linux_dsm_epyc7002/drivers/gpu/drm/i915/i915_irq.c
Mika Kuoppala f744dbc2a6 drm/i915/icl: Use hw engine class, instance to find irq handler
Interrupt identity register we already read from hardware
contains engine class and instance fields. Leverage
these fields to find correct engine to handle the interrupt.

v3: rebase on top of rps intr
    use correct class / instance limits (Michel)
v4: split engine/other handling
v5: empty iir is not err (Daniele, Michel)

Suggested-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Michel Thierry <michel.thierry@intel.com>
Signed-off-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Michel Thierry <michel.thierry@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180406093145.14389-1-mika.kuoppala@linux.intel.com
2018-04-06 15:33:24 +03:00

4473 lines
123 KiB
C

/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
*/
/*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/sysrq.h>
#include <linux/slab.h>
#include <linux/circ_buf.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
/**
* DOC: interrupt handling
*
* These functions provide the basic support for enabling and disabling the
* interrupt handling support. There's a lot more functionality in i915_irq.c
* and related files, but that will be described in separate chapters.
*/
static const u32 hpd_ilk[HPD_NUM_PINS] = {
[HPD_PORT_A] = DE_DP_A_HOTPLUG,
};
static const u32 hpd_ivb[HPD_NUM_PINS] = {
[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
};
static const u32 hpd_bdw[HPD_NUM_PINS] = {
[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
};
static const u32 hpd_ibx[HPD_NUM_PINS] = {
[HPD_CRT] = SDE_CRT_HOTPLUG,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG
};
static const u32 hpd_cpt[HPD_NUM_PINS] = {
[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
};
static const u32 hpd_spt[HPD_NUM_PINS] = {
[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
};
static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_EN,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
};
static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
static const u32 hpd_status_i915[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
/* BXT hpd list */
static const u32 hpd_bxt[HPD_NUM_PINS] = {
[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
};
/* IIR can theoretically queue up two events. Be paranoid. */
#define GEN8_IRQ_RESET_NDX(type, which) do { \
I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
POSTING_READ(GEN8_##type##_IMR(which)); \
I915_WRITE(GEN8_##type##_IER(which), 0); \
I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
POSTING_READ(GEN8_##type##_IIR(which)); \
I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
POSTING_READ(GEN8_##type##_IIR(which)); \
} while (0)
#define GEN3_IRQ_RESET(type) do { \
I915_WRITE(type##IMR, 0xffffffff); \
POSTING_READ(type##IMR); \
I915_WRITE(type##IER, 0); \
I915_WRITE(type##IIR, 0xffffffff); \
POSTING_READ(type##IIR); \
I915_WRITE(type##IIR, 0xffffffff); \
POSTING_READ(type##IIR); \
} while (0)
#define GEN2_IRQ_RESET(type) do { \
I915_WRITE16(type##IMR, 0xffff); \
POSTING_READ16(type##IMR); \
I915_WRITE16(type##IER, 0); \
I915_WRITE16(type##IIR, 0xffff); \
POSTING_READ16(type##IIR); \
I915_WRITE16(type##IIR, 0xffff); \
POSTING_READ16(type##IIR); \
} while (0)
/*
* We should clear IMR at preinstall/uninstall, and just check at postinstall.
*/
static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
i915_reg_t reg)
{
u32 val = I915_READ(reg);
if (val == 0)
return;
WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
i915_mmio_reg_offset(reg), val);
I915_WRITE(reg, 0xffffffff);
POSTING_READ(reg);
I915_WRITE(reg, 0xffffffff);
POSTING_READ(reg);
}
static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
i915_reg_t reg)
{
u16 val = I915_READ16(reg);
if (val == 0)
return;
WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
i915_mmio_reg_offset(reg), val);
I915_WRITE16(reg, 0xffff);
POSTING_READ16(reg);
I915_WRITE16(reg, 0xffff);
POSTING_READ16(reg);
}
#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
POSTING_READ(GEN8_##type##_IMR(which)); \
} while (0)
#define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
gen3_assert_iir_is_zero(dev_priv, type##IIR); \
I915_WRITE(type##IER, (ier_val)); \
I915_WRITE(type##IMR, (imr_val)); \
POSTING_READ(type##IMR); \
} while (0)
#define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
gen2_assert_iir_is_zero(dev_priv, type##IIR); \
I915_WRITE16(type##IER, (ier_val)); \
I915_WRITE16(type##IMR, (imr_val)); \
POSTING_READ16(type##IMR); \
} while (0)
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
/* For display hotplug interrupt */
static inline void
i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
uint32_t mask,
uint32_t bits)
{
uint32_t val;
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(bits & ~mask);
val = I915_READ(PORT_HOTPLUG_EN);
val &= ~mask;
val |= bits;
I915_WRITE(PORT_HOTPLUG_EN, val);
}
/**
* i915_hotplug_interrupt_update - update hotplug interrupt enable
* @dev_priv: driver private
* @mask: bits to update
* @bits: bits to enable
* NOTE: the HPD enable bits are modified both inside and outside
* of an interrupt context. To avoid that read-modify-write cycles
* interfer, these bits are protected by a spinlock. Since this
* function is usually not called from a context where the lock is
* held already, this function acquires the lock itself. A non-locking
* version is also available.
*/
void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
uint32_t mask,
uint32_t bits)
{
spin_lock_irq(&dev_priv->irq_lock);
i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
spin_unlock_irq(&dev_priv->irq_lock);
}
/**
* ilk_update_display_irq - update DEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void ilk_update_display_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
new_val = dev_priv->irq_mask;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->irq_mask) {
dev_priv->irq_mask = new_val;
I915_WRITE(DEIMR, dev_priv->irq_mask);
POSTING_READ(DEIMR);
}
}
/**
* ilk_update_gt_irq - update GTIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
dev_priv->gt_irq_mask &= ~interrupt_mask;
dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
}
void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
ilk_update_gt_irq(dev_priv, mask, mask);
POSTING_READ_FW(GTIMR);
}
void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
ilk_update_gt_irq(dev_priv, mask, 0);
}
static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
{
return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
}
static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
{
return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
}
static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
{
return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
}
/**
* snb_update_pm_irq - update GEN6_PMIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
WARN_ON(enabled_irq_mask & ~interrupt_mask);
lockdep_assert_held(&dev_priv->irq_lock);
new_val = dev_priv->pm_imr;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->pm_imr) {
dev_priv->pm_imr = new_val;
I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
POSTING_READ(gen6_pm_imr(dev_priv));
}
}
void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
{
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
snb_update_pm_irq(dev_priv, mask, mask);
}
static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
{
snb_update_pm_irq(dev_priv, mask, 0);
}
void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
{
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
__gen6_mask_pm_irq(dev_priv, mask);
}
static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
{
i915_reg_t reg = gen6_pm_iir(dev_priv);
lockdep_assert_held(&dev_priv->irq_lock);
I915_WRITE(reg, reset_mask);
I915_WRITE(reg, reset_mask);
POSTING_READ(reg);
}
static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
{
lockdep_assert_held(&dev_priv->irq_lock);
dev_priv->pm_ier |= enable_mask;
I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
gen6_unmask_pm_irq(dev_priv, enable_mask);
/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
}
static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
{
lockdep_assert_held(&dev_priv->irq_lock);
dev_priv->pm_ier &= ~disable_mask;
__gen6_mask_pm_irq(dev_priv, disable_mask);
I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
/* though a barrier is missing here, but don't really need a one */
}
void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
{
spin_lock_irq(&dev_priv->irq_lock);
gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
dev_priv->gt_pm.rps.pm_iir = 0;
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
{
struct intel_rps *rps = &dev_priv->gt_pm.rps;
if (READ_ONCE(rps->interrupts_enabled))
return;
if (WARN_ON_ONCE(IS_GEN11(dev_priv)))
return;
spin_lock_irq(&dev_priv->irq_lock);
WARN_ON_ONCE(rps->pm_iir);
WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
rps->interrupts_enabled = true;
gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
{
struct intel_rps *rps = &dev_priv->gt_pm.rps;
if (!READ_ONCE(rps->interrupts_enabled))
return;
if (WARN_ON_ONCE(IS_GEN11(dev_priv)))
return;
spin_lock_irq(&dev_priv->irq_lock);
rps->interrupts_enabled = false;
I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
spin_unlock_irq(&dev_priv->irq_lock);
synchronize_irq(dev_priv->drm.irq);
/* Now that we will not be generating any more work, flush any
* outstanding tasks. As we are called on the RPS idle path,
* we will reset the GPU to minimum frequencies, so the current
* state of the worker can be discarded.
*/
cancel_work_sync(&rps->work);
gen6_reset_rps_interrupts(dev_priv);
}
void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
{
assert_rpm_wakelock_held(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
{
assert_rpm_wakelock_held(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
if (!dev_priv->guc.interrupts_enabled) {
WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
dev_priv->pm_guc_events);
dev_priv->guc.interrupts_enabled = true;
gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
}
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
{
assert_rpm_wakelock_held(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
dev_priv->guc.interrupts_enabled = false;
gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
spin_unlock_irq(&dev_priv->irq_lock);
synchronize_irq(dev_priv->drm.irq);
gen9_reset_guc_interrupts(dev_priv);
}
/**
* bdw_update_port_irq - update DE port interrupt
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
uint32_t old_val;
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
old_val = I915_READ(GEN8_DE_PORT_IMR);
new_val = old_val;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != old_val) {
I915_WRITE(GEN8_DE_PORT_IMR, new_val);
POSTING_READ(GEN8_DE_PORT_IMR);
}
}
/**
* bdw_update_pipe_irq - update DE pipe interrupt
* @dev_priv: driver private
* @pipe: pipe whose interrupt to update
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
enum pipe pipe,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
new_val = dev_priv->de_irq_mask[pipe];
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->de_irq_mask[pipe]) {
dev_priv->de_irq_mask[pipe] = new_val;
I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
}
}
/**
* ibx_display_interrupt_update - update SDEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t sdeimr = I915_READ(SDEIMR);
sdeimr &= ~interrupt_mask;
sdeimr |= (~enabled_irq_mask & interrupt_mask);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
lockdep_assert_held(&dev_priv->irq_lock);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
I915_WRITE(SDEIMR, sdeimr);
POSTING_READ(SDEIMR);
}
u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
u32 enable_mask = status_mask << 16;
lockdep_assert_held(&dev_priv->irq_lock);
if (INTEL_GEN(dev_priv) < 5)
goto out;
/*
* On pipe A we don't support the PSR interrupt yet,
* on pipe B and C the same bit MBZ.
*/
if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
return 0;
/*
* On pipe B and C we don't support the PSR interrupt yet, on pipe
* A the same bit is for perf counters which we don't use either.
*/
if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
return 0;
enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
SPRITE0_FLIP_DONE_INT_EN_VLV |
SPRITE1_FLIP_DONE_INT_EN_VLV);
if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
out:
WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
pipe_name(pipe), enable_mask, status_mask);
return enable_mask;
}
void i915_enable_pipestat(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 status_mask)
{
i915_reg_t reg = PIPESTAT(pipe);
u32 enable_mask;
WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: status_mask=0x%x\n",
pipe_name(pipe), status_mask);
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(!intel_irqs_enabled(dev_priv));
if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
return;
dev_priv->pipestat_irq_mask[pipe] |= status_mask;
enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
I915_WRITE(reg, enable_mask | status_mask);
POSTING_READ(reg);
}
void i915_disable_pipestat(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 status_mask)
{
i915_reg_t reg = PIPESTAT(pipe);
u32 enable_mask;
WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: status_mask=0x%x\n",
pipe_name(pipe), status_mask);
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(!intel_irqs_enabled(dev_priv));
if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
return;
dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
I915_WRITE(reg, enable_mask | status_mask);
POSTING_READ(reg);
}
/**
* i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
* @dev_priv: i915 device private
*/
static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
{
if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
return;
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
if (INTEL_GEN(dev_priv) >= 4)
i915_enable_pipestat(dev_priv, PIPE_A,
PIPE_LEGACY_BLC_EVENT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
}
/*
* This timing diagram depicts the video signal in and
* around the vertical blanking period.
*
* Assumptions about the fictitious mode used in this example:
* vblank_start >= 3
* vsync_start = vblank_start + 1
* vsync_end = vblank_start + 2
* vtotal = vblank_start + 3
*
* start of vblank:
* latch double buffered registers
* increment frame counter (ctg+)
* generate start of vblank interrupt (gen4+)
* |
* | frame start:
* | generate frame start interrupt (aka. vblank interrupt) (gmch)
* | may be shifted forward 1-3 extra lines via PIPECONF
* | |
* | | start of vsync:
* | | generate vsync interrupt
* | | |
* ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
* . \hs/ . \hs/ \hs/ \hs/ . \hs/
* ----va---> <-----------------vb--------------------> <--------va-------------
* | | <----vs-----> |
* -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
* -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
* -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
* | | |
* last visible pixel first visible pixel
* | increment frame counter (gen3/4)
* pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
*
* x = horizontal active
* _ = horizontal blanking
* hs = horizontal sync
* va = vertical active
* vb = vertical blanking
* vs = vertical sync
* vbs = vblank_start (number)
*
* Summary:
* - most events happen at the start of horizontal sync
* - frame start happens at the start of horizontal blank, 1-4 lines
* (depending on PIPECONF settings) after the start of vblank
* - gen3/4 pixel and frame counter are synchronized with the start
* of horizontal active on the first line of vertical active
*/
/* Called from drm generic code, passed a 'crtc', which
* we use as a pipe index
*/
static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
i915_reg_t high_frame, low_frame;
u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
unsigned long irqflags;
htotal = mode->crtc_htotal;
hsync_start = mode->crtc_hsync_start;
vbl_start = mode->crtc_vblank_start;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vbl_start = DIV_ROUND_UP(vbl_start, 2);
/* Convert to pixel count */
vbl_start *= htotal;
/* Start of vblank event occurs at start of hsync */
vbl_start -= htotal - hsync_start;
high_frame = PIPEFRAME(pipe);
low_frame = PIPEFRAMEPIXEL(pipe);
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/*
* High & low register fields aren't synchronized, so make sure
* we get a low value that's stable across two reads of the high
* register.
*/
do {
high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
low = I915_READ_FW(low_frame);
high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
} while (high1 != high2);
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
high1 >>= PIPE_FRAME_HIGH_SHIFT;
pixel = low & PIPE_PIXEL_MASK;
low >>= PIPE_FRAME_LOW_SHIFT;
/*
* The frame counter increments at beginning of active.
* Cook up a vblank counter by also checking the pixel
* counter against vblank start.
*/
return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
}
static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
}
/*
* On certain encoders on certain platforms, pipe
* scanline register will not work to get the scanline,
* since the timings are driven from the PORT or issues
* with scanline register updates.
* This function will use Framestamp and current
* timestamp registers to calculate the scanline.
*/
static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct drm_vblank_crtc *vblank =
&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
const struct drm_display_mode *mode = &vblank->hwmode;
u32 vblank_start = mode->crtc_vblank_start;
u32 vtotal = mode->crtc_vtotal;
u32 htotal = mode->crtc_htotal;
u32 clock = mode->crtc_clock;
u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
/*
* To avoid the race condition where we might cross into the
* next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
* reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
* during the same frame.
*/
do {
/*
* This field provides read back of the display
* pipe frame time stamp. The time stamp value
* is sampled at every start of vertical blank.
*/
scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
/*
* The TIMESTAMP_CTR register has the current
* time stamp value.
*/
scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
} while (scan_post_time != scan_prev_time);
scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
clock), 1000 * htotal);
scanline = min(scanline, vtotal - 1);
scanline = (scanline + vblank_start) % vtotal;
return scanline;
}
/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
const struct drm_display_mode *mode;
struct drm_vblank_crtc *vblank;
enum pipe pipe = crtc->pipe;
int position, vtotal;
if (!crtc->active)
return -1;
vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
mode = &vblank->hwmode;
if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
return __intel_get_crtc_scanline_from_timestamp(crtc);
vtotal = mode->crtc_vtotal;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vtotal /= 2;
if (IS_GEN2(dev_priv))
position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
else
position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
/*
* On HSW, the DSL reg (0x70000) appears to return 0 if we
* read it just before the start of vblank. So try it again
* so we don't accidentally end up spanning a vblank frame
* increment, causing the pipe_update_end() code to squak at us.
*
* The nature of this problem means we can't simply check the ISR
* bit and return the vblank start value; nor can we use the scanline
* debug register in the transcoder as it appears to have the same
* problem. We may need to extend this to include other platforms,
* but so far testing only shows the problem on HSW.
*/
if (HAS_DDI(dev_priv) && !position) {
int i, temp;
for (i = 0; i < 100; i++) {
udelay(1);
temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
if (temp != position) {
position = temp;
break;
}
}
}
/*
* See update_scanline_offset() for the details on the
* scanline_offset adjustment.
*/
return (position + crtc->scanline_offset) % vtotal;
}
static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
bool in_vblank_irq, int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime,
const struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
pipe);
int position;
int vbl_start, vbl_end, hsync_start, htotal, vtotal;
unsigned long irqflags;
if (WARN_ON(!mode->crtc_clock)) {
DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
"pipe %c\n", pipe_name(pipe));
return false;
}
htotal = mode->crtc_htotal;
hsync_start = mode->crtc_hsync_start;
vtotal = mode->crtc_vtotal;
vbl_start = mode->crtc_vblank_start;
vbl_end = mode->crtc_vblank_end;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vbl_start = DIV_ROUND_UP(vbl_start, 2);
vbl_end /= 2;
vtotal /= 2;
}
/*
* Lock uncore.lock, as we will do multiple timing critical raw
* register reads, potentially with preemption disabled, so the
* following code must not block on uncore.lock.
*/
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
/* Get optional system timestamp before query. */
if (stime)
*stime = ktime_get();
if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
/* No obvious pixelcount register. Only query vertical
* scanout position from Display scan line register.
*/
position = __intel_get_crtc_scanline(intel_crtc);
} else {
/* Have access to pixelcount since start of frame.
* We can split this into vertical and horizontal
* scanout position.
*/
position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
/* convert to pixel counts */
vbl_start *= htotal;
vbl_end *= htotal;
vtotal *= htotal;
/*
* In interlaced modes, the pixel counter counts all pixels,
* so one field will have htotal more pixels. In order to avoid
* the reported position from jumping backwards when the pixel
* counter is beyond the length of the shorter field, just
* clamp the position the length of the shorter field. This
* matches how the scanline counter based position works since
* the scanline counter doesn't count the two half lines.
*/
if (position >= vtotal)
position = vtotal - 1;
/*
* Start of vblank interrupt is triggered at start of hsync,
* just prior to the first active line of vblank. However we
* consider lines to start at the leading edge of horizontal
* active. So, should we get here before we've crossed into
* the horizontal active of the first line in vblank, we would
* not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
* always add htotal-hsync_start to the current pixel position.
*/
position = (position + htotal - hsync_start) % vtotal;
}
/* Get optional system timestamp after query. */
if (etime)
*etime = ktime_get();
/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
/*
* While in vblank, position will be negative
* counting up towards 0 at vbl_end. And outside
* vblank, position will be positive counting
* up since vbl_end.
*/
if (position >= vbl_start)
position -= vbl_end;
else
position += vtotal - vbl_end;
if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
*vpos = position;
*hpos = 0;
} else {
*vpos = position / htotal;
*hpos = position - (*vpos * htotal);
}
return true;
}
int intel_get_crtc_scanline(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
unsigned long irqflags;
int position;
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
position = __intel_get_crtc_scanline(crtc);
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
return position;
}
static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
{
u32 busy_up, busy_down, max_avg, min_avg;
u8 new_delay;
spin_lock(&mchdev_lock);
I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
new_delay = dev_priv->ips.cur_delay;
I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
busy_up = I915_READ(RCPREVBSYTUPAVG);
busy_down = I915_READ(RCPREVBSYTDNAVG);
max_avg = I915_READ(RCBMAXAVG);
min_avg = I915_READ(RCBMINAVG);
/* Handle RCS change request from hw */
if (busy_up > max_avg) {
if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
new_delay = dev_priv->ips.cur_delay - 1;
if (new_delay < dev_priv->ips.max_delay)
new_delay = dev_priv->ips.max_delay;
} else if (busy_down < min_avg) {
if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
new_delay = dev_priv->ips.cur_delay + 1;
if (new_delay > dev_priv->ips.min_delay)
new_delay = dev_priv->ips.min_delay;
}
if (ironlake_set_drps(dev_priv, new_delay))
dev_priv->ips.cur_delay = new_delay;
spin_unlock(&mchdev_lock);
return;
}
static void notify_ring(struct intel_engine_cs *engine)
{
struct i915_request *rq = NULL;
struct intel_wait *wait;
if (!engine->breadcrumbs.irq_armed)
return;
atomic_inc(&engine->irq_count);
set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
spin_lock(&engine->breadcrumbs.irq_lock);
wait = engine->breadcrumbs.irq_wait;
if (wait) {
bool wakeup = engine->irq_seqno_barrier;
/* We use a callback from the dma-fence to submit
* requests after waiting on our own requests. To
* ensure minimum delay in queuing the next request to
* hardware, signal the fence now rather than wait for
* the signaler to be woken up. We still wake up the
* waiter in order to handle the irq-seqno coherency
* issues (we may receive the interrupt before the
* seqno is written, see __i915_request_irq_complete())
* and to handle coalescing of multiple seqno updates
* and many waiters.
*/
if (i915_seqno_passed(intel_engine_get_seqno(engine),
wait->seqno)) {
struct i915_request *waiter = wait->request;
wakeup = true;
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&waiter->fence.flags) &&
intel_wait_check_request(wait, waiter))
rq = i915_request_get(waiter);
}
if (wakeup)
wake_up_process(wait->tsk);
} else {
if (engine->breadcrumbs.irq_armed)
__intel_engine_disarm_breadcrumbs(engine);
}
spin_unlock(&engine->breadcrumbs.irq_lock);
if (rq) {
dma_fence_signal(&rq->fence);
GEM_BUG_ON(!i915_request_completed(rq));
i915_request_put(rq);
}
trace_intel_engine_notify(engine, wait);
}
static void vlv_c0_read(struct drm_i915_private *dev_priv,
struct intel_rps_ei *ei)
{
ei->ktime = ktime_get_raw();
ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
}
void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
{
memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
}
static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
{
struct intel_rps *rps = &dev_priv->gt_pm.rps;
const struct intel_rps_ei *prev = &rps->ei;
struct intel_rps_ei now;
u32 events = 0;
if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
return 0;
vlv_c0_read(dev_priv, &now);
if (prev->ktime) {
u64 time, c0;
u32 render, media;
time = ktime_us_delta(now.ktime, prev->ktime);
time *= dev_priv->czclk_freq;
/* Workload can be split between render + media,
* e.g. SwapBuffers being blitted in X after being rendered in
* mesa. To account for this we need to combine both engines
* into our activity counter.
*/
render = now.render_c0 - prev->render_c0;
media = now.media_c0 - prev->media_c0;
c0 = max(render, media);
c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
if (c0 > time * rps->up_threshold)
events = GEN6_PM_RP_UP_THRESHOLD;
else if (c0 < time * rps->down_threshold)
events = GEN6_PM_RP_DOWN_THRESHOLD;
}
rps->ei = now;
return events;
}
static void gen6_pm_rps_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private, gt_pm.rps.work);
struct intel_rps *rps = &dev_priv->gt_pm.rps;
bool client_boost = false;
int new_delay, adj, min, max;
u32 pm_iir = 0;
spin_lock_irq(&dev_priv->irq_lock);
if (rps->interrupts_enabled) {
pm_iir = fetch_and_zero(&rps->pm_iir);
client_boost = atomic_read(&rps->num_waiters);
}
spin_unlock_irq(&dev_priv->irq_lock);
/* Make sure we didn't queue anything we're not going to process. */
WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
goto out;
mutex_lock(&dev_priv->pcu_lock);
pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
adj = rps->last_adj;
new_delay = rps->cur_freq;
min = rps->min_freq_softlimit;
max = rps->max_freq_softlimit;
if (client_boost)
max = rps->max_freq;
if (client_boost && new_delay < rps->boost_freq) {
new_delay = rps->boost_freq;
adj = 0;
} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
if (adj > 0)
adj *= 2;
else /* CHV needs even encode values */
adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
if (new_delay >= rps->max_freq_softlimit)
adj = 0;
} else if (client_boost) {
adj = 0;
} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
if (rps->cur_freq > rps->efficient_freq)
new_delay = rps->efficient_freq;
else if (rps->cur_freq > rps->min_freq_softlimit)
new_delay = rps->min_freq_softlimit;
adj = 0;
} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
if (adj < 0)
adj *= 2;
else /* CHV needs even encode values */
adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
if (new_delay <= rps->min_freq_softlimit)
adj = 0;
} else { /* unknown event */
adj = 0;
}
rps->last_adj = adj;
/* sysfs frequency interfaces may have snuck in while servicing the
* interrupt
*/
new_delay += adj;
new_delay = clamp_t(int, new_delay, min, max);
if (intel_set_rps(dev_priv, new_delay)) {
DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
rps->last_adj = 0;
}
mutex_unlock(&dev_priv->pcu_lock);
out:
/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
spin_lock_irq(&dev_priv->irq_lock);
if (rps->interrupts_enabled)
gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
spin_unlock_irq(&dev_priv->irq_lock);
}
/**
* ivybridge_parity_work - Workqueue called when a parity error interrupt
* occurred.
* @work: workqueue struct
*
* Doesn't actually do anything except notify userspace. As a consequence of
* this event, userspace should try to remap the bad rows since statistically
* it is likely the same row is more likely to go bad again.
*/
static void ivybridge_parity_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), l3_parity.error_work);
u32 error_status, row, bank, subbank;
char *parity_event[6];
uint32_t misccpctl;
uint8_t slice = 0;
/* We must turn off DOP level clock gating to access the L3 registers.
* In order to prevent a get/put style interface, acquire struct mutex
* any time we access those registers.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
/* If we've screwed up tracking, just let the interrupt fire again */
if (WARN_ON(!dev_priv->l3_parity.which_slice))
goto out;
misccpctl = I915_READ(GEN7_MISCCPCTL);
I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
POSTING_READ(GEN7_MISCCPCTL);
while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
i915_reg_t reg;
slice--;
if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
break;
dev_priv->l3_parity.which_slice &= ~(1<<slice);
reg = GEN7_L3CDERRST1(slice);
error_status = I915_READ(reg);
row = GEN7_PARITY_ERROR_ROW(error_status);
bank = GEN7_PARITY_ERROR_BANK(error_status);
subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
POSTING_READ(reg);
parity_event[0] = I915_L3_PARITY_UEVENT "=1";
parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
parity_event[5] = NULL;
kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
KOBJ_CHANGE, parity_event);
DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
slice, row, bank, subbank);
kfree(parity_event[4]);
kfree(parity_event[3]);
kfree(parity_event[2]);
kfree(parity_event[1]);
}
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
out:
WARN_ON(dev_priv->l3_parity.which_slice);
spin_lock_irq(&dev_priv->irq_lock);
gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
spin_unlock_irq(&dev_priv->irq_lock);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
u32 iir)
{
if (!HAS_L3_DPF(dev_priv))
return;
spin_lock(&dev_priv->irq_lock);
gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
spin_unlock(&dev_priv->irq_lock);
iir &= GT_PARITY_ERROR(dev_priv);
if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
dev_priv->l3_parity.which_slice |= 1 << 1;
if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
dev_priv->l3_parity.which_slice |= 1 << 0;
queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
}
static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
u32 gt_iir)
{
if (gt_iir & GT_RENDER_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
if (gt_iir & ILK_BSD_USER_INTERRUPT)
notify_ring(dev_priv->engine[VCS]);
}
static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
u32 gt_iir)
{
if (gt_iir & GT_RENDER_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
if (gt_iir & GT_BSD_USER_INTERRUPT)
notify_ring(dev_priv->engine[VCS]);
if (gt_iir & GT_BLT_USER_INTERRUPT)
notify_ring(dev_priv->engine[BCS]);
if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
GT_BSD_CS_ERROR_INTERRUPT |
GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
if (gt_iir & GT_PARITY_ERROR(dev_priv))
ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
}
static void
gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
bool tasklet = false;
if (iir & GT_CONTEXT_SWITCH_INTERRUPT) {
if (READ_ONCE(engine->execlists.active))
tasklet = !test_and_set_bit(ENGINE_IRQ_EXECLIST,
&engine->irq_posted);
}
if (iir & GT_RENDER_USER_INTERRUPT) {
notify_ring(engine);
tasklet |= USES_GUC_SUBMISSION(engine->i915);
}
if (tasklet)
tasklet_hi_schedule(&execlists->tasklet);
}
static void gen8_gt_irq_ack(struct drm_i915_private *i915,
u32 master_ctl, u32 gt_iir[4])
{
void __iomem * const regs = i915->regs;
#define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
GEN8_GT_BCS_IRQ | \
GEN8_GT_VCS1_IRQ | \
GEN8_GT_VCS2_IRQ | \
GEN8_GT_VECS_IRQ | \
GEN8_GT_PM_IRQ | \
GEN8_GT_GUC_IRQ)
if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
if (likely(gt_iir[0]))
raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
}
if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
if (likely(gt_iir[1]))
raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
}
if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
if (likely(gt_iir[2] & (i915->pm_rps_events |
i915->pm_guc_events)))
raw_reg_write(regs, GEN8_GT_IIR(2),
gt_iir[2] & (i915->pm_rps_events |
i915->pm_guc_events));
}
if (master_ctl & GEN8_GT_VECS_IRQ) {
gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
if (likely(gt_iir[3]))
raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
}
}
static void gen8_gt_irq_handler(struct drm_i915_private *i915,
u32 master_ctl, u32 gt_iir[4])
{
if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
gen8_cs_irq_handler(i915->engine[RCS],
gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
gen8_cs_irq_handler(i915->engine[BCS],
gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
}
if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
gen8_cs_irq_handler(i915->engine[VCS],
gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
gen8_cs_irq_handler(i915->engine[VCS2],
gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
}
if (master_ctl & GEN8_GT_VECS_IRQ) {
gen8_cs_irq_handler(i915->engine[VECS],
gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
}
if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
gen6_rps_irq_handler(i915, gt_iir[2]);
gen9_guc_irq_handler(i915, gt_iir[2]);
}
}
static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_A:
return val & PORTA_HOTPLUG_LONG_DETECT;
case PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_E:
return val & PORTE_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool spt_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_A:
return val & PORTA_HOTPLUG_LONG_DETECT;
case PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
case PORT_D:
return val & PORTD_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_A:
return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool pch_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
case PORT_D:
return val & PORTD_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_B:
return val & PORTB_HOTPLUG_INT_LONG_PULSE;
case PORT_C:
return val & PORTC_HOTPLUG_INT_LONG_PULSE;
case PORT_D:
return val & PORTD_HOTPLUG_INT_LONG_PULSE;
default:
return false;
}
}
/*
* Get a bit mask of pins that have triggered, and which ones may be long.
* This can be called multiple times with the same masks to accumulate
* hotplug detection results from several registers.
*
* Note that the caller is expected to zero out the masks initially.
*/
static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
u32 *pin_mask, u32 *long_mask,
u32 hotplug_trigger, u32 dig_hotplug_reg,
const u32 hpd[HPD_NUM_PINS],
bool long_pulse_detect(enum port port, u32 val))
{
enum port port;
int i;
for_each_hpd_pin(i) {
if ((hpd[i] & hotplug_trigger) == 0)
continue;
*pin_mask |= BIT(i);
port = intel_hpd_pin_to_port(dev_priv, i);
if (port == PORT_NONE)
continue;
if (long_pulse_detect(port, dig_hotplug_reg))
*long_mask |= BIT(i);
}
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
hotplug_trigger, dig_hotplug_reg, *pin_mask);
}
static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
{
wake_up_all(&dev_priv->gmbus_wait_queue);
}
static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
{
wake_up_all(&dev_priv->gmbus_wait_queue);
}
#if defined(CONFIG_DEBUG_FS)
static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe,
uint32_t crc0, uint32_t crc1,
uint32_t crc2, uint32_t crc3,
uint32_t crc4)
{
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
struct intel_pipe_crc_entry *entry;
struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
struct drm_driver *driver = dev_priv->drm.driver;
uint32_t crcs[5];
int head, tail;
spin_lock(&pipe_crc->lock);
if (pipe_crc->source && !crtc->base.crc.opened) {
if (!pipe_crc->entries) {
spin_unlock(&pipe_crc->lock);
DRM_DEBUG_KMS("spurious interrupt\n");
return;
}
head = pipe_crc->head;
tail = pipe_crc->tail;
if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
spin_unlock(&pipe_crc->lock);
DRM_ERROR("CRC buffer overflowing\n");
return;
}
entry = &pipe_crc->entries[head];
entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
entry->crc[0] = crc0;
entry->crc[1] = crc1;
entry->crc[2] = crc2;
entry->crc[3] = crc3;
entry->crc[4] = crc4;
head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
pipe_crc->head = head;
spin_unlock(&pipe_crc->lock);
wake_up_interruptible(&pipe_crc->wq);
} else {
/*
* For some not yet identified reason, the first CRC is
* bonkers. So let's just wait for the next vblank and read
* out the buggy result.
*
* On GEN8+ sometimes the second CRC is bonkers as well, so
* don't trust that one either.
*/
if (pipe_crc->skipped <= 0 ||
(INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
pipe_crc->skipped++;
spin_unlock(&pipe_crc->lock);
return;
}
spin_unlock(&pipe_crc->lock);
crcs[0] = crc0;
crcs[1] = crc1;
crcs[2] = crc2;
crcs[3] = crc3;
crcs[4] = crc4;
drm_crtc_add_crc_entry(&crtc->base, true,
drm_crtc_accurate_vblank_count(&crtc->base),
crcs);
}
}
#else
static inline void
display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe,
uint32_t crc0, uint32_t crc1,
uint32_t crc2, uint32_t crc3,
uint32_t crc4) {}
#endif
static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
display_pipe_crc_irq_handler(dev_priv, pipe,
I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
0, 0, 0, 0);
}
static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
display_pipe_crc_irq_handler(dev_priv, pipe,
I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
}
static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
uint32_t res1, res2;
if (INTEL_GEN(dev_priv) >= 3)
res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
else
res1 = 0;
if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
else
res2 = 0;
display_pipe_crc_irq_handler(dev_priv, pipe,
I915_READ(PIPE_CRC_RES_RED(pipe)),
I915_READ(PIPE_CRC_RES_GREEN(pipe)),
I915_READ(PIPE_CRC_RES_BLUE(pipe)),
res1, res2);
}
/* The RPS events need forcewake, so we add them to a work queue and mask their
* IMR bits until the work is done. Other interrupts can be processed without
* the work queue. */
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
{
struct intel_rps *rps = &dev_priv->gt_pm.rps;
if (pm_iir & dev_priv->pm_rps_events) {
spin_lock(&dev_priv->irq_lock);
gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
if (rps->interrupts_enabled) {
rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
schedule_work(&rps->work);
}
spin_unlock(&dev_priv->irq_lock);
}
if (INTEL_GEN(dev_priv) >= 8)
return;
if (HAS_VEBOX(dev_priv)) {
if (pm_iir & PM_VEBOX_USER_INTERRUPT)
notify_ring(dev_priv->engine[VECS]);
if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
}
}
static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
{
if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
intel_guc_to_host_event_handler(&dev_priv->guc);
}
static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
I915_WRITE(PIPESTAT(pipe),
PIPESTAT_INT_STATUS_MASK |
PIPE_FIFO_UNDERRUN_STATUS);
dev_priv->pipestat_irq_mask[pipe] = 0;
}
}
static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
int pipe;
spin_lock(&dev_priv->irq_lock);
if (!dev_priv->display_irqs_enabled) {
spin_unlock(&dev_priv->irq_lock);
return;
}
for_each_pipe(dev_priv, pipe) {
i915_reg_t reg;
u32 status_mask, enable_mask, iir_bit = 0;
/*
* PIPESTAT bits get signalled even when the interrupt is
* disabled with the mask bits, and some of the status bits do
* not generate interrupts at all (like the underrun bit). Hence
* we need to be careful that we only handle what we want to
* handle.
*/
/* fifo underruns are filterered in the underrun handler. */
status_mask = PIPE_FIFO_UNDERRUN_STATUS;
switch (pipe) {
case PIPE_A:
iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
break;
case PIPE_B:
iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
break;
case PIPE_C:
iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
break;
}
if (iir & iir_bit)
status_mask |= dev_priv->pipestat_irq_mask[pipe];
if (!status_mask)
continue;
reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg) & status_mask;
enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe])
I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
}
spin_unlock(&dev_priv->irq_lock);
}
static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u16 iir, u32 pipe_stats[I915_MAX_PIPES])
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(&dev_priv->drm, pipe);
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
}
static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
bool blc_event = false;
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(&dev_priv->drm, pipe);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev_priv);
}
static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
bool blc_event = false;
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(&dev_priv->drm, pipe);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev_priv);
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev_priv);
}
static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 pipe_stats[I915_MAX_PIPES])
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(&dev_priv->drm, pipe);
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev_priv);
}
static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
{
u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
if (hotplug_status)
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
return hotplug_status;
}
static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_status)
{
u32 pin_mask = 0, long_mask = 0;
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) {
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
if (hotplug_trigger) {
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, hotplug_trigger,
hpd_status_g4x,
i9xx_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
dp_aux_irq_handler(dev_priv);
} else {
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
if (hotplug_trigger) {
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, hotplug_trigger,
hpd_status_i915,
i9xx_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
}
}
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
do {
u32 iir, gt_iir, pm_iir;
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 ier = 0;
gt_iir = I915_READ(GTIIR);
pm_iir = I915_READ(GEN6_PMIIR);
iir = I915_READ(VLV_IIR);
if (gt_iir == 0 && pm_iir == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
* (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
* bits this time around.
*/
I915_WRITE(VLV_MASTER_IER, 0);
ier = I915_READ(VLV_IER);
I915_WRITE(VLV_IER, 0);
if (gt_iir)
I915_WRITE(GTIIR, gt_iir);
if (pm_iir)
I915_WRITE(GEN6_PMIIR, pm_iir);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & (I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT))
intel_lpe_audio_irq_handler(dev_priv);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
I915_WRITE(VLV_IIR, iir);
I915_WRITE(VLV_IER, ier);
I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
POSTING_READ(VLV_MASTER_IER);
if (gt_iir)
snb_gt_irq_handler(dev_priv, gt_iir);
if (pm_iir)
gen6_rps_irq_handler(dev_priv, pm_iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static irqreturn_t cherryview_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
do {
u32 master_ctl, iir;
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 gt_iir[4];
u32 ier = 0;
master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
iir = I915_READ(VLV_IIR);
if (master_ctl == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
* (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
* bits this time around.
*/
I915_WRITE(GEN8_MASTER_IRQ, 0);
ier = I915_READ(VLV_IER);
I915_WRITE(VLV_IER, 0);
gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & (I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT |
I915_LPE_PIPE_C_INTERRUPT))
intel_lpe_audio_irq_handler(dev_priv);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
I915_WRITE(VLV_IIR, iir);
I915_WRITE(VLV_IER, ier);
I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
POSTING_READ(GEN8_MASTER_IRQ);
gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger,
const u32 hpd[HPD_NUM_PINS])
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
/*
* Somehow the PCH doesn't seem to really ack the interrupt to the CPU
* unless we touch the hotplug register, even if hotplug_trigger is
* zero. Not acking leads to "The master control interrupt lied (SDE)!"
* errors.
*/
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
if (!hotplug_trigger) {
u32 mask = PORTA_HOTPLUG_STATUS_MASK |
PORTD_HOTPLUG_STATUS_MASK |
PORTC_HOTPLUG_STATUS_MASK |
PORTB_HOTPLUG_STATUS_MASK;
dig_hotplug_reg &= ~mask;
}
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
if (!hotplug_trigger)
return;
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd,
pch_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
if (pch_iir & SDE_AUDIO_POWER_MASK) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
SDE_AUDIO_POWER_SHIFT);
DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK)
dp_aux_irq_handler(dev_priv);
if (pch_iir & SDE_GMBUS)
gmbus_irq_handler(dev_priv);
if (pch_iir & SDE_AUDIO_HDCP_MASK)
DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
if (pch_iir & SDE_AUDIO_TRANS_MASK)
DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
if (pch_iir & SDE_POISON)
DRM_ERROR("PCH poison interrupt\n");
if (pch_iir & SDE_FDI_MASK)
for_each_pipe(dev_priv, pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
if (pch_iir & SDE_TRANSA_FIFO_UNDER)
intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
if (pch_iir & SDE_TRANSB_FIFO_UNDER)
intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
}
static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
{
u32 err_int = I915_READ(GEN7_ERR_INT);
enum pipe pipe;
if (err_int & ERR_INT_POISON)
DRM_ERROR("Poison interrupt\n");
for_each_pipe(dev_priv, pipe) {
if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
if (IS_IVYBRIDGE(dev_priv))
ivb_pipe_crc_irq_handler(dev_priv, pipe);
else
hsw_pipe_crc_irq_handler(dev_priv, pipe);
}
}
I915_WRITE(GEN7_ERR_INT, err_int);
}
static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
{
u32 serr_int = I915_READ(SERR_INT);
enum pipe pipe;
if (serr_int & SERR_INT_POISON)
DRM_ERROR("PCH poison interrupt\n");
for_each_pipe(dev_priv, pipe)
if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
I915_WRITE(SERR_INT, serr_int);
}
static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
SDE_AUDIO_POWER_SHIFT_CPT);
DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK_CPT)
dp_aux_irq_handler(dev_priv);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev_priv);
if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
if (pch_iir & SDE_FDI_MASK_CPT)
for_each_pipe(dev_priv, pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & SDE_ERROR_CPT)
cpt_serr_int_handler(dev_priv);
}
static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
~SDE_PORTE_HOTPLUG_SPT;
u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
u32 pin_mask = 0, long_mask = 0;
if (hotplug_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, dig_hotplug_reg, hpd_spt,
spt_port_hotplug_long_detect);
}
if (hotplug2_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug2_trigger, dig_hotplug_reg, hpd_spt,
spt_port_hotplug2_long_detect);
}
if (pin_mask)
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev_priv);
}
static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger,
const u32 hpd[HPD_NUM_PINS])
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd,
ilk_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
u32 de_iir)
{
enum pipe pipe;
u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
if (hotplug_trigger)
ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
if (de_iir & DE_AUX_CHANNEL_A)
dp_aux_irq_handler(dev_priv);
if (de_iir & DE_GSE)
intel_opregion_asle_intr(dev_priv);
if (de_iir & DE_POISON)
DRM_ERROR("Poison interrupt\n");
for_each_pipe(dev_priv, pipe) {
if (de_iir & DE_PIPE_VBLANK(pipe))
drm_handle_vblank(&dev_priv->drm, pipe);
if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
if (de_iir & DE_PIPE_CRC_DONE(pipe))
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
}
/* check event from PCH */
if (de_iir & DE_PCH_EVENT) {
u32 pch_iir = I915_READ(SDEIIR);
if (HAS_PCH_CPT(dev_priv))
cpt_irq_handler(dev_priv, pch_iir);
else
ibx_irq_handler(dev_priv, pch_iir);
/* should clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
ironlake_rps_change_irq_handler(dev_priv);
}
static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
u32 de_iir)
{
enum pipe pipe;
u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
if (hotplug_trigger)
ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
if (de_iir & DE_ERR_INT_IVB)
ivb_err_int_handler(dev_priv);
if (de_iir & DE_AUX_CHANNEL_A_IVB)
dp_aux_irq_handler(dev_priv);
if (de_iir & DE_GSE_IVB)
intel_opregion_asle_intr(dev_priv);
for_each_pipe(dev_priv, pipe) {
if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
drm_handle_vblank(&dev_priv->drm, pipe);
}
/* check event from PCH */
if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
u32 pch_iir = I915_READ(SDEIIR);
cpt_irq_handler(dev_priv, pch_iir);
/* clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
}
/*
* To handle irqs with the minimum potential races with fresh interrupts, we:
* 1 - Disable Master Interrupt Control.
* 2 - Find the source(s) of the interrupt.
* 3 - Clear the Interrupt Identity bits (IIR).
* 4 - Process the interrupt(s) that had bits set in the IIRs.
* 5 - Re-enable Master Interrupt Control.
*/
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 de_iir, gt_iir, de_ier, sde_ier = 0;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
/* disable master interrupt before clearing iir */
de_ier = I915_READ(DEIER);
I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
POSTING_READ(DEIER);
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
if (!HAS_PCH_NOP(dev_priv)) {
sde_ier = I915_READ(SDEIER);
I915_WRITE(SDEIER, 0);
POSTING_READ(SDEIER);
}
/* Find, clear, then process each source of interrupt */
gt_iir = I915_READ(GTIIR);
if (gt_iir) {
I915_WRITE(GTIIR, gt_iir);
ret = IRQ_HANDLED;
if (INTEL_GEN(dev_priv) >= 6)
snb_gt_irq_handler(dev_priv, gt_iir);
else
ilk_gt_irq_handler(dev_priv, gt_iir);
}
de_iir = I915_READ(DEIIR);
if (de_iir) {
I915_WRITE(DEIIR, de_iir);
ret = IRQ_HANDLED;
if (INTEL_GEN(dev_priv) >= 7)
ivb_display_irq_handler(dev_priv, de_iir);
else
ilk_display_irq_handler(dev_priv, de_iir);
}
if (INTEL_GEN(dev_priv) >= 6) {
u32 pm_iir = I915_READ(GEN6_PMIIR);
if (pm_iir) {
I915_WRITE(GEN6_PMIIR, pm_iir);
ret = IRQ_HANDLED;
gen6_rps_irq_handler(dev_priv, pm_iir);
}
}
I915_WRITE(DEIER, de_ier);
POSTING_READ(DEIER);
if (!HAS_PCH_NOP(dev_priv)) {
I915_WRITE(SDEIER, sde_ier);
POSTING_READ(SDEIER);
}
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger,
const u32 hpd[HPD_NUM_PINS])
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd,
bxt_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static irqreturn_t
gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
{
irqreturn_t ret = IRQ_NONE;
u32 iir;
enum pipe pipe;
if (master_ctl & GEN8_DE_MISC_IRQ) {
iir = I915_READ(GEN8_DE_MISC_IIR);
if (iir) {
I915_WRITE(GEN8_DE_MISC_IIR, iir);
ret = IRQ_HANDLED;
if (iir & GEN8_DE_MISC_GSE)
intel_opregion_asle_intr(dev_priv);
else
DRM_ERROR("Unexpected DE Misc interrupt\n");
}
else
DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
}
if (master_ctl & GEN8_DE_PORT_IRQ) {
iir = I915_READ(GEN8_DE_PORT_IIR);
if (iir) {
u32 tmp_mask;
bool found = false;
I915_WRITE(GEN8_DE_PORT_IIR, iir);
ret = IRQ_HANDLED;
tmp_mask = GEN8_AUX_CHANNEL_A;
if (INTEL_GEN(dev_priv) >= 9)
tmp_mask |= GEN9_AUX_CHANNEL_B |
GEN9_AUX_CHANNEL_C |
GEN9_AUX_CHANNEL_D;
if (IS_CNL_WITH_PORT_F(dev_priv))
tmp_mask |= CNL_AUX_CHANNEL_F;
if (iir & tmp_mask) {
dp_aux_irq_handler(dev_priv);
found = true;
}
if (IS_GEN9_LP(dev_priv)) {
tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
if (tmp_mask) {
bxt_hpd_irq_handler(dev_priv, tmp_mask,
hpd_bxt);
found = true;
}
} else if (IS_BROADWELL(dev_priv)) {
tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
if (tmp_mask) {
ilk_hpd_irq_handler(dev_priv,
tmp_mask, hpd_bdw);
found = true;
}
}
if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
gmbus_irq_handler(dev_priv);
found = true;
}
if (!found)
DRM_ERROR("Unexpected DE Port interrupt\n");
}
else
DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
}
for_each_pipe(dev_priv, pipe) {
u32 fault_errors;
if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
continue;
iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
if (!iir) {
DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
continue;
}
ret = IRQ_HANDLED;
I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
if (iir & GEN8_PIPE_VBLANK)
drm_handle_vblank(&dev_priv->drm, pipe);
if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
hsw_pipe_crc_irq_handler(dev_priv, pipe);
if (iir & GEN8_PIPE_FIFO_UNDERRUN)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
fault_errors = iir;
if (INTEL_GEN(dev_priv) >= 9)
fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
else
fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
if (fault_errors)
DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
pipe_name(pipe),
fault_errors);
}
if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
master_ctl & GEN8_DE_PCH_IRQ) {
/*
* FIXME(BDW): Assume for now that the new interrupt handling
* scheme also closed the SDE interrupt handling race we've seen
* on older pch-split platforms. But this needs testing.
*/
iir = I915_READ(SDEIIR);
if (iir) {
I915_WRITE(SDEIIR, iir);
ret = IRQ_HANDLED;
if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
HAS_PCH_CNP(dev_priv))
spt_irq_handler(dev_priv, iir);
else
cpt_irq_handler(dev_priv, iir);
} else {
/*
* Like on previous PCH there seems to be something
* fishy going on with forwarding PCH interrupts.
*/
DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
}
}
return ret;
}
static irqreturn_t gen8_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = to_i915(arg);
u32 master_ctl;
u32 gt_iir[4];
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
if (!master_ctl)
return IRQ_NONE;
I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
/* Find, clear, then process each source of interrupt */
gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
if (master_ctl & ~GEN8_GT_IRQS) {
disable_rpm_wakeref_asserts(dev_priv);
gen8_de_irq_handler(dev_priv, master_ctl);
enable_rpm_wakeref_asserts(dev_priv);
}
I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
return IRQ_HANDLED;
}
struct wedge_me {
struct delayed_work work;
struct drm_i915_private *i915;
const char *name;
};
static void wedge_me(struct work_struct *work)
{
struct wedge_me *w = container_of(work, typeof(*w), work.work);
dev_err(w->i915->drm.dev,
"%s timed out, cancelling all in-flight rendering.\n",
w->name);
i915_gem_set_wedged(w->i915);
}
static void __init_wedge(struct wedge_me *w,
struct drm_i915_private *i915,
long timeout,
const char *name)
{
w->i915 = i915;
w->name = name;
INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
schedule_delayed_work(&w->work, timeout);
}
static void __fini_wedge(struct wedge_me *w)
{
cancel_delayed_work_sync(&w->work);
destroy_delayed_work_on_stack(&w->work);
w->i915 = NULL;
}
#define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
(W)->i915; \
__fini_wedge((W)))
static u32
gen11_gt_engine_identity(struct drm_i915_private * const i915,
const unsigned int bank, const unsigned int bit)
{
void __iomem * const regs = i915->regs;
u32 timeout_ts;
u32 ident;
raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
/*
* NB: Specs do not specify how long to spin wait,
* so we do ~100us as an educated guess.
*/
timeout_ts = (local_clock() >> 10) + 100;
do {
ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
} while (!(ident & GEN11_INTR_DATA_VALID) &&
!time_after32(local_clock() >> 10, timeout_ts));
if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
bank, bit, ident);
return 0;
}
raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
GEN11_INTR_DATA_VALID);
return ident;
}
static void
gen11_other_irq_handler(struct drm_i915_private * const i915,
const u8 instance, const u16 iir)
{
WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
instance, iir);
}
static void
gen11_engine_irq_handler(struct drm_i915_private * const i915,
const u8 class, const u8 instance, const u16 iir)
{
struct intel_engine_cs *engine;
if (instance <= MAX_ENGINE_INSTANCE)
engine = i915->engine_class[class][instance];
else
engine = NULL;
if (likely(engine))
return gen8_cs_irq_handler(engine, iir);
WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
class, instance);
}
static void
gen11_gt_identity_handler(struct drm_i915_private * const i915,
const u32 identity)
{
const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
if (unlikely(!intr))
return;
if (class <= COPY_ENGINE_CLASS)
return gen11_engine_irq_handler(i915, class, instance, intr);
if (class == OTHER_CLASS)
return gen11_other_irq_handler(i915, instance, intr);
WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
class, instance, intr);
}
static void
gen11_gt_irq_handler(struct drm_i915_private * const i915,
const u32 master_ctl)
{
void __iomem * const regs = i915->regs;
unsigned int bank;
for (bank = 0; bank < 2; bank++) {
unsigned long intr_dw;
unsigned int bit;
if (!(master_ctl & GEN11_GT_DW_IRQ(bank)))
continue;
intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
if (unlikely(!intr_dw)) {
DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
continue;
}
for_each_set_bit(bit, &intr_dw, 32) {
const u32 ident = gen11_gt_engine_identity(i915,
bank, bit);
gen11_gt_identity_handler(i915, ident);
}
/* Clear must be after shared has been served for engine */
raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
}
}
static irqreturn_t gen11_irq_handler(int irq, void *arg)
{
struct drm_i915_private * const i915 = to_i915(arg);
void __iomem * const regs = i915->regs;
u32 master_ctl;
if (!intel_irqs_enabled(i915))
return IRQ_NONE;
master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
master_ctl &= ~GEN11_MASTER_IRQ;
if (!master_ctl)
return IRQ_NONE;
/* Disable interrupts. */
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
/* Find, clear, then process each source of interrupt. */
gen11_gt_irq_handler(i915, master_ctl);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
if (master_ctl & GEN11_DISPLAY_IRQ) {
const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
disable_rpm_wakeref_asserts(i915);
/*
* GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
* for the display related bits.
*/
gen8_de_irq_handler(i915, disp_ctl);
enable_rpm_wakeref_asserts(i915);
}
/* Acknowledge and enable interrupts. */
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
return IRQ_HANDLED;
}
static void i915_reset_device(struct drm_i915_private *dev_priv,
const char *msg)
{
struct i915_gpu_error *error = &dev_priv->gpu_error;
struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
struct wedge_me w;
kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
DRM_DEBUG_DRIVER("resetting chip\n");
kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
/* Use a watchdog to ensure that our reset completes */
i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
intel_prepare_reset(dev_priv);
error->reason = msg;
/* Signal that locked waiters should reset the GPU */
set_bit(I915_RESET_HANDOFF, &error->flags);
wake_up_all(&error->wait_queue);
/* Wait for anyone holding the lock to wakeup, without
* blocking indefinitely on struct_mutex.
*/
do {
if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
i915_reset(dev_priv);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
} while (wait_on_bit_timeout(&error->flags,
I915_RESET_HANDOFF,
TASK_UNINTERRUPTIBLE,
1));
error->reason = NULL;
intel_finish_reset(dev_priv);
}
if (!test_bit(I915_WEDGED, &error->flags))
kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
}
static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
{
u32 eir;
if (!IS_GEN2(dev_priv))
I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
if (INTEL_GEN(dev_priv) < 4)
I915_WRITE(IPEIR, I915_READ(IPEIR));
else
I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
I915_WRITE(EIR, I915_READ(EIR));
eir = I915_READ(EIR);
if (eir) {
/*
* some errors might have become stuck,
* mask them.
*/
DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
I915_WRITE(EMR, I915_READ(EMR) | eir);
I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
}
}
/**
* i915_handle_error - handle a gpu error
* @dev_priv: i915 device private
* @engine_mask: mask representing engines that are hung
* @flags: control flags
* @fmt: Error message format string
*
* Do some basic checking of register state at error time and
* dump it to the syslog. Also call i915_capture_error_state() to make
* sure we get a record and make it available in debugfs. Fire a uevent
* so userspace knows something bad happened (should trigger collection
* of a ring dump etc.).
*/
void i915_handle_error(struct drm_i915_private *dev_priv,
u32 engine_mask,
unsigned long flags,
const char *fmt, ...)
{
struct intel_engine_cs *engine;
unsigned int tmp;
char error_msg[80];
char *msg = NULL;
if (fmt) {
va_list args;
va_start(args, fmt);
vscnprintf(error_msg, sizeof(error_msg), fmt, args);
va_end(args);
msg = error_msg;
}
/*
* In most cases it's guaranteed that we get here with an RPM
* reference held, for example because there is a pending GPU
* request that won't finish until the reset is done. This
* isn't the case at least when we get here by doing a
* simulated reset via debugfs, so get an RPM reference.
*/
intel_runtime_pm_get(dev_priv);
engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
if (flags & I915_ERROR_CAPTURE) {
i915_capture_error_state(dev_priv, engine_mask, msg);
i915_clear_error_registers(dev_priv);
}
/*
* Try engine reset when available. We fall back to full reset if
* single reset fails.
*/
if (intel_has_reset_engine(dev_priv)) {
for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
&dev_priv->gpu_error.flags))
continue;
if (i915_reset_engine(engine, msg) == 0)
engine_mask &= ~intel_engine_flag(engine);
clear_bit(I915_RESET_ENGINE + engine->id,
&dev_priv->gpu_error.flags);
wake_up_bit(&dev_priv->gpu_error.flags,
I915_RESET_ENGINE + engine->id);
}
}
if (!engine_mask)
goto out;
/* Full reset needs the mutex, stop any other user trying to do so. */
if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
wait_event(dev_priv->gpu_error.reset_queue,
!test_bit(I915_RESET_BACKOFF,
&dev_priv->gpu_error.flags));
goto out;
}
/* Prevent any other reset-engine attempt. */
for_each_engine(engine, dev_priv, tmp) {
while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
&dev_priv->gpu_error.flags))
wait_on_bit(&dev_priv->gpu_error.flags,
I915_RESET_ENGINE + engine->id,
TASK_UNINTERRUPTIBLE);
}
i915_reset_device(dev_priv, msg);
for_each_engine(engine, dev_priv, tmp) {
clear_bit(I915_RESET_ENGINE + engine->id,
&dev_priv->gpu_error.flags);
}
clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
wake_up_all(&dev_priv->gpu_error.reset_queue);
out:
intel_runtime_pm_put(dev_priv);
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ilk_enable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
/* Even though there is no DMC, frame counter can get stuck when
* PSR is active as no frames are generated.
*/
if (HAS_PSR(dev_priv))
drm_vblank_restore(dev, pipe);
return 0;
}
static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
/* Even if there is no DMC, frame counter can get stuck when
* PSR is active as no frames are generated, so check only for PSR.
*/
if (HAS_PSR(dev_priv))
drm_vblank_restore(dev, pipe);
return 0;
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ilk_disable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void ibx_irq_reset(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_NOP(dev_priv))
return;
GEN3_IRQ_RESET(SDE);
if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
I915_WRITE(SERR_INT, 0xffffffff);
}
/*
* SDEIER is also touched by the interrupt handler to work around missed PCH
* interrupts. Hence we can't update it after the interrupt handler is enabled -
* instead we unconditionally enable all PCH interrupt sources here, but then
* only unmask them as needed with SDEIMR.
*
* This function needs to be called before interrupts are enabled.
*/
static void ibx_irq_pre_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (HAS_PCH_NOP(dev_priv))
return;
WARN_ON(I915_READ(SDEIER) != 0);
I915_WRITE(SDEIER, 0xffffffff);
POSTING_READ(SDEIER);
}
static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
{
GEN3_IRQ_RESET(GT);
if (INTEL_GEN(dev_priv) >= 6)
GEN3_IRQ_RESET(GEN6_PM);
}
static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
{
if (IS_CHERRYVIEW(dev_priv))
I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
else
I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
i9xx_pipestat_irq_reset(dev_priv);
GEN3_IRQ_RESET(VLV_);
dev_priv->irq_mask = ~0u;
}
static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
{
u32 pipestat_mask;
u32 enable_mask;
enum pipe pipe;
pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
for_each_pipe(dev_priv, pipe)
i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
enable_mask = I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT;
if (IS_CHERRYVIEW(dev_priv))
enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
I915_LPE_PIPE_C_INTERRUPT;
WARN_ON(dev_priv->irq_mask != ~0u);
dev_priv->irq_mask = ~enable_mask;
GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
}
/* drm_dma.h hooks
*/
static void ironlake_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (IS_GEN5(dev_priv))
I915_WRITE(HWSTAM, 0xffffffff);
GEN3_IRQ_RESET(DE);
if (IS_GEN7(dev_priv))
I915_WRITE(GEN7_ERR_INT, 0xffffffff);
gen5_gt_irq_reset(dev_priv);
ibx_irq_reset(dev_priv);
}
static void valleyview_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(VLV_MASTER_IER, 0);
POSTING_READ(VLV_MASTER_IER);
gen5_gt_irq_reset(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
{
GEN8_IRQ_RESET_NDX(GT, 0);
GEN8_IRQ_RESET_NDX(GT, 1);
GEN8_IRQ_RESET_NDX(GT, 2);
GEN8_IRQ_RESET_NDX(GT, 3);
}
static void gen8_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe;
I915_WRITE(GEN8_MASTER_IRQ, 0);
POSTING_READ(GEN8_MASTER_IRQ);
gen8_gt_irq_reset(dev_priv);
for_each_pipe(dev_priv, pipe)
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
GEN3_IRQ_RESET(GEN8_DE_PORT_);
GEN3_IRQ_RESET(GEN8_DE_MISC_);
GEN3_IRQ_RESET(GEN8_PCU_);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_reset(dev_priv);
}
static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
{
/* Disable RCS, BCS, VCS and VECS class engines. */
I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0);
/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0);
I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0);
I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0);
I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0);
I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
}
static void gen11_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
POSTING_READ(GEN11_GFX_MSTR_IRQ);
gen11_gt_irq_reset(dev_priv);
I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
for_each_pipe(dev_priv, pipe)
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
GEN3_IRQ_RESET(GEN8_DE_PORT_);
GEN3_IRQ_RESET(GEN8_DE_MISC_);
GEN3_IRQ_RESET(GEN8_PCU_);
}
void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
u8 pipe_mask)
{
uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
enum pipe pipe;
spin_lock_irq(&dev_priv->irq_lock);
if (!intel_irqs_enabled(dev_priv)) {
spin_unlock_irq(&dev_priv->irq_lock);
return;
}
for_each_pipe_masked(dev_priv, pipe, pipe_mask)
GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
dev_priv->de_irq_mask[pipe],
~dev_priv->de_irq_mask[pipe] | extra_ier);
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
u8 pipe_mask)
{
enum pipe pipe;
spin_lock_irq(&dev_priv->irq_lock);
if (!intel_irqs_enabled(dev_priv)) {
spin_unlock_irq(&dev_priv->irq_lock);
return;
}
for_each_pipe_masked(dev_priv, pipe, pipe_mask)
GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
spin_unlock_irq(&dev_priv->irq_lock);
/* make sure we're done processing display irqs */
synchronize_irq(dev_priv->drm.irq);
}
static void cherryview_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(GEN8_MASTER_IRQ, 0);
POSTING_READ(GEN8_MASTER_IRQ);
gen8_gt_irq_reset(dev_priv);
GEN3_IRQ_RESET(GEN8_PCU_);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
const u32 hpd[HPD_NUM_PINS])
{
struct intel_encoder *encoder;
u32 enabled_irqs = 0;
for_each_intel_encoder(&dev_priv->drm, encoder)
if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
enabled_irqs |= hpd[encoder->hpd_pin];
return enabled_irqs;
}
static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
/*
* Enable digital hotplug on the PCH, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec).
* The pulse duration bits are reserved on LPT+.
*/
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug &= ~(PORTB_PULSE_DURATION_MASK |
PORTC_PULSE_DURATION_MASK |
PORTD_PULSE_DURATION_MASK);
hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
/*
* When CPU and PCH are on the same package, port A
* HPD must be enabled in both north and south.
*/
if (HAS_PCH_LPT_LP(dev_priv))
hotplug |= PORTA_HOTPLUG_ENABLE;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
}
static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
if (HAS_PCH_IBX(dev_priv)) {
hotplug_irqs = SDE_HOTPLUG_MASK;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
} else {
hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
}
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
ibx_hpd_detection_setup(dev_priv);
}
static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 val, hotplug;
/* Display WA #1179 WaHardHangonHotPlug: cnp */
if (HAS_PCH_CNP(dev_priv)) {
val = I915_READ(SOUTH_CHICKEN1);
val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
val |= CHASSIS_CLK_REQ_DURATION(0xf);
I915_WRITE(SOUTH_CHICKEN1, val);
}
/* Enable digital hotplug on the PCH */
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug |= PORTA_HOTPLUG_ENABLE |
PORTB_HOTPLUG_ENABLE |
PORTC_HOTPLUG_ENABLE |
PORTD_HOTPLUG_ENABLE;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
hotplug = I915_READ(PCH_PORT_HOTPLUG2);
hotplug |= PORTE_HOTPLUG_ENABLE;
I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
}
static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
spt_hpd_detection_setup(dev_priv);
}
static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
/*
* Enable digital hotplug on the CPU, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec)
* The pulse duration bits are reserved on HSW+.
*/
hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
DIGITAL_PORTA_PULSE_DURATION_2ms;
I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
}
static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
if (INTEL_GEN(dev_priv) >= 8) {
hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
} else if (INTEL_GEN(dev_priv) >= 7) {
hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
} else {
hotplug_irqs = DE_DP_A_HOTPLUG;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
}
ilk_hpd_detection_setup(dev_priv);
ibx_hpd_irq_setup(dev_priv);
}
static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
u32 enabled_irqs)
{
u32 hotplug;
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug |= PORTA_HOTPLUG_ENABLE |
PORTB_HOTPLUG_ENABLE |
PORTC_HOTPLUG_ENABLE;
DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
hotplug, enabled_irqs);
hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
/*
* For BXT invert bit has to be set based on AOB design
* for HPD detection logic, update it based on VBT fields.
*/
if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
hotplug |= BXT_DDIA_HPD_INVERT;
if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
hotplug |= BXT_DDIB_HPD_INVERT;
if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
hotplug |= BXT_DDIC_HPD_INVERT;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
}
static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
}
static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
}
static void ibx_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 mask;
if (HAS_PCH_NOP(dev_priv))
return;
if (HAS_PCH_IBX(dev_priv))
mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
else
mask = SDE_GMBUS_CPT;
gen3_assert_iir_is_zero(dev_priv, SDEIIR);
I915_WRITE(SDEIMR, ~mask);
if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
HAS_PCH_LPT(dev_priv))
ibx_hpd_detection_setup(dev_priv);
else
spt_hpd_detection_setup(dev_priv);
}
static void gen5_gt_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 pm_irqs, gt_irqs;
pm_irqs = gt_irqs = 0;
dev_priv->gt_irq_mask = ~0;
if (HAS_L3_DPF(dev_priv)) {
/* L3 parity interrupt is always unmasked. */
dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
gt_irqs |= GT_PARITY_ERROR(dev_priv);
}
gt_irqs |= GT_RENDER_USER_INTERRUPT;
if (IS_GEN5(dev_priv)) {
gt_irqs |= ILK_BSD_USER_INTERRUPT;
} else {
gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
}
GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
if (INTEL_GEN(dev_priv) >= 6) {
/*
* RPS interrupts will get enabled/disabled on demand when RPS
* itself is enabled/disabled.
*/
if (HAS_VEBOX(dev_priv)) {
pm_irqs |= PM_VEBOX_USER_INTERRUPT;
dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
}
dev_priv->pm_imr = 0xffffffff;
GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
}
}
static int ironlake_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 display_mask, extra_mask;
if (INTEL_GEN(dev_priv) >= 7) {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
DE_DP_A_HOTPLUG_IVB);
} else {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
DE_PIPEA_CRC_DONE | DE_POISON);
extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
DE_DP_A_HOTPLUG);
}
dev_priv->irq_mask = ~display_mask;
ibx_irq_pre_postinstall(dev);
GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
gen5_gt_irq_postinstall(dev);
ilk_hpd_detection_setup(dev_priv);
ibx_irq_postinstall(dev);
if (IS_IRONLAKE_M(dev_priv)) {
/* Enable PCU event interrupts
*
* spinlocking not required here for correctness since interrupt
* setup is guaranteed to run in single-threaded context. But we
* need it to make the assert_spin_locked happy. */
spin_lock_irq(&dev_priv->irq_lock);
ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
spin_unlock_irq(&dev_priv->irq_lock);
}
return 0;
}
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
{
lockdep_assert_held(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = true;
if (intel_irqs_enabled(dev_priv)) {
vlv_display_irq_reset(dev_priv);
vlv_display_irq_postinstall(dev_priv);
}
}
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
{
lockdep_assert_held(&dev_priv->irq_lock);
if (!dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = false;
if (intel_irqs_enabled(dev_priv))
vlv_display_irq_reset(dev_priv);
}
static int valleyview_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
gen5_gt_irq_postinstall(dev);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
POSTING_READ(VLV_MASTER_IER);
return 0;
}
static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
{
/* These are interrupts we'll toggle with the ring mask register */
uint32_t gt_interrupts[] = {
GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
0,
GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
};
if (HAS_L3_DPF(dev_priv))
gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
dev_priv->pm_ier = 0x0;
dev_priv->pm_imr = ~dev_priv->pm_ier;
GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
/*
* RPS interrupts will get enabled/disabled on demand when RPS itself
* is enabled/disabled. Same wil be the case for GuC interrupts.
*/
GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
}
static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
{
uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
uint32_t de_pipe_enables;
u32 de_port_masked = GEN8_AUX_CHANNEL_A;
u32 de_port_enables;
u32 de_misc_masked = GEN8_DE_MISC_GSE;
enum pipe pipe;
if (INTEL_GEN(dev_priv) >= 9) {
de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
GEN9_AUX_CHANNEL_D;
if (IS_GEN9_LP(dev_priv))
de_port_masked |= BXT_DE_PORT_GMBUS;
} else {
de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
}
if (IS_CNL_WITH_PORT_F(dev_priv))
de_port_masked |= CNL_AUX_CHANNEL_F;
de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
GEN8_PIPE_FIFO_UNDERRUN;
de_port_enables = de_port_masked;
if (IS_GEN9_LP(dev_priv))
de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
else if (IS_BROADWELL(dev_priv))
de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
for_each_pipe(dev_priv, pipe) {
dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
dev_priv->de_irq_mask[pipe],
de_pipe_enables);
}
GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
if (IS_GEN9_LP(dev_priv))
bxt_hpd_detection_setup(dev_priv);
else if (IS_BROADWELL(dev_priv))
ilk_hpd_detection_setup(dev_priv);
}
static int gen8_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_pre_postinstall(dev);
gen8_gt_irq_postinstall(dev_priv);
gen8_de_irq_postinstall(dev_priv);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_postinstall(dev);
I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
POSTING_READ(GEN8_MASTER_IRQ);
return 0;
}
static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
{
const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
BUILD_BUG_ON(irqs & 0xffff0000);
/* Enable RCS, BCS, VCS and VECS class interrupts. */
I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs);
/* Unmask irqs on RCS, BCS, VCS and VECS engines. */
I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16));
I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16));
I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16));
I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16));
I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
dev_priv->pm_imr = 0xffffffff; /* TODO */
}
static int gen11_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
gen11_gt_irq_postinstall(dev_priv);
gen8_de_irq_postinstall(dev_priv);
I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
POSTING_READ(GEN11_GFX_MSTR_IRQ);
return 0;
}
static int cherryview_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
gen8_gt_irq_postinstall(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
POSTING_READ(GEN8_MASTER_IRQ);
return 0;
}
static void i8xx_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
i9xx_pipestat_irq_reset(dev_priv);
I915_WRITE16(HWSTAM, 0xffff);
GEN2_IRQ_RESET();
}
static int i8xx_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u16 enable_mask;
I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
enable_mask =
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_USER_INTERRUPT;
GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
return 0;
}
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u16 iir;
iir = I915_READ16(IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
I915_WRITE16(IIR, iir);
if (iir & I915_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void i915_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (I915_HAS_HOTPLUG(dev_priv)) {
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
}
i9xx_pipestat_irq_reset(dev_priv);
I915_WRITE(HWSTAM, 0xffffffff);
GEN3_IRQ_RESET();
}
static int i915_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 enable_mask;
I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_USER_INTERRUPT;
if (I915_HAS_HOTPLUG(dev_priv)) {
/* Enable in IER... */
enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
/* and unmask in IMR */
dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
}
GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
i915_enable_asle_pipestat(dev_priv);
return 0;
}
static irqreturn_t i915_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 iir;
iir = I915_READ(IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
if (I915_HAS_HOTPLUG(dev_priv) &&
iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
I915_WRITE(IIR, iir);
if (iir & I915_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void i965_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
i9xx_pipestat_irq_reset(dev_priv);
I915_WRITE(HWSTAM, 0xffffffff);
GEN3_IRQ_RESET();
}
static int i965_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 enable_mask;
u32 error_mask;
/*
* Enable some error detection, note the instruction error mask
* bit is reserved, so we leave it masked.
*/
if (IS_G4X(dev_priv)) {
error_mask = ~(GM45_ERROR_PAGE_TABLE |
GM45_ERROR_MEM_PRIV |
GM45_ERROR_CP_PRIV |
I915_ERROR_MEMORY_REFRESH);
} else {
error_mask = ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH);
}
I915_WRITE(EMR, error_mask);
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
if (IS_G4X(dev_priv))
enable_mask |= I915_BSD_USER_INTERRUPT;
GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
i915_enable_asle_pipestat(dev_priv);
return 0;
}
static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_en;
lockdep_assert_held(&dev_priv->irq_lock);
/* Note HDMI and DP share hotplug bits */
/* enable bits are the same for all generations */
hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
/* Programming the CRT detection parameters tends
to generate a spurious hotplug event about three
seconds later. So just do it once.
*/
if (IS_G4X(dev_priv))
hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
/* Ignore TV since it's buggy */
i915_hotplug_interrupt_update_locked(dev_priv,
HOTPLUG_INT_EN_MASK |
CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
CRT_HOTPLUG_ACTIVATION_PERIOD_64,
hotplug_en);
}
static irqreturn_t i965_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 iir;
iir = I915_READ(IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
I915_WRITE(IIR, iir);
if (iir & I915_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
if (iir & I915_BSD_USER_INTERRUPT)
notify_ring(dev_priv->engine[VCS]);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
/**
* intel_irq_init - initializes irq support
* @dev_priv: i915 device instance
*
* This function initializes all the irq support including work items, timers
* and all the vtables. It does not setup the interrupt itself though.
*/
void intel_irq_init(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct intel_rps *rps = &dev_priv->gt_pm.rps;
int i;
intel_hpd_init_work(dev_priv);
INIT_WORK(&rps->work, gen6_pm_rps_work);
INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
for (i = 0; i < MAX_L3_SLICES; ++i)
dev_priv->l3_parity.remap_info[i] = NULL;
if (HAS_GUC_SCHED(dev_priv))
dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
/* Let's track the enabled rps events */
if (IS_VALLEYVIEW(dev_priv))
/* WaGsvRC0ResidencyMethod:vlv */
dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
else
dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
rps->pm_intrmsk_mbz = 0;
/*
* SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
* if GEN6_PM_UP_EI_EXPIRED is masked.
*
* TODO: verify if this can be reproduced on VLV,CHV.
*/
if (INTEL_GEN(dev_priv) <= 7)
rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
if (INTEL_GEN(dev_priv) >= 8)
rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
if (IS_GEN2(dev_priv)) {
/* Gen2 doesn't have a hardware frame counter */
dev->max_vblank_count = 0;
} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
dev->driver->get_vblank_counter = g4x_get_vblank_counter;
} else {
dev->driver->get_vblank_counter = i915_get_vblank_counter;
dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
}
/*
* Opt out of the vblank disable timer on everything except gen2.
* Gen2 doesn't have a hardware frame counter and so depends on
* vblank interrupts to produce sane vblank seuquence numbers.
*/
if (!IS_GEN2(dev_priv))
dev->vblank_disable_immediate = true;
/* Most platforms treat the display irq block as an always-on
* power domain. vlv/chv can disable it at runtime and need
* special care to avoid writing any of the display block registers
* outside of the power domain. We defer setting up the display irqs
* in this case to the runtime pm.
*/
dev_priv->display_irqs_enabled = true;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
dev_priv->display_irqs_enabled = false;
dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
if (IS_CHERRYVIEW(dev_priv)) {
dev->driver->irq_handler = cherryview_irq_handler;
dev->driver->irq_preinstall = cherryview_irq_reset;
dev->driver->irq_postinstall = cherryview_irq_postinstall;
dev->driver->irq_uninstall = cherryview_irq_reset;
dev->driver->enable_vblank = i965_enable_vblank;
dev->driver->disable_vblank = i965_disable_vblank;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else if (IS_VALLEYVIEW(dev_priv)) {
dev->driver->irq_handler = valleyview_irq_handler;
dev->driver->irq_preinstall = valleyview_irq_reset;
dev->driver->irq_postinstall = valleyview_irq_postinstall;
dev->driver->irq_uninstall = valleyview_irq_reset;
dev->driver->enable_vblank = i965_enable_vblank;
dev->driver->disable_vblank = i965_disable_vblank;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else if (INTEL_GEN(dev_priv) >= 11) {
dev->driver->irq_handler = gen11_irq_handler;
dev->driver->irq_preinstall = gen11_irq_reset;
dev->driver->irq_postinstall = gen11_irq_postinstall;
dev->driver->irq_uninstall = gen11_irq_reset;
dev->driver->enable_vblank = gen8_enable_vblank;
dev->driver->disable_vblank = gen8_disable_vblank;
dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
} else if (INTEL_GEN(dev_priv) >= 8) {
dev->driver->irq_handler = gen8_irq_handler;
dev->driver->irq_preinstall = gen8_irq_reset;
dev->driver->irq_postinstall = gen8_irq_postinstall;
dev->driver->irq_uninstall = gen8_irq_reset;
dev->driver->enable_vblank = gen8_enable_vblank;
dev->driver->disable_vblank = gen8_disable_vblank;
if (IS_GEN9_LP(dev_priv))
dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
HAS_PCH_CNP(dev_priv))
dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
else
dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
} else if (HAS_PCH_SPLIT(dev_priv)) {
dev->driver->irq_handler = ironlake_irq_handler;
dev->driver->irq_preinstall = ironlake_irq_reset;
dev->driver->irq_postinstall = ironlake_irq_postinstall;
dev->driver->irq_uninstall = ironlake_irq_reset;
dev->driver->enable_vblank = ironlake_enable_vblank;
dev->driver->disable_vblank = ironlake_disable_vblank;
dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
} else {
if (IS_GEN2(dev_priv)) {
dev->driver->irq_preinstall = i8xx_irq_reset;
dev->driver->irq_postinstall = i8xx_irq_postinstall;
dev->driver->irq_handler = i8xx_irq_handler;
dev->driver->irq_uninstall = i8xx_irq_reset;
dev->driver->enable_vblank = i8xx_enable_vblank;
dev->driver->disable_vblank = i8xx_disable_vblank;
} else if (IS_GEN3(dev_priv)) {
dev->driver->irq_preinstall = i915_irq_reset;
dev->driver->irq_postinstall = i915_irq_postinstall;
dev->driver->irq_uninstall = i915_irq_reset;
dev->driver->irq_handler = i915_irq_handler;
dev->driver->enable_vblank = i8xx_enable_vblank;
dev->driver->disable_vblank = i8xx_disable_vblank;
} else {
dev->driver->irq_preinstall = i965_irq_reset;
dev->driver->irq_postinstall = i965_irq_postinstall;
dev->driver->irq_uninstall = i965_irq_reset;
dev->driver->irq_handler = i965_irq_handler;
dev->driver->enable_vblank = i965_enable_vblank;
dev->driver->disable_vblank = i965_disable_vblank;
}
if (I915_HAS_HOTPLUG(dev_priv))
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
}
}
/**
* intel_irq_fini - deinitializes IRQ support
* @i915: i915 device instance
*
* This function deinitializes all the IRQ support.
*/
void intel_irq_fini(struct drm_i915_private *i915)
{
int i;
for (i = 0; i < MAX_L3_SLICES; ++i)
kfree(i915->l3_parity.remap_info[i]);
}
/**
* intel_irq_install - enables the hardware interrupt
* @dev_priv: i915 device instance
*
* This function enables the hardware interrupt handling, but leaves the hotplug
* handling still disabled. It is called after intel_irq_init().
*
* In the driver load and resume code we need working interrupts in a few places
* but don't want to deal with the hassle of concurrent probe and hotplug
* workers. Hence the split into this two-stage approach.
*/
int intel_irq_install(struct drm_i915_private *dev_priv)
{
/*
* We enable some interrupt sources in our postinstall hooks, so mark
* interrupts as enabled _before_ actually enabling them to avoid
* special cases in our ordering checks.
*/
dev_priv->runtime_pm.irqs_enabled = true;
return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
}
/**
* intel_irq_uninstall - finilizes all irq handling
* @dev_priv: i915 device instance
*
* This stops interrupt and hotplug handling and unregisters and frees all
* resources acquired in the init functions.
*/
void intel_irq_uninstall(struct drm_i915_private *dev_priv)
{
drm_irq_uninstall(&dev_priv->drm);
intel_hpd_cancel_work(dev_priv);
dev_priv->runtime_pm.irqs_enabled = false;
}
/**
* intel_runtime_pm_disable_interrupts - runtime interrupt disabling
* @dev_priv: i915 device instance
*
* This function is used to disable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
{
dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
dev_priv->runtime_pm.irqs_enabled = false;
synchronize_irq(dev_priv->drm.irq);
}
/**
* intel_runtime_pm_enable_interrupts - runtime interrupt enabling
* @dev_priv: i915 device instance
*
* This function is used to enable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
{
dev_priv->runtime_pm.irqs_enabled = true;
dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
}