mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 02:35:29 +07:00
3b23e4991f
This patch implements FTRACE_WITH_REGS for arm64, which allows a traced function's arguments (and some other registers) to be captured into a struct pt_regs, allowing these to be inspected and/or modified. This is a building block for live-patching, where a function's arguments may be forwarded to another function. This is also necessary to enable ftrace and in-kernel pointer authentication at the same time, as it allows the LR value to be captured and adjusted prior to signing. Using GCC's -fpatchable-function-entry=N option, we can have the compiler insert a configurable number of NOPs between the function entry point and the usual prologue. This also ensures functions are AAPCS compliant (e.g. disabling inter-procedural register allocation). For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the following: | unsigned long bar(void); | | unsigned long foo(void) | { | return bar() + 1; | } ... to: | <foo>: | nop | nop | stp x29, x30, [sp, #-16]! | mov x29, sp | bl 0 <bar> | add x0, x0, #0x1 | ldp x29, x30, [sp], #16 | ret This patch builds the kernel with -fpatchable-function-entry=2, prefixing each function with two NOPs. To trace a function, we replace these NOPs with a sequence that saves the LR into a GPR, then calls an ftrace entry assembly function which saves this and other relevant registers: | mov x9, x30 | bl <ftrace-entry> Since patchable functions are AAPCS compliant (and the kernel does not use x18 as a platform register), x9-x18 can be safely clobbered in the patched sequence and the ftrace entry code. There are now two ftrace entry functions, ftrace_regs_entry (which saves all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is allocated for each within modules. Signed-off-by: Torsten Duwe <duwe@suse.de> [Mark: rework asm, comments, PLTs, initialization, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Torsten Duwe <duwe@suse.de> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Tested-by: Torsten Duwe <duwe@suse.de> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Julien Thierry <jthierry@redhat.com> Cc: Will Deacon <will@kernel.org>
339 lines
9.9 KiB
C
339 lines
9.9 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <linux/elf.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sort.h>
|
|
|
|
static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
|
|
enum aarch64_insn_register reg)
|
|
{
|
|
u32 adrp, add;
|
|
|
|
adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
|
|
add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_ADSB_ADD);
|
|
|
|
return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
|
|
}
|
|
|
|
struct plt_entry get_plt_entry(u64 dst, void *pc)
|
|
{
|
|
struct plt_entry plt;
|
|
static u32 br;
|
|
|
|
if (!br)
|
|
br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
|
|
AARCH64_INSN_BRANCH_NOLINK);
|
|
|
|
plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
|
|
plt.br = cpu_to_le32(br);
|
|
|
|
return plt;
|
|
}
|
|
|
|
bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
|
|
{
|
|
u64 p, q;
|
|
|
|
/*
|
|
* Check whether both entries refer to the same target:
|
|
* do the cheapest checks first.
|
|
* If the 'add' or 'br' opcodes are different, then the target
|
|
* cannot be the same.
|
|
*/
|
|
if (a->add != b->add || a->br != b->br)
|
|
return false;
|
|
|
|
p = ALIGN_DOWN((u64)a, SZ_4K);
|
|
q = ALIGN_DOWN((u64)b, SZ_4K);
|
|
|
|
/*
|
|
* If the 'adrp' opcodes are the same then we just need to check
|
|
* that they refer to the same 4k region.
|
|
*/
|
|
if (a->adrp == b->adrp && p == q)
|
|
return true;
|
|
|
|
return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
|
|
(q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
|
|
}
|
|
|
|
static bool in_init(const struct module *mod, void *loc)
|
|
{
|
|
return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
|
|
}
|
|
|
|
u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
|
|
void *loc, const Elf64_Rela *rela,
|
|
Elf64_Sym *sym)
|
|
{
|
|
struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
|
|
&mod->arch.init;
|
|
struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
|
|
int i = pltsec->plt_num_entries;
|
|
int j = i - 1;
|
|
u64 val = sym->st_value + rela->r_addend;
|
|
|
|
if (is_forbidden_offset_for_adrp(&plt[i].adrp))
|
|
i++;
|
|
|
|
plt[i] = get_plt_entry(val, &plt[i]);
|
|
|
|
/*
|
|
* Check if the entry we just created is a duplicate. Given that the
|
|
* relocations are sorted, this will be the last entry we allocated.
|
|
* (if one exists).
|
|
*/
|
|
if (j >= 0 && plt_entries_equal(plt + i, plt + j))
|
|
return (u64)&plt[j];
|
|
|
|
pltsec->plt_num_entries += i - j;
|
|
if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
|
|
return 0;
|
|
|
|
return (u64)&plt[i];
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_ERRATUM_843419
|
|
u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
|
|
void *loc, u64 val)
|
|
{
|
|
struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
|
|
&mod->arch.init;
|
|
struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
|
|
int i = pltsec->plt_num_entries++;
|
|
u32 br;
|
|
int rd;
|
|
|
|
if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
|
|
return 0;
|
|
|
|
if (is_forbidden_offset_for_adrp(&plt[i].adrp))
|
|
i = pltsec->plt_num_entries++;
|
|
|
|
/* get the destination register of the ADRP instruction */
|
|
rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
|
|
le32_to_cpup((__le32 *)loc));
|
|
|
|
br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
|
|
AARCH64_INSN_BRANCH_NOLINK);
|
|
|
|
plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
|
|
plt[i].br = cpu_to_le32(br);
|
|
|
|
return (u64)&plt[i];
|
|
}
|
|
#endif
|
|
|
|
#define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
|
|
|
|
static int cmp_rela(const void *a, const void *b)
|
|
{
|
|
const Elf64_Rela *x = a, *y = b;
|
|
int i;
|
|
|
|
/* sort by type, symbol index and addend */
|
|
i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
|
|
if (i == 0)
|
|
i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
|
|
if (i == 0)
|
|
i = cmp_3way(x->r_addend, y->r_addend);
|
|
return i;
|
|
}
|
|
|
|
static bool duplicate_rel(const Elf64_Rela *rela, int num)
|
|
{
|
|
/*
|
|
* Entries are sorted by type, symbol index and addend. That means
|
|
* that, if a duplicate entry exists, it must be in the preceding
|
|
* slot.
|
|
*/
|
|
return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
|
|
}
|
|
|
|
static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
|
|
Elf64_Word dstidx, Elf_Shdr *dstsec)
|
|
{
|
|
unsigned int ret = 0;
|
|
Elf64_Sym *s;
|
|
int i;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
u64 min_align;
|
|
|
|
switch (ELF64_R_TYPE(rela[i].r_info)) {
|
|
case R_AARCH64_JUMP26:
|
|
case R_AARCH64_CALL26:
|
|
if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
|
|
break;
|
|
|
|
/*
|
|
* We only have to consider branch targets that resolve
|
|
* to symbols that are defined in a different section.
|
|
* This is not simply a heuristic, it is a fundamental
|
|
* limitation, since there is no guaranteed way to emit
|
|
* PLT entries sufficiently close to the branch if the
|
|
* section size exceeds the range of a branch
|
|
* instruction. So ignore relocations against defined
|
|
* symbols if they live in the same section as the
|
|
* relocation target.
|
|
*/
|
|
s = syms + ELF64_R_SYM(rela[i].r_info);
|
|
if (s->st_shndx == dstidx)
|
|
break;
|
|
|
|
/*
|
|
* Jump relocations with non-zero addends against
|
|
* undefined symbols are supported by the ELF spec, but
|
|
* do not occur in practice (e.g., 'jump n bytes past
|
|
* the entry point of undefined function symbol f').
|
|
* So we need to support them, but there is no need to
|
|
* take them into consideration when trying to optimize
|
|
* this code. So let's only check for duplicates when
|
|
* the addend is zero: this allows us to record the PLT
|
|
* entry address in the symbol table itself, rather than
|
|
* having to search the list for duplicates each time we
|
|
* emit one.
|
|
*/
|
|
if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
|
|
ret++;
|
|
break;
|
|
case R_AARCH64_ADR_PREL_PG_HI21_NC:
|
|
case R_AARCH64_ADR_PREL_PG_HI21:
|
|
if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
|
|
!cpus_have_const_cap(ARM64_WORKAROUND_843419))
|
|
break;
|
|
|
|
/*
|
|
* Determine the minimal safe alignment for this ADRP
|
|
* instruction: the section alignment at which it is
|
|
* guaranteed not to appear at a vulnerable offset.
|
|
*
|
|
* This comes down to finding the least significant zero
|
|
* bit in bits [11:3] of the section offset, and
|
|
* increasing the section's alignment so that the
|
|
* resulting address of this instruction is guaranteed
|
|
* to equal the offset in that particular bit (as well
|
|
* as all less signficant bits). This ensures that the
|
|
* address modulo 4 KB != 0xfff8 or 0xfffc (which would
|
|
* have all ones in bits [11:3])
|
|
*/
|
|
min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
|
|
|
|
/*
|
|
* Allocate veneer space for each ADRP that may appear
|
|
* at a vulnerable offset nonetheless. At relocation
|
|
* time, some of these will remain unused since some
|
|
* ADRP instructions can be patched to ADR instructions
|
|
* instead.
|
|
*/
|
|
if (min_align > SZ_4K)
|
|
ret++;
|
|
else
|
|
dstsec->sh_addralign = max(dstsec->sh_addralign,
|
|
min_align);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
|
|
cpus_have_const_cap(ARM64_WORKAROUND_843419))
|
|
/*
|
|
* Add some slack so we can skip PLT slots that may trigger
|
|
* the erratum due to the placement of the ADRP instruction.
|
|
*/
|
|
ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
|
|
|
|
return ret;
|
|
}
|
|
|
|
int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
|
|
char *secstrings, struct module *mod)
|
|
{
|
|
unsigned long core_plts = 0;
|
|
unsigned long init_plts = 0;
|
|
Elf64_Sym *syms = NULL;
|
|
Elf_Shdr *pltsec, *tramp = NULL;
|
|
int i;
|
|
|
|
/*
|
|
* Find the empty .plt section so we can expand it to store the PLT
|
|
* entries. Record the symtab address as well.
|
|
*/
|
|
for (i = 0; i < ehdr->e_shnum; i++) {
|
|
if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
|
|
mod->arch.core.plt_shndx = i;
|
|
else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
|
|
mod->arch.init.plt_shndx = i;
|
|
else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
|
|
!strcmp(secstrings + sechdrs[i].sh_name,
|
|
".text.ftrace_trampoline"))
|
|
tramp = sechdrs + i;
|
|
else if (sechdrs[i].sh_type == SHT_SYMTAB)
|
|
syms = (Elf64_Sym *)sechdrs[i].sh_addr;
|
|
}
|
|
|
|
if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
|
|
pr_err("%s: module PLT section(s) missing\n", mod->name);
|
|
return -ENOEXEC;
|
|
}
|
|
if (!syms) {
|
|
pr_err("%s: module symtab section missing\n", mod->name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
for (i = 0; i < ehdr->e_shnum; i++) {
|
|
Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
|
|
int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
|
|
Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
|
|
|
|
if (sechdrs[i].sh_type != SHT_RELA)
|
|
continue;
|
|
|
|
/* ignore relocations that operate on non-exec sections */
|
|
if (!(dstsec->sh_flags & SHF_EXECINSTR))
|
|
continue;
|
|
|
|
/* sort by type, symbol index and addend */
|
|
sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
|
|
|
|
if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
|
|
core_plts += count_plts(syms, rels, numrels,
|
|
sechdrs[i].sh_info, dstsec);
|
|
else
|
|
init_plts += count_plts(syms, rels, numrels,
|
|
sechdrs[i].sh_info, dstsec);
|
|
}
|
|
|
|
pltsec = sechdrs + mod->arch.core.plt_shndx;
|
|
pltsec->sh_type = SHT_NOBITS;
|
|
pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
pltsec->sh_addralign = L1_CACHE_BYTES;
|
|
pltsec->sh_size = (core_plts + 1) * sizeof(struct plt_entry);
|
|
mod->arch.core.plt_num_entries = 0;
|
|
mod->arch.core.plt_max_entries = core_plts;
|
|
|
|
pltsec = sechdrs + mod->arch.init.plt_shndx;
|
|
pltsec->sh_type = SHT_NOBITS;
|
|
pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
pltsec->sh_addralign = L1_CACHE_BYTES;
|
|
pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
|
|
mod->arch.init.plt_num_entries = 0;
|
|
mod->arch.init.plt_max_entries = init_plts;
|
|
|
|
if (tramp) {
|
|
tramp->sh_type = SHT_NOBITS;
|
|
tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
tramp->sh_addralign = __alignof__(struct plt_entry);
|
|
tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
|
|
}
|
|
|
|
return 0;
|
|
}
|