mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
6d6ea1e967
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables",
v6.
This is a followup to the discussion in [1], [2].
IOMMUs using ARMv7 short-descriptor format require page tables (level 1
and 2) to be allocated within the first 4GB of RAM, even on 64-bit
systems.
For L1 tables that are bigger than a page, we can just use
__get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still
use GFP_DMA).
For L2 tables that only take 1KB, it would be a waste to allocate a full
page, so we considered 3 approaches:
1. This series, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2 page
tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable to reuse
freed fragments until the whole page is freed. [3]
This series is the most memory-efficient approach.
stable@ note:
We confirmed that this is a regression, and IOMMU errors happen on 4.19
and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue
most likely starts from commit ad67f5a654
("arm64: replace ZONE_DMA
with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek
platforms (and maybe others?).
[1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html
[2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html
[3] https://patchwork.codeaurora.org/patch/671639/
This patch (of 3):
IOMMUs using ARMv7 short-descriptor format require page tables to be
allocated within the first 4GB of RAM, even on 64-bit systems. On arm64,
this is done by passing GFP_DMA32 flag to memory allocation functions.
For IOMMU L2 tables that only take 1KB, it would be a waste to allocate
a full page using get_free_pages, so we considered 3 approaches:
1. This patch, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2
page tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable
to reuse freed fragments until the whole page is freed.
This change makes it possible to create a custom cache in DMA32 zone using
kmem_cache_create, then allocate memory using kmem_cache_alloc.
We do not create a DMA32 kmalloc cache array, as there are currently no
users of kmalloc(..., GFP_DMA32). These calls will continue to trigger a
warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK.
This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32
kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and
unnecessary).
Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Sasha Levin <Alexander.Levin@microsoft.com>
Cc: Huaisheng Ye <yehs1@lenovo.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yong Wu <yong.wu@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Tomasz Figa <tfiga@google.com>
Cc: Yingjoe Chen <yingjoe.chen@mediatek.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
768 lines
23 KiB
C
768 lines
23 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
|
|
*
|
|
* (C) SGI 2006, Christoph Lameter
|
|
* Cleaned up and restructured to ease the addition of alternative
|
|
* implementations of SLAB allocators.
|
|
* (C) Linux Foundation 2008-2013
|
|
* Unified interface for all slab allocators
|
|
*/
|
|
|
|
#ifndef _LINUX_SLAB_H
|
|
#define _LINUX_SLAB_H
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/overflow.h>
|
|
#include <linux/types.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
|
|
/*
|
|
* Flags to pass to kmem_cache_create().
|
|
* The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
|
|
*/
|
|
/* DEBUG: Perform (expensive) checks on alloc/free */
|
|
#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
|
|
/* DEBUG: Red zone objs in a cache */
|
|
#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
|
|
/* DEBUG: Poison objects */
|
|
#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
|
|
/* Align objs on cache lines */
|
|
#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
|
|
/* Use GFP_DMA memory */
|
|
#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
|
|
/* Use GFP_DMA32 memory */
|
|
#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
|
|
/* DEBUG: Store the last owner for bug hunting */
|
|
#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
|
|
/* Panic if kmem_cache_create() fails */
|
|
#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
|
|
/*
|
|
* SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
|
|
*
|
|
* This delays freeing the SLAB page by a grace period, it does _NOT_
|
|
* delay object freeing. This means that if you do kmem_cache_free()
|
|
* that memory location is free to be reused at any time. Thus it may
|
|
* be possible to see another object there in the same RCU grace period.
|
|
*
|
|
* This feature only ensures the memory location backing the object
|
|
* stays valid, the trick to using this is relying on an independent
|
|
* object validation pass. Something like:
|
|
*
|
|
* rcu_read_lock()
|
|
* again:
|
|
* obj = lockless_lookup(key);
|
|
* if (obj) {
|
|
* if (!try_get_ref(obj)) // might fail for free objects
|
|
* goto again;
|
|
*
|
|
* if (obj->key != key) { // not the object we expected
|
|
* put_ref(obj);
|
|
* goto again;
|
|
* }
|
|
* }
|
|
* rcu_read_unlock();
|
|
*
|
|
* This is useful if we need to approach a kernel structure obliquely,
|
|
* from its address obtained without the usual locking. We can lock
|
|
* the structure to stabilize it and check it's still at the given address,
|
|
* only if we can be sure that the memory has not been meanwhile reused
|
|
* for some other kind of object (which our subsystem's lock might corrupt).
|
|
*
|
|
* rcu_read_lock before reading the address, then rcu_read_unlock after
|
|
* taking the spinlock within the structure expected at that address.
|
|
*
|
|
* Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
|
|
*/
|
|
/* Defer freeing slabs to RCU */
|
|
#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
|
|
/* Spread some memory over cpuset */
|
|
#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
|
|
/* Trace allocations and frees */
|
|
#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
|
|
|
|
/* Flag to prevent checks on free */
|
|
#ifdef CONFIG_DEBUG_OBJECTS
|
|
# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
|
|
#else
|
|
# define SLAB_DEBUG_OBJECTS 0
|
|
#endif
|
|
|
|
/* Avoid kmemleak tracing */
|
|
#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
|
|
|
|
/* Fault injection mark */
|
|
#ifdef CONFIG_FAILSLAB
|
|
# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
|
|
#else
|
|
# define SLAB_FAILSLAB 0
|
|
#endif
|
|
/* Account to memcg */
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
|
|
#else
|
|
# define SLAB_ACCOUNT 0
|
|
#endif
|
|
|
|
#ifdef CONFIG_KASAN
|
|
#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
|
|
#else
|
|
#define SLAB_KASAN 0
|
|
#endif
|
|
|
|
/* The following flags affect the page allocator grouping pages by mobility */
|
|
/* Objects are reclaimable */
|
|
#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
|
|
#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
|
|
/*
|
|
* ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
|
|
*
|
|
* Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
|
|
*
|
|
* ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
|
|
* Both make kfree a no-op.
|
|
*/
|
|
#define ZERO_SIZE_PTR ((void *)16)
|
|
|
|
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
|
|
(unsigned long)ZERO_SIZE_PTR)
|
|
|
|
#include <linux/kasan.h>
|
|
|
|
struct mem_cgroup;
|
|
/*
|
|
* struct kmem_cache related prototypes
|
|
*/
|
|
void __init kmem_cache_init(void);
|
|
bool slab_is_available(void);
|
|
|
|
extern bool usercopy_fallback;
|
|
|
|
struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
|
|
unsigned int align, slab_flags_t flags,
|
|
void (*ctor)(void *));
|
|
struct kmem_cache *kmem_cache_create_usercopy(const char *name,
|
|
unsigned int size, unsigned int align,
|
|
slab_flags_t flags,
|
|
unsigned int useroffset, unsigned int usersize,
|
|
void (*ctor)(void *));
|
|
void kmem_cache_destroy(struct kmem_cache *);
|
|
int kmem_cache_shrink(struct kmem_cache *);
|
|
|
|
void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
|
|
void memcg_deactivate_kmem_caches(struct mem_cgroup *);
|
|
void memcg_destroy_kmem_caches(struct mem_cgroup *);
|
|
|
|
/*
|
|
* Please use this macro to create slab caches. Simply specify the
|
|
* name of the structure and maybe some flags that are listed above.
|
|
*
|
|
* The alignment of the struct determines object alignment. If you
|
|
* f.e. add ____cacheline_aligned_in_smp to the struct declaration
|
|
* then the objects will be properly aligned in SMP configurations.
|
|
*/
|
|
#define KMEM_CACHE(__struct, __flags) \
|
|
kmem_cache_create(#__struct, sizeof(struct __struct), \
|
|
__alignof__(struct __struct), (__flags), NULL)
|
|
|
|
/*
|
|
* To whitelist a single field for copying to/from usercopy, use this
|
|
* macro instead for KMEM_CACHE() above.
|
|
*/
|
|
#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
|
|
kmem_cache_create_usercopy(#__struct, \
|
|
sizeof(struct __struct), \
|
|
__alignof__(struct __struct), (__flags), \
|
|
offsetof(struct __struct, __field), \
|
|
sizeof_field(struct __struct, __field), NULL)
|
|
|
|
/*
|
|
* Common kmalloc functions provided by all allocators
|
|
*/
|
|
void * __must_check __krealloc(const void *, size_t, gfp_t);
|
|
void * __must_check krealloc(const void *, size_t, gfp_t);
|
|
void kfree(const void *);
|
|
void kzfree(const void *);
|
|
size_t ksize(const void *);
|
|
|
|
#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
|
|
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
|
|
bool to_user);
|
|
#else
|
|
static inline void __check_heap_object(const void *ptr, unsigned long n,
|
|
struct page *page, bool to_user) { }
|
|
#endif
|
|
|
|
/*
|
|
* Some archs want to perform DMA into kmalloc caches and need a guaranteed
|
|
* alignment larger than the alignment of a 64-bit integer.
|
|
* Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
|
|
*/
|
|
#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
|
|
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
|
|
#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
|
|
#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
|
|
#else
|
|
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
|
|
#endif
|
|
|
|
/*
|
|
* Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
|
|
* Intended for arches that get misalignment faults even for 64 bit integer
|
|
* aligned buffers.
|
|
*/
|
|
#ifndef ARCH_SLAB_MINALIGN
|
|
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
|
|
#endif
|
|
|
|
/*
|
|
* kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
|
|
* pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
|
|
* aligned pointers.
|
|
*/
|
|
#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
|
|
#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
|
|
#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
|
|
|
|
/*
|
|
* Kmalloc array related definitions
|
|
*/
|
|
|
|
#ifdef CONFIG_SLAB
|
|
/*
|
|
* The largest kmalloc size supported by the SLAB allocators is
|
|
* 32 megabyte (2^25) or the maximum allocatable page order if that is
|
|
* less than 32 MB.
|
|
*
|
|
* WARNING: Its not easy to increase this value since the allocators have
|
|
* to do various tricks to work around compiler limitations in order to
|
|
* ensure proper constant folding.
|
|
*/
|
|
#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
|
|
(MAX_ORDER + PAGE_SHIFT - 1) : 25)
|
|
#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
|
|
#ifndef KMALLOC_SHIFT_LOW
|
|
#define KMALLOC_SHIFT_LOW 5
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLUB
|
|
/*
|
|
* SLUB directly allocates requests fitting in to an order-1 page
|
|
* (PAGE_SIZE*2). Larger requests are passed to the page allocator.
|
|
*/
|
|
#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
|
|
#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
|
|
#ifndef KMALLOC_SHIFT_LOW
|
|
#define KMALLOC_SHIFT_LOW 3
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLOB
|
|
/*
|
|
* SLOB passes all requests larger than one page to the page allocator.
|
|
* No kmalloc array is necessary since objects of different sizes can
|
|
* be allocated from the same page.
|
|
*/
|
|
#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
|
|
#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
|
|
#ifndef KMALLOC_SHIFT_LOW
|
|
#define KMALLOC_SHIFT_LOW 3
|
|
#endif
|
|
#endif
|
|
|
|
/* Maximum allocatable size */
|
|
#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
|
|
/* Maximum size for which we actually use a slab cache */
|
|
#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
|
|
/* Maximum order allocatable via the slab allocagtor */
|
|
#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
|
|
|
|
/*
|
|
* Kmalloc subsystem.
|
|
*/
|
|
#ifndef KMALLOC_MIN_SIZE
|
|
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
|
|
#endif
|
|
|
|
/*
|
|
* This restriction comes from byte sized index implementation.
|
|
* Page size is normally 2^12 bytes and, in this case, if we want to use
|
|
* byte sized index which can represent 2^8 entries, the size of the object
|
|
* should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
|
|
* If minimum size of kmalloc is less than 16, we use it as minimum object
|
|
* size and give up to use byte sized index.
|
|
*/
|
|
#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
|
|
(KMALLOC_MIN_SIZE) : 16)
|
|
|
|
/*
|
|
* Whenever changing this, take care of that kmalloc_type() and
|
|
* create_kmalloc_caches() still work as intended.
|
|
*/
|
|
enum kmalloc_cache_type {
|
|
KMALLOC_NORMAL = 0,
|
|
KMALLOC_RECLAIM,
|
|
#ifdef CONFIG_ZONE_DMA
|
|
KMALLOC_DMA,
|
|
#endif
|
|
NR_KMALLOC_TYPES
|
|
};
|
|
|
|
#ifndef CONFIG_SLOB
|
|
extern struct kmem_cache *
|
|
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
|
|
|
|
static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
|
|
{
|
|
#ifdef CONFIG_ZONE_DMA
|
|
/*
|
|
* The most common case is KMALLOC_NORMAL, so test for it
|
|
* with a single branch for both flags.
|
|
*/
|
|
if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
|
|
return KMALLOC_NORMAL;
|
|
|
|
/*
|
|
* At least one of the flags has to be set. If both are, __GFP_DMA
|
|
* is more important.
|
|
*/
|
|
return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
|
|
#else
|
|
return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Figure out which kmalloc slab an allocation of a certain size
|
|
* belongs to.
|
|
* 0 = zero alloc
|
|
* 1 = 65 .. 96 bytes
|
|
* 2 = 129 .. 192 bytes
|
|
* n = 2^(n-1)+1 .. 2^n
|
|
*/
|
|
static __always_inline unsigned int kmalloc_index(size_t size)
|
|
{
|
|
if (!size)
|
|
return 0;
|
|
|
|
if (size <= KMALLOC_MIN_SIZE)
|
|
return KMALLOC_SHIFT_LOW;
|
|
|
|
if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
|
|
return 1;
|
|
if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
|
|
return 2;
|
|
if (size <= 8) return 3;
|
|
if (size <= 16) return 4;
|
|
if (size <= 32) return 5;
|
|
if (size <= 64) return 6;
|
|
if (size <= 128) return 7;
|
|
if (size <= 256) return 8;
|
|
if (size <= 512) return 9;
|
|
if (size <= 1024) return 10;
|
|
if (size <= 2 * 1024) return 11;
|
|
if (size <= 4 * 1024) return 12;
|
|
if (size <= 8 * 1024) return 13;
|
|
if (size <= 16 * 1024) return 14;
|
|
if (size <= 32 * 1024) return 15;
|
|
if (size <= 64 * 1024) return 16;
|
|
if (size <= 128 * 1024) return 17;
|
|
if (size <= 256 * 1024) return 18;
|
|
if (size <= 512 * 1024) return 19;
|
|
if (size <= 1024 * 1024) return 20;
|
|
if (size <= 2 * 1024 * 1024) return 21;
|
|
if (size <= 4 * 1024 * 1024) return 22;
|
|
if (size <= 8 * 1024 * 1024) return 23;
|
|
if (size <= 16 * 1024 * 1024) return 24;
|
|
if (size <= 32 * 1024 * 1024) return 25;
|
|
if (size <= 64 * 1024 * 1024) return 26;
|
|
BUG();
|
|
|
|
/* Will never be reached. Needed because the compiler may complain */
|
|
return -1;
|
|
}
|
|
#endif /* !CONFIG_SLOB */
|
|
|
|
void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
|
|
void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
|
|
void kmem_cache_free(struct kmem_cache *, void *);
|
|
|
|
/*
|
|
* Bulk allocation and freeing operations. These are accelerated in an
|
|
* allocator specific way to avoid taking locks repeatedly or building
|
|
* metadata structures unnecessarily.
|
|
*
|
|
* Note that interrupts must be enabled when calling these functions.
|
|
*/
|
|
void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
|
|
int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
|
|
|
|
/*
|
|
* Caller must not use kfree_bulk() on memory not originally allocated
|
|
* by kmalloc(), because the SLOB allocator cannot handle this.
|
|
*/
|
|
static __always_inline void kfree_bulk(size_t size, void **p)
|
|
{
|
|
kmem_cache_free_bulk(NULL, size, p);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
|
|
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
|
|
#else
|
|
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
return __kmalloc(size, flags);
|
|
}
|
|
|
|
static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
|
|
{
|
|
return kmem_cache_alloc(s, flags);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRACING
|
|
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
|
|
gfp_t gfpflags,
|
|
int node, size_t size) __assume_slab_alignment __malloc;
|
|
#else
|
|
static __always_inline void *
|
|
kmem_cache_alloc_node_trace(struct kmem_cache *s,
|
|
gfp_t gfpflags,
|
|
int node, size_t size)
|
|
{
|
|
return kmem_cache_alloc_trace(s, gfpflags, size);
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
#else /* CONFIG_TRACING */
|
|
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
|
|
gfp_t flags, size_t size)
|
|
{
|
|
void *ret = kmem_cache_alloc(s, flags);
|
|
|
|
ret = kasan_kmalloc(s, ret, size, flags);
|
|
return ret;
|
|
}
|
|
|
|
static __always_inline void *
|
|
kmem_cache_alloc_node_trace(struct kmem_cache *s,
|
|
gfp_t gfpflags,
|
|
int node, size_t size)
|
|
{
|
|
void *ret = kmem_cache_alloc_node(s, gfpflags, node);
|
|
|
|
ret = kasan_kmalloc(s, ret, size, gfpflags);
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_TRACING */
|
|
|
|
extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
|
|
|
|
#ifdef CONFIG_TRACING
|
|
extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
|
|
#else
|
|
static __always_inline void *
|
|
kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
|
|
{
|
|
return kmalloc_order(size, flags, order);
|
|
}
|
|
#endif
|
|
|
|
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
|
|
{
|
|
unsigned int order = get_order(size);
|
|
return kmalloc_order_trace(size, flags, order);
|
|
}
|
|
|
|
/**
|
|
* kmalloc - allocate memory
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate.
|
|
*
|
|
* kmalloc is the normal method of allocating memory
|
|
* for objects smaller than page size in the kernel.
|
|
*
|
|
* The @flags argument may be one of the GFP flags defined at
|
|
* include/linux/gfp.h and described at
|
|
* :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
|
|
*
|
|
* The recommended usage of the @flags is described at
|
|
* :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>`
|
|
*
|
|
* Below is a brief outline of the most useful GFP flags
|
|
*
|
|
* %GFP_KERNEL
|
|
* Allocate normal kernel ram. May sleep.
|
|
*
|
|
* %GFP_NOWAIT
|
|
* Allocation will not sleep.
|
|
*
|
|
* %GFP_ATOMIC
|
|
* Allocation will not sleep. May use emergency pools.
|
|
*
|
|
* %GFP_HIGHUSER
|
|
* Allocate memory from high memory on behalf of user.
|
|
*
|
|
* Also it is possible to set different flags by OR'ing
|
|
* in one or more of the following additional @flags:
|
|
*
|
|
* %__GFP_HIGH
|
|
* This allocation has high priority and may use emergency pools.
|
|
*
|
|
* %__GFP_NOFAIL
|
|
* Indicate that this allocation is in no way allowed to fail
|
|
* (think twice before using).
|
|
*
|
|
* %__GFP_NORETRY
|
|
* If memory is not immediately available,
|
|
* then give up at once.
|
|
*
|
|
* %__GFP_NOWARN
|
|
* If allocation fails, don't issue any warnings.
|
|
*
|
|
* %__GFP_RETRY_MAYFAIL
|
|
* Try really hard to succeed the allocation but fail
|
|
* eventually.
|
|
*/
|
|
static __always_inline void *kmalloc(size_t size, gfp_t flags)
|
|
{
|
|
if (__builtin_constant_p(size)) {
|
|
#ifndef CONFIG_SLOB
|
|
unsigned int index;
|
|
#endif
|
|
if (size > KMALLOC_MAX_CACHE_SIZE)
|
|
return kmalloc_large(size, flags);
|
|
#ifndef CONFIG_SLOB
|
|
index = kmalloc_index(size);
|
|
|
|
if (!index)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
return kmem_cache_alloc_trace(
|
|
kmalloc_caches[kmalloc_type(flags)][index],
|
|
flags, size);
|
|
#endif
|
|
}
|
|
return __kmalloc(size, flags);
|
|
}
|
|
|
|
/*
|
|
* Determine size used for the nth kmalloc cache.
|
|
* return size or 0 if a kmalloc cache for that
|
|
* size does not exist
|
|
*/
|
|
static __always_inline unsigned int kmalloc_size(unsigned int n)
|
|
{
|
|
#ifndef CONFIG_SLOB
|
|
if (n > 2)
|
|
return 1U << n;
|
|
|
|
if (n == 1 && KMALLOC_MIN_SIZE <= 32)
|
|
return 96;
|
|
|
|
if (n == 2 && KMALLOC_MIN_SIZE <= 64)
|
|
return 192;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
#ifndef CONFIG_SLOB
|
|
if (__builtin_constant_p(size) &&
|
|
size <= KMALLOC_MAX_CACHE_SIZE) {
|
|
unsigned int i = kmalloc_index(size);
|
|
|
|
if (!i)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
return kmem_cache_alloc_node_trace(
|
|
kmalloc_caches[kmalloc_type(flags)][i],
|
|
flags, node, size);
|
|
}
|
|
#endif
|
|
return __kmalloc_node(size, flags, node);
|
|
}
|
|
|
|
struct memcg_cache_array {
|
|
struct rcu_head rcu;
|
|
struct kmem_cache *entries[0];
|
|
};
|
|
|
|
/*
|
|
* This is the main placeholder for memcg-related information in kmem caches.
|
|
* Both the root cache and the child caches will have it. For the root cache,
|
|
* this will hold a dynamically allocated array large enough to hold
|
|
* information about the currently limited memcgs in the system. To allow the
|
|
* array to be accessed without taking any locks, on relocation we free the old
|
|
* version only after a grace period.
|
|
*
|
|
* Root and child caches hold different metadata.
|
|
*
|
|
* @root_cache: Common to root and child caches. NULL for root, pointer to
|
|
* the root cache for children.
|
|
*
|
|
* The following fields are specific to root caches.
|
|
*
|
|
* @memcg_caches: kmemcg ID indexed table of child caches. This table is
|
|
* used to index child cachces during allocation and cleared
|
|
* early during shutdown.
|
|
*
|
|
* @root_caches_node: List node for slab_root_caches list.
|
|
*
|
|
* @children: List of all child caches. While the child caches are also
|
|
* reachable through @memcg_caches, a child cache remains on
|
|
* this list until it is actually destroyed.
|
|
*
|
|
* The following fields are specific to child caches.
|
|
*
|
|
* @memcg: Pointer to the memcg this cache belongs to.
|
|
*
|
|
* @children_node: List node for @root_cache->children list.
|
|
*
|
|
* @kmem_caches_node: List node for @memcg->kmem_caches list.
|
|
*/
|
|
struct memcg_cache_params {
|
|
struct kmem_cache *root_cache;
|
|
union {
|
|
struct {
|
|
struct memcg_cache_array __rcu *memcg_caches;
|
|
struct list_head __root_caches_node;
|
|
struct list_head children;
|
|
bool dying;
|
|
};
|
|
struct {
|
|
struct mem_cgroup *memcg;
|
|
struct list_head children_node;
|
|
struct list_head kmem_caches_node;
|
|
|
|
void (*deact_fn)(struct kmem_cache *);
|
|
union {
|
|
struct rcu_head deact_rcu_head;
|
|
struct work_struct deact_work;
|
|
};
|
|
};
|
|
};
|
|
};
|
|
|
|
int memcg_update_all_caches(int num_memcgs);
|
|
|
|
/**
|
|
* kmalloc_array - allocate memory for an array.
|
|
* @n: number of elements.
|
|
* @size: element size.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
|
|
{
|
|
size_t bytes;
|
|
|
|
if (unlikely(check_mul_overflow(n, size, &bytes)))
|
|
return NULL;
|
|
if (__builtin_constant_p(n) && __builtin_constant_p(size))
|
|
return kmalloc(bytes, flags);
|
|
return __kmalloc(bytes, flags);
|
|
}
|
|
|
|
/**
|
|
* kcalloc - allocate memory for an array. The memory is set to zero.
|
|
* @n: number of elements.
|
|
* @size: element size.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
|
|
{
|
|
return kmalloc_array(n, size, flags | __GFP_ZERO);
|
|
}
|
|
|
|
/*
|
|
* kmalloc_track_caller is a special version of kmalloc that records the
|
|
* calling function of the routine calling it for slab leak tracking instead
|
|
* of just the calling function (confusing, eh?).
|
|
* It's useful when the call to kmalloc comes from a widely-used standard
|
|
* allocator where we care about the real place the memory allocation
|
|
* request comes from.
|
|
*/
|
|
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
|
|
#define kmalloc_track_caller(size, flags) \
|
|
__kmalloc_track_caller(size, flags, _RET_IP_)
|
|
|
|
static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
|
|
int node)
|
|
{
|
|
size_t bytes;
|
|
|
|
if (unlikely(check_mul_overflow(n, size, &bytes)))
|
|
return NULL;
|
|
if (__builtin_constant_p(n) && __builtin_constant_p(size))
|
|
return kmalloc_node(bytes, flags, node);
|
|
return __kmalloc_node(bytes, flags, node);
|
|
}
|
|
|
|
static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
|
|
{
|
|
return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
|
|
#define kmalloc_node_track_caller(size, flags, node) \
|
|
__kmalloc_node_track_caller(size, flags, node, \
|
|
_RET_IP_)
|
|
|
|
#else /* CONFIG_NUMA */
|
|
|
|
#define kmalloc_node_track_caller(size, flags, node) \
|
|
kmalloc_track_caller(size, flags)
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
/*
|
|
* Shortcuts
|
|
*/
|
|
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
|
|
{
|
|
return kmem_cache_alloc(k, flags | __GFP_ZERO);
|
|
}
|
|
|
|
/**
|
|
* kzalloc - allocate memory. The memory is set to zero.
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
static inline void *kzalloc(size_t size, gfp_t flags)
|
|
{
|
|
return kmalloc(size, flags | __GFP_ZERO);
|
|
}
|
|
|
|
/**
|
|
* kzalloc_node - allocate zeroed memory from a particular memory node.
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
* @node: memory node from which to allocate
|
|
*/
|
|
static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
return kmalloc_node(size, flags | __GFP_ZERO, node);
|
|
}
|
|
|
|
unsigned int kmem_cache_size(struct kmem_cache *s);
|
|
void __init kmem_cache_init_late(void);
|
|
|
|
#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
|
|
int slab_prepare_cpu(unsigned int cpu);
|
|
int slab_dead_cpu(unsigned int cpu);
|
|
#else
|
|
#define slab_prepare_cpu NULL
|
|
#define slab_dead_cpu NULL
|
|
#endif
|
|
|
|
#endif /* _LINUX_SLAB_H */
|