mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 12:26:46 +07:00
8b92c3a78d
Add perf core PMU support for Intel Goldmont CPU cores: - The init code is based on Silvermont. - There is a new cache event list, based on the Silvermont cache event list. - Goldmont has 32 LBR entries. It also uses new LBRv6 format, which report the cycle information using upper 16-bit of the LBR_TO. - It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS for precise cycles. For details, please refer to the latest SDM058: http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1460706167-45320-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
1420 lines
38 KiB
C
1420 lines
38 KiB
C
#include <linux/bitops.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/perf_event.h>
|
|
#include <asm/insn.h>
|
|
|
|
#include "../perf_event.h"
|
|
|
|
/* The size of a BTS record in bytes: */
|
|
#define BTS_RECORD_SIZE 24
|
|
|
|
#define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
|
|
#define PEBS_BUFFER_SIZE (PAGE_SIZE << 4)
|
|
#define PEBS_FIXUP_SIZE PAGE_SIZE
|
|
|
|
/*
|
|
* pebs_record_32 for p4 and core not supported
|
|
|
|
struct pebs_record_32 {
|
|
u32 flags, ip;
|
|
u32 ax, bc, cx, dx;
|
|
u32 si, di, bp, sp;
|
|
};
|
|
|
|
*/
|
|
|
|
union intel_x86_pebs_dse {
|
|
u64 val;
|
|
struct {
|
|
unsigned int ld_dse:4;
|
|
unsigned int ld_stlb_miss:1;
|
|
unsigned int ld_locked:1;
|
|
unsigned int ld_reserved:26;
|
|
};
|
|
struct {
|
|
unsigned int st_l1d_hit:1;
|
|
unsigned int st_reserved1:3;
|
|
unsigned int st_stlb_miss:1;
|
|
unsigned int st_locked:1;
|
|
unsigned int st_reserved2:26;
|
|
};
|
|
};
|
|
|
|
|
|
/*
|
|
* Map PEBS Load Latency Data Source encodings to generic
|
|
* memory data source information
|
|
*/
|
|
#define P(a, b) PERF_MEM_S(a, b)
|
|
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
|
|
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
|
|
|
|
/* Version for Sandy Bridge and later */
|
|
static u64 pebs_data_source[] = {
|
|
P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
|
|
OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */
|
|
OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
|
|
OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
|
|
OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
|
|
OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
|
|
OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
|
|
OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
|
|
OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
|
|
OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
|
|
OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
|
|
OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
|
|
OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
|
|
OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
|
|
OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */
|
|
OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
|
|
};
|
|
|
|
/* Patch up minor differences in the bits */
|
|
void __init intel_pmu_pebs_data_source_nhm(void)
|
|
{
|
|
pebs_data_source[0x05] = OP_LH | P(LVL, L3) | P(SNOOP, HIT);
|
|
pebs_data_source[0x06] = OP_LH | P(LVL, L3) | P(SNOOP, HITM);
|
|
pebs_data_source[0x07] = OP_LH | P(LVL, L3) | P(SNOOP, HITM);
|
|
}
|
|
|
|
static u64 precise_store_data(u64 status)
|
|
{
|
|
union intel_x86_pebs_dse dse;
|
|
u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
|
|
|
|
dse.val = status;
|
|
|
|
/*
|
|
* bit 4: TLB access
|
|
* 1 = stored missed 2nd level TLB
|
|
*
|
|
* so it either hit the walker or the OS
|
|
* otherwise hit 2nd level TLB
|
|
*/
|
|
if (dse.st_stlb_miss)
|
|
val |= P(TLB, MISS);
|
|
else
|
|
val |= P(TLB, HIT);
|
|
|
|
/*
|
|
* bit 0: hit L1 data cache
|
|
* if not set, then all we know is that
|
|
* it missed L1D
|
|
*/
|
|
if (dse.st_l1d_hit)
|
|
val |= P(LVL, HIT);
|
|
else
|
|
val |= P(LVL, MISS);
|
|
|
|
/*
|
|
* bit 5: Locked prefix
|
|
*/
|
|
if (dse.st_locked)
|
|
val |= P(LOCK, LOCKED);
|
|
|
|
return val;
|
|
}
|
|
|
|
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
|
|
{
|
|
union perf_mem_data_src dse;
|
|
|
|
dse.val = PERF_MEM_NA;
|
|
|
|
if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
|
|
dse.mem_op = PERF_MEM_OP_STORE;
|
|
else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
|
|
dse.mem_op = PERF_MEM_OP_LOAD;
|
|
|
|
/*
|
|
* L1 info only valid for following events:
|
|
*
|
|
* MEM_UOPS_RETIRED.STLB_MISS_STORES
|
|
* MEM_UOPS_RETIRED.LOCK_STORES
|
|
* MEM_UOPS_RETIRED.SPLIT_STORES
|
|
* MEM_UOPS_RETIRED.ALL_STORES
|
|
*/
|
|
if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
|
|
if (status & 1)
|
|
dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
|
|
else
|
|
dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
|
|
}
|
|
return dse.val;
|
|
}
|
|
|
|
static u64 load_latency_data(u64 status)
|
|
{
|
|
union intel_x86_pebs_dse dse;
|
|
u64 val;
|
|
int model = boot_cpu_data.x86_model;
|
|
int fam = boot_cpu_data.x86;
|
|
|
|
dse.val = status;
|
|
|
|
/*
|
|
* use the mapping table for bit 0-3
|
|
*/
|
|
val = pebs_data_source[dse.ld_dse];
|
|
|
|
/*
|
|
* Nehalem models do not support TLB, Lock infos
|
|
*/
|
|
if (fam == 0x6 && (model == 26 || model == 30
|
|
|| model == 31 || model == 46)) {
|
|
val |= P(TLB, NA) | P(LOCK, NA);
|
|
return val;
|
|
}
|
|
/*
|
|
* bit 4: TLB access
|
|
* 0 = did not miss 2nd level TLB
|
|
* 1 = missed 2nd level TLB
|
|
*/
|
|
if (dse.ld_stlb_miss)
|
|
val |= P(TLB, MISS) | P(TLB, L2);
|
|
else
|
|
val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
|
|
|
|
/*
|
|
* bit 5: locked prefix
|
|
*/
|
|
if (dse.ld_locked)
|
|
val |= P(LOCK, LOCKED);
|
|
|
|
return val;
|
|
}
|
|
|
|
struct pebs_record_core {
|
|
u64 flags, ip;
|
|
u64 ax, bx, cx, dx;
|
|
u64 si, di, bp, sp;
|
|
u64 r8, r9, r10, r11;
|
|
u64 r12, r13, r14, r15;
|
|
};
|
|
|
|
struct pebs_record_nhm {
|
|
u64 flags, ip;
|
|
u64 ax, bx, cx, dx;
|
|
u64 si, di, bp, sp;
|
|
u64 r8, r9, r10, r11;
|
|
u64 r12, r13, r14, r15;
|
|
u64 status, dla, dse, lat;
|
|
};
|
|
|
|
/*
|
|
* Same as pebs_record_nhm, with two additional fields.
|
|
*/
|
|
struct pebs_record_hsw {
|
|
u64 flags, ip;
|
|
u64 ax, bx, cx, dx;
|
|
u64 si, di, bp, sp;
|
|
u64 r8, r9, r10, r11;
|
|
u64 r12, r13, r14, r15;
|
|
u64 status, dla, dse, lat;
|
|
u64 real_ip, tsx_tuning;
|
|
};
|
|
|
|
union hsw_tsx_tuning {
|
|
struct {
|
|
u32 cycles_last_block : 32,
|
|
hle_abort : 1,
|
|
rtm_abort : 1,
|
|
instruction_abort : 1,
|
|
non_instruction_abort : 1,
|
|
retry : 1,
|
|
data_conflict : 1,
|
|
capacity_writes : 1,
|
|
capacity_reads : 1;
|
|
};
|
|
u64 value;
|
|
};
|
|
|
|
#define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
|
|
|
|
/* Same as HSW, plus TSC */
|
|
|
|
struct pebs_record_skl {
|
|
u64 flags, ip;
|
|
u64 ax, bx, cx, dx;
|
|
u64 si, di, bp, sp;
|
|
u64 r8, r9, r10, r11;
|
|
u64 r12, r13, r14, r15;
|
|
u64 status, dla, dse, lat;
|
|
u64 real_ip, tsx_tuning;
|
|
u64 tsc;
|
|
};
|
|
|
|
void init_debug_store_on_cpu(int cpu)
|
|
{
|
|
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
|
|
|
|
if (!ds)
|
|
return;
|
|
|
|
wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
|
|
(u32)((u64)(unsigned long)ds),
|
|
(u32)((u64)(unsigned long)ds >> 32));
|
|
}
|
|
|
|
void fini_debug_store_on_cpu(int cpu)
|
|
{
|
|
if (!per_cpu(cpu_hw_events, cpu).ds)
|
|
return;
|
|
|
|
wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(void *, insn_buffer);
|
|
|
|
static int alloc_pebs_buffer(int cpu)
|
|
{
|
|
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
|
|
int node = cpu_to_node(cpu);
|
|
int max;
|
|
void *buffer, *ibuffer;
|
|
|
|
if (!x86_pmu.pebs)
|
|
return 0;
|
|
|
|
buffer = kzalloc_node(x86_pmu.pebs_buffer_size, GFP_KERNEL, node);
|
|
if (unlikely(!buffer))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* HSW+ already provides us the eventing ip; no need to allocate this
|
|
* buffer then.
|
|
*/
|
|
if (x86_pmu.intel_cap.pebs_format < 2) {
|
|
ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
|
|
if (!ibuffer) {
|
|
kfree(buffer);
|
|
return -ENOMEM;
|
|
}
|
|
per_cpu(insn_buffer, cpu) = ibuffer;
|
|
}
|
|
|
|
max = x86_pmu.pebs_buffer_size / x86_pmu.pebs_record_size;
|
|
|
|
ds->pebs_buffer_base = (u64)(unsigned long)buffer;
|
|
ds->pebs_index = ds->pebs_buffer_base;
|
|
ds->pebs_absolute_maximum = ds->pebs_buffer_base +
|
|
max * x86_pmu.pebs_record_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void release_pebs_buffer(int cpu)
|
|
{
|
|
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
|
|
|
|
if (!ds || !x86_pmu.pebs)
|
|
return;
|
|
|
|
kfree(per_cpu(insn_buffer, cpu));
|
|
per_cpu(insn_buffer, cpu) = NULL;
|
|
|
|
kfree((void *)(unsigned long)ds->pebs_buffer_base);
|
|
ds->pebs_buffer_base = 0;
|
|
}
|
|
|
|
static int alloc_bts_buffer(int cpu)
|
|
{
|
|
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
|
|
int node = cpu_to_node(cpu);
|
|
int max, thresh;
|
|
void *buffer;
|
|
|
|
if (!x86_pmu.bts)
|
|
return 0;
|
|
|
|
buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
|
|
if (unlikely(!buffer)) {
|
|
WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
|
|
thresh = max / 16;
|
|
|
|
ds->bts_buffer_base = (u64)(unsigned long)buffer;
|
|
ds->bts_index = ds->bts_buffer_base;
|
|
ds->bts_absolute_maximum = ds->bts_buffer_base +
|
|
max * BTS_RECORD_SIZE;
|
|
ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
|
|
thresh * BTS_RECORD_SIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void release_bts_buffer(int cpu)
|
|
{
|
|
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
|
|
|
|
if (!ds || !x86_pmu.bts)
|
|
return;
|
|
|
|
kfree((void *)(unsigned long)ds->bts_buffer_base);
|
|
ds->bts_buffer_base = 0;
|
|
}
|
|
|
|
static int alloc_ds_buffer(int cpu)
|
|
{
|
|
int node = cpu_to_node(cpu);
|
|
struct debug_store *ds;
|
|
|
|
ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
|
|
if (unlikely(!ds))
|
|
return -ENOMEM;
|
|
|
|
per_cpu(cpu_hw_events, cpu).ds = ds;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void release_ds_buffer(int cpu)
|
|
{
|
|
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
|
|
|
|
if (!ds)
|
|
return;
|
|
|
|
per_cpu(cpu_hw_events, cpu).ds = NULL;
|
|
kfree(ds);
|
|
}
|
|
|
|
void release_ds_buffers(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (!x86_pmu.bts && !x86_pmu.pebs)
|
|
return;
|
|
|
|
get_online_cpus();
|
|
for_each_online_cpu(cpu)
|
|
fini_debug_store_on_cpu(cpu);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
release_pebs_buffer(cpu);
|
|
release_bts_buffer(cpu);
|
|
release_ds_buffer(cpu);
|
|
}
|
|
put_online_cpus();
|
|
}
|
|
|
|
void reserve_ds_buffers(void)
|
|
{
|
|
int bts_err = 0, pebs_err = 0;
|
|
int cpu;
|
|
|
|
x86_pmu.bts_active = 0;
|
|
x86_pmu.pebs_active = 0;
|
|
|
|
if (!x86_pmu.bts && !x86_pmu.pebs)
|
|
return;
|
|
|
|
if (!x86_pmu.bts)
|
|
bts_err = 1;
|
|
|
|
if (!x86_pmu.pebs)
|
|
pebs_err = 1;
|
|
|
|
get_online_cpus();
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (alloc_ds_buffer(cpu)) {
|
|
bts_err = 1;
|
|
pebs_err = 1;
|
|
}
|
|
|
|
if (!bts_err && alloc_bts_buffer(cpu))
|
|
bts_err = 1;
|
|
|
|
if (!pebs_err && alloc_pebs_buffer(cpu))
|
|
pebs_err = 1;
|
|
|
|
if (bts_err && pebs_err)
|
|
break;
|
|
}
|
|
|
|
if (bts_err) {
|
|
for_each_possible_cpu(cpu)
|
|
release_bts_buffer(cpu);
|
|
}
|
|
|
|
if (pebs_err) {
|
|
for_each_possible_cpu(cpu)
|
|
release_pebs_buffer(cpu);
|
|
}
|
|
|
|
if (bts_err && pebs_err) {
|
|
for_each_possible_cpu(cpu)
|
|
release_ds_buffer(cpu);
|
|
} else {
|
|
if (x86_pmu.bts && !bts_err)
|
|
x86_pmu.bts_active = 1;
|
|
|
|
if (x86_pmu.pebs && !pebs_err)
|
|
x86_pmu.pebs_active = 1;
|
|
|
|
for_each_online_cpu(cpu)
|
|
init_debug_store_on_cpu(cpu);
|
|
}
|
|
|
|
put_online_cpus();
|
|
}
|
|
|
|
/*
|
|
* BTS
|
|
*/
|
|
|
|
struct event_constraint bts_constraint =
|
|
EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
|
|
|
|
void intel_pmu_enable_bts(u64 config)
|
|
{
|
|
unsigned long debugctlmsr;
|
|
|
|
debugctlmsr = get_debugctlmsr();
|
|
|
|
debugctlmsr |= DEBUGCTLMSR_TR;
|
|
debugctlmsr |= DEBUGCTLMSR_BTS;
|
|
if (config & ARCH_PERFMON_EVENTSEL_INT)
|
|
debugctlmsr |= DEBUGCTLMSR_BTINT;
|
|
|
|
if (!(config & ARCH_PERFMON_EVENTSEL_OS))
|
|
debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
|
|
|
|
if (!(config & ARCH_PERFMON_EVENTSEL_USR))
|
|
debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
|
|
|
|
update_debugctlmsr(debugctlmsr);
|
|
}
|
|
|
|
void intel_pmu_disable_bts(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
unsigned long debugctlmsr;
|
|
|
|
if (!cpuc->ds)
|
|
return;
|
|
|
|
debugctlmsr = get_debugctlmsr();
|
|
|
|
debugctlmsr &=
|
|
~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
|
|
DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
|
|
|
|
update_debugctlmsr(debugctlmsr);
|
|
}
|
|
|
|
int intel_pmu_drain_bts_buffer(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct debug_store *ds = cpuc->ds;
|
|
struct bts_record {
|
|
u64 from;
|
|
u64 to;
|
|
u64 flags;
|
|
};
|
|
struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
|
|
struct bts_record *at, *base, *top;
|
|
struct perf_output_handle handle;
|
|
struct perf_event_header header;
|
|
struct perf_sample_data data;
|
|
unsigned long skip = 0;
|
|
struct pt_regs regs;
|
|
|
|
if (!event)
|
|
return 0;
|
|
|
|
if (!x86_pmu.bts_active)
|
|
return 0;
|
|
|
|
base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
|
|
top = (struct bts_record *)(unsigned long)ds->bts_index;
|
|
|
|
if (top <= base)
|
|
return 0;
|
|
|
|
memset(®s, 0, sizeof(regs));
|
|
|
|
ds->bts_index = ds->bts_buffer_base;
|
|
|
|
perf_sample_data_init(&data, 0, event->hw.last_period);
|
|
|
|
/*
|
|
* BTS leaks kernel addresses in branches across the cpl boundary,
|
|
* such as traps or system calls, so unless the user is asking for
|
|
* kernel tracing (and right now it's not possible), we'd need to
|
|
* filter them out. But first we need to count how many of those we
|
|
* have in the current batch. This is an extra O(n) pass, however,
|
|
* it's much faster than the other one especially considering that
|
|
* n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
|
|
* alloc_bts_buffer()).
|
|
*/
|
|
for (at = base; at < top; at++) {
|
|
/*
|
|
* Note that right now *this* BTS code only works if
|
|
* attr::exclude_kernel is set, but let's keep this extra
|
|
* check here in case that changes.
|
|
*/
|
|
if (event->attr.exclude_kernel &&
|
|
(kernel_ip(at->from) || kernel_ip(at->to)))
|
|
skip++;
|
|
}
|
|
|
|
/*
|
|
* Prepare a generic sample, i.e. fill in the invariant fields.
|
|
* We will overwrite the from and to address before we output
|
|
* the sample.
|
|
*/
|
|
rcu_read_lock();
|
|
perf_prepare_sample(&header, &data, event, ®s);
|
|
|
|
if (perf_output_begin(&handle, event, header.size *
|
|
(top - base - skip)))
|
|
goto unlock;
|
|
|
|
for (at = base; at < top; at++) {
|
|
/* Filter out any records that contain kernel addresses. */
|
|
if (event->attr.exclude_kernel &&
|
|
(kernel_ip(at->from) || kernel_ip(at->to)))
|
|
continue;
|
|
|
|
data.ip = at->from;
|
|
data.addr = at->to;
|
|
|
|
perf_output_sample(&handle, &header, &data, event);
|
|
}
|
|
|
|
perf_output_end(&handle);
|
|
|
|
/* There's new data available. */
|
|
event->hw.interrupts++;
|
|
event->pending_kill = POLL_IN;
|
|
unlock:
|
|
rcu_read_unlock();
|
|
return 1;
|
|
}
|
|
|
|
static inline void intel_pmu_drain_pebs_buffer(void)
|
|
{
|
|
struct pt_regs regs;
|
|
|
|
x86_pmu.drain_pebs(®s);
|
|
}
|
|
|
|
void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
|
|
{
|
|
if (!sched_in)
|
|
intel_pmu_drain_pebs_buffer();
|
|
}
|
|
|
|
/*
|
|
* PEBS
|
|
*/
|
|
struct event_constraint intel_core2_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_atom_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_slm_pebs_event_constraints[] = {
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_glm_pebs_event_constraints[] = {
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
|
|
INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
|
|
INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_westmere_pebs_event_constraints[] = {
|
|
INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
|
|
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_snb_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
|
|
INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
|
|
INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
|
|
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_ivb_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
|
|
INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
|
|
INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
|
|
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
|
|
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_hsw_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
|
|
INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
|
|
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
|
|
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint intel_bdw_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
|
|
INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
|
|
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
|
|
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
|
|
struct event_constraint intel_skl_pebs_event_constraints[] = {
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
|
|
/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
|
|
INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
|
|
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
|
|
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
|
|
/* Allow all events as PEBS with no flags */
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
if (!event->attr.precise_ip)
|
|
return NULL;
|
|
|
|
if (x86_pmu.pebs_constraints) {
|
|
for_each_event_constraint(c, x86_pmu.pebs_constraints) {
|
|
if ((event->hw.config & c->cmask) == c->code) {
|
|
event->hw.flags |= c->flags;
|
|
return c;
|
|
}
|
|
}
|
|
}
|
|
|
|
return &emptyconstraint;
|
|
}
|
|
|
|
static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
|
|
{
|
|
return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
|
|
}
|
|
|
|
void intel_pmu_pebs_enable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct debug_store *ds = cpuc->ds;
|
|
bool first_pebs;
|
|
u64 threshold;
|
|
|
|
hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
|
|
|
|
first_pebs = !pebs_is_enabled(cpuc);
|
|
cpuc->pebs_enabled |= 1ULL << hwc->idx;
|
|
|
|
if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
|
|
cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
|
|
else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
|
|
cpuc->pebs_enabled |= 1ULL << 63;
|
|
|
|
/*
|
|
* When the event is constrained enough we can use a larger
|
|
* threshold and run the event with less frequent PMI.
|
|
*/
|
|
if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
|
|
threshold = ds->pebs_absolute_maximum -
|
|
x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
|
|
|
|
if (first_pebs)
|
|
perf_sched_cb_inc(event->ctx->pmu);
|
|
} else {
|
|
threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
|
|
|
|
/*
|
|
* If not all events can use larger buffer,
|
|
* roll back to threshold = 1
|
|
*/
|
|
if (!first_pebs &&
|
|
(ds->pebs_interrupt_threshold > threshold))
|
|
perf_sched_cb_dec(event->ctx->pmu);
|
|
}
|
|
|
|
/* Use auto-reload if possible to save a MSR write in the PMI */
|
|
if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
|
|
ds->pebs_event_reset[hwc->idx] =
|
|
(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
|
|
}
|
|
|
|
if (first_pebs || ds->pebs_interrupt_threshold > threshold)
|
|
ds->pebs_interrupt_threshold = threshold;
|
|
}
|
|
|
|
void intel_pmu_pebs_disable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct debug_store *ds = cpuc->ds;
|
|
bool large_pebs = ds->pebs_interrupt_threshold >
|
|
ds->pebs_buffer_base + x86_pmu.pebs_record_size;
|
|
|
|
if (large_pebs)
|
|
intel_pmu_drain_pebs_buffer();
|
|
|
|
cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
|
|
|
|
if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
|
|
cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
|
|
else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
|
|
cpuc->pebs_enabled &= ~(1ULL << 63);
|
|
|
|
if (large_pebs && !pebs_is_enabled(cpuc))
|
|
perf_sched_cb_dec(event->ctx->pmu);
|
|
|
|
if (cpuc->enabled)
|
|
wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
|
|
|
|
hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
|
|
}
|
|
|
|
void intel_pmu_pebs_enable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->pebs_enabled)
|
|
wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
|
|
}
|
|
|
|
void intel_pmu_pebs_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->pebs_enabled)
|
|
wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
|
|
}
|
|
|
|
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
unsigned long from = cpuc->lbr_entries[0].from;
|
|
unsigned long old_to, to = cpuc->lbr_entries[0].to;
|
|
unsigned long ip = regs->ip;
|
|
int is_64bit = 0;
|
|
void *kaddr;
|
|
int size;
|
|
|
|
/*
|
|
* We don't need to fixup if the PEBS assist is fault like
|
|
*/
|
|
if (!x86_pmu.intel_cap.pebs_trap)
|
|
return 1;
|
|
|
|
/*
|
|
* No LBR entry, no basic block, no rewinding
|
|
*/
|
|
if (!cpuc->lbr_stack.nr || !from || !to)
|
|
return 0;
|
|
|
|
/*
|
|
* Basic blocks should never cross user/kernel boundaries
|
|
*/
|
|
if (kernel_ip(ip) != kernel_ip(to))
|
|
return 0;
|
|
|
|
/*
|
|
* unsigned math, either ip is before the start (impossible) or
|
|
* the basic block is larger than 1 page (sanity)
|
|
*/
|
|
if ((ip - to) > PEBS_FIXUP_SIZE)
|
|
return 0;
|
|
|
|
/*
|
|
* We sampled a branch insn, rewind using the LBR stack
|
|
*/
|
|
if (ip == to) {
|
|
set_linear_ip(regs, from);
|
|
return 1;
|
|
}
|
|
|
|
size = ip - to;
|
|
if (!kernel_ip(ip)) {
|
|
int bytes;
|
|
u8 *buf = this_cpu_read(insn_buffer);
|
|
|
|
/* 'size' must fit our buffer, see above */
|
|
bytes = copy_from_user_nmi(buf, (void __user *)to, size);
|
|
if (bytes != 0)
|
|
return 0;
|
|
|
|
kaddr = buf;
|
|
} else {
|
|
kaddr = (void *)to;
|
|
}
|
|
|
|
do {
|
|
struct insn insn;
|
|
|
|
old_to = to;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
|
|
#endif
|
|
insn_init(&insn, kaddr, size, is_64bit);
|
|
insn_get_length(&insn);
|
|
/*
|
|
* Make sure there was not a problem decoding the
|
|
* instruction and getting the length. This is
|
|
* doubly important because we have an infinite
|
|
* loop if insn.length=0.
|
|
*/
|
|
if (!insn.length)
|
|
break;
|
|
|
|
to += insn.length;
|
|
kaddr += insn.length;
|
|
size -= insn.length;
|
|
} while (to < ip);
|
|
|
|
if (to == ip) {
|
|
set_linear_ip(regs, old_to);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Even though we decoded the basic block, the instruction stream
|
|
* never matched the given IP, either the TO or the IP got corrupted.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
|
|
{
|
|
if (pebs->tsx_tuning) {
|
|
union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
|
|
return tsx.cycles_last_block;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
|
|
{
|
|
u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
|
|
|
|
/* For RTM XABORTs also log the abort code from AX */
|
|
if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
|
|
txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
|
|
return txn;
|
|
}
|
|
|
|
static void setup_pebs_sample_data(struct perf_event *event,
|
|
struct pt_regs *iregs, void *__pebs,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
#define PERF_X86_EVENT_PEBS_HSW_PREC \
|
|
(PERF_X86_EVENT_PEBS_ST_HSW | \
|
|
PERF_X86_EVENT_PEBS_LD_HSW | \
|
|
PERF_X86_EVENT_PEBS_NA_HSW)
|
|
/*
|
|
* We cast to the biggest pebs_record but are careful not to
|
|
* unconditionally access the 'extra' entries.
|
|
*/
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct pebs_record_skl *pebs = __pebs;
|
|
u64 sample_type;
|
|
int fll, fst, dsrc;
|
|
int fl = event->hw.flags;
|
|
|
|
if (pebs == NULL)
|
|
return;
|
|
|
|
sample_type = event->attr.sample_type;
|
|
dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
|
|
|
|
fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
|
|
fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
|
|
|
|
perf_sample_data_init(data, 0, event->hw.last_period);
|
|
|
|
data->period = event->hw.last_period;
|
|
|
|
/*
|
|
* Use latency for weight (only avail with PEBS-LL)
|
|
*/
|
|
if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
|
|
data->weight = pebs->lat;
|
|
|
|
/*
|
|
* data.data_src encodes the data source
|
|
*/
|
|
if (dsrc) {
|
|
u64 val = PERF_MEM_NA;
|
|
if (fll)
|
|
val = load_latency_data(pebs->dse);
|
|
else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
|
|
val = precise_datala_hsw(event, pebs->dse);
|
|
else if (fst)
|
|
val = precise_store_data(pebs->dse);
|
|
data->data_src.val = val;
|
|
}
|
|
|
|
/*
|
|
* We use the interrupt regs as a base because the PEBS record
|
|
* does not contain a full regs set, specifically it seems to
|
|
* lack segment descriptors, which get used by things like
|
|
* user_mode().
|
|
*
|
|
* In the simple case fix up only the IP and BP,SP regs, for
|
|
* PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
|
|
* A possible PERF_SAMPLE_REGS will have to transfer all regs.
|
|
*/
|
|
*regs = *iregs;
|
|
regs->flags = pebs->flags;
|
|
set_linear_ip(regs, pebs->ip);
|
|
regs->bp = pebs->bp;
|
|
regs->sp = pebs->sp;
|
|
|
|
if (sample_type & PERF_SAMPLE_REGS_INTR) {
|
|
regs->ax = pebs->ax;
|
|
regs->bx = pebs->bx;
|
|
regs->cx = pebs->cx;
|
|
regs->dx = pebs->dx;
|
|
regs->si = pebs->si;
|
|
regs->di = pebs->di;
|
|
regs->bp = pebs->bp;
|
|
regs->sp = pebs->sp;
|
|
|
|
regs->flags = pebs->flags;
|
|
#ifndef CONFIG_X86_32
|
|
regs->r8 = pebs->r8;
|
|
regs->r9 = pebs->r9;
|
|
regs->r10 = pebs->r10;
|
|
regs->r11 = pebs->r11;
|
|
regs->r12 = pebs->r12;
|
|
regs->r13 = pebs->r13;
|
|
regs->r14 = pebs->r14;
|
|
regs->r15 = pebs->r15;
|
|
#endif
|
|
}
|
|
|
|
if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
|
|
regs->ip = pebs->real_ip;
|
|
regs->flags |= PERF_EFLAGS_EXACT;
|
|
} else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
|
|
regs->flags |= PERF_EFLAGS_EXACT;
|
|
else
|
|
regs->flags &= ~PERF_EFLAGS_EXACT;
|
|
|
|
if ((sample_type & PERF_SAMPLE_ADDR) &&
|
|
x86_pmu.intel_cap.pebs_format >= 1)
|
|
data->addr = pebs->dla;
|
|
|
|
if (x86_pmu.intel_cap.pebs_format >= 2) {
|
|
/* Only set the TSX weight when no memory weight. */
|
|
if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
|
|
data->weight = intel_hsw_weight(pebs);
|
|
|
|
if (sample_type & PERF_SAMPLE_TRANSACTION)
|
|
data->txn = intel_hsw_transaction(pebs);
|
|
}
|
|
|
|
/*
|
|
* v3 supplies an accurate time stamp, so we use that
|
|
* for the time stamp.
|
|
*
|
|
* We can only do this for the default trace clock.
|
|
*/
|
|
if (x86_pmu.intel_cap.pebs_format >= 3 &&
|
|
event->attr.use_clockid == 0)
|
|
data->time = native_sched_clock_from_tsc(pebs->tsc);
|
|
|
|
if (has_branch_stack(event))
|
|
data->br_stack = &cpuc->lbr_stack;
|
|
}
|
|
|
|
static inline void *
|
|
get_next_pebs_record_by_bit(void *base, void *top, int bit)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
void *at;
|
|
u64 pebs_status;
|
|
|
|
/*
|
|
* fmt0 does not have a status bitfield (does not use
|
|
* perf_record_nhm format)
|
|
*/
|
|
if (x86_pmu.intel_cap.pebs_format < 1)
|
|
return base;
|
|
|
|
if (base == NULL)
|
|
return NULL;
|
|
|
|
for (at = base; at < top; at += x86_pmu.pebs_record_size) {
|
|
struct pebs_record_nhm *p = at;
|
|
|
|
if (test_bit(bit, (unsigned long *)&p->status)) {
|
|
/* PEBS v3 has accurate status bits */
|
|
if (x86_pmu.intel_cap.pebs_format >= 3)
|
|
return at;
|
|
|
|
if (p->status == (1 << bit))
|
|
return at;
|
|
|
|
/* clear non-PEBS bit and re-check */
|
|
pebs_status = p->status & cpuc->pebs_enabled;
|
|
pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
|
|
if (pebs_status == (1 << bit))
|
|
return at;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void __intel_pmu_pebs_event(struct perf_event *event,
|
|
struct pt_regs *iregs,
|
|
void *base, void *top,
|
|
int bit, int count)
|
|
{
|
|
struct perf_sample_data data;
|
|
struct pt_regs regs;
|
|
void *at = get_next_pebs_record_by_bit(base, top, bit);
|
|
|
|
if (!intel_pmu_save_and_restart(event) &&
|
|
!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
|
|
return;
|
|
|
|
while (count > 1) {
|
|
setup_pebs_sample_data(event, iregs, at, &data, ®s);
|
|
perf_event_output(event, &data, ®s);
|
|
at += x86_pmu.pebs_record_size;
|
|
at = get_next_pebs_record_by_bit(at, top, bit);
|
|
count--;
|
|
}
|
|
|
|
setup_pebs_sample_data(event, iregs, at, &data, ®s);
|
|
|
|
/*
|
|
* All but the last records are processed.
|
|
* The last one is left to be able to call the overflow handler.
|
|
*/
|
|
if (perf_event_overflow(event, &data, ®s)) {
|
|
x86_pmu_stop(event, 0);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct debug_store *ds = cpuc->ds;
|
|
struct perf_event *event = cpuc->events[0]; /* PMC0 only */
|
|
struct pebs_record_core *at, *top;
|
|
int n;
|
|
|
|
if (!x86_pmu.pebs_active)
|
|
return;
|
|
|
|
at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
|
|
top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
|
|
|
|
/*
|
|
* Whatever else happens, drain the thing
|
|
*/
|
|
ds->pebs_index = ds->pebs_buffer_base;
|
|
|
|
if (!test_bit(0, cpuc->active_mask))
|
|
return;
|
|
|
|
WARN_ON_ONCE(!event);
|
|
|
|
if (!event->attr.precise_ip)
|
|
return;
|
|
|
|
n = top - at;
|
|
if (n <= 0)
|
|
return;
|
|
|
|
__intel_pmu_pebs_event(event, iregs, at, top, 0, n);
|
|
}
|
|
|
|
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct debug_store *ds = cpuc->ds;
|
|
struct perf_event *event;
|
|
void *base, *at, *top;
|
|
short counts[MAX_PEBS_EVENTS] = {};
|
|
short error[MAX_PEBS_EVENTS] = {};
|
|
int bit, i;
|
|
|
|
if (!x86_pmu.pebs_active)
|
|
return;
|
|
|
|
base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
|
|
top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
|
|
|
|
ds->pebs_index = ds->pebs_buffer_base;
|
|
|
|
if (unlikely(base >= top))
|
|
return;
|
|
|
|
for (at = base; at < top; at += x86_pmu.pebs_record_size) {
|
|
struct pebs_record_nhm *p = at;
|
|
u64 pebs_status;
|
|
|
|
/* PEBS v3 has accurate status bits */
|
|
if (x86_pmu.intel_cap.pebs_format >= 3) {
|
|
for_each_set_bit(bit, (unsigned long *)&p->status,
|
|
MAX_PEBS_EVENTS)
|
|
counts[bit]++;
|
|
|
|
continue;
|
|
}
|
|
|
|
pebs_status = p->status & cpuc->pebs_enabled;
|
|
pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
|
|
|
|
/*
|
|
* On some CPUs the PEBS status can be zero when PEBS is
|
|
* racing with clearing of GLOBAL_STATUS.
|
|
*
|
|
* Normally we would drop that record, but in the
|
|
* case when there is only a single active PEBS event
|
|
* we can assume it's for that event.
|
|
*/
|
|
if (!pebs_status && cpuc->pebs_enabled &&
|
|
!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
|
|
pebs_status = cpuc->pebs_enabled;
|
|
|
|
bit = find_first_bit((unsigned long *)&pebs_status,
|
|
x86_pmu.max_pebs_events);
|
|
if (bit >= x86_pmu.max_pebs_events)
|
|
continue;
|
|
|
|
/*
|
|
* The PEBS hardware does not deal well with the situation
|
|
* when events happen near to each other and multiple bits
|
|
* are set. But it should happen rarely.
|
|
*
|
|
* If these events include one PEBS and multiple non-PEBS
|
|
* events, it doesn't impact PEBS record. The record will
|
|
* be handled normally. (slow path)
|
|
*
|
|
* If these events include two or more PEBS events, the
|
|
* records for the events can be collapsed into a single
|
|
* one, and it's not possible to reconstruct all events
|
|
* that caused the PEBS record. It's called collision.
|
|
* If collision happened, the record will be dropped.
|
|
*/
|
|
if (p->status != (1ULL << bit)) {
|
|
for_each_set_bit(i, (unsigned long *)&pebs_status,
|
|
x86_pmu.max_pebs_events)
|
|
error[i]++;
|
|
continue;
|
|
}
|
|
|
|
counts[bit]++;
|
|
}
|
|
|
|
for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
|
|
if ((counts[bit] == 0) && (error[bit] == 0))
|
|
continue;
|
|
|
|
event = cpuc->events[bit];
|
|
WARN_ON_ONCE(!event);
|
|
WARN_ON_ONCE(!event->attr.precise_ip);
|
|
|
|
/* log dropped samples number */
|
|
if (error[bit])
|
|
perf_log_lost_samples(event, error[bit]);
|
|
|
|
if (counts[bit]) {
|
|
__intel_pmu_pebs_event(event, iregs, base,
|
|
top, bit, counts[bit]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BTS, PEBS probe and setup
|
|
*/
|
|
|
|
void __init intel_ds_init(void)
|
|
{
|
|
/*
|
|
* No support for 32bit formats
|
|
*/
|
|
if (!boot_cpu_has(X86_FEATURE_DTES64))
|
|
return;
|
|
|
|
x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
|
|
x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
|
|
x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
|
|
if (x86_pmu.pebs) {
|
|
char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
|
|
int format = x86_pmu.intel_cap.pebs_format;
|
|
|
|
switch (format) {
|
|
case 0:
|
|
pr_cont("PEBS fmt0%c, ", pebs_type);
|
|
x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
|
|
/*
|
|
* Using >PAGE_SIZE buffers makes the WRMSR to
|
|
* PERF_GLOBAL_CTRL in intel_pmu_enable_all()
|
|
* mysteriously hang on Core2.
|
|
*
|
|
* As a workaround, we don't do this.
|
|
*/
|
|
x86_pmu.pebs_buffer_size = PAGE_SIZE;
|
|
x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
|
|
break;
|
|
|
|
case 1:
|
|
pr_cont("PEBS fmt1%c, ", pebs_type);
|
|
x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
|
|
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
|
|
break;
|
|
|
|
case 2:
|
|
pr_cont("PEBS fmt2%c, ", pebs_type);
|
|
x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
|
|
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
|
|
break;
|
|
|
|
case 3:
|
|
pr_cont("PEBS fmt3%c, ", pebs_type);
|
|
x86_pmu.pebs_record_size =
|
|
sizeof(struct pebs_record_skl);
|
|
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
|
|
x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
|
|
break;
|
|
|
|
default:
|
|
pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
|
|
x86_pmu.pebs = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void perf_restore_debug_store(void)
|
|
{
|
|
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
|
|
|
|
if (!x86_pmu.bts && !x86_pmu.pebs)
|
|
return;
|
|
|
|
wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
|
|
}
|