mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 10:36:55 +07:00
7f30491ccd
After moving the the include files there were a few clean-ups: 1) Some files used #include <asm-ia64/xyz.h>, changed to <asm/xyz.h> 2) Some comments alerted maintainers to look at various header files to make matching updates if certain code were to be changed. Updated these comments to use the new include paths. 3) Some header files mentioned their own names in initial comments. Just deleted these self references. Signed-off-by: Tony Luck <tony.luck@intel.com>
243 lines
7.1 KiB
C
243 lines
7.1 KiB
C
/*
|
|
* File: mca_asm.h
|
|
* Purpose: Machine check handling specific defines
|
|
*
|
|
* Copyright (C) 1999 Silicon Graphics, Inc.
|
|
* Copyright (C) Vijay Chander <vijay@engr.sgi.com>
|
|
* Copyright (C) Srinivasa Thirumalachar <sprasad@engr.sgi.com>
|
|
* Copyright (C) 2000 Hewlett-Packard Co.
|
|
* Copyright (C) 2000 David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Copyright (C) 2002 Intel Corp.
|
|
* Copyright (C) 2002 Jenna Hall <jenna.s.hall@intel.com>
|
|
* Copyright (C) 2005 Silicon Graphics, Inc
|
|
* Copyright (C) 2005 Keith Owens <kaos@sgi.com>
|
|
*/
|
|
#ifndef _ASM_IA64_MCA_ASM_H
|
|
#define _ASM_IA64_MCA_ASM_H
|
|
|
|
#define PSR_IC 13
|
|
#define PSR_I 14
|
|
#define PSR_DT 17
|
|
#define PSR_RT 27
|
|
#define PSR_MC 35
|
|
#define PSR_IT 36
|
|
#define PSR_BN 44
|
|
|
|
/*
|
|
* This macro converts a instruction virtual address to a physical address
|
|
* Right now for simulation purposes the virtual addresses are
|
|
* direct mapped to physical addresses.
|
|
* 1. Lop off bits 61 thru 63 in the virtual address
|
|
*/
|
|
#define INST_VA_TO_PA(addr) \
|
|
dep addr = 0, addr, 61, 3
|
|
/*
|
|
* This macro converts a data virtual address to a physical address
|
|
* Right now for simulation purposes the virtual addresses are
|
|
* direct mapped to physical addresses.
|
|
* 1. Lop off bits 61 thru 63 in the virtual address
|
|
*/
|
|
#define DATA_VA_TO_PA(addr) \
|
|
tpa addr = addr
|
|
/*
|
|
* This macro converts a data physical address to a virtual address
|
|
* Right now for simulation purposes the virtual addresses are
|
|
* direct mapped to physical addresses.
|
|
* 1. Put 0x7 in bits 61 thru 63.
|
|
*/
|
|
#define DATA_PA_TO_VA(addr,temp) \
|
|
mov temp = 0x7 ;; \
|
|
dep addr = temp, addr, 61, 3
|
|
|
|
#define GET_THIS_PADDR(reg, var) \
|
|
mov reg = IA64_KR(PER_CPU_DATA);; \
|
|
addl reg = THIS_CPU(var), reg
|
|
|
|
/*
|
|
* This macro jumps to the instruction at the given virtual address
|
|
* and starts execution in physical mode with all the address
|
|
* translations turned off.
|
|
* 1. Save the current psr
|
|
* 2. Make sure that all the upper 32 bits are off
|
|
*
|
|
* 3. Clear the interrupt enable and interrupt state collection bits
|
|
* in the psr before updating the ipsr and iip.
|
|
*
|
|
* 4. Turn off the instruction, data and rse translation bits of the psr
|
|
* and store the new value into ipsr
|
|
* Also make sure that the interrupts are disabled.
|
|
* Ensure that we are in little endian mode.
|
|
* [psr.{rt, it, dt, i, be} = 0]
|
|
*
|
|
* 5. Get the physical address corresponding to the virtual address
|
|
* of the next instruction bundle and put it in iip.
|
|
* (Using magic numbers 24 and 40 in the deposint instruction since
|
|
* the IA64_SDK code directly maps to lower 24bits as physical address
|
|
* from a virtual address).
|
|
*
|
|
* 6. Do an rfi to move the values from ipsr to psr and iip to ip.
|
|
*/
|
|
#define PHYSICAL_MODE_ENTER(temp1, temp2, start_addr, old_psr) \
|
|
mov old_psr = psr; \
|
|
;; \
|
|
dep old_psr = 0, old_psr, 32, 32; \
|
|
\
|
|
mov ar.rsc = 0 ; \
|
|
;; \
|
|
srlz.d; \
|
|
mov temp2 = ar.bspstore; \
|
|
;; \
|
|
DATA_VA_TO_PA(temp2); \
|
|
;; \
|
|
mov temp1 = ar.rnat; \
|
|
;; \
|
|
mov ar.bspstore = temp2; \
|
|
;; \
|
|
mov ar.rnat = temp1; \
|
|
mov temp1 = psr; \
|
|
mov temp2 = psr; \
|
|
;; \
|
|
\
|
|
dep temp2 = 0, temp2, PSR_IC, 2; \
|
|
;; \
|
|
mov psr.l = temp2; \
|
|
;; \
|
|
srlz.d; \
|
|
dep temp1 = 0, temp1, 32, 32; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_IT, 1; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_DT, 1; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_RT, 1; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_I, 1; \
|
|
;; \
|
|
dep temp1 = 0, temp1, PSR_IC, 1; \
|
|
;; \
|
|
dep temp1 = -1, temp1, PSR_MC, 1; \
|
|
;; \
|
|
mov cr.ipsr = temp1; \
|
|
;; \
|
|
LOAD_PHYSICAL(p0, temp2, start_addr); \
|
|
;; \
|
|
mov cr.iip = temp2; \
|
|
mov cr.ifs = r0; \
|
|
DATA_VA_TO_PA(sp); \
|
|
DATA_VA_TO_PA(gp); \
|
|
;; \
|
|
srlz.i; \
|
|
;; \
|
|
nop 1; \
|
|
nop 2; \
|
|
nop 1; \
|
|
nop 2; \
|
|
rfi; \
|
|
;;
|
|
|
|
/*
|
|
* This macro jumps to the instruction at the given virtual address
|
|
* and starts execution in virtual mode with all the address
|
|
* translations turned on.
|
|
* 1. Get the old saved psr
|
|
*
|
|
* 2. Clear the interrupt state collection bit in the current psr.
|
|
*
|
|
* 3. Set the instruction translation bit back in the old psr
|
|
* Note we have to do this since we are right now saving only the
|
|
* lower 32-bits of old psr.(Also the old psr has the data and
|
|
* rse translation bits on)
|
|
*
|
|
* 4. Set ipsr to this old_psr with "it" bit set and "bn" = 1.
|
|
*
|
|
* 5. Reset the current thread pointer (r13).
|
|
*
|
|
* 6. Set iip to the virtual address of the next instruction bundle.
|
|
*
|
|
* 7. Do an rfi to move ipsr to psr and iip to ip.
|
|
*/
|
|
|
|
#define VIRTUAL_MODE_ENTER(temp1, temp2, start_addr, old_psr) \
|
|
mov temp2 = psr; \
|
|
;; \
|
|
mov old_psr = temp2; \
|
|
;; \
|
|
dep temp2 = 0, temp2, PSR_IC, 2; \
|
|
;; \
|
|
mov psr.l = temp2; \
|
|
mov ar.rsc = 0; \
|
|
;; \
|
|
srlz.d; \
|
|
mov r13 = ar.k6; \
|
|
mov temp2 = ar.bspstore; \
|
|
;; \
|
|
DATA_PA_TO_VA(temp2,temp1); \
|
|
;; \
|
|
mov temp1 = ar.rnat; \
|
|
;; \
|
|
mov ar.bspstore = temp2; \
|
|
;; \
|
|
mov ar.rnat = temp1; \
|
|
;; \
|
|
mov temp1 = old_psr; \
|
|
;; \
|
|
mov temp2 = 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_IC, 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_IT, 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_DT, 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_RT, 1; \
|
|
;; \
|
|
dep temp1 = temp2, temp1, PSR_BN, 1; \
|
|
;; \
|
|
\
|
|
mov cr.ipsr = temp1; \
|
|
movl temp2 = start_addr; \
|
|
;; \
|
|
mov cr.iip = temp2; \
|
|
movl gp = __gp \
|
|
;; \
|
|
DATA_PA_TO_VA(sp, temp1); \
|
|
srlz.i; \
|
|
;; \
|
|
nop 1; \
|
|
nop 2; \
|
|
nop 1; \
|
|
rfi \
|
|
;;
|
|
|
|
/*
|
|
* The MCA and INIT stacks in struct ia64_mca_cpu look like normal kernel
|
|
* stacks, except that the SAL/OS state and a switch_stack are stored near the
|
|
* top of the MCA/INIT stack. To support concurrent entry to MCA or INIT, as
|
|
* well as MCA over INIT, each event needs its own SAL/OS state. All entries
|
|
* are 16 byte aligned.
|
|
*
|
|
* +---------------------------+
|
|
* | pt_regs |
|
|
* +---------------------------+
|
|
* | switch_stack |
|
|
* +---------------------------+
|
|
* | SAL/OS state |
|
|
* +---------------------------+
|
|
* | 16 byte scratch area |
|
|
* +---------------------------+ <-------- SP at start of C MCA handler
|
|
* | ..... |
|
|
* +---------------------------+
|
|
* | RBS for MCA/INIT handler |
|
|
* +---------------------------+
|
|
* | struct task for MCA/INIT |
|
|
* +---------------------------+ <-------- Bottom of MCA/INIT stack
|
|
*/
|
|
|
|
#define ALIGN16(x) ((x)&~15)
|
|
#define MCA_PT_REGS_OFFSET ALIGN16(KERNEL_STACK_SIZE-IA64_PT_REGS_SIZE)
|
|
#define MCA_SWITCH_STACK_OFFSET ALIGN16(MCA_PT_REGS_OFFSET-IA64_SWITCH_STACK_SIZE)
|
|
#define MCA_SOS_OFFSET ALIGN16(MCA_SWITCH_STACK_OFFSET-IA64_SAL_OS_STATE_SIZE)
|
|
#define MCA_SP_OFFSET ALIGN16(MCA_SOS_OFFSET-16)
|
|
|
|
#endif /* _ASM_IA64_MCA_ASM_H */
|