFT;
|
|
break;
|
|
default:
|
|
if (unlikely(net_ratelimit())) {
|
|
dev_warn(tx_ring->dev,
|
|
"partial checksum but l4 proto=%x!\n",
|
|
l4_hdr);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* update TX checksum flag */
|
|
first->tx_flags |= IGB_TX_FLAGS_CSUM;
|
|
}
|
|
|
|
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
|
|
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
|
|
|
|
igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
|
|
}
|
|
|
|
static __le32 igb_tx_cmd_type(u32 tx_flags)
|
|
{
|
|
/* set type for advanced descriptor with frame checksum insertion */
|
|
__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
|
|
E1000_ADVTXD_DCMD_IFCS |
|
|
E1000_ADVTXD_DCMD_DEXT);
|
|
|
|
/* set HW vlan bit if vlan is present */
|
|
if (tx_flags & IGB_TX_FLAGS_VLAN)
|
|
cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
|
|
|
|
/* set timestamp bit if present */
|
|
if (tx_flags & IGB_TX_FLAGS_TSTAMP)
|
|
cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
|
|
|
|
/* set segmentation bits for TSO */
|
|
if (tx_flags & IGB_TX_FLAGS_TSO)
|
|
cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
|
|
|
|
return cmd_type;
|
|
}
|
|
|
|
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
|
|
union e1000_adv_tx_desc *tx_desc,
|
|
u32 tx_flags, unsigned int paylen)
|
|
{
|
|
u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
|
|
|
|
/* 82575 requires a unique index per ring if any offload is enabled */
|
|
if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
|
|
test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
|
|
olinfo_status |= tx_ring->reg_idx << 4;
|
|
|
|
/* insert L4 checksum */
|
|
if (tx_flags & IGB_TX_FLAGS_CSUM) {
|
|
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
|
|
|
|
/* insert IPv4 checksum */
|
|
if (tx_flags & IGB_TX_FLAGS_IPV4)
|
|
olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
|
|
}
|
|
|
|
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
|
|
}
|
|
|
|
/*
|
|
* The largest size we can write to the descriptor is 65535. In order to
|
|
* maintain a power of two alignment we have to limit ourselves to 32K.
|
|
*/
|
|
#define IGB_MAX_TXD_PWR 15
|
|
#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
|
|
|
|
static void igb_tx_map(struct igb_ring *tx_ring,
|
|
struct igb_tx_buffer *first,
|
|
const u8 hdr_len)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
struct igb_tx_buffer *tx_buffer_info;
|
|
union e1000_adv_tx_desc *tx_desc;
|
|
dma_addr_t dma;
|
|
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
|
|
unsigned int data_len = skb->data_len;
|
|
unsigned int size = skb_headlen(skb);
|
|
unsigned int paylen = skb->len - hdr_len;
|
|
__le32 cmd_type;
|
|
u32 tx_flags = first->tx_flags;
|
|
u16 i = tx_ring->next_to_use;
|
|
|
|
tx_desc = IGB_TX_DESC(tx_ring, i);
|
|
|
|
igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
|
|
cmd_type = igb_tx_cmd_type(tx_flags);
|
|
|
|
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(tx_ring->dev, dma))
|
|
goto dma_error;
|
|
|
|
/* record length, and DMA address */
|
|
first->length = size;
|
|
first->dma = dma;
|
|
tx_desc->read.buffer_addr = cpu_to_le64(dma);
|
|
|
|
for (;;) {
|
|
while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
|
|
tx_desc->read.cmd_type_len =
|
|
cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
|
|
|
|
i++;
|
|
tx_desc++;
|
|
if (i == tx_ring->count) {
|
|
tx_desc = IGB_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
dma += IGB_MAX_DATA_PER_TXD;
|
|
size -= IGB_MAX_DATA_PER_TXD;
|
|
|
|
tx_desc->read.olinfo_status = 0;
|
|
tx_desc->read.buffer_addr = cpu_to_le64(dma);
|
|
}
|
|
|
|
if (likely(!data_len))
|
|
break;
|
|
|
|
tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
|
|
|
|
i++;
|
|
tx_desc++;
|
|
if (i == tx_ring->count) {
|
|
tx_desc = IGB_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
size = skb_frag_size(frag);
|
|
data_len -= size;
|
|
|
|
dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
|
|
size, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(tx_ring->dev, dma))
|
|
goto dma_error;
|
|
|
|
tx_buffer_info = &tx_ring->tx_buffer_info[i];
|
|
tx_buffer_info->length = size;
|
|
tx_buffer_info->dma = dma;
|
|
|
|
tx_desc->read.olinfo_status = 0;
|
|
tx_desc->read.buffer_addr = cpu_to_le64(dma);
|
|
|
|
frag++;
|
|
}
|
|
|
|
/* write last descriptor with RS and EOP bits */
|
|
cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
|
|
tx_desc->read.cmd_type_len = cmd_type;
|
|
|
|
/* set the timestamp */
|
|
first->time_stamp = jiffies;
|
|
|
|
/*
|
|
* Force memory writes to complete before letting h/w know there
|
|
* are new descriptors to fetch. (Only applicable for weak-ordered
|
|
* memory model archs, such as IA-64).
|
|
*
|
|
* We also need this memory barrier to make certain all of the
|
|
* status bits have been updated before next_to_watch is written.
|
|
*/
|
|
wmb();
|
|
|
|
/* set next_to_watch value indicating a packet is present */
|
|
first->next_to_watch = tx_desc;
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
|
|
tx_ring->next_to_use = i;
|
|
|
|
writel(i, tx_ring->tail);
|
|
|
|
/* we need this if more than one processor can write to our tail
|
|
* at a time, it syncronizes IO on IA64/Altix systems */
|
|
mmiowb();
|
|
|
|
return;
|
|
|
|
dma_error:
|
|
dev_err(tx_ring->dev, "TX DMA map failed\n");
|
|
|
|
/* clear dma mappings for failed tx_buffer_info map */
|
|
for (;;) {
|
|
tx_buffer_info = &tx_ring->tx_buffer_info[i];
|
|
igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
|
|
if (tx_buffer_info == first)
|
|
break;
|
|
if (i == 0)
|
|
i = tx_ring->count;
|
|
i--;
|
|
}
|
|
|
|
tx_ring->next_to_use = i;
|
|
}
|
|
|
|
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
|
|
{
|
|
struct net_device *netdev = tx_ring->netdev;
|
|
|
|
netif_stop_subqueue(netdev, tx_ring->queue_index);
|
|
|
|
/* Herbert's original patch had:
|
|
* smp_mb__after_netif_stop_queue();
|
|
* but since that doesn't exist yet, just open code it. */
|
|
smp_mb();
|
|
|
|
/* We need to check again in a case another CPU has just
|
|
* made room available. */
|
|
if (igb_desc_unused(tx_ring) < size)
|
|
return -EBUSY;
|
|
|
|
/* A reprieve! */
|
|
netif_wake_subqueue(netdev, tx_ring->queue_index);
|
|
|
|
u64_stats_update_begin(&tx_ring->tx_syncp2);
|
|
tx_ring->tx_stats.restart_queue2++;
|
|
u64_stats_update_end(&tx_ring->tx_syncp2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
|
|
{
|
|
if (igb_desc_unused(tx_ring) >= size)
|
|
return 0;
|
|
return __igb_maybe_stop_tx(tx_ring, size);
|
|
}
|
|
|
|
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
|
|
struct igb_ring *tx_ring)
|
|
{
|
|
struct igb_tx_buffer *first;
|
|
int tso;
|
|
u32 tx_flags = 0;
|
|
__be16 protocol = vlan_get_protocol(skb);
|
|
u8 hdr_len = 0;
|
|
|
|
/* need: 1 descriptor per page,
|
|
* + 2 desc gap to keep tail from touching head,
|
|
* + 1 desc for skb->data,
|
|
* + 1 desc for context descriptor,
|
|
* otherwise try next time */
|
|
if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
|
|
/* this is a hard error */
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* record the location of the first descriptor for this packet */
|
|
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
|
|
first->skb = skb;
|
|
first->bytecount = skb->len;
|
|
first->gso_segs = 1;
|
|
|
|
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
|
|
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
|
|
tx_flags |= IGB_TX_FLAGS_TSTAMP;
|
|
}
|
|
|
|
if (vlan_tx_tag_present(skb)) {
|
|
tx_flags |= IGB_TX_FLAGS_VLAN;
|
|
tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
|
|
}
|
|
|
|
/* record initial flags and protocol */
|
|
first->tx_flags = tx_flags;
|
|
first->protocol = protocol;
|
|
|
|
tso = igb_tso(tx_ring, first, &hdr_len);
|
|
if (tso < 0)
|
|
goto out_drop;
|
|
else if (!tso)
|
|
igb_tx_csum(tx_ring, first);
|
|
|
|
igb_tx_map(tx_ring, first, hdr_len);
|
|
|
|
/* Make sure there is space in the ring for the next send. */
|
|
igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
out_drop:
|
|
igb_unmap_and_free_tx_resource(tx_ring, first);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
|
|
struct sk_buff *skb)
|
|
{
|
|
unsigned int r_idx = skb->queue_mapping;
|
|
|
|
if (r_idx >= adapter->num_tx_queues)
|
|
r_idx = r_idx % adapter->num_tx_queues;
|
|
|
|
return adapter->tx_ring[r_idx];
|
|
}
|
|
|
|
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
|
|
struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
|
|
if (test_bit(__IGB_DOWN, &adapter->state)) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
if (skb->len <= 0) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/*
|
|
* The minimum packet size with TCTL.PSP set is 17 so pad the skb
|
|
* in order to meet this minimum size requirement.
|
|
*/
|
|
if (skb->len < 17) {
|
|
if (skb_padto(skb, 17))
|
|
return NETDEV_TX_OK;
|
|
skb->len = 17;
|
|
}
|
|
|
|
return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
|
|
}
|
|
|
|
/**
|
|
* igb_tx_timeout - Respond to a Tx Hang
|
|
* @netdev: network interface device structure
|
|
**/
|
|
static void igb_tx_timeout(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
/* Do the reset outside of interrupt context */
|
|
adapter->tx_timeout_count++;
|
|
|
|
if (hw->mac.type >= e1000_82580)
|
|
hw->dev_spec._82575.global_device_reset = true;
|
|
|
|
schedule_work(&adapter->reset_task);
|
|
wr32(E1000_EICS,
|
|
(adapter->eims_enable_mask & ~adapter->eims_other));
|
|
}
|
|
|
|
static void igb_reset_task(struct work_struct *work)
|
|
{
|
|
struct igb_adapter *adapter;
|
|
adapter = container_of(work, struct igb_adapter, reset_task);
|
|
|
|
igb_dump(adapter);
|
|
netdev_err(adapter->netdev, "Reset adapter\n");
|
|
igb_reinit_locked(adapter);
|
|
}
|
|
|
|
/**
|
|
* igb_get_stats64 - Get System Network Statistics
|
|
* @netdev: network interface device structure
|
|
* @stats: rtnl_link_stats64 pointer
|
|
*
|
|
**/
|
|
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
|
|
struct rtnl_link_stats64 *stats)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
|
|
spin_lock(&adapter->stats64_lock);
|
|
igb_update_stats(adapter, &adapter->stats64);
|
|
memcpy(stats, &adapter->stats64, sizeof(*stats));
|
|
spin_unlock(&adapter->stats64_lock);
|
|
|
|
return stats;
|
|
}
|
|
|
|
/**
|
|
* igb_change_mtu - Change the Maximum Transfer Unit
|
|
* @netdev: network interface device structure
|
|
* @new_mtu: new value for maximum frame size
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
|
|
|
|
if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
|
|
dev_err(&pdev->dev, "Invalid MTU setting\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
#define MAX_STD_JUMBO_FRAME_SIZE 9238
|
|
if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
|
|
dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
|
|
msleep(1);
|
|
|
|
/* igb_down has a dependency on max_frame_size */
|
|
adapter->max_frame_size = max_frame;
|
|
|
|
if (netif_running(netdev))
|
|
igb_down(adapter);
|
|
|
|
dev_info(&pdev->dev, "changing MTU from %d to %d\n",
|
|
netdev->mtu, new_mtu);
|
|
netdev->mtu = new_mtu;
|
|
|
|
if (netif_running(netdev))
|
|
igb_up(adapter);
|
|
else
|
|
igb_reset(adapter);
|
|
|
|
clear_bit(__IGB_RESETTING, &adapter->state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_update_stats - Update the board statistics counters
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
void igb_update_stats(struct igb_adapter *adapter,
|
|
struct rtnl_link_stats64 *net_stats)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
u32 reg, mpc;
|
|
u16 phy_tmp;
|
|
int i;
|
|
u64 bytes, packets;
|
|
unsigned int start;
|
|
u64 _bytes, _packets;
|
|
|
|
#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
|
|
|
|
/*
|
|
* Prevent stats update while adapter is being reset, or if the pci
|
|
* connection is down.
|
|
*/
|
|
if (adapter->link_speed == 0)
|
|
return;
|
|
if (pci_channel_offline(pdev))
|
|
return;
|
|
|
|
bytes = 0;
|
|
packets = 0;
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
|
|
struct igb_ring *ring = adapter->rx_ring[i];
|
|
|
|
ring->rx_stats.drops += rqdpc_tmp;
|
|
net_stats->rx_fifo_errors += rqdpc_tmp;
|
|
|
|
do {
|
|
start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
|
|
_bytes = ring->rx_stats.bytes;
|
|
_packets = ring->rx_stats.packets;
|
|
} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
|
|
bytes += _bytes;
|
|
packets += _packets;
|
|
}
|
|
|
|
net_stats->rx_bytes = bytes;
|
|
net_stats->rx_packets = packets;
|
|
|
|
bytes = 0;
|
|
packets = 0;
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
struct igb_ring *ring = adapter->tx_ring[i];
|
|
do {
|
|
start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
|
|
_bytes = ring->tx_stats.bytes;
|
|
_packets = ring->tx_stats.packets;
|
|
} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
|
|
bytes += _bytes;
|
|
packets += _packets;
|
|
}
|
|
net_stats->tx_bytes = bytes;
|
|
net_stats->tx_packets = packets;
|
|
|
|
/* read stats registers */
|
|
adapter->stats.crcerrs += rd32(E1000_CRCERRS);
|
|
adapter->stats.gprc += rd32(E1000_GPRC);
|
|
adapter->stats.gorc += rd32(E1000_GORCL);
|
|
rd32(E1000_GORCH); /* clear GORCL */
|
|
adapter->stats.bprc += rd32(E1000_BPRC);
|
|
adapter->stats.mprc += rd32(E1000_MPRC);
|
|
adapter->stats.roc += rd32(E1000_ROC);
|
|
|
|
adapter->stats.prc64 += rd32(E1000_PRC64);
|
|
adapter->stats.prc127 += rd32(E1000_PRC127);
|
|
adapter->stats.prc255 += rd32(E1000_PRC255);
|
|
adapter->stats.prc511 += rd32(E1000_PRC511);
|
|
adapter->stats.prc1023 += rd32(E1000_PRC1023);
|
|
adapter->stats.prc1522 += rd32(E1000_PRC1522);
|
|
adapter->stats.symerrs += rd32(E1000_SYMERRS);
|
|
adapter->stats.sec += rd32(E1000_SEC);
|
|
|
|
mpc = rd32(E1000_MPC);
|
|
adapter->stats.mpc += mpc;
|
|
net_stats->rx_fifo_errors += mpc;
|
|
adapter->stats.scc += rd32(E1000_SCC);
|
|
adapter->stats.ecol += rd32(E1000_ECOL);
|
|
adapter->stats.mcc += rd32(E1000_MCC);
|
|
adapter->stats.latecol += rd32(E1000_LATECOL);
|
|
adapter->stats.dc += rd32(E1000_DC);
|
|
adapter->stats.rlec += rd32(E1000_RLEC);
|
|
adapter->stats.xonrxc += rd32(E1000_XONRXC);
|
|
adapter->stats.xontxc += rd32(E1000_XONTXC);
|
|
adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
|
|
adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
|
|
adapter->stats.fcruc += rd32(E1000_FCRUC);
|
|
adapter->stats.gptc += rd32(E1000_GPTC);
|
|
adapter->stats.gotc += rd32(E1000_GOTCL);
|
|
rd32(E1000_GOTCH); /* clear GOTCL */
|
|
adapter->stats.rnbc += rd32(E1000_RNBC);
|
|
adapter->stats.ruc += rd32(E1000_RUC);
|
|
adapter->stats.rfc += rd32(E1000_RFC);
|
|
adapter->stats.rjc += rd32(E1000_RJC);
|
|
adapter->stats.tor += rd32(E1000_TORH);
|
|
adapter->stats.tot += rd32(E1000_TOTH);
|
|
adapter->stats.tpr += rd32(E1000_TPR);
|
|
|
|
adapter->stats.ptc64 += rd32(E1000_PTC64);
|
|
adapter->stats.ptc127 += rd32(E1000_PTC127);
|
|
adapter->stats.ptc255 += rd32(E1000_PTC255);
|
|
adapter->stats.ptc511 += rd32(E1000_PTC511);
|
|
adapter->stats.ptc1023 += rd32(E1000_PTC1023);
|
|
adapter->stats.ptc1522 += rd32(E1000_PTC1522);
|
|
|
|
adapter->stats.mptc += rd32(E1000_MPTC);
|
|
adapter->stats.bptc += rd32(E1000_BPTC);
|
|
|
|
adapter->stats.tpt += rd32(E1000_TPT);
|
|
adapter->stats.colc += rd32(E1000_COLC);
|
|
|
|
adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
|
|
/* read internal phy specific stats */
|
|
reg = rd32(E1000_CTRL_EXT);
|
|
if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
|
|
adapter->stats.rxerrc += rd32(E1000_RXERRC);
|
|
adapter->stats.tncrs += rd32(E1000_TNCRS);
|
|
}
|
|
|
|
adapter->stats.tsctc += rd32(E1000_TSCTC);
|
|
adapter->stats.tsctfc += rd32(E1000_TSCTFC);
|
|
|
|
adapter->stats.iac += rd32(E1000_IAC);
|
|
adapter->stats.icrxoc += rd32(E1000_ICRXOC);
|
|
adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
|
|
adapter->stats.icrxatc += rd32(E1000_ICRXATC);
|
|
adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
|
|
adapter->stats.ictxatc += rd32(E1000_ICTXATC);
|
|
adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
|
|
adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
|
|
adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
|
|
|
|
/* Fill out the OS statistics structure */
|
|
net_stats->multicast = adapter->stats.mprc;
|
|
net_stats->collisions = adapter->stats.colc;
|
|
|
|
/* Rx Errors */
|
|
|
|
/* RLEC on some newer hardware can be incorrect so build
|
|
* our own version based on RUC and ROC */
|
|
net_stats->rx_errors = adapter->stats.rxerrc +
|
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
|
adapter->stats.ruc + adapter->stats.roc +
|
|
adapter->stats.cexterr;
|
|
net_stats->rx_length_errors = adapter->stats.ruc +
|
|
adapter->stats.roc;
|
|
net_stats->rx_crc_errors = adapter->stats.crcerrs;
|
|
net_stats->rx_frame_errors = adapter->stats.algnerrc;
|
|
net_stats->rx_missed_errors = adapter->stats.mpc;
|
|
|
|
/* Tx Errors */
|
|
net_stats->tx_errors = adapter->stats.ecol +
|
|
adapter->stats.latecol;
|
|
net_stats->tx_aborted_errors = adapter->stats.ecol;
|
|
net_stats->tx_window_errors = adapter->stats.latecol;
|
|
net_stats->tx_carrier_errors = adapter->stats.tncrs;
|
|
|
|
/* Tx Dropped needs to be maintained elsewhere */
|
|
|
|
/* Phy Stats */
|
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
|
if ((adapter->link_speed == SPEED_1000) &&
|
|
(!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
|
|
phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
|
|
adapter->phy_stats.idle_errors += phy_tmp;
|
|
}
|
|
}
|
|
|
|
/* Management Stats */
|
|
adapter->stats.mgptc += rd32(E1000_MGTPTC);
|
|
adapter->stats.mgprc += rd32(E1000_MGTPRC);
|
|
adapter->stats.mgpdc += rd32(E1000_MGTPDC);
|
|
|
|
/* OS2BMC Stats */
|
|
reg = rd32(E1000_MANC);
|
|
if (reg & E1000_MANC_EN_BMC2OS) {
|
|
adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
|
|
adapter->stats.o2bspc += rd32(E1000_O2BSPC);
|
|
adapter->stats.b2ospc += rd32(E1000_B2OSPC);
|
|
adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t igb_msix_other(int irq, void *data)
|
|
{
|
|
struct igb_adapter *adapter = data;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 icr = rd32(E1000_ICR);
|
|
/* reading ICR causes bit 31 of EICR to be cleared */
|
|
|
|
if (icr & E1000_ICR_DRSTA)
|
|
schedule_work(&adapter->reset_task);
|
|
|
|
if (icr & E1000_ICR_DOUTSYNC) {
|
|
/* HW is reporting DMA is out of sync */
|
|
adapter->stats.doosync++;
|
|
/* The DMA Out of Sync is also indication of a spoof event
|
|
* in IOV mode. Check the Wrong VM Behavior register to
|
|
* see if it is really a spoof event. */
|
|
igb_check_wvbr(adapter);
|
|
}
|
|
|
|
/* Check for a mailbox event */
|
|
if (icr & E1000_ICR_VMMB)
|
|
igb_msg_task(adapter);
|
|
|
|
if (icr & E1000_ICR_LSC) {
|
|
hw->mac.get_link_status = 1;
|
|
/* guard against interrupt when we're going down */
|
|
if (!test_bit(__IGB_DOWN, &adapter->state))
|
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
|
}
|
|
|
|
wr32(E1000_EIMS, adapter->eims_other);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void igb_write_itr(struct igb_q_vector *q_vector)
|
|
{
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
u32 itr_val = q_vector->itr_val & 0x7FFC;
|
|
|
|
if (!q_vector->set_itr)
|
|
return;
|
|
|
|
if (!itr_val)
|
|
itr_val = 0x4;
|
|
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
itr_val |= itr_val << 16;
|
|
else
|
|
itr_val |= E1000_EITR_CNT_IGNR;
|
|
|
|
writel(itr_val, q_vector->itr_register);
|
|
q_vector->set_itr = 0;
|
|
}
|
|
|
|
static irqreturn_t igb_msix_ring(int irq, void *data)
|
|
{
|
|
struct igb_q_vector *q_vector = data;
|
|
|
|
/* Write the ITR value calculated from the previous interrupt. */
|
|
igb_write_itr(q_vector);
|
|
|
|
napi_schedule(&q_vector->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#ifdef CONFIG_IGB_DCA
|
|
static void igb_update_dca(struct igb_q_vector *q_vector)
|
|
{
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int cpu = get_cpu();
|
|
|
|
if (q_vector->cpu == cpu)
|
|
goto out_no_update;
|
|
|
|
if (q_vector->tx.ring) {
|
|
int q = q_vector->tx.ring->reg_idx;
|
|
u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
|
|
if (hw->mac.type == e1000_82575) {
|
|
dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
|
|
dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
|
|
} else {
|
|
dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
|
|
dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
|
|
E1000_DCA_TXCTRL_CPUID_SHIFT;
|
|
}
|
|
dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
|
|
wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
|
|
}
|
|
if (q_vector->rx.ring) {
|
|
int q = q_vector->rx.ring->reg_idx;
|
|
u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
|
|
if (hw->mac.type == e1000_82575) {
|
|
dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
|
|
dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
|
|
} else {
|
|
dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
|
|
dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
|
|
E1000_DCA_RXCTRL_CPUID_SHIFT;
|
|
}
|
|
dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
|
|
dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
|
|
dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
|
|
wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
|
|
}
|
|
q_vector->cpu = cpu;
|
|
out_no_update:
|
|
put_cpu();
|
|
}
|
|
|
|
static void igb_setup_dca(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int i;
|
|
|
|
if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
|
|
return;
|
|
|
|
/* Always use CB2 mode, difference is masked in the CB driver. */
|
|
wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
|
|
|
|
for (i = 0; i < adapter->num_q_vectors; i++) {
|
|
adapter->q_vector[i]->cpu = -1;
|
|
igb_update_dca(adapter->q_vector[i]);
|
|
}
|
|
}
|
|
|
|
static int __igb_notify_dca(struct device *dev, void *data)
|
|
{
|
|
struct net_device *netdev = dev_get_drvdata(dev);
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
unsigned long event = *(unsigned long *)data;
|
|
|
|
switch (event) {
|
|
case DCA_PROVIDER_ADD:
|
|
/* if already enabled, don't do it again */
|
|
if (adapter->flags & IGB_FLAG_DCA_ENABLED)
|
|
break;
|
|
if (dca_add_requester(dev) == 0) {
|
|
adapter->flags |= IGB_FLAG_DCA_ENABLED;
|
|
dev_info(&pdev->dev, "DCA enabled\n");
|
|
igb_setup_dca(adapter);
|
|
break;
|
|
}
|
|
/* Fall Through since DCA is disabled. */
|
|
case DCA_PROVIDER_REMOVE:
|
|
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
|
|
/* without this a class_device is left
|
|
* hanging around in the sysfs model */
|
|
dca_remove_requester(dev);
|
|
dev_info(&pdev->dev, "DCA disabled\n");
|
|
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
|
|
wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
|
|
void *p)
|
|
{
|
|
int ret_val;
|
|
|
|
ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
|
|
__igb_notify_dca);
|
|
|
|
return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
|
|
}
|
|
#endif /* CONFIG_IGB_DCA */
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
|
|
{
|
|
unsigned char mac_addr[ETH_ALEN];
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct pci_dev *pvfdev;
|
|
unsigned int device_id;
|
|
u16 thisvf_devfn;
|
|
|
|
random_ether_addr(mac_addr);
|
|
igb_set_vf_mac(adapter, vf, mac_addr);
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82576:
|
|
device_id = IGB_82576_VF_DEV_ID;
|
|
/* VF Stride for 82576 is 2 */
|
|
thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
|
|
(pdev->devfn & 1);
|
|
break;
|
|
case e1000_i350:
|
|
device_id = IGB_I350_VF_DEV_ID;
|
|
/* VF Stride for I350 is 4 */
|
|
thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
|
|
(pdev->devfn & 3);
|
|
break;
|
|
default:
|
|
device_id = 0;
|
|
thisvf_devfn = 0;
|
|
break;
|
|
}
|
|
|
|
pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
|
|
while (pvfdev) {
|
|
if (pvfdev->devfn == thisvf_devfn)
|
|
break;
|
|
pvfdev = pci_get_device(hw->vendor_id,
|
|
device_id, pvfdev);
|
|
}
|
|
|
|
if (pvfdev)
|
|
adapter->vf_data[vf].vfdev = pvfdev;
|
|
else
|
|
dev_err(&pdev->dev,
|
|
"Couldn't find pci dev ptr for VF %4.4x\n",
|
|
thisvf_devfn);
|
|
return pvfdev != NULL;
|
|
}
|
|
|
|
static int igb_find_enabled_vfs(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct pci_dev *pvfdev;
|
|
u16 vf_devfn = 0;
|
|
u16 vf_stride;
|
|
unsigned int device_id;
|
|
int vfs_found = 0;
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82576:
|
|
device_id = IGB_82576_VF_DEV_ID;
|
|
/* VF Stride for 82576 is 2 */
|
|
vf_stride = 2;
|
|
break;
|
|
case e1000_i350:
|
|
device_id = IGB_I350_VF_DEV_ID;
|
|
/* VF Stride for I350 is 4 */
|
|
vf_stride = 4;
|
|
break;
|
|
default:
|
|
device_id = 0;
|
|
vf_stride = 0;
|
|
break;
|
|
}
|
|
|
|
vf_devfn = pdev->devfn + 0x80;
|
|
pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
|
|
while (pvfdev) {
|
|
if (pvfdev->devfn == vf_devfn)
|
|
vfs_found++;
|
|
vf_devfn += vf_stride;
|
|
pvfdev = pci_get_device(hw->vendor_id,
|
|
device_id, pvfdev);
|
|
}
|
|
|
|
return vfs_found;
|
|
}
|
|
|
|
static int igb_check_vf_assignment(struct igb_adapter *adapter)
|
|
{
|
|
int i;
|
|
for (i = 0; i < adapter->vfs_allocated_count; i++) {
|
|
if (adapter->vf_data[i].vfdev) {
|
|
if (adapter->vf_data[i].vfdev->dev_flags &
|
|
PCI_DEV_FLAGS_ASSIGNED)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
static void igb_ping_all_vfs(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ping;
|
|
int i;
|
|
|
|
for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
|
|
ping = E1000_PF_CONTROL_MSG;
|
|
if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
|
|
ping |= E1000_VT_MSGTYPE_CTS;
|
|
igb_write_mbx(hw, &ping, 1, i);
|
|
}
|
|
}
|
|
|
|
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 vmolr = rd32(E1000_VMOLR(vf));
|
|
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
|
|
|
|
vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
|
|
IGB_VF_FLAG_MULTI_PROMISC);
|
|
vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
|
|
|
|
if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
|
|
vmolr |= E1000_VMOLR_MPME;
|
|
vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
|
|
*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
|
|
} else {
|
|
/*
|
|
* if we have hashes and we are clearing a multicast promisc
|
|
* flag we need to write the hashes to the MTA as this step
|
|
* was previously skipped
|
|
*/
|
|
if (vf_data->num_vf_mc_hashes > 30) {
|
|
vmolr |= E1000_VMOLR_MPME;
|
|
} else if (vf_data->num_vf_mc_hashes) {
|
|
int j;
|
|
vmolr |= E1000_VMOLR_ROMPE;
|
|
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
|
|
igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
|
|
}
|
|
}
|
|
|
|
wr32(E1000_VMOLR(vf), vmolr);
|
|
|
|
/* there are flags left unprocessed, likely not supported */
|
|
if (*msgbuf & E1000_VT_MSGINFO_MASK)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
|
|
u32 *msgbuf, u32 vf)
|
|
{
|
|
int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
|
|
u16 *hash_list = (u16 *)&msgbuf[1];
|
|
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
|
|
int i;
|
|
|
|
/* salt away the number of multicast addresses assigned
|
|
* to this VF for later use to restore when the PF multi cast
|
|
* list changes
|
|
*/
|
|
vf_data->num_vf_mc_hashes = n;
|
|
|
|
/* only up to 30 hash values supported */
|
|
if (n > 30)
|
|
n = 30;
|
|
|
|
/* store the hashes for later use */
|
|
for (i = 0; i < n; i++)
|
|
vf_data->vf_mc_hashes[i] = hash_list[i];
|
|
|
|
/* Flush and reset the mta with the new values */
|
|
igb_set_rx_mode(adapter->netdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct vf_data_storage *vf_data;
|
|
int i, j;
|
|
|
|
for (i = 0; i < adapter->vfs_allocated_count; i++) {
|
|
u32 vmolr = rd32(E1000_VMOLR(i));
|
|
vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
|
|
|
|
vf_data = &adapter->vf_data[i];
|
|
|
|
if ((vf_data->num_vf_mc_hashes > 30) ||
|
|
(vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
|
|
vmolr |= E1000_VMOLR_MPME;
|
|
} else if (vf_data->num_vf_mc_hashes) {
|
|
vmolr |= E1000_VMOLR_ROMPE;
|
|
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
|
|
igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
|
|
}
|
|
wr32(E1000_VMOLR(i), vmolr);
|
|
}
|
|
}
|
|
|
|
static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 pool_mask, reg, vid;
|
|
int i;
|
|
|
|
pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
|
|
|
|
/* Find the vlan filter for this id */
|
|
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
|
|
reg = rd32(E1000_VLVF(i));
|
|
|
|
/* remove the vf from the pool */
|
|
reg &= ~pool_mask;
|
|
|
|
/* if pool is empty then remove entry from vfta */
|
|
if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
|
|
(reg & E1000_VLVF_VLANID_ENABLE)) {
|
|
reg = 0;
|
|
vid = reg & E1000_VLVF_VLANID_MASK;
|
|
igb_vfta_set(hw, vid, false);
|
|
}
|
|
|
|
wr32(E1000_VLVF(i), reg);
|
|
}
|
|
|
|
adapter->vf_data[vf].vlans_enabled = 0;
|
|
}
|
|
|
|
static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 reg, i;
|
|
|
|
/* The vlvf table only exists on 82576 hardware and newer */
|
|
if (hw->mac.type < e1000_82576)
|
|
return -1;
|
|
|
|
/* we only need to do this if VMDq is enabled */
|
|
if (!adapter->vfs_allocated_count)
|
|
return -1;
|
|
|
|
/* Find the vlan filter for this id */
|
|
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
|
|
reg = rd32(E1000_VLVF(i));
|
|
if ((reg & E1000_VLVF_VLANID_ENABLE) &&
|
|
vid == (reg & E1000_VLVF_VLANID_MASK))
|
|
break;
|
|
}
|
|
|
|
if (add) {
|
|
if (i == E1000_VLVF_ARRAY_SIZE) {
|
|
/* Did not find a matching VLAN ID entry that was
|
|
* enabled. Search for a free filter entry, i.e.
|
|
* one without the enable bit set
|
|
*/
|
|
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
|
|
reg = rd32(E1000_VLVF(i));
|
|
if (!(reg & E1000_VLVF_VLANID_ENABLE))
|
|
break;
|
|
}
|
|
}
|
|
if (i < E1000_VLVF_ARRAY_SIZE) {
|
|
/* Found an enabled/available entry */
|
|
reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
|
|
|
|
/* if !enabled we need to set this up in vfta */
|
|
if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
|
|
/* add VID to filter table */
|
|
igb_vfta_set(hw, vid, true);
|
|
reg |= E1000_VLVF_VLANID_ENABLE;
|
|
}
|
|
reg &= ~E1000_VLVF_VLANID_MASK;
|
|
reg |= vid;
|
|
wr32(E1000_VLVF(i), reg);
|
|
|
|
/* do not modify RLPML for PF devices */
|
|
if (vf >= adapter->vfs_allocated_count)
|
|
return 0;
|
|
|
|
if (!adapter->vf_data[vf].vlans_enabled) {
|
|
u32 size;
|
|
reg = rd32(E1000_VMOLR(vf));
|
|
size = reg & E1000_VMOLR_RLPML_MASK;
|
|
size += 4;
|
|
reg &= ~E1000_VMOLR_RLPML_MASK;
|
|
reg |= size;
|
|
wr32(E1000_VMOLR(vf), reg);
|
|
}
|
|
|
|
adapter->vf_data[vf].vlans_enabled++;
|
|
}
|
|
} else {
|
|
if (i < E1000_VLVF_ARRAY_SIZE) {
|
|
/* remove vf from the pool */
|
|
reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
|
|
/* if pool is empty then remove entry from vfta */
|
|
if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
|
|
reg = 0;
|
|
igb_vfta_set(hw, vid, false);
|
|
}
|
|
wr32(E1000_VLVF(i), reg);
|
|
|
|
/* do not modify RLPML for PF devices */
|
|
if (vf >= adapter->vfs_allocated_count)
|
|
return 0;
|
|
|
|
adapter->vf_data[vf].vlans_enabled--;
|
|
if (!adapter->vf_data[vf].vlans_enabled) {
|
|
u32 size;
|
|
reg = rd32(E1000_VMOLR(vf));
|
|
size = reg & E1000_VMOLR_RLPML_MASK;
|
|
size -= 4;
|
|
reg &= ~E1000_VMOLR_RLPML_MASK;
|
|
reg |= size;
|
|
wr32(E1000_VMOLR(vf), reg);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
if (vid)
|
|
wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
|
|
else
|
|
wr32(E1000_VMVIR(vf), 0);
|
|
}
|
|
|
|
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
|
|
int vf, u16 vlan, u8 qos)
|
|
{
|
|
int err = 0;
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
|
|
if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
|
|
return -EINVAL;
|
|
if (vlan || qos) {
|
|
err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
|
|
if (err)
|
|
goto out;
|
|
igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
|
|
igb_set_vmolr(adapter, vf, !vlan);
|
|
adapter->vf_data[vf].pf_vlan = vlan;
|
|
adapter->vf_data[vf].pf_qos = qos;
|
|
dev_info(&adapter->pdev->dev,
|
|
"Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
|
|
if (test_bit(__IGB_DOWN, &adapter->state)) {
|
|
dev_warn(&adapter->pdev->dev,
|
|
"The VF VLAN has been set,"
|
|
" but the PF device is not up.\n");
|
|
dev_warn(&adapter->pdev->dev,
|
|
"Bring the PF device up before"
|
|
" attempting to use the VF device.\n");
|
|
}
|
|
} else {
|
|
igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
|
|
false, vf);
|
|
igb_set_vmvir(adapter, vlan, vf);
|
|
igb_set_vmolr(adapter, vf, true);
|
|
adapter->vf_data[vf].pf_vlan = 0;
|
|
adapter->vf_data[vf].pf_qos = 0;
|
|
}
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
|
|
{
|
|
int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
|
|
int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
|
|
|
|
return igb_vlvf_set(adapter, vid, add, vf);
|
|
}
|
|
|
|
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
|
|
{
|
|
/* clear flags - except flag that indicates PF has set the MAC */
|
|
adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
|
|
adapter->vf_data[vf].last_nack = jiffies;
|
|
|
|
/* reset offloads to defaults */
|
|
igb_set_vmolr(adapter, vf, true);
|
|
|
|
/* reset vlans for device */
|
|
igb_clear_vf_vfta(adapter, vf);
|
|
if (adapter->vf_data[vf].pf_vlan)
|
|
igb_ndo_set_vf_vlan(adapter->netdev, vf,
|
|
adapter->vf_data[vf].pf_vlan,
|
|
adapter->vf_data[vf].pf_qos);
|
|
else
|
|
igb_clear_vf_vfta(adapter, vf);
|
|
|
|
/* reset multicast table array for vf */
|
|
adapter->vf_data[vf].num_vf_mc_hashes = 0;
|
|
|
|
/* Flush and reset the mta with the new values */
|
|
igb_set_rx_mode(adapter->netdev);
|
|
}
|
|
|
|
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
|
|
{
|
|
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
|
|
|
|
/* generate a new mac address as we were hotplug removed/added */
|
|
if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
|
|
random_ether_addr(vf_mac);
|
|
|
|
/* process remaining reset events */
|
|
igb_vf_reset(adapter, vf);
|
|
}
|
|
|
|
static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
|
|
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
|
|
u32 reg, msgbuf[3];
|
|
u8 *addr = (u8 *)(&msgbuf[1]);
|
|
|
|
/* process all the same items cleared in a function level reset */
|
|
igb_vf_reset(adapter, vf);
|
|
|
|
/* set vf mac address */
|
|
igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
|
|
|
|
/* enable transmit and receive for vf */
|
|
reg = rd32(E1000_VFTE);
|
|
wr32(E1000_VFTE, reg | (1 << vf));
|
|
reg = rd32(E1000_VFRE);
|
|
wr32(E1000_VFRE, reg | (1 << vf));
|
|
|
|
adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
|
|
|
|
/* reply to reset with ack and vf mac address */
|
|
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
|
|
memcpy(addr, vf_mac, 6);
|
|
igb_write_mbx(hw, msgbuf, 3, vf);
|
|
}
|
|
|
|
static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
|
|
{
|
|
/*
|
|
* The VF MAC Address is stored in a packed array of bytes
|
|
* starting at the second 32 bit word of the msg array
|
|
*/
|
|
unsigned char *addr = (char *)&msg[1];
|
|
int err = -1;
|
|
|
|
if (is_valid_ether_addr(addr))
|
|
err = igb_set_vf_mac(adapter, vf, addr);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
|
|
u32 msg = E1000_VT_MSGTYPE_NACK;
|
|
|
|
/* if device isn't clear to send it shouldn't be reading either */
|
|
if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
|
|
time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
|
|
igb_write_mbx(hw, &msg, 1, vf);
|
|
vf_data->last_nack = jiffies;
|
|
}
|
|
}
|
|
|
|
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
u32 msgbuf[E1000_VFMAILBOX_SIZE];
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
|
|
s32 retval;
|
|
|
|
retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
|
|
|
|
if (retval) {
|
|
/* if receive failed revoke VF CTS stats and restart init */
|
|
dev_err(&pdev->dev, "Error receiving message from VF\n");
|
|
vf_data->flags &= ~IGB_VF_FLAG_CTS;
|
|
if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
|
|
return;
|
|
goto out;
|
|
}
|
|
|
|
/* this is a message we already processed, do nothing */
|
|
if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
|
|
return;
|
|
|
|
/*
|
|
* until the vf completes a reset it should not be
|
|
* allowed to start any configuration.
|
|
*/
|
|
|
|
if (msgbuf[0] == E1000_VF_RESET) {
|
|
igb_vf_reset_msg(adapter, vf);
|
|
return;
|
|
}
|
|
|
|
if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
|
|
if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
|
|
return;
|
|
retval = -1;
|
|
goto out;
|
|
}
|
|
|
|
switch ((msgbuf[0] & 0xFFFF)) {
|
|
case E1000_VF_SET_MAC_ADDR:
|
|
retval = -EINVAL;
|
|
if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
|
|
retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
|
|
else
|
|
dev_warn(&pdev->dev,
|
|
"VF %d attempted to override administratively "
|
|
"set MAC address\nReload the VF driver to "
|
|
"resume operations\n", vf);
|
|
break;
|
|
case E1000_VF_SET_PROMISC:
|
|
retval = igb_set_vf_promisc(adapter, msgbuf, vf);
|
|
break;
|
|
case E1000_VF_SET_MULTICAST:
|
|
retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
|
|
break;
|
|
case E1000_VF_SET_LPE:
|
|
retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
|
|
break;
|
|
case E1000_VF_SET_VLAN:
|
|
retval = -1;
|
|
if (vf_data->pf_vlan)
|
|
dev_warn(&pdev->dev,
|
|
"VF %d attempted to override administratively "
|
|
"set VLAN tag\nReload the VF driver to "
|
|
"resume operations\n", vf);
|
|
else
|
|
retval = igb_set_vf_vlan(adapter, msgbuf, vf);
|
|
break;
|
|
default:
|
|
dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
|
|
retval = -1;
|
|
break;
|
|
}
|
|
|
|
msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
|
|
out:
|
|
/* notify the VF of the results of what it sent us */
|
|
if (retval)
|
|
msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
|
|
else
|
|
msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
|
|
|
|
igb_write_mbx(hw, msgbuf, 1, vf);
|
|
}
|
|
|
|
static void igb_msg_task(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 vf;
|
|
|
|
for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
|
|
/* process any reset requests */
|
|
if (!igb_check_for_rst(hw, vf))
|
|
igb_vf_reset_event(adapter, vf);
|
|
|
|
/* process any messages pending */
|
|
if (!igb_check_for_msg(hw, vf))
|
|
igb_rcv_msg_from_vf(adapter, vf);
|
|
|
|
/* process any acks */
|
|
if (!igb_check_for_ack(hw, vf))
|
|
igb_rcv_ack_from_vf(adapter, vf);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_set_uta - Set unicast filter table address
|
|
* @adapter: board private structure
|
|
*
|
|
* The unicast table address is a register array of 32-bit registers.
|
|
* The table is meant to be used in a way similar to how the MTA is used
|
|
* however due to certain limitations in the hardware it is necessary to
|
|
* set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
|
|
* enable bit to allow vlan tag stripping when promiscuous mode is enabled
|
|
**/
|
|
static void igb_set_uta(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int i;
|
|
|
|
/* The UTA table only exists on 82576 hardware and newer */
|
|
if (hw->mac.type < e1000_82576)
|
|
return;
|
|
|
|
/* we only need to do this if VMDq is enabled */
|
|
if (!adapter->vfs_allocated_count)
|
|
return;
|
|
|
|
for (i = 0; i < hw->mac.uta_reg_count; i++)
|
|
array_wr32(E1000_UTA, i, ~0);
|
|
}
|
|
|
|
/**
|
|
* igb_intr_msi - Interrupt Handler
|
|
* @irq: interrupt number
|
|
* @data: pointer to a network interface device structure
|
|
**/
|
|
static irqreturn_t igb_intr_msi(int irq, void *data)
|
|
{
|
|
struct igb_adapter *adapter = data;
|
|
struct igb_q_vector *q_vector = adapter->q_vector[0];
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
/* read ICR disables interrupts using IAM */
|
|
u32 icr = rd32(E1000_ICR);
|
|
|
|
igb_write_itr(q_vector);
|
|
|
|
if (icr & E1000_ICR_DRSTA)
|
|
schedule_work(&adapter->reset_task);
|
|
|
|
if (icr & E1000_ICR_DOUTSYNC) {
|
|
/* HW is reporting DMA is out of sync */
|
|
adapter->stats.doosync++;
|
|
}
|
|
|
|
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
hw->mac.get_link_status = 1;
|
|
if (!test_bit(__IGB_DOWN, &adapter->state))
|
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
|
}
|
|
|
|
napi_schedule(&q_vector->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* igb_intr - Legacy Interrupt Handler
|
|
* @irq: interrupt number
|
|
* @data: pointer to a network interface device structure
|
|
**/
|
|
static irqreturn_t igb_intr(int irq, void *data)
|
|
{
|
|
struct igb_adapter *adapter = data;
|
|
struct igb_q_vector *q_vector = adapter->q_vector[0];
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
|
|
* need for the IMC write */
|
|
u32 icr = rd32(E1000_ICR);
|
|
|
|
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
|
|
* not set, then the adapter didn't send an interrupt */
|
|
if (!(icr & E1000_ICR_INT_ASSERTED))
|
|
return IRQ_NONE;
|
|
|
|
igb_write_itr(q_vector);
|
|
|
|
if (icr & E1000_ICR_DRSTA)
|
|
schedule_work(&adapter->reset_task);
|
|
|
|
if (icr & E1000_ICR_DOUTSYNC) {
|
|
/* HW is reporting DMA is out of sync */
|
|
adapter->stats.doosync++;
|
|
}
|
|
|
|
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
hw->mac.get_link_status = 1;
|
|
/* guard against interrupt when we're going down */
|
|
if (!test_bit(__IGB_DOWN, &adapter->state))
|
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
|
}
|
|
|
|
napi_schedule(&q_vector->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
void igb_ring_irq_enable(struct igb_q_vector *q_vector)
|
|
{
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
|
|
(!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
|
|
if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
|
|
igb_set_itr(q_vector);
|
|
else
|
|
igb_update_ring_itr(q_vector);
|
|
}
|
|
|
|
if (!test_bit(__IGB_DOWN, &adapter->state)) {
|
|
if (adapter->msix_entries)
|
|
wr32(E1000_EIMS, q_vector->eims_value);
|
|
else
|
|
igb_irq_enable(adapter);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_poll - NAPI Rx polling callback
|
|
* @napi: napi polling structure
|
|
* @budget: count of how many packets we should handle
|
|
**/
|
|
static int igb_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct igb_q_vector *q_vector = container_of(napi,
|
|
struct igb_q_vector,
|
|
napi);
|
|
bool clean_complete = true;
|
|
|
|
#ifdef CONFIG_IGB_DCA
|
|
if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
|
|
igb_update_dca(q_vector);
|
|
#endif
|
|
if (q_vector->tx.ring)
|
|
clean_complete = igb_clean_tx_irq(q_vector);
|
|
|
|
if (q_vector->rx.ring)
|
|
clean_complete &= igb_clean_rx_irq(q_vector, budget);
|
|
|
|
/* If all work not completed, return budget and keep polling */
|
|
if (!clean_complete)
|
|
return budget;
|
|
|
|
/* If not enough Rx work done, exit the polling mode */
|
|
napi_complete(napi);
|
|
igb_ring_irq_enable(q_vector);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_systim_to_hwtstamp - convert system time value to hw timestamp
|
|
* @adapter: board private structure
|
|
* @shhwtstamps: timestamp structure to update
|
|
* @regval: unsigned 64bit system time value.
|
|
*
|
|
* We need to convert the system time value stored in the RX/TXSTMP registers
|
|
* into a hwtstamp which can be used by the upper level timestamping functions
|
|
*/
|
|
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
|
|
struct skb_shared_hwtstamps *shhwtstamps,
|
|
u64 regval)
|
|
{
|
|
u64 ns;
|
|
|
|
/*
|
|
* The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
|
|
* 24 to match clock shift we setup earlier.
|
|
*/
|
|
if (adapter->hw.mac.type >= e1000_82580)
|
|
regval <<= IGB_82580_TSYNC_SHIFT;
|
|
|
|
ns = timecounter_cyc2time(&adapter->clock, regval);
|
|
timecompare_update(&adapter->compare, ns);
|
|
memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
|
|
shhwtstamps->hwtstamp = ns_to_ktime(ns);
|
|
shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
|
|
}
|
|
|
|
/**
|
|
* igb_tx_hwtstamp - utility function which checks for TX time stamp
|
|
* @q_vector: pointer to q_vector containing needed info
|
|
* @buffer: pointer to igb_tx_buffer structure
|
|
*
|
|
* If we were asked to do hardware stamping and such a time stamp is
|
|
* available, then it must have been for this skb here because we only
|
|
* allow only one such packet into the queue.
|
|
*/
|
|
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
|
|
struct igb_tx_buffer *buffer_info)
|
|
{
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct skb_shared_hwtstamps shhwtstamps;
|
|
u64 regval;
|
|
|
|
/* if skb does not support hw timestamp or TX stamp not valid exit */
|
|
if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
|
|
!(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
|
|
return;
|
|
|
|
regval = rd32(E1000_TXSTMPL);
|
|
regval |= (u64)rd32(E1000_TXSTMPH) << 32;
|
|
|
|
igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
|
|
skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
|
|
}
|
|
|
|
/**
|
|
* igb_clean_tx_irq - Reclaim resources after transmit completes
|
|
* @q_vector: pointer to q_vector containing needed info
|
|
* returns true if ring is completely cleaned
|
|
**/
|
|
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
|
|
{
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
struct igb_ring *tx_ring = q_vector->tx.ring;
|
|
struct igb_tx_buffer *tx_buffer;
|
|
union e1000_adv_tx_desc *tx_desc, *eop_desc;
|
|
unsigned int total_bytes = 0, total_packets = 0;
|
|
unsigned int budget = q_vector->tx.work_limit;
|
|
unsigned int i = tx_ring->next_to_clean;
|
|
|
|
if (test_bit(__IGB_DOWN, &adapter->state))
|
|
return true;
|
|
|
|
tx_buffer = &tx_ring->tx_buffer_info[i];
|
|
tx_desc = IGB_TX_DESC(tx_ring, i);
|
|
i -= tx_ring->count;
|
|
|
|
for (; budget; budget--) {
|
|
eop_desc = tx_buffer->next_to_watch;
|
|
|
|
/* prevent any other reads prior to eop_desc */
|
|
rmb();
|
|
|
|
/* if next_to_watch is not set then there is no work pending */
|
|
if (!eop_desc)
|
|
break;
|
|
|
|
/* if DD is not set pending work has not been completed */
|
|
if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
|
|
break;
|
|
|
|
/* clear next_to_watch to prevent false hangs */
|
|
tx_buffer->next_to_watch = NULL;
|
|
|
|
/* update the statistics for this packet */
|
|
total_bytes += tx_buffer->bytecount;
|
|
total_packets += tx_buffer->gso_segs;
|
|
|
|
/* retrieve hardware timestamp */
|
|
igb_tx_hwtstamp(q_vector, tx_buffer);
|
|
|
|
/* free the skb */
|
|
dev_kfree_skb_any(tx_buffer->skb);
|
|
tx_buffer->skb = NULL;
|
|
|
|
/* unmap skb header data */
|
|
dma_unmap_single(tx_ring->dev,
|
|
tx_buffer->dma,
|
|
tx_buffer->length,
|
|
DMA_TO_DEVICE);
|
|
|
|
/* clear last DMA location and unmap remaining buffers */
|
|
while (tx_desc != eop_desc) {
|
|
tx_buffer->dma = 0;
|
|
|
|
tx_buffer++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buffer = tx_ring->tx_buffer_info;
|
|
tx_desc = IGB_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* unmap any remaining paged data */
|
|
if (tx_buffer->dma) {
|
|
dma_unmap_page(tx_ring->dev,
|
|
tx_buffer->dma,
|
|
tx_buffer->length,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
}
|
|
|
|
/* clear last DMA location */
|
|
tx_buffer->dma = 0;
|
|
|
|
/* move us one more past the eop_desc for start of next pkt */
|
|
tx_buffer++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buffer = tx_ring->tx_buffer_info;
|
|
tx_desc = IGB_TX_DESC(tx_ring, 0);
|
|
}
|
|
}
|
|
|
|
i += tx_ring->count;
|
|
tx_ring->next_to_clean = i;
|
|
u64_stats_update_begin(&tx_ring->tx_syncp);
|
|
tx_ring->tx_stats.bytes += total_bytes;
|
|
tx_ring->tx_stats.packets += total_packets;
|
|
u64_stats_update_end(&tx_ring->tx_syncp);
|
|
q_vector->tx.total_bytes += total_bytes;
|
|
q_vector->tx.total_packets += total_packets;
|
|
|
|
if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
eop_desc = tx_buffer->next_to_watch;
|
|
|
|
/* Detect a transmit hang in hardware, this serializes the
|
|
* check with the clearing of time_stamp and movement of i */
|
|
clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
|
|
if (eop_desc &&
|
|
time_after(jiffies, tx_buffer->time_stamp +
|
|
(adapter->tx_timeout_factor * HZ)) &&
|
|
!(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
|
|
|
|
/* detected Tx unit hang */
|
|
dev_err(tx_ring->dev,
|
|
"Detected Tx Unit Hang\n"
|
|
" Tx Queue <%d>\n"
|
|
" TDH <%x>\n"
|
|
" TDT <%x>\n"
|
|
" next_to_use <%x>\n"
|
|
" next_to_clean <%x>\n"
|
|
"buffer_info[next_to_clean]\n"
|
|
" time_stamp <%lx>\n"
|
|
" next_to_watch <%p>\n"
|
|
" jiffies <%lx>\n"
|
|
" desc.status <%x>\n",
|
|
tx_ring->queue_index,
|
|
rd32(E1000_TDH(tx_ring->reg_idx)),
|
|
readl(tx_ring->tail),
|
|
tx_ring->next_to_use,
|
|
tx_ring->next_to_clean,
|
|
tx_buffer->time_stamp,
|
|
eop_desc,
|
|
jiffies,
|
|
eop_desc->wb.status);
|
|
netif_stop_subqueue(tx_ring->netdev,
|
|
tx_ring->queue_index);
|
|
|
|
/* we are about to reset, no point in enabling stuff */
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (unlikely(total_packets &&
|
|
netif_carrier_ok(tx_ring->netdev) &&
|
|
igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
|
|
/* Make sure that anybody stopping the queue after this
|
|
* sees the new next_to_clean.
|
|
*/
|
|
smp_mb();
|
|
if (__netif_subqueue_stopped(tx_ring->netdev,
|
|
tx_ring->queue_index) &&
|
|
!(test_bit(__IGB_DOWN, &adapter->state))) {
|
|
netif_wake_subqueue(tx_ring->netdev,
|
|
tx_ring->queue_index);
|
|
|
|
u64_stats_update_begin(&tx_ring->tx_syncp);
|
|
tx_ring->tx_stats.restart_queue++;
|
|
u64_stats_update_end(&tx_ring->tx_syncp);
|
|
}
|
|
}
|
|
|
|
return !!budget;
|
|
}
|
|
|
|
static inline void igb_rx_checksum(struct igb_ring *ring,
|
|
union e1000_adv_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
skb_checksum_none_assert(skb);
|
|
|
|
/* Ignore Checksum bit is set */
|
|
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
|
|
return;
|
|
|
|
/* Rx checksum disabled via ethtool */
|
|
if (!(ring->netdev->features & NETIF_F_RXCSUM))
|
|
return;
|
|
|
|
/* TCP/UDP checksum error bit is set */
|
|
if (igb_test_staterr(rx_desc,
|
|
E1000_RXDEXT_STATERR_TCPE |
|
|
E1000_RXDEXT_STATERR_IPE)) {
|
|
/*
|
|
* work around errata with sctp packets where the TCPE aka
|
|
* L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
|
|
* packets, (aka let the stack check the crc32c)
|
|
*/
|
|
if (!((skb->len == 60) &&
|
|
test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
|
|
u64_stats_update_begin(&ring->rx_syncp);
|
|
ring->rx_stats.csum_err++;
|
|
u64_stats_update_end(&ring->rx_syncp);
|
|
}
|
|
/* let the stack verify checksum errors */
|
|
return;
|
|
}
|
|
/* It must be a TCP or UDP packet with a valid checksum */
|
|
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
|
|
E1000_RXD_STAT_UDPCS))
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
dev_dbg(ring->dev, "cksum success: bits %08X\n",
|
|
le32_to_cpu(rx_desc->wb.upper.status_error));
|
|
}
|
|
|
|
static inline void igb_rx_hash(struct igb_ring *ring,
|
|
union e1000_adv_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
if (ring->netdev->features & NETIF_F_RXHASH)
|
|
skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
|
|
}
|
|
|
|
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
|
|
union e1000_adv_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u64 regval;
|
|
|
|
if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
|
|
E1000_RXDADV_STAT_TS))
|
|
return;
|
|
|
|
/*
|
|
* If this bit is set, then the RX registers contain the time stamp. No
|
|
* other packet will be time stamped until we read these registers, so
|
|
* read the registers to make them available again. Because only one
|
|
* packet can be time stamped at a time, we know that the register
|
|
* values must belong to this one here and therefore we don't need to
|
|
* compare any of the additional attributes stored for it.
|
|
*
|
|
* If nothing went wrong, then it should have a shared tx_flags that we
|
|
* can turn into a skb_shared_hwtstamps.
|
|
*/
|
|
if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
|
|
u32 *stamp = (u32 *)skb->data;
|
|
regval = le32_to_cpu(*(stamp + 2));
|
|
regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
|
|
skb_pull(skb, IGB_TS_HDR_LEN);
|
|
} else {
|
|
if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
|
|
return;
|
|
|
|
regval = rd32(E1000_RXSTMPL);
|
|
regval |= (u64)rd32(E1000_RXSTMPH) << 32;
|
|
}
|
|
|
|
igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
|
|
}
|
|
|
|
static void igb_rx_vlan(struct igb_ring *ring,
|
|
union e1000_adv_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
|
|
u16 vid;
|
|
if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
|
|
test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
|
|
vid = be16_to_cpu(rx_desc->wb.upper.vlan);
|
|
else
|
|
vid = le16_to_cpu(rx_desc->wb.upper.vlan);
|
|
|
|
__vlan_hwaccel_put_tag(skb, vid);
|
|
}
|
|
}
|
|
|
|
static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
|
|
{
|
|
/* HW will not DMA in data larger than the given buffer, even if it
|
|
* parses the (NFS, of course) header to be larger. In that case, it
|
|
* fills the header buffer and spills the rest into the page.
|
|
*/
|
|
u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
|
|
E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
|
|
if (hlen > IGB_RX_HDR_LEN)
|
|
hlen = IGB_RX_HDR_LEN;
|
|
return hlen;
|
|
}
|
|
|
|
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
|
|
{
|
|
struct igb_ring *rx_ring = q_vector->rx.ring;
|
|
union e1000_adv_rx_desc *rx_desc;
|
|
const int current_node = numa_node_id();
|
|
unsigned int total_bytes = 0, total_packets = 0;
|
|
u16 cleaned_count = igb_desc_unused(rx_ring);
|
|
u16 i = rx_ring->next_to_clean;
|
|
|
|
rx_desc = IGB_RX_DESC(rx_ring, i);
|
|
|
|
while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
|
|
struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
|
|
struct sk_buff *skb = buffer_info->skb;
|
|
union e1000_adv_rx_desc *next_rxd;
|
|
|
|
buffer_info->skb = NULL;
|
|
prefetch(skb->data);
|
|
|
|
i++;
|
|
if (i == rx_ring->count)
|
|
i = 0;
|
|
|
|
next_rxd = IGB_RX_DESC(rx_ring, i);
|
|
prefetch(next_rxd);
|
|
|
|
/*
|
|
* This memory barrier is needed to keep us from reading
|
|
* any other fields out of the rx_desc until we know the
|
|
* RXD_STAT_DD bit is set
|
|
*/
|
|
rmb();
|
|
|
|
if (!skb_is_nonlinear(skb)) {
|
|
__skb_put(skb, igb_get_hlen(rx_desc));
|
|
dma_unmap_single(rx_ring->dev, buffer_info->dma,
|
|
IGB_RX_HDR_LEN,
|
|
DMA_FROM_DEVICE);
|
|
buffer_info->dma = 0;
|
|
}
|
|
|
|
if (rx_desc->wb.upper.length) {
|
|
u16 length = le16_to_cpu(rx_desc->wb.upper.length);
|
|
|
|
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
|
|
buffer_info->page,
|
|
buffer_info->page_offset,
|
|
length);
|
|
|
|
skb->len += length;
|
|
skb->data_len += length;
|
|
skb->truesize += PAGE_SIZE / 2;
|
|
|
|
if ((page_count(buffer_info->page) != 1) ||
|
|
(page_to_nid(buffer_info->page) != current_node))
|
|
buffer_info->page = NULL;
|
|
else
|
|
get_page(buffer_info->page);
|
|
|
|
dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
|
|
PAGE_SIZE / 2, DMA_FROM_DEVICE);
|
|
buffer_info->page_dma = 0;
|
|
}
|
|
|
|
if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
|
|
struct igb_rx_buffer *next_buffer;
|
|
next_buffer = &rx_ring->rx_buffer_info[i];
|
|
buffer_info->skb = next_buffer->skb;
|
|
buffer_info->dma = next_buffer->dma;
|
|
next_buffer->skb = skb;
|
|
next_buffer->dma = 0;
|
|
goto next_desc;
|
|
}
|
|
|
|
if (igb_test_staterr(rx_desc,
|
|
E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
|
|
dev_kfree_skb_any(skb);
|
|
goto next_desc;
|
|
}
|
|
|
|
igb_rx_hwtstamp(q_vector, rx_desc, skb);
|
|
igb_rx_hash(rx_ring, rx_desc, skb);
|
|
igb_rx_checksum(rx_ring, rx_desc, skb);
|
|
igb_rx_vlan(rx_ring, rx_desc, skb);
|
|
|
|
total_bytes += skb->len;
|
|
total_packets++;
|
|
|
|
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
|
|
|
|
napi_gro_receive(&q_vector->napi, skb);
|
|
|
|
budget--;
|
|
next_desc:
|
|
if (!budget)
|
|
break;
|
|
|
|
cleaned_count++;
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
|
|
igb_alloc_rx_buffers(rx_ring, cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
/* use prefetched values */
|
|
rx_desc = next_rxd;
|
|
}
|
|
|
|
rx_ring->next_to_clean = i;
|
|
u64_stats_update_begin(&rx_ring->rx_syncp);
|
|
rx_ring->rx_stats.packets += total_packets;
|
|
rx_ring->rx_stats.bytes += total_bytes;
|
|
u64_stats_update_end(&rx_ring->rx_syncp);
|
|
q_vector->rx.total_packets += total_packets;
|
|
q_vector->rx.total_bytes += total_bytes;
|
|
|
|
if (cleaned_count)
|
|
igb_alloc_rx_buffers(rx_ring, cleaned_count);
|
|
|
|
return !!budget;
|
|
}
|
|
|
|
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
|
|
struct igb_rx_buffer *bi)
|
|
{
|
|
struct sk_buff *skb = bi->skb;
|
|
dma_addr_t dma = bi->dma;
|
|
|
|
if (dma)
|
|
return true;
|
|
|
|
if (likely(!skb)) {
|
|
skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
|
|
IGB_RX_HDR_LEN);
|
|
bi->skb = skb;
|
|
if (!skb) {
|
|
rx_ring->rx_stats.alloc_failed++;
|
|
return false;
|
|
}
|
|
|
|
/* initialize skb for ring */
|
|
skb_record_rx_queue(skb, rx_ring->queue_index);
|
|
}
|
|
|
|
dma = dma_map_single(rx_ring->dev, skb->data,
|
|
IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
|
|
|
|
if (dma_mapping_error(rx_ring->dev, dma)) {
|
|
rx_ring->rx_stats.alloc_failed++;
|
|
return false;
|
|
}
|
|
|
|
bi->dma = dma;
|
|
return true;
|
|
}
|
|
|
|
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
|
|
struct igb_rx_buffer *bi)
|
|
{
|
|
struct page *page = bi->page;
|
|
dma_addr_t page_dma = bi->page_dma;
|
|
unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
|
|
|
|
if (page_dma)
|
|
return true;
|
|
|
|
if (!page) {
|
|
page = alloc_page(GFP_ATOMIC | __GFP_COLD);
|
|
bi->page = page;
|
|
if (unlikely(!page)) {
|
|
rx_ring->rx_stats.alloc_failed++;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
page_dma = dma_map_page(rx_ring->dev, page,
|
|
page_offset, PAGE_SIZE / 2,
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (dma_mapping_error(rx_ring->dev, page_dma)) {
|
|
rx_ring->rx_stats.alloc_failed++;
|
|
return false;
|
|
}
|
|
|
|
bi->page_dma = page_dma;
|
|
bi->page_offset = page_offset;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* igb_alloc_rx_buffers - Replace used receive buffers; packet split
|
|
* @adapter: address of board private structure
|
|
**/
|
|
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
|
|
{
|
|
union e1000_adv_rx_desc *rx_desc;
|
|
struct igb_rx_buffer *bi;
|
|
u16 i = rx_ring->next_to_use;
|
|
|
|
rx_desc = IGB_RX_DESC(rx_ring, i);
|
|
bi = &rx_ring->rx_buffer_info[i];
|
|
i -= rx_ring->count;
|
|
|
|
while (cleaned_count--) {
|
|
if (!igb_alloc_mapped_skb(rx_ring, bi))
|
|
break;
|
|
|
|
/* Refresh the desc even if buffer_addrs didn't change
|
|
* because each write-back erases this info. */
|
|
rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
|
|
|
|
if (!igb_alloc_mapped_page(rx_ring, bi))
|
|
break;
|
|
|
|
rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
|
|
|
|
rx_desc++;
|
|
bi++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
rx_desc = IGB_RX_DESC(rx_ring, 0);
|
|
bi = rx_ring->rx_buffer_info;
|
|
i -= rx_ring->count;
|
|
}
|
|
|
|
/* clear the hdr_addr for the next_to_use descriptor */
|
|
rx_desc->read.hdr_addr = 0;
|
|
}
|
|
|
|
i += rx_ring->count;
|
|
|
|
if (rx_ring->next_to_use != i) {
|
|
rx_ring->next_to_use = i;
|
|
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64). */
|
|
wmb();
|
|
writel(i, rx_ring->tail);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_mii_ioctl -
|
|
* @netdev:
|
|
* @ifreq:
|
|
* @cmd:
|
|
**/
|
|
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct mii_ioctl_data *data = if_mii(ifr);
|
|
|
|
if (adapter->hw.phy.media_type != e1000_media_type_copper)
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
data->phy_id = adapter->hw.phy.addr;
|
|
break;
|
|
case SIOCGMIIREG:
|
|
if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
|
|
&data->val_out))
|
|
return -EIO;
|
|
break;
|
|
case SIOCSMIIREG:
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_hwtstamp_ioctl - control hardware time stamping
|
|
* @netdev:
|
|
* @ifreq:
|
|
* @cmd:
|
|
*
|
|
* Outgoing time stamping can be enabled and disabled. Play nice and
|
|
* disable it when requested, although it shouldn't case any overhead
|
|
* when no packet needs it. At most one packet in the queue may be
|
|
* marked for time stamping, otherwise it would be impossible to tell
|
|
* for sure to which packet the hardware time stamp belongs.
|
|
*
|
|
* Incoming time stamping has to be configured via the hardware
|
|
* filters. Not all combinations are supported, in particular event
|
|
* type has to be specified. Matching the kind of event packet is
|
|
* not supported, with the exception of "all V2 events regardless of
|
|
* level 2 or 4".
|
|
*
|
|
**/
|
|
static int igb_hwtstamp_ioctl(struct net_device *netdev,
|
|
struct ifreq *ifr, int cmd)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct hwtstamp_config config;
|
|
u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
|
|
u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
|
|
u32 tsync_rx_cfg = 0;
|
|
bool is_l4 = false;
|
|
bool is_l2 = false;
|
|
u32 regval;
|
|
|
|
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
|
return -EFAULT;
|
|
|
|
/* reserved for future extensions */
|
|
if (config.flags)
|
|
return -EINVAL;
|
|
|
|
switch (config.tx_type) {
|
|
case HWTSTAMP_TX_OFF:
|
|
tsync_tx_ctl = 0;
|
|
case HWTSTAMP_TX_ON:
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
switch (config.rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
tsync_rx_ctl = 0;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_ALL:
|
|
/*
|
|
* register TSYNCRXCFG must be set, therefore it is not
|
|
* possible to time stamp both Sync and Delay_Req messages
|
|
* => fall back to time stamping all packets
|
|
*/
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
|
|
config.rx_filter = HWTSTAMP_FILTER_ALL;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
|
|
is_l4 = true;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
|
|
is_l4 = true;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
|
|
is_l2 = true;
|
|
is_l4 = true;
|
|
config.rx_filter = HWTSTAMP_FILTER_SOME;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
|
|
is_l2 = true;
|
|
is_l4 = true;
|
|
config.rx_filter = HWTSTAMP_FILTER_SOME;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
|
|
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
|
|
is_l2 = true;
|
|
is_l4 = true;
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
if (hw->mac.type == e1000_82575) {
|
|
if (tsync_rx_ctl | tsync_tx_ctl)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Per-packet timestamping only works if all packets are
|
|
* timestamped, so enable timestamping in all packets as
|
|
* long as one rx filter was configured.
|
|
*/
|
|
if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
|
|
tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
|
|
}
|
|
|
|
/* enable/disable TX */
|
|
regval = rd32(E1000_TSYNCTXCTL);
|
|
regval &= ~E1000_TSYNCTXCTL_ENABLED;
|
|
regval |= tsync_tx_ctl;
|
|
wr32(E1000_TSYNCTXCTL, regval);
|
|
|
|
/* enable/disable RX */
|
|
regval = rd32(E1000_TSYNCRXCTL);
|
|
regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
|
|
regval |= tsync_rx_ctl;
|
|
wr32(E1000_TSYNCRXCTL, regval);
|
|
|
|
/* define which PTP packets are time stamped */
|
|
wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
|
|
|
|
/* define ethertype filter for timestamped packets */
|
|
if (is_l2)
|
|
wr32(E1000_ETQF(3),
|
|
(E1000_ETQF_FILTER_ENABLE | /* enable filter */
|
|
E1000_ETQF_1588 | /* enable timestamping */
|
|
ETH_P_1588)); /* 1588 eth protocol type */
|
|
else
|
|
wr32(E1000_ETQF(3), 0);
|
|
|
|
#define PTP_PORT 319
|
|
/* L4 Queue Filter[3]: filter by destination port and protocol */
|
|
if (is_l4) {
|
|
u32 ftqf = (IPPROTO_UDP /* UDP */
|
|
| E1000_FTQF_VF_BP /* VF not compared */
|
|
| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
|
|
| E1000_FTQF_MASK); /* mask all inputs */
|
|
ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
|
|
|
|
wr32(E1000_IMIR(3), htons(PTP_PORT));
|
|
wr32(E1000_IMIREXT(3),
|
|
(E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
|
|
if (hw->mac.type == e1000_82576) {
|
|
/* enable source port check */
|
|
wr32(E1000_SPQF(3), htons(PTP_PORT));
|
|
ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
|
|
}
|
|
wr32(E1000_FTQF(3), ftqf);
|
|
} else {
|
|
wr32(E1000_FTQF(3), E1000_FTQF_MASK);
|
|
}
|
|
wrfl();
|
|
|
|
adapter->hwtstamp_config = config;
|
|
|
|
/* clear TX/RX time stamp registers, just to be sure */
|
|
regval = rd32(E1000_TXSTMPH);
|
|
regval = rd32(E1000_RXSTMPH);
|
|
|
|
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
|
|
-EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* igb_ioctl -
|
|
* @netdev:
|
|
* @ifreq:
|
|
* @cmd:
|
|
**/
|
|
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
|
{
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
case SIOCGMIIREG:
|
|
case SIOCSMIIREG:
|
|
return igb_mii_ioctl(netdev, ifr, cmd);
|
|
case SIOCSHWTSTAMP:
|
|
return igb_hwtstamp_ioctl(netdev, ifr, cmd);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
|
|
{
|
|
struct igb_adapter *adapter = hw->back;
|
|
u16 cap_offset;
|
|
|
|
cap_offset = adapter->pdev->pcie_cap;
|
|
if (!cap_offset)
|
|
return -E1000_ERR_CONFIG;
|
|
|
|
pci_read_config_word(adapter->pdev, cap_offset + reg, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
|
|
{
|
|
struct igb_adapter *adapter = hw->back;
|
|
u16 cap_offset;
|
|
|
|
cap_offset = adapter->pdev->pcie_cap;
|
|
if (!cap_offset)
|
|
return -E1000_ERR_CONFIG;
|
|
|
|
pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl, rctl;
|
|
bool enable = !!(features & NETIF_F_HW_VLAN_RX);
|
|
|
|
if (enable) {
|
|
/* enable VLAN tag insert/strip */
|
|
ctrl = rd32(E1000_CTRL);
|
|
ctrl |= E1000_CTRL_VME;
|
|
wr32(E1000_CTRL, ctrl);
|
|
|
|
/* Disable CFI check */
|
|
rctl = rd32(E1000_RCTL);
|
|
rctl &= ~E1000_RCTL_CFIEN;
|
|
wr32(E1000_RCTL, rctl);
|
|
} else {
|
|
/* disable VLAN tag insert/strip */
|
|
ctrl = rd32(E1000_CTRL);
|
|
ctrl &= ~E1000_CTRL_VME;
|
|
wr32(E1000_CTRL, ctrl);
|
|
}
|
|
|
|
igb_rlpml_set(adapter);
|
|
}
|
|
|
|
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int pf_id = adapter->vfs_allocated_count;
|
|
|
|
/* attempt to add filter to vlvf array */
|
|
igb_vlvf_set(adapter, vid, true, pf_id);
|
|
|
|
/* add the filter since PF can receive vlans w/o entry in vlvf */
|
|
igb_vfta_set(hw, vid, true);
|
|
|
|
set_bit(vid, adapter->active_vlans);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int pf_id = adapter->vfs_allocated_count;
|
|
s32 err;
|
|
|
|
/* remove vlan from VLVF table array */
|
|
err = igb_vlvf_set(adapter, vid, false, pf_id);
|
|
|
|
/* if vid was not present in VLVF just remove it from table */
|
|
if (err)
|
|
igb_vfta_set(hw, vid, false);
|
|
|
|
clear_bit(vid, adapter->active_vlans);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void igb_restore_vlan(struct igb_adapter *adapter)
|
|
{
|
|
u16 vid;
|
|
|
|
igb_vlan_mode(adapter->netdev, adapter->netdev->features);
|
|
|
|
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
|
|
igb_vlan_rx_add_vid(adapter->netdev, vid);
|
|
}
|
|
|
|
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_mac_info *mac = &adapter->hw.mac;
|
|
|
|
mac->autoneg = 0;
|
|
|
|
/* Make sure dplx is at most 1 bit and lsb of speed is not set
|
|
* for the switch() below to work */
|
|
if ((spd & 1) || (dplx & ~1))
|
|
goto err_inval;
|
|
|
|
/* Fiber NIC's only allow 1000 Gbps Full duplex */
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
|
|
spd != SPEED_1000 &&
|
|
dplx != DUPLEX_FULL)
|
|
goto err_inval;
|
|
|
|
switch (spd + dplx) {
|
|
case SPEED_10 + DUPLEX_HALF:
|
|
mac->forced_speed_duplex = ADVERTISE_10_HALF;
|
|
break;
|
|
case SPEED_10 + DUPLEX_FULL:
|
|
mac->forced_speed_duplex = ADVERTISE_10_FULL;
|
|
break;
|
|
case SPEED_100 + DUPLEX_HALF:
|
|
mac->forced_speed_duplex = ADVERTISE_100_HALF;
|
|
break;
|
|
case SPEED_100 + DUPLEX_FULL:
|
|
mac->forced_speed_duplex = ADVERTISE_100_FULL;
|
|
break;
|
|
case SPEED_1000 + DUPLEX_FULL:
|
|
mac->autoneg = 1;
|
|
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
|
|
break;
|
|
case SPEED_1000 + DUPLEX_HALF: /* not supported */
|
|
default:
|
|
goto err_inval;
|
|
}
|
|
return 0;
|
|
|
|
err_inval:
|
|
dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl, rctl, status;
|
|
u32 wufc = adapter->wol;
|
|
#ifdef CONFIG_PM
|
|
int retval = 0;
|
|
#endif
|
|
|
|
netif_device_detach(netdev);
|
|
|
|
if (netif_running(netdev))
|
|
igb_close(netdev);
|
|
|
|
igb_clear_interrupt_scheme(adapter);
|
|
|
|
#ifdef CONFIG_PM
|
|
retval = pci_save_state(pdev);
|
|
if (retval)
|
|
return retval;
|
|
#endif
|
|
|
|
status = rd32(E1000_STATUS);
|
|
if (status & E1000_STATUS_LU)
|
|
wufc &= ~E1000_WUFC_LNKC;
|
|
|
|
if (wufc) {
|
|
igb_setup_rctl(adapter);
|
|
igb_set_rx_mode(netdev);
|
|
|
|
/* turn on all-multi mode if wake on multicast is enabled */
|
|
if (wufc & E1000_WUFC_MC) {
|
|
rctl = rd32(E1000_RCTL);
|
|
rctl |= E1000_RCTL_MPE;
|
|
wr32(E1000_RCTL, rctl);
|
|
}
|
|
|
|
ctrl = rd32(E1000_CTRL);
|
|
/* advertise wake from D3Cold */
|
|
#define E1000_CTRL_ADVD3WUC 0x00100000
|
|
/* phy power management enable */
|
|
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
|
|
ctrl |= E1000_CTRL_ADVD3WUC;
|
|
wr32(E1000_CTRL, ctrl);
|
|
|
|
/* Allow time for pending master requests to run */
|
|
igb_disable_pcie_master(hw);
|
|
|
|
wr32(E1000_WUC, E1000_WUC_PME_EN);
|
|
wr32(E1000_WUFC, wufc);
|
|
} else {
|
|
wr32(E1000_WUC, 0);
|
|
wr32(E1000_WUFC, 0);
|
|
}
|
|
|
|
*enable_wake = wufc || adapter->en_mng_pt;
|
|
if (!*enable_wake)
|
|
igb_power_down_link(adapter);
|
|
else
|
|
igb_power_up_link(adapter);
|
|
|
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
|
* would have already happened in close and is redundant. */
|
|
igb_release_hw_control(adapter);
|
|
|
|
pci_disable_device(pdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
int retval;
|
|
bool wake;
|
|
|
|
retval = __igb_shutdown(pdev, &wake);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (wake) {
|
|
pci_prepare_to_sleep(pdev);
|
|
} else {
|
|
pci_wake_from_d3(pdev, false);
|
|
pci_set_power_state(pdev, PCI_D3hot);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 err;
|
|
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_restore_state(pdev);
|
|
pci_save_state(pdev);
|
|
|
|
err = pci_enable_device_mem(pdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"igb: Cannot enable PCI device from suspend\n");
|
|
return err;
|
|
}
|
|
pci_set_master(pdev);
|
|
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
|
|
if (igb_init_interrupt_scheme(adapter)) {
|
|
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
igb_reset(adapter);
|
|
|
|
/* let the f/w know that the h/w is now under the control of the
|
|
* driver. */
|
|
igb_get_hw_control(adapter);
|
|
|
|
wr32(E1000_WUS, ~0);
|
|
|
|
if (netif_running(netdev)) {
|
|
err = igb_open(netdev);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
netif_device_attach(netdev);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void igb_shutdown(struct pci_dev *pdev)
|
|
{
|
|
bool wake;
|
|
|
|
__igb_shutdown(pdev, &wake);
|
|
|
|
if (system_state == SYSTEM_POWER_OFF) {
|
|
pci_wake_from_d3(pdev, wake);
|
|
pci_set_power_state(pdev, PCI_D3hot);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/*
|
|
* Polling 'interrupt' - used by things like netconsole to send skbs
|
|
* without having to re-enable interrupts. It's not called while
|
|
* the interrupt routine is executing.
|
|
*/
|
|
static void igb_netpoll(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct igb_q_vector *q_vector;
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_q_vectors; i++) {
|
|
q_vector = adapter->q_vector[i];
|
|
if (adapter->msix_entries)
|
|
wr32(E1000_EIMC, q_vector->eims_value);
|
|
else
|
|
igb_irq_disable(adapter);
|
|
napi_schedule(&q_vector->napi);
|
|
}
|
|
}
|
|
#endif /* CONFIG_NET_POLL_CONTROLLER */
|
|
|
|
/**
|
|
* igb_io_error_detected - called when PCI error is detected
|
|
* @pdev: Pointer to PCI device
|
|
* @state: The current pci connection state
|
|
*
|
|
* This function is called after a PCI bus error affecting
|
|
* this device has been detected.
|
|
*/
|
|
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
|
|
netif_device_detach(netdev);
|
|
|
|
if (state == pci_channel_io_perm_failure)
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
|
|
if (netif_running(netdev))
|
|
igb_down(adapter);
|
|
pci_disable_device(pdev);
|
|
|
|
/* Request a slot slot reset. */
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
/**
|
|
* igb_io_slot_reset - called after the pci bus has been reset.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* Restart the card from scratch, as if from a cold-boot. Implementation
|
|
* resembles the first-half of the igb_resume routine.
|
|
*/
|
|
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
pci_ers_result_t result;
|
|
int err;
|
|
|
|
if (pci_enable_device_mem(pdev)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot re-enable PCI device after reset.\n");
|
|
result = PCI_ERS_RESULT_DISCONNECT;
|
|
} else {
|
|
pci_set_master(pdev);
|
|
pci_restore_state(pdev);
|
|
pci_save_state(pdev);
|
|
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
|
|
igb_reset(adapter);
|
|
wr32(E1000_WUS, ~0);
|
|
result = PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
err = pci_cleanup_aer_uncorrect_error_status(pdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
|
|
"failed 0x%0x\n", err);
|
|
/* non-fatal, continue */
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* igb_io_resume - called when traffic can start flowing again.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* This callback is called when the error recovery driver tells us that
|
|
* its OK to resume normal operation. Implementation resembles the
|
|
* second-half of the igb_resume routine.
|
|
*/
|
|
static void igb_io_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
|
|
if (netif_running(netdev)) {
|
|
if (igb_up(adapter)) {
|
|
dev_err(&pdev->dev, "igb_up failed after reset\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
netif_device_attach(netdev);
|
|
|
|
/* let the f/w know that the h/w is now under the control of the
|
|
* driver. */
|
|
igb_get_hw_control(adapter);
|
|
}
|
|
|
|
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
|
|
u8 qsel)
|
|
{
|
|
u32 rar_low, rar_high;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
/* HW expects these in little endian so we reverse the byte order
|
|
* from network order (big endian) to little endian
|
|
*/
|
|
rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
|
|
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
|
|
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
|
|
|
|
/* Indicate to hardware the Address is Valid. */
|
|
rar_high |= E1000_RAH_AV;
|
|
|
|
if (hw->mac.type == e1000_82575)
|
|
rar_high |= E1000_RAH_POOL_1 * qsel;
|
|
else
|
|
rar_high |= E1000_RAH_POOL_1 << qsel;
|
|
|
|
wr32(E1000_RAL(index), rar_low);
|
|
wrfl();
|
|
wr32(E1000_RAH(index), rar_high);
|
|
wrfl();
|
|
}
|
|
|
|
static int igb_set_vf_mac(struct igb_adapter *adapter,
|
|
int vf, unsigned char *mac_addr)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
/* VF MAC addresses start at end of receive addresses and moves
|
|
* torwards the first, as a result a collision should not be possible */
|
|
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
|
|
|
|
memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
|
|
|
|
igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
|
|
return -EINVAL;
|
|
adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
|
|
dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
|
|
dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
|
|
" change effective.");
|
|
if (test_bit(__IGB_DOWN, &adapter->state)) {
|
|
dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
|
|
" but the PF device is not up.\n");
|
|
dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
|
|
" attempting to use the VF device.\n");
|
|
}
|
|
return igb_set_vf_mac(adapter, vf, mac);
|
|
}
|
|
|
|
static int igb_link_mbps(int internal_link_speed)
|
|
{
|
|
switch (internal_link_speed) {
|
|
case SPEED_100:
|
|
return 100;
|
|
case SPEED_1000:
|
|
return 1000;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
|
|
int link_speed)
|
|
{
|
|
int rf_dec, rf_int;
|
|
u32 bcnrc_val;
|
|
|
|
if (tx_rate != 0) {
|
|
/* Calculate the rate factor values to set */
|
|
rf_int = link_speed / tx_rate;
|
|
rf_dec = (link_speed - (rf_int * tx_rate));
|
|
rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
|
|
|
|
bcnrc_val = E1000_RTTBCNRC_RS_ENA;
|
|
bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
|
|
E1000_RTTBCNRC_RF_INT_MASK);
|
|
bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
|
|
} else {
|
|
bcnrc_val = 0;
|
|
}
|
|
|
|
wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
|
|
wr32(E1000_RTTBCNRC, bcnrc_val);
|
|
}
|
|
|
|
static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
|
|
{
|
|
int actual_link_speed, i;
|
|
bool reset_rate = false;
|
|
|
|
/* VF TX rate limit was not set or not supported */
|
|
if ((adapter->vf_rate_link_speed == 0) ||
|
|
(adapter->hw.mac.type != e1000_82576))
|
|
return;
|
|
|
|
actual_link_speed = igb_link_mbps(adapter->link_speed);
|
|
if (actual_link_speed != adapter->vf_rate_link_speed) {
|
|
reset_rate = true;
|
|
adapter->vf_rate_link_speed = 0;
|
|
dev_info(&adapter->pdev->dev,
|
|
"Link speed has been changed. VF Transmit "
|
|
"rate is disabled\n");
|
|
}
|
|
|
|
for (i = 0; i < adapter->vfs_allocated_count; i++) {
|
|
if (reset_rate)
|
|
adapter->vf_data[i].tx_rate = 0;
|
|
|
|
igb_set_vf_rate_limit(&adapter->hw, i,
|
|
adapter->vf_data[i].tx_rate,
|
|
actual_link_speed);
|
|
}
|
|
}
|
|
|
|
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int actual_link_speed;
|
|
|
|
if (hw->mac.type != e1000_82576)
|
|
return -EOPNOTSUPP;
|
|
|
|
actual_link_speed = igb_link_mbps(adapter->link_speed);
|
|
if ((vf >= adapter->vfs_allocated_count) ||
|
|
(!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
|
|
(tx_rate < 0) || (tx_rate > actual_link_speed))
|
|
return -EINVAL;
|
|
|
|
adapter->vf_rate_link_speed = actual_link_speed;
|
|
adapter->vf_data[vf].tx_rate = (u16)tx_rate;
|
|
igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ndo_get_vf_config(struct net_device *netdev,
|
|
int vf, struct ifla_vf_info *ivi)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
if (vf >= adapter->vfs_allocated_count)
|
|
return -EINVAL;
|
|
ivi->vf = vf;
|
|
memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
|
|
ivi->tx_rate = adapter->vf_data[vf].tx_rate;
|
|
ivi->vlan = adapter->vf_data[vf].pf_vlan;
|
|
ivi->qos = adapter->vf_data[vf].pf_qos;
|
|
return 0;
|
|
}
|
|
|
|
static void igb_vmm_control(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 reg;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82575:
|
|
default:
|
|
/* replication is not supported for 82575 */
|
|
return;
|
|
case e1000_82576:
|
|
/* notify HW that the MAC is adding vlan tags */
|
|
reg = rd32(E1000_DTXCTL);
|
|
reg |= E1000_DTXCTL_VLAN_ADDED;
|
|
wr32(E1000_DTXCTL, reg);
|
|
case e1000_82580:
|
|
/* enable replication vlan tag stripping */
|
|
reg = rd32(E1000_RPLOLR);
|
|
reg |= E1000_RPLOLR_STRVLAN;
|
|
wr32(E1000_RPLOLR, reg);
|
|
case e1000_i350:
|
|
/* none of the above registers are supported by i350 */
|
|
break;
|
|
}
|
|
|
|
if (adapter->vfs_allocated_count) {
|
|
igb_vmdq_set_loopback_pf(hw, true);
|
|
igb_vmdq_set_replication_pf(hw, true);
|
|
igb_vmdq_set_anti_spoofing_pf(hw, true,
|
|
adapter->vfs_allocated_count);
|
|
} else {
|
|
igb_vmdq_set_loopback_pf(hw, false);
|
|
igb_vmdq_set_replication_pf(hw, false);
|
|
}
|
|
}
|
|
|
|
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 dmac_thr;
|
|
u16 hwm;
|
|
|
|
if (hw->mac.type > e1000_82580) {
|
|
if (adapter->flags & IGB_FLAG_DMAC) {
|
|
u32 reg;
|
|
|
|
/* force threshold to 0. */
|
|
wr32(E1000_DMCTXTH, 0);
|
|
|
|
/*
|
|
* DMA Coalescing high water mark needs to be greater
|
|
* than the Rx threshold. Set hwm to PBA - max frame
|
|
* size in 16B units, capping it at PBA - 6KB.
|
|
*/
|
|
hwm = 64 * pba - adapter->max_frame_size / 16;
|
|
if (hwm < 64 * (pba - 6))
|
|
hwm = 64 * (pba - 6);
|
|
reg = rd32(E1000_FCRTC);
|
|
reg &= ~E1000_FCRTC_RTH_COAL_MASK;
|
|
reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
|
|
& E1000_FCRTC_RTH_COAL_MASK);
|
|
wr32(E1000_FCRTC, reg);
|
|
|
|
/*
|
|
* Set the DMA Coalescing Rx threshold to PBA - 2 * max
|
|
* frame size, capping it at PBA - 10KB.
|
|
*/
|
|
dmac_thr = pba - adapter->max_frame_size / 512;
|
|
if (dmac_thr < pba - 10)
|
|
dmac_thr = pba - 10;
|
|
reg = rd32(E1000_DMACR);
|
|
reg &= ~E1000_DMACR_DMACTHR_MASK;
|
|
reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
|
|
& E1000_DMACR_DMACTHR_MASK);
|
|
|
|
/* transition to L0x or L1 if available..*/
|
|
reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
|
|
|
|
/* watchdog timer= +-1000 usec in 32usec intervals */
|
|
reg |= (1000 >> 5);
|
|
wr32(E1000_DMACR, reg);
|
|
|
|
/*
|
|
* no lower threshold to disable
|
|
* coalescing(smart fifb)-UTRESH=0
|
|
*/
|
|
wr32(E1000_DMCRTRH, 0);
|
|
|
|
reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
|
|
|
|
wr32(E1000_DMCTLX, reg);
|
|
|
|
/*
|
|
* free space in tx packet buffer to wake from
|
|
* DMA coal
|
|
*/
|
|
wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
|
|
(IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
|
|
|
|
/*
|
|
* make low power state decision controlled
|
|
* by DMA coal
|
|
*/
|
|
reg = rd32(E1000_PCIEMISC);
|
|
reg &= ~E1000_PCIEMISC_LX_DECISION;
|
|
wr32(E1000_PCIEMISC, reg);
|
|
} /* endif adapter->dmac is not disabled */
|
|
} else if (hw->mac.type == e1000_82580) {
|
|
u32 reg = rd32(E1000_PCIEMISC);
|
|
wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
|
|
wr32(E1000_DMACR, 0);
|
|
}
|
|
}
|
|
|
|
/* igb_main.c */
|