mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 02:36:27 +07:00
9dd441e4ed
This patch implements GSI transactions. A GSI transaction is a structure that represents a single request (consisting of one or more TREs) sent to the GSI hardware. The last TRE in a transaction includes a flag requesting that the GSI interrupt the AP to notify that it has completed. TREs are executed and completed strictly in order. For this reason, the completion of a single TRE implies that all previous TREs (in particular all of those "earlier" in a transaction) have completed. Whenever there is a need to send a request (a set of TREs) to the IPA, a GSI transaction is allocated, specifying the number of TREs that will be required. Details of the request (e.g. transfer offsets and length) are represented by in a Linux scatterlist array that is incorporated in the transaction structure. Once all commands (TREs) are added to a transaction it is committed. When the hardware signals that the request has completed, a callback function allows for cleanup or followup activity to be performed before the transaction is freed. Signed-off-by: Alex Elder <elder@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
227 lines
7.3 KiB
C
227 lines
7.3 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
|
|
* Copyright (C) 2019-2020 Linaro Ltd.
|
|
*/
|
|
#ifndef _GSI_TRANS_H_
|
|
#define _GSI_TRANS_H_
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/dma-direction.h>
|
|
|
|
#include "ipa_cmd.h"
|
|
|
|
struct scatterlist;
|
|
struct device;
|
|
struct sk_buff;
|
|
|
|
struct gsi;
|
|
struct gsi_trans;
|
|
struct gsi_trans_pool;
|
|
|
|
/**
|
|
* struct gsi_trans - a GSI transaction
|
|
*
|
|
* Most fields in this structure for internal use by the transaction core code:
|
|
* @links: Links for channel transaction lists by state
|
|
* @gsi: GSI pointer
|
|
* @channel_id: Channel number transaction is associated with
|
|
* @cancelled: If set by the core code, transaction was cancelled
|
|
* @tre_count: Number of TREs reserved for this transaction
|
|
* @used: Number of TREs *used* (could be less than tre_count)
|
|
* @len: Total # of transfer bytes represented in sgl[] (set by core)
|
|
* @data: Preserved but not touched by the core transaction code
|
|
* @sgl: An array of scatter/gather entries managed by core code
|
|
* @info: Array of command information structures (command channel)
|
|
* @direction: DMA transfer direction (DMA_NONE for commands)
|
|
* @refcount: Reference count used for destruction
|
|
* @completion: Completed when the transaction completes
|
|
* @byte_count: TX channel byte count recorded when transaction committed
|
|
* @trans_count: Channel transaction count when committed (for BQL accounting)
|
|
*
|
|
* The size used for some fields in this structure were chosen to ensure
|
|
* the full structure size is no larger than 128 bytes.
|
|
*/
|
|
struct gsi_trans {
|
|
struct list_head links; /* gsi_channel lists */
|
|
|
|
struct gsi *gsi;
|
|
u8 channel_id;
|
|
|
|
bool cancelled; /* true if transaction was cancelled */
|
|
|
|
u8 tre_count; /* # TREs requested */
|
|
u8 used; /* # entries used in sgl[] */
|
|
u32 len; /* total # bytes across sgl[] */
|
|
|
|
void *data;
|
|
struct scatterlist *sgl;
|
|
struct ipa_cmd_info *info; /* array of entries, or null */
|
|
enum dma_data_direction direction;
|
|
|
|
refcount_t refcount;
|
|
struct completion completion;
|
|
|
|
u64 byte_count; /* channel byte_count when committed */
|
|
u64 trans_count; /* channel trans_count when committed */
|
|
};
|
|
|
|
/**
|
|
* gsi_trans_pool_init() - Initialize a pool of structures for transactions
|
|
* @gsi: GSI pointer
|
|
* @size: Size of elements in the pool
|
|
* @count: Minimum number of elements in the pool
|
|
* @max_alloc: Maximum number of elements allocated at a time from pool
|
|
*
|
|
* @Return: 0 if successful, or a negative error code
|
|
*/
|
|
int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
|
|
u32 max_alloc);
|
|
|
|
/**
|
|
* gsi_trans_pool_alloc() - Allocate one or more elements from a pool
|
|
* @pool: Pool pointer
|
|
* @count: Number of elements to allocate from the pool
|
|
*
|
|
* @Return: Virtual address of element(s) allocated from the pool
|
|
*/
|
|
void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count);
|
|
|
|
/**
|
|
* gsi_trans_pool_exit() - Inverse of gsi_trans_pool_init()
|
|
* @pool: Pool pointer
|
|
*/
|
|
void gsi_trans_pool_exit(struct gsi_trans_pool *pool);
|
|
|
|
/**
|
|
* gsi_trans_pool_init_dma() - Initialize a pool of DMA-able structures
|
|
* @dev: Device used for DMA
|
|
* @pool: Pool pointer
|
|
* @size: Size of elements in the pool
|
|
* @count: Minimum number of elements in the pool
|
|
* @max_alloc: Maximum number of elements allocated at a time from pool
|
|
*
|
|
* @Return: 0 if successful, or a negative error code
|
|
*
|
|
* Structures in this pool reside in DMA-coherent memory.
|
|
*/
|
|
int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
|
|
size_t size, u32 count, u32 max_alloc);
|
|
|
|
/**
|
|
* gsi_trans_pool_alloc_dma() - Allocate an element from a DMA pool
|
|
* @pool: DMA pool pointer
|
|
* @addr: DMA address "handle" associated with the allocation
|
|
*
|
|
* @Return: Virtual address of element allocated from the pool
|
|
*
|
|
* Only one element at a time may be allocated from a DMA pool.
|
|
*/
|
|
void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr);
|
|
|
|
/**
|
|
* gsi_trans_pool_exit() - Inverse of gsi_trans_pool_init()
|
|
* @pool: Pool pointer
|
|
*/
|
|
void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool);
|
|
|
|
/**
|
|
* gsi_channel_trans_alloc() - Allocate a GSI transaction on a channel
|
|
* @gsi: GSI pointer
|
|
* @channel_id: Channel the transaction is associated with
|
|
* @tre_count: Number of elements in the transaction
|
|
* @direction: DMA direction for entire SGL (or DMA_NONE)
|
|
*
|
|
* @Return: A GSI transaction structure, or a null pointer if all
|
|
* available transactions are in use
|
|
*/
|
|
struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
|
|
u32 tre_count,
|
|
enum dma_data_direction direction);
|
|
|
|
/**
|
|
* gsi_trans_free() - Free a previously-allocated GSI transaction
|
|
* @trans: Transaction to be freed
|
|
*/
|
|
void gsi_trans_free(struct gsi_trans *trans);
|
|
|
|
/**
|
|
* gsi_trans_cmd_add() - Add an immediate command to a transaction
|
|
* @trans: Transaction
|
|
* @buf: Buffer pointer for command payload
|
|
* @size: Number of bytes in buffer
|
|
* @addr: DMA address for payload
|
|
* @direction: Direction of DMA transfer (or DMA_NONE if none required)
|
|
* @opcode: IPA immediate command opcode
|
|
*/
|
|
void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
|
|
dma_addr_t addr, enum dma_data_direction direction,
|
|
enum ipa_cmd_opcode opcode);
|
|
|
|
/**
|
|
* gsi_trans_page_add() - Add a page transfer to a transaction
|
|
* @trans: Transaction
|
|
* @page: Page pointer
|
|
* @size: Number of bytes (starting at offset) to transfer
|
|
* @offset: Offset within page for start of transfer
|
|
*/
|
|
int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
|
|
u32 offset);
|
|
|
|
/**
|
|
* gsi_trans_skb_add() - Add a socket transfer to a transaction
|
|
* @trans: Transaction
|
|
* @skb: Socket buffer for transfer (outbound)
|
|
*
|
|
* @Return: 0, or -EMSGSIZE if socket data won't fit in transaction.
|
|
*/
|
|
int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb);
|
|
|
|
/**
|
|
* gsi_trans_commit() - Commit a GSI transaction
|
|
* @trans: Transaction to commit
|
|
* @ring_db: Whether to tell the hardware about these queued transfers
|
|
*/
|
|
void gsi_trans_commit(struct gsi_trans *trans, bool ring_db);
|
|
|
|
/**
|
|
* gsi_trans_commit_wait() - Commit a GSI transaction and wait for it
|
|
* to complete
|
|
* @trans: Transaction to commit
|
|
*/
|
|
void gsi_trans_commit_wait(struct gsi_trans *trans);
|
|
|
|
/**
|
|
* gsi_trans_commit_wait_timeout() - Commit a GSI transaction and wait for
|
|
* it to complete, with timeout
|
|
* @trans: Transaction to commit
|
|
* @timeout: Timeout period (in milliseconds)
|
|
*/
|
|
int gsi_trans_commit_wait_timeout(struct gsi_trans *trans,
|
|
unsigned long timeout);
|
|
|
|
/**
|
|
* gsi_trans_read_byte() - Issue a single byte read TRE on a channel
|
|
* @gsi: GSI pointer
|
|
* @channel_id: Channel on which to read a byte
|
|
* @addr: DMA address into which to transfer the one byte
|
|
*
|
|
* This is not a transaction operation at all. It's defined here because
|
|
* it needs to be done in coordination with other transaction activity.
|
|
*/
|
|
int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr);
|
|
|
|
/**
|
|
* gsi_trans_read_byte_done() - Clean up after a single byte read TRE
|
|
* @gsi: GSI pointer
|
|
* @channel_id: Channel on which byte was read
|
|
*
|
|
* This function needs to be called to signal that the work related
|
|
* to reading a byte initiated by gsi_trans_read_byte() is complete.
|
|
*/
|
|
void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id);
|
|
|
|
#endif /* _GSI_TRANS_H_ */
|